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On the structure of Kac–Moody algebras

Timothée Marquis

Abstract. LetA be a symmetrisable generalised Cartanmatrix, and let g(A) be the corresponding Kac–

Moody algebra. In this paper, we address the following fundamental question on the structure of g(A):

given two homogeneous elements x , y ∈ g(A), when is their bracket [x , y] a nonzero element? As an

application of our results, we give a description of the solvable and nilpotent graded subalgebras of

g(A).

1 Introduction

By a theorem of J.-P. Serre ([Ser66]), any finite-dimensional complex semisimple Lie
algebra admits a presentation whose parameters are the entries of some matrix of
integers A, called a Cartan matrix. �is presentation still makes sense if one allows
more general integral matrices A = (a i j)i , j∈I (I a finite set), called generalised Cartan
matrices (GCM).�e corresponding Lie algebras g(A) (theKac–Moody algebras) were
introduced independently in 1967 byV.Kac ([Kac67]) andR.Moody ([Moo67]). From
a mere generalisation to infinite dimension of the semisimple Lie algebras (which are
the Kac–Moody algebras of finite type), Kac–Moody algebras soon became central
objects of study,with awide array of applications in a variety ofmathematical domains,
as well as in theoretical physics (see, e.g., [Kac90]). Over the past years, specific
Kac–Moody algebras of hyperbolic and Lorentzian type have also been intensively
investigated in connection to M-theory (see, e.g., [DHN02], [DN05], [FGKP18, §19],
and also [Wes01], [GOW02]). On the other hand, understanding the structure of
Kac–Moody algebras is an essential step towards a better understanding of the
correspondingKac–Moody groups; these groups, introduced in the late 1980s, turn out
to exhibit a very rich structure, parallelling that of semisimple algebraic groups, and
have become over the last decades prominent objects of study in many different areas,
including geometric group theory, algebraic geometry and representation theory (see,
e.g., [Kum02], [Cap18, §3.1], [Mar18]).

Kac–Moody algebras share many properties with their finite-dimensional sisters;
in particular, they possess a root space decomposition

g(A) = h⊕⊕
α∈∆

gα
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On the structure of Kac–Moody algebras 1125

with respect to the adjoint action of a Cartan subalgebra h, with associated set of roots
∆ ⊆ h∗, as well as a triangular decomposition

g(A) = n− ⊕ h⊕ n+,

where n± ∶= ⊕α∈∆± gα is the subalgebra of g(A) associated to the set of posi-
tive/negative roots ∆± = ∆ ∩ ±∑i∈I Nα i with respect to a set {α i ∣ i ∈ I} of simple roots.
Moreover, if A is symmetrisable (a mild assumption made throughout this paper, see
§2 for precise definitions), then g(A) admits a nondegenerate invariant form (⋅∣⋅) that
generalises the Killing form; the restriction to h of this form is nondegenerate, and
induces a bilinear form

h∗ × h∗ → C ∶ (α, β)↦ (α∣β)
on h∗.

On the other hand, Kac–Moody algebras also show some striking differences: while
some roots in ∆ have analogous properties to the roots of a semisimple Lie algebra
(such roots are called real), the key novelty of Kac–Moody algebras (of nonfinite type)
is the apparition of imaginary roots, with a completely different behaviour. �e sets
∆re and ∆im of real and imaginary roots can be described as

∆re = {α ∈ ∆ ∣ (α∣α) > 0} and ∆im = {α ∈ ∆ ∣ (α∣α) ≤ 0}.
One of the most notable differences between real and imaginary roots concerns
the dimension of the corresponding root spaces: while dimgα = 1 for all α ∈ ∆re ,
the dimensions of the root spaces gα with α ∈ ∆im might be arbitrarily large, and
determining these root multiplicities is still a widely open problem (see [CFL14] for a
recent survey of the state of the art). In fact, despite a considerable volume of works
on the topic, the structure of general Kac–Moody algebras remains, to this day, largely
mysterious.

One exception is the case where all imaginary roots α ∈ ∆im are isotropic, in the
sense that (α∣α) = 0.�e corresponding Kac–Moody algebras, of so-called affine type,
have concrete realisations as (twisted) loop algebras over semisimple Lie algebras (or
rather, suitable extensions thereof), and their structure is thus well understood. In
particular, {dimgα ∣ α ∈ ∆} is in that case bounded. On the other hand, when g(A)
is of indefinite type, i.e., neither of finite nor of affine type, the set {dimgα ∣ α ∈ ∆} is
unbounded, and there is not a single instance where a “concrete realisation” of g(A),
as in the affine case, is known.

In order to elucidate the structure of general Kac–Moody algebras beyond
the foundational results of the theory (see [Kac90]), the efforts of the Kac–Moody
community have essentially been focussed on obtaining root multiplicity formulas.
Pioneering works by several authors (notably, [BM79], [FF83] and [Kan94]) led
to several such formulas in closed form, at various levels of generality, and these
formulas were applied in a number of papers to determine explicitly the root
multiplicities of “small” roots for some particular Kac–Moody algebras. However,
these formulas are of very little help in understanding howdimgα varieswhen α ∈ ∆

im

varies and, a fortiori, in getting global information on the Lie algebra structure of
g(A). In fact, apart from a monotonicity result, obtained in [KM95, Proposition 5.6],
stating that dimgα ≤ dimgα+α1+α2

for any root α ∈ ∆+ associated to the
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GCM A = ( 2 −a
−a 2

) (a ∈ N), there seems to be no general result beyond

[Kac90] that provides information on the Lie bracket of g(A), or even that offers
some comparison results on the root multiplicities.

In the present paper, we take a different approach, by addressing the following
fundamental question on the Lie algebra structure of g(A):

Given x ∈ gα and y ∈ gβ ,when is [x , y] a nonzero element?

Our main theorem is as follows.

�eorem A Let α, β ∈ ∆. If (α∣β) < 0 then [x , y] ≠ 0 for all nonzero x ∈ gα and y ∈ gβ ,
unless α = β and Cx = Cy.

As the condition (α∣β) < 0 is almost always satisfied for positive imaginary roots
α, β ∈ ∆im+

∶= ∆im
∩ ∆+ (see Lemma 3.6),�eoremAallows in particular for a precise

description of the Lie bracket on the imaginary subalgebra (see §2.3)

nim+
∶= ⊕

α∈∆ im+

gα

of n+ (note that there is a Chevalley involution ω ∈ Aut(g(A)) exchanging n+ and n−,
whence our focus on n+).

Corollary B Let α, β ∈ ∆im+. �en one of the following holds:

(1) [gα , gβ] = {0}. �is occurs if and only if either α + β ∉ ∆, or α, β are proportional
isotropic roots.

(2) [x , y] ≠ 0 for every nonzero x ∈ gα and y ∈ gβ such that Cx ≠ Cy.

Note that the case (1) in Corollary B is completely understood, as we also deter-
mine precisely the pairs α, β ∈ ∆im+ such that α + β ∉ ∆ (see Lemma 3.4). �e case
(2), on the other hand, implies the following dramatic generalisation of [KM95,
Proposition 5.6] to arbitrary symmetrisable GCM and arbitrary pairs of positive roots(α, β) (Proposition 5.6 in loc. cit. covers the case β = α1 + α2 for the symmetric 2 × 2
GCM).

Corollary C Let α, β ∈ ∆im+ with α ≠ β be such that [gα , gβ] ≠ {0}. �en

dim[gα , gβ] ≥max{dimgα , dimgβ},
with equality if and only ifmin{dimgα , dimgβ} = 1.

As an application of �eorem A, we describe, in the second part of this paper, the
graded subalgebrasL of g(A) all whose elements are ad-locally finite on L; in partic-
ular, we obtain structure results for the solvable and nilpotent graded subalgebras of
g(A). We recall that an element x ∈ L is ad-locally finite onL if for every y ∈ L there is
some finite-dimensional subspace V ⊆ L containing y such that [x ,V] ⊆ V . In other
words, x ∈ L is ad-locally finite on L if and only if the exponential

exp ad x ∶= ∑
n∈N

(ad x)n
n!
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yields a well-defined operator in Aut(L). �e condition that L only consists of such
elements thus precisely means that L can be integrated to a group

G(L) = ⟨exp ad x ∣ x ∈ L⟩ ⊆ Aut(L).
Note that ad-local finiteness is another key difference between real and imaginary

root spaces: while x is ad-locally finite on g(A) for every x ∈ gα with α ∈ ∆re (this
condition in fact characterises Kac–Moody algebras within the class of contragredient
Lie algebras; see [MP95, §4.1]), the nonzero elements of imaginary root spaces are not
ad-locally finite on g(A). We first establish a very precise form of this statement.

�eorem D Let α ∈ ∆im+ and β ∈ ∆+. Let x ∈ gα and y ∈ gβ be such that [x , y] ≠ 0.
�en (ad x)n y ≠ 0 for all n ∈ N.

We next state the announced structure result for graded subalgebras ofLwith only
ad-locally finite elements. An element x ∈ g(A) is homogeneous if x ∈ gα for some
α ∈ ∆ ∪ {0}. A set Ψ ⊆ ∆ of roots is called closed if α + β ∈ Ψ whenever α, β ∈ Ψ and
α + β ∈ ∆. One then writes gΨ ∶= ⊕α∈Ψ gα ⊆ g(A). In particular, nim± = g∆ im± , where
∆im± = ∆im

∩ ∆±.

�eorem E LetL be a graded subalgebra of g(A) such that each homogeneous element
of L is ad-locally finite on L. �en there exists a closed set of real roots Ψ ⊆ ∆re , and
abelian subalgebras L0 ⊆ h, Lim+ ⊆ nim+ and Lim− ⊆ nim− such that

(1) L = L0 ⊕ gΨ ⊕L
im+
⊕L

im−;
(2) [gΨ ,Lim+] = {0} = [gΨ ,Lim−];
(3) [Lim+,Lim−] ⊆ L0 ⊕ gΨ .

Note that the subspaces gΨ with Ψ ⊆ ∆re a closed set of real roots were com-
pletely described in [CM18] (see Proposition 2.1 below). On the other hand, we also
provide a complete description of the graded abelian subalgebras Lim± of nim± (see
Proposition 5.9).
As every element x of a nilpotent subalgebra L of g(A) is ad-locally nilpotent on

L (i.e., for every y ∈ L there exists some n ∈ N such that (ad x)n y = 0), �eorem E
applies in particular to nilpotent graded subalgebras of g(A), and yields the following
analogue in the Kac–Moody setting of a classical result from the theory of finite-
dimensional nilpotent Lie algebras.

Corollary F Let L be a graded subalgebra of g(A). �en L is nilpotent if and only if
every homogeneous x ∈ L is ad-locally nilpotent on L.

Togetherwith [CM18],�eoremE further implies the existence of a uniformbound
on the nilpotency class of nilpotent graded subalgebras of g(A) (see Remark 5.11 for
more details on the bound).

Corollary G �ere exists some N ∈ N depending only on A, such that every nilpotent
graded subalgebra of g(A) has nilpotency class at most N.

Finally, we obtain an analogue in the Kac–Moody setting of another classical result,
this time from the theory of finite-dimensional solvable Lie algebras. LetŴ(A) denote
the Dynkin diagram of A.
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�eorem H Assume that Ŵ(A) does not contain any subdiagram of affine type. Let L
be a graded subalgebra of g(A). �en the following assertions are equivalent:

(1) L is solvable.
(2) L

1
∶= [L,L] is nilpotent.

(3) [h ∩L1 ,L] = {0} and each homogeneous element of L is ad-locally finite on L.

Note that when Ŵ(A) contains a subdiagram of affine type, �eorem H does not
hold anymore (see Example 5.12). Nevertheless, a weaker form of�eoremH can still
be obtained without this additional hypothesis (see �eorem 5.15).

As a last remark, note that ad-locally finite subalgebrasL of g(A) (in the sense that
for every y ∈ g(A), there is some finite-dimensional subspace V ⊆ g(A) containing
y such that ad(L)V ⊆ V ) were described in [KP87, �eorem 3]. Although related,
this local finiteness condition is far more restrictive than only requiring the elements
of L to be individually ad-locally finite on L (for instance, it forces L to be finite-
dimensional), and in particular does not allow to describe the solvable and nilpotent
(graded) subalgebras of g(A).

Conventions

�roughout this paper,N denotes the set of nonnegative integers,N∗ the set of positive
integers, and Z∗ the set of nonzero integers.

2 Preliminaries

In this section, we fix some terminology and recall some basic facts about Kac–Moody
algebras. �e general reference for this section is [Kac90, Chapters 1–5 and §9.11].

2.1 Generalised Cartan matrices

A generalised Cartan matrix (GCM) is an integral matrix A = (a i j)i , j∈I indexed by
some finite set I such that

(C1) a i i = 2 for all i ∈ I;
(C2) a i j ≤ 0 for all i , j ∈ I with i ≠ j;
(C3) a i j = 0 ⇐⇒ a ji = 0 for all i , j ∈ I.
�ematrixA is called symmetrisable if there exists some diagonal matrixD and some
symmetric matrix B such that A = DB.

2.2 Kac–Moody algebras

Let A = (a i j)i , j∈I be a symmetrisable generalised Cartan matrix, and fix a realisation(h, Π = {α i ∣ i ∈ I}, Π∨ = {α∨i ∣ i ∈ I}) of A as in [Kac90, Chapter 1]. �e Kac–Moody
algebra g(A) is the complex Lie algebra with generators e i , f i (i ∈ I) and h, and
defining relations
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[h, h′] = 0 for all h, h′ ∈ h;(2.1)

[h, e i] = ⟨α i , h⟩e i and [h, f i] = −⟨α i , h⟩ f i for all i ∈ I;(2.2)

[ f j , e i] = δ i jα∨i for all i , j ∈ I;(2.3)

(ad e i)1−a i j e j = 0 and (ad f i)1−a i j f j = 0 for all i , j ∈ I with i ≠ j.(2.4)

�e elements e i , f i (i ∈ I), as well as the space h, are identified with their canonical
image in g(A), and are respectively called the Chevalley generators and Cartan
subalgebra of g(A). �e subalgebra of g(A) generated by the e i (resp. f i) for i ∈ I
is denoted n+ = n+(A) (resp. n−), and g(A) admits a triangular decomposition

g(A) = n− ⊕ h⊕ n+ (direct sum of vector spaces).

�e adjoint action of h on g(A) is diagonalisable, yielding a root space decomposition

g(A) = h⊕⊕
α∈∆

gα ,

where gα ∶= {x ∈ g(A) ∣ [h, x] = α(h)x ∀h ∈ h} is the root space attached to α ∈ h∗,
and where ∆ ∶= {α ∈ h∗/{0} ∣ gα ≠ {0}} is the corresponding set of roots.

Set Q ∶= ⊕i∈I Zα i . Every root α ∈ ∆ either belongs to

Q+ ∶=⊕
i∈I

Nα i

(inwhich case α is called positive) or toQ− ∶= −Q+ (inwhich case α is called negative);
writing α = ∑i∈I n iα i for some n i ∈ Z, the number ht(α) ∶= ∑i∈I n i is called the height
of α. �e set of all positive (resp. negative) roots is denoted ∆+ (resp. ∆−). An
element x ∈ gα for some α ∈ ∆ ∪ {0} (where g0 ∶= h) is called homogeneous of degree
deg(x) ∶= α.

Setting h′ ∶= ∑i∈I Cα
∨
i ⊆ h, the derived algebra g′(A) ∶= [g(A), g(A)] of g(A) has

a triangular decomposition

g′(A) = n− ⊕ h′ ⊕ n+ .

It has the same presentation as g(A), with h replaced by h′. �e centre c of g′(A) is
contained in h′, and g′(A)/c is a simple Lie algebra. Moreover, if ñ+ denotes the free
Lie algebra with generators e i (i ∈ I) and i+ the ideal of ñ+ generated by the elements(ad e i)1−a i j e j (i ≠ j), then the assignment e i ↦ e i defines an isomorphism

n+ ≅ ñ+/i+.(2.5)

To any subset Ψ ⊆ ∆, we associate the subspace
gΨ ∶= ⊕

α∈Ψ

gα

of g(A). �e set Ψ is closed if α + β ∈ Ψ whenever α, β ∈ Ψ and α + β ∈ ∆.
�e assignment

ω(e i) ∶= − f i , ω( f i) ∶= −e i , and ω(h) ∶= −h for all i ∈ I and h ∈ h
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1130 T. Marquis

defines an involutive automorphism ω of g(A), called the Chevalley involution.
Note that ω(gα) = g−α for all α ∈ ∆; in particular, ∆− = −∆+.

2.3 Weyl group of g(A)
�e Weyl group W =W(A) of g(A) is the subgroup of GL(h∗) generated by the
simple reflections

s i ∶ h
∗
→ h∗ , α ↦ α − ⟨α, α∨i ⟩α i

for i ∈ I; the couple (W, {s i ∣ i ∈ I}) is then a Coxeter system. Alternatively,W can be
identified with the subgroup of GL(h) generated by the “dual” simple reflections

s∨i ∶ h→ h, h ↦ h − ⟨α i , h⟩α∨i .
For each i ∈ I, the element s∗i ∶= exp(ad f i) exp(ad e i) exp(ad f i) defines an auto-

morphism of g(A), and the assignment s∗i ↦ s i defines a surjective group morphism
π∶W∗ →W from the group

W
∗
∶= ⟨s∗i ∣ i ∈ I⟩ ⊆ Aut(g(A))

toW. Moreover, the restriction ofW∗ to h coincides withW ⊆ GL(h), and
w∗gα = gwα for all α ∈ ∆ ∪ {0} and all w∗ ∈W∗ with π(w∗) = w .(2.6)

In particular,W stabilises ∆ ⊆ h∗.
A root α ∈ ∆ is called real if it belongs to ∆re

∶=W ⋅Π; otherwise, α is called
imaginary, and we set ∆im

∶= ∆/∆re . We further set

∆re±
∶= ∆re

∩ ∆± and ∆im±
∶= ∆im

∩ ∆±.

�en ∆im± is a closed set of roots stabilised byW. In particular,

nim±
∶= g∆ im±

is aW∗-invariant subalgebra of n±.
If α = wα i for some w ∈W and i ∈ I, then α∨ ∶= wα∨i depends only on α, and is

called the coroot associated to α. For each α ∈ ∆re+, we fix a decomposition α = wαα i

for somewα ∈W and i ∈ I (withwα ∶= 1 if α ∈ Π).We also choose somew∗α ∈W∗ with
π(w∗α) = wα , and we set

eα ∶= w∗α e i and e−α ∶= w∗α f i
(the element eα is in fact independent of the choices of i ,wα ,w

∗
α up to a sign, but we

will not need this fact). �us gα = Ceα , and

[e−α , eα] = α∨ and [α∨ , e±α] = ±2e±α for all α ∈ ∆re .(2.7)

For any α ∈ ∆, we have
Zα ∩ ∆ = {±α} if α ∈ ∆re and Zα ∩ ∆ = Z∗α if α ∈ ∆im .(2.8)
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2.4 Coxeter diagram of A

�e Coxeter diagram Ŵ(A) of A is the graph with vertex set Π and with an edge
between α i and α j if and only if a i j < 0. We call Ŵ(A) of affine type if the corre-
sponding Dynkin diagram is of affine type, in the sense of [Kac90, §4.8]. �e support
of an element α = ∑i∈I n iα i ∈ Q+ is the subdiagram supp(α) of Ŵ(A) with vertex set{α i ∣ n i ≠ 0}. Here, by subdiagram of Ŵ(A) with vertex set S ⊆ Π, we always mean the
subgraph of Ŵ(A) with vertex set S and with all the edges connecting the vertices in
S. When convenient (and when no confusion is possible), we will also view supp(α)
as the subset J of I such that supp(α) has vertex set {α j ∣ j ∈ J}.

Similarly, for any w ∈W with reduced decomposition w = s i1 . . . s id , the set Iw ∶={i1 , . . . , id} ⊆ I depends only onw, and we call the subdiagram supp(w) ofŴ(A)with
vertex set {α i ∣ i ∈ Iw} the support of w.

Any root α ∈ ∆ has connected support. Moreover, setting

K0 ∶= {α ∈ Q+ ∣ ⟨α, α∨i ⟩ ≤ 0 for all i ∈ I},
the set ∆im+ of positive imaginary roots can be described as

∆im+ =W ⋅ {α ∈ K0 ∣ supp(α) is connected}.(2.9)

Note that the second statement in (2.8) follows from (2.9).

2.5 Invariant bilinear form of g(A)
Since A is symmetrisable, g(A) admits a symmetric invariant bilinear form(⋅∣⋅)∶ g(A) × g(A)→ C (see [Kac90, §2.3]). �e restriction of (⋅∣⋅) to h is nondegen-
erate, and we denote by h∗ → h, α ↦ α♯ the induced isomorphism, characterised
by

⟨β, α♯⟩ = (β♯∣α♯) =∶ (β∣α) for all α, β ∈ h∗.
�en (α i ∣α j) ≤ 0 for all i , j ∈ I with i ≠ j, and

α∨ = 2α♯

(α∣α) for all α ∈ ∆re .(2.10)

Note also that

[α♯ , xβ] = (β∣α)xβ for all α, β ∈ h∗ and xβ ∈ gβ
and that

[g−α , gα] = Cα♯ for all α ∈ ∆.(2.11)

�e symmetric bilinear form

h∗ × h∗ → C, (α, β)↦ (α∣β)
isW-invariant, and we have

(α∣α) > 0 for all α ∈ ∆re and (β∣β) ≤ 0 for all β ∈ ∆im .(2.12)
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A root α ∈ ∆ is isotropic if (α∣α) = 0; otherwise, it is nonisotropic.We denote by ∆im+
i s

(resp. ∆im+
an ) the set of isotropic (resp. nonisotropic) positive imaginary roots. If α ∈

K0, then

(α∣α) = 0 ⇐⇒ supp(α) is a subdiagram of affine type(2.13)

and

(α∣α) = 0 Ô⇒ (α∣α i) = 0 whenever α i ∈ supp(α).(2.14)

Moreover, if supp(α) is of affine type and β ∈ ∆im , then

supp(β) ⊆ supp(α) Ô⇒ β ∈ Qα.(2.15)

2.6 Closed sets of real roots

Finally, we record for future reference the following result from [CM18].

Proposition 2.1 Let Ψ ⊆ ∆re be a closed set of real roots and let g be the subalgebra
of g(A) generated by gΨ . Set Ψs ∶= {α ∈ Ψ ∣ − α ∈ Ψ} and Ψn ∶= Ψ/Ψs . Set also hs ∶=∑γ∈Ψs

Cγ∨, gs ∶= hs ⊕ gΨs
and gn ∶= gΨn

. �en

(1) gs is a subalgebra and gn is an ideal of g. In particular, g = gs ⋉ gn .
(2) gn is the largest nilpotent ideal of g.
(3) gs is a semisimple finite-dimensional Lie algebra with Cartan subalgebra hs and set

of roots Ψs .

Moreover, there exists some N ∈ N, depending only on the GCM A, such that gn has
nilpotency class at most N.

Proof �e assertions (1)–(3) are contained in the main theorem of [CM18]. Since,
in the terminology of [CM18], Ψn is pro-nilpotent by [CM18, Proposition 7 and
Lemma 8], the existence of N ∈ N follows from (the proof of) [CM18, Lemma 1]. ◻

3 Basic Properties of Roots

In this section, we collect a few useful properties of roots and root spaces.We fix again
a symmetrisable GCM A, and keep all notations from Section 2.

We first recall the properties of root strings.

Lemma 3.1 Let α ∈ ∆re and β ∈ ∆. Set S(α, β) ∶= (β +Zα) ∩ ∆. �en S(α, β) = {β +
nα ∣ − p ≤ n ≤ q} for some p, q ∈ N with p − q = ⟨β, α∨⟩, and one of the following
holds:

(1) S(α, β) ∩ ∆re = ∅.
(2) ∣S(α, β) ∩ ∆re ∣ = 1; in that case, S(α, β) = {β}.
(3) ∣S(α, β) ∩ ∆re ∣ = 2; in that case, S(α, β) ∩ ∆re = {β − pα, β + qα}.
(4) ∣S(α, β) ∩ ∆re ∣ = 3; in that case, S(α, β) ⊆ ∆re .
(5) ∣S(α, β) ∩ ∆re ∣ = 4; in that case,

S(α, β) ∩ ∆re = {β − pα, β − (p − 1)α, β + (q − 1)α, β + qα}.
Proof See [BP95, Proposition 1]. ◻
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Lemma 3.2 Let β ∈ ∆im+. �en the following assertions hold:

(1) �ere is a unique β′ ∈W.β ∩ K0 (namely, the unique element of W.β of minimal
height).

(2) supp(β′) is a subdiagram of supp(β).
(3) β′ = wβ for some w ∈W with supp(w) ⊆ supp(β).
Proof Note that β ∈ K0 if and only if ht(s iβ) ≥ ht(β) for all i ∈ I. �e first statement
then follows from [Kac90, Proposition 5.2b]. By uniqueness of β′, there is a sequence
of elements i1 , . . . , id ∈ I such that the roots βt ∶= s i t . . . s i1β (t = 0, . . . , d) satisfy β0 =
β, βd = β′ and ht(βt) < ht(βt−1) (t = 1, . . . , d). In particular,

supp(β′) = supp(βd) ⊆ supp(βd−1) ⊆ ⋅ ⋅ ⋅ ⊆ supp(β0) = supp(β)
and α i t ∈ supp(βt−1) ⊆ supp(β) for all t = 1, . . . , d, yielding (2) and (3). ◻

Given i ∈ I, and α = ∑ j∈I n jα j ∈ Q, we set htα i
(α) ∶= n i .

Lemma 3.3 Let α ∈ ∆im+
∩ K0 and i ∈ I be such that ⟨α, α∨i ⟩ ≠ 0. Let w ∈W be such

that htα i
(α) = htα i

(wα). �en α i ∉ supp(w).
Proof Let w = s i1 . . . s id be a reduced decomposition of w. For each t ∈ {1, . . . , d},
set βt ∶= s i1 . . . s i t−1α i t ∈ ∆re+, so that

{βt ∣ 1 ≤ t ≤ d} = ∆+ ∩w∆−
(see, e.g., [Mar18, Exercise 4.33]). �en

α −wα = d∑
t=1

⟨α, α∨i t ⟩βt

(see, e.g., [Mar18, Exercise 4.34]). Hence

0 = htα i
(α −wα) = d∑

t=1

⟨α, α∨i t ⟩htα i
(βt).

Since ⟨α, α∨i t ⟩ ≤ 0 for all t = 1, . . . , d, this implies that

⟨α, α∨i t ⟩htα i
(βt) = 0 for all t = 1, . . . , d .

Assume for a contradiction that α i ∈ supp(w), and let r ∈ {1, . . . , d} be minimal such
that ir = i. �en htα i

(βr) = 1 and hence ⟨α, α∨i ⟩ = 0, a contradiction. ◻

Lemma 3.4 Let β1 , . . . , βr ∈ ∆im+ be such that β i + β j ∉ ∆ for all i ≠ j. �en
there exists some w ∈W such that wβt ∈ K0 for all t = 1, . . . , r, and such that
supp(wβ1), . . . , supp(wβr) are r distinct connected components in the subdiagram
supp(wβ1) ∪ ⋅ ⋅ ⋅ ∪ supp(wβr).
Proof We prove the claim by induction on r. For r = 1, the claim is clear. Let now
r = 2. Since W ⋅ ∆im+ = ∆im+ ⊆ Q+, we find some w ∈W such that w(β1 + β2) ∈ Q+
has minimal height in W.(β1 + β2). �us, wβ1 +wβ2 ∈ K0/∆im+, so that supp(wβ1)
and supp(wβ2) are two distinct connected components of supp(wβ1) ∪ supp(wβ2)
by (2.9). In particular, wβ j ∈ K0 for j = 1, 2, yielding the claim in that case: otherwise,
we find by Lemma 3.2 some v j ∈W ( j = 1, 2) such that supp(v j) ⊆ supp(wβ j) and
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ht(v1wβ1) + ht(v2wβ2) < ht(wβ1) + ht(wβ2) (in particular, v1v2 = v2v1 and v iwβ j =
wβ j for i ≠ j), contradicting the fact that

ht(v1wβ1) + ht(v2wβ2) = ht(v1v2w(β1 + β2)).
Assume next that the claim holds for some r ≥ 2, and let us prove it for r + 1. By

induction hypothesis, there is no loss of generality in assuming that βt ∈ K0 for all
t = 1, . . . , r, and that supp(β1), . . . , supp(βr) are r distinct connected components in
the subdiagram supp(β1) ∪ ⋅ ⋅ ⋅ ∪ supp(βr).

We claim that supp(βt) ∪ supp(βr+1) is not connected for any given t ∈ {1, . . . , r}.
Indeed, by the case r = 2, we find some vt ∈W such that vtβt ∈ K0 and vtβr+1 ∈ K0,
and such that supp(vtβt) and supp(vtβr+1) are distinct connected components of
supp(vtβt) ∪ supp(vtβr+1). Note that vtβt = βt by Lemma 3.2(1) and supp(vtβr+1) ⊆
supp(βr+1) by Lemma 3.2(2). Hence, if supp(βt) ∪ supp(βr+1) were connected, there
would exist some i ∈ I with α i ∈ supp(βr+1)/ supp(vtβr+1) such that α i ∉ supp(βt)
and supp(βt) ∪ {α i} is connected. However, then ⟨βt , α

∨
i ⟩ < 0, so that Lemma 3.3

(with α ∶= βt andw ∶= vt) would imply that α i ∉ supp(vt), and hence that htα i
(βr+1) =

htα i
(vtβr+1) = 0, a contradiction.
Finally, Lemma 3.2 yields some w ∈W with supp(w) ⊆ supp(βr+1) such that

wβr+1 ∈ K0. As wβt = βt for all t = 1, . . . , r, this completes the induction step. ◻

Remark 3.5 Note that, up to now, we did not make use of the symmetrisability
assumption on A. In particular, Lemmas 3.2, 3.3 and 3.4 remain valid for an arbitrary
GCM A.

Lemma 3.6 Let α, β ∈ ∆im+. �en the following assertions hold:

(1) (α∣β) ≤ 0.
(2) If α + β ∈ ∆+, then (α∣β) < 0 unless α, β are proportional isotropic roots.
(3) If (α∣β) < 0 then α + β ∈ ∆im+.

Proof �e lemma sums up Exercises 5.16, 5.17, and 5.18 in [Kac90]. For the conve-
nience of the reader, here are more detailed proofs.

(1) Using theW-action, there is no loss of generality in assuming that α ∈ K0 (see
(2.9)). But then (α∣α i) ≤ 0 for all i ∈ I. Since β ∈ Q+, the claim follows.

(2) Assume that α + β ∈ ∆im+ and that (α∣β) = 0. As in the proof of (1), there is no
loss of generality in assuming that α ∈ K0, so that (α∣α i) = 0 for all i ∈ I with α i ∈
supp(β). In particular, supp(β) ⊆ supp(α): otherwise, since supp(α) ∪ supp(β) =
supp(α + β) is connected, there would exist some j ∈ supp(β)/ supp(α) such that the
subdiagram supp(α) ∪ {α j} is connected, and hence (α∣α j) < 0, a contradiction. Up
to conjugating β by some w ∈W with supp(w) ⊆ supp(β) (so that wα = α), we may
then assume by Lemma 3.2 that β ∈ K0 as well. Exchanging the roles of α and β in
the above argument, we deduce that supp(α) = supp(β) and that (α∣α) = (β∣β) = 0.
Moreover, (2.13) implies that supp(α) is a subdiagram of affine type, and hence α, β
are proportional isotropic roots by (2.15), as desired.

(3) Up to replacing α + β with an element of minimal height in W.(α + β) ⊆ Q+,
we may assume that α + β ∈ K0. We claim that supp(α + β) is connected, so that
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(3) follows from (2.9). Otherwise, since supp(α) and supp(β) are connected, they
are distinct connected components of supp(α + β) = supp(α) ∪ supp(β), and hence(α∣β) = 0, a contradiction. ◻

Lemma 3.7 Let α ∈ ∆re and β ∈ ∆.
(1) If (α∣β) < 0, then [x , y] ≠ 0 for all nonzero x ∈ gα and y ∈ gβ .
(2) [gα , gβ] = {0} if and only if α + β ∉ ∆.
Proof (1) follows from [Kac90, Proposition 3.6(b,ii)]. For (2), consider the adjoint
action of g(α) ∶= g−α +Cα∨ + gα ≅ sl2(C) on M ∶= ⊕n∈Z gβ+nα . By [Kac90, Propo-
sition 3.6], M is finite-dimensional and decomposes as a direct sum of irreducible
(graded) g(α)-submodules.�e sl2(C)-module theory (see [Kac90, Lemma 3.2]) then
implies that if β + nα ∈ ∆, then [eα , gβ+nα] = {0} if and only if β + (n + 1)α ∉ ∆. �e
case n = 0 now yields the claim. ◻

Lemma 3.8 Let α, β ∈ ∆re be such that α + β ∈ ∆re . �en [gα , gβ] = gα+β .
Proof �is follows from Lemma 3.7(2). ◻

Lemma 3.9 Let α ∈ ∆, and let x ∈ gα be nonzero. �en there is some nonzero x′ ∈ Cx
such that [ω(x′), x′] = α♯.
Proof Since (ω(x)∣x) ≠ 0 by [Kac90, �eorem 11.7a)], the claim follows from
[Kac90, �eorem 2.2e)]. ◻

Lemma 3.10 Let α ∈ ∆im+.

(1) If (α∣α) < 0, then gN∗α = ⊕n∈N∗ gnα is a free Lie algebra on a basis of the space

⊕n∈N∗ g
0
nα , where g

0
nα ∶= {x ∈ gnα ∣ (x∣ω(y)) = 0 for all y ∈ [gN∗α , gN∗α]}.

(2) If (α∣α) = 0, thenCα♯ ⊕⊕n∈Z∗ gnα is an infinite Heisenberg Lie algebra. In partic-
ular, [gnα , g−mα] = Cδm ,nα♯ for all m, n ∈ Z∗.

Proof �is follows from [Kac90, Corollary 9.12]. ◻

4 Structure of nim+

�is section is devoted to the proofs of �eorem A and Corollaries B and C. We fix
again a symmetrisable GCM A, and keep all notations from §2.

�e proof of the following lemma is essentially the same as the proof of [Kac90,
Proposition 9.12]; for the benefit of the reader, we repeat here the argument.

Lemma 4.1 Let α, β ∈ ∆im+ be such that (α∣β) < 0. Let xα ∈ gα and yβ ∈ gβ be nonzero
and such that [ω(yβ), xα] = 0. �en xα , yβ generate a free Lie algebra.

Proof Set x+α ∶= xα , x−α ∶= ω(xα) ∈ g−α , y+β ∶= yβ and y−β ∶= ω(yβ) ∈ g−β . By
Lemma 3.9, up to replacing xα (resp. yβ) by a nonzero multiple, we may assume that

[x−α , x+α ] = α♯ and [y−β , y+β] = β♯ .
Hence

[α♯ , x±α ] = ±(α∣α)x±α , [α♯ , y±β] = ±(α∣β)y±β ,
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and

[β♯ , x±α ] = ±(α∣β)x±α , [β♯ , y±β] = ±(β∣β)y±β .
Moreover,

[y+β , x−α ] = 0 = [y−β , x+α ]
by assumption.

Set B ∶= ( (α∣α) (α∣β)(α∣β) (β∣β) ), let (hB , {γ1 , γ2}, {γ∨1 , γ∨2 }) be a realisation of B, and

let g̃(B) be the corresponding Lie algebra defined in [Kac90, §1.2], with Chevalley
generators eB1 , e

B
2 and f B1 , f

B
2 . �en g̃(B) has a triangular decomposition

g̃(B) = ñ−B ⊕ hB ⊕ ñ+B ,

where ñ+B (resp. ñ−B) is freely generated by eB1 , e
B
2 (resp. f B1 , f

B
2 ); see [Kac90,

�eorem 1.2]. Let also g̃′(B) = ñ−B ⊕ h′B ⊕ ñ+B denote the derived subalgebra of g̃(B),
where h′B ∶= Cγ∨1 ⊕Cγ∨2 ⊆ hB .

We have just shown that the assignment

eB1 ↦ x+α , f B1 ↦ x−α , eB2 ↦ y+β , f B2 ↦ y−β

defines a surjective Lie algebra morphism ϕ∶ g̃′(B)→ L from g̃′(B) to the subalgebra
L of g(A) generated by x±α , y±β (see [Kac90, Remark 1.5]). On the other hand, if ρ ∈ h∗B
is chosen so that

(ρ∣γ1)B = 1

2
(γ1∣γ1)B = 1

2
(α∣α) and (ρ∣γ2)B = 1

2
(γ2∣γ2)B = 1

2
(β∣β),

where (⋅∣⋅)B denotes the bilinear form on h∗B induced by the invariant bilinear form
on g(B) (note that B is symmetric), then for any γ = n1γ1 + n2γ2 with n1 , n2 ∈ N∗, we
have

2(ρ∣γ)B − (γ∣γ)B = (n1 − n
2
1 )(α∣α) + (n2 − n

2
2)(β∣β) − 2n1n2(α∣β) ≥ −2n1n2(α∣β) > 0

by assumption and (2.12). It then follows from [Kac90, Propositions 1.7b and 9.11] that
g̃′(B) is simple modulo centre contained in h′B . In particular, the restriction of ϕ to
the free Lie algebra ñ+B is an isomorphism onto its image, yielding the proposition. ◻

Lemma 4.2 Let α, β ∈ ∆im+ be such that (α∣β) < 0. If α − β ∈ ∆re , then [x , y] ≠ 0 for
all nonzero x ∈ gα and y ∈ gβ .
Proof Using theW∗-action, there is no loss of generality in assuming that α − β = α i

for some i ∈ I. Let x ∈ gα and y ∈ gβ be nonzero, and assume for a contradiction that[x , y] = 0. Up to normalising x , y (i.e., multiplying them by a nonzero scalar), wemay
assume by Lemma 3.9 that x∗ ∶= ω(x) ∈ g−α and y∗ ∶= ω(y) ∈ g−β satisfy

[x∗ , x] = α♯ and [y∗ , y] = β♯ .
We also write

[y∗ , x] = µe i and [x∗ , y] = ω([x , y∗]) = µ f i
for some µ ∈ C, so that µ ≠ 0 by Lemma 4.1.
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Note first that

0 = (ad x∗)[x , y] = (α∣β)y + µ[x , f i].
In particular, [y, [x , f i]] = 0 and hence

0 = [ f i , [y, x]] = [[ f i , y], x].(4.1)

Note next that

0 = (ad y∗)2[y, x] = (ad y∗)((α∣β)x + µ[y, e i])
= µ((α∣β) + (β∣α i))e i + µ[y, [y∗ , e i]]
= µ((α∣α) − (α i ∣α i))e i + µ[y, [y∗ , e i]].

Since (α∣α) − (α i ∣α i) < 0 by (2.12), this implies in particular that

[ f i , y] = ω([y∗ , e i]) ≠ 0.(4.2)

In particular, β − α i ∈ ∆. On the other hand, since (α∣β) < 0 by assumption, α and
β are not proportional isotropic roots. Hence β − α i = 2β − α and α are not propor-
tional isotropic roots either. If β − α i ∈ ∆im+, we would then have (β − α i ∣α) < 0 by
Lemma 3.6(2) and (2.8), and since

deg(x) − deg([ f i , y]) = α − (β − α i) = 2α i ∉ ∆(4.3)

by (2.8), so that [x ,ω([ f i , y])] = 0, Lemma 4.1 would imply that [ f i , y] and x generate
a free Lie algebra (recall that [ f i , y] ≠ 0 by (4.2)), contradicting (4.1). Hence

γ ∶= β − α i ∈ ∆re+ and C[ f i , y] = Ceγ .

But then (4.1) and (4.3) yield

[eγ , x] = 0 = [e−γ , x],
so that (γ∣α) = 0 by Lemma 3.7(1). �erefore,

0 = (γ∣α) = (β − α i ∣β + α i) = (β∣β) − (α i ∣α i),
contradicting (2.12). ◻

Lemma 4.3 Let α, β ∈ ∆im+ be such that (α∣β) < 0. If α − β ∈ ∆im , then [x , y] ≠ 0 for
all nonzero x ∈ gα and y ∈ gβ .
Proof By Lemma 3.10(1), there is no loss of generality in assuming that α, β are non-
proportional. We fix a total order ≺ on ∆+ such that γ ≺ γ′ whenever ht(γ) < ht(γ′).
Assume for a contradiction that there exist α, β as in the statement of the lemma such
that [x , y] = 0 for some nonzero x ∈ gα and y ∈ gβ , and take α + β minimal for this
property. Without loss of generality, we may assume that β ≺ α. Up to normalising
x , y (i.e., multiplying them by a nonzero scalar), we may assume by Lemma 3.9 that
x∗ ∶= ω(x) ∈ g−α and y∗ ∶= ω(y) ∈ g−β satisfy

[x∗ , x] = α♯ and [y∗ , y] = β♯ .
Finally, we let n ≥ 1 be maximal such that α − nβ ∈ ∆+.
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Note first that

0 = (ad y)(ad x∗)[x , y] = (ad y)((α∣β)y + [[y, x∗], x]) = [(ad y)2x∗ , x].(4.4)

More generally,

0 = [(ad y)m+2x∗ , (ad y∗)mx] for all m ∈ N.(4.5)

Indeed, for m = 0 this is (4.4), and if (4.5) holds up to m ≥ 0 then
0 = (ad y∗)(ad y)[(ad y)m+2x∗ , (ad y∗)mx]
= (ad y∗)([(ad y)m+3x∗ , (ad y∗)mx] + λ[(ad y)m+2x∗ , (ad y∗)m−1x])
= [(ad y)m+3x∗ , (ad y∗)m+1x]

for some λ ∈ C, with the convention that (ad y∗)m−1x ∶= 0 ifm = 0 (here, we used the
fact that [y, x] = [y∗ , x∗] = 0 and the induction hypothesis form and m − 1).

In particular, applying (4.5) to m = n − 1 and m = n, we get
[(ad y)n+1x∗ , (ad y∗)n−1x] = 0(4.6)

and

[(ad y)n+2x∗ , (ad y∗)nx] = 0.(4.7)

Note that, by choice of n, the elements (ad y)n+1x∗, (ad y∗)n−1x, (ad y)n+2x∗ and(ad y∗)nx all belong to n+ (recall that α, β are nonproportional). We claim that one
of the following four cases must occur:

(1) (ad y)n+1x∗ = 0.
(2) (n + 1)β − α ∈ ∆re+.
(3) α − (n − 1)β ∈ ∆re+.
(4) ((n + 1)β − α∣α − (n − 1)β) = 0.
Indeed, if (1)–(4) do not occur, then yβ′ ∶= (ad y)n+1x∗ and xα′ ∶= (ad y∗)n−1x =
ω((ad y)n−1x∗) are nonzero and have degree β′ ∶= (n + 1)β − α ∈ ∆im+ and α′ ∶= α −(n − 1)β ∈ ∆im+, respectively. Moreover, (α′∣β′) < 0 by Lemma 3.6(1). In particular,
α′ − β′ ∈ ∆, for otherwise [ω(yβ′), xα′] = 0, and hence Lemma 4.1 would imply that[yβ′ , xα′] ≠ 0, contradicting (4.6). Similarly, Lemma 4.2 and (4.6) imply that α′ − β′ ∈
∆im . Since α′ + β′ = 2β ≺ α + β, the minimality assumption on α + β then yields a
contradiction with (4.6).

We now show that none of the above four cases can occur.

Claim 1. Assume that (2α − sβ∣β) = 0 for some s ∈ N, and that α − (s − 1)β ∈ ∆+. �en
α − sβ ∉ ∆im+

∪ ∆re .
Indeed, assume for a contradiction that α − sβ ∈ ∆im+

∪ ∆re . By assumption,

(α − sβ∣α − sβ) = (α∣α) − s(2α − sβ∣β) = (α∣α),
so that α − sβ ∈ ∆im+ by (2.12). But Lemma 3.6(2) then yields

−(α∣β) = (α − sβ∣β) − (2α − sβ∣β) = (α − sβ∣β) < 0,
a contradiction.
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Claim 2. (ad y)n+1x∗ ≠ 0, and if (n + 1)β − α ∈ ∆re+ then (ad y)n+2x∗ ≠ 0.
Indeed, let m ∈ {1, . . . , n + 1} be maximal such that (ad y)mx∗ ≠ 0 (if [y, x∗] = 0

then [y, x] ≠ 0 by Lemma 4.1, a contradiction).Wemay assume that (ad y)m+1x∗ = 0,
for otherwise m = n + 1 and the claim is clear. �en

0 = (ad y∗)(ad y)m+1x∗ = m+1∑
i=1

(β∣(m + 1 − i)β − α)(ad y)mx∗

= −m + 1
2
(2α −mβ∣β)(ad y)mx∗ ,

so that (2α −mβ∣β) = 0.
But as α − (m − 1)β ∈ ∆+ (because (ad y)m−1x∗ ≠ 0), Claim 1 implies that α −mβ ∉
∆im+

∪ ∆re . As α −mβ ∈ ∆+ when m ≤ n (because (ad y)mx∗ ≠ 0), we deduce that
m = n + 1 and that (n + 1)β − α ∉ ∆re+, yielding the claim.

Claim 3. If (n + 1)β − α ∈ ∆re+ or if α − (n − 1)β ∈ ∆re+, then α − nβ ∈ ∆im+.
Indeed, since (ad y)n+1x∗ ≠ 0 by Claim 2 (and hence also (ad y∗)n−1x ≠ 0), and

since [(ad y)n+1x∗ , (ad y∗)n−1x] = 0 by (4.6), Lemma 3.7(1) implies that

0 ≤ ((n + 1)β − α∣α − (n − 1)β) = (β∣β) − (α − nβ∣α − nβ),
so that the claim follows from (2.12).

Claim 4. If (n + 1)β − α ∈ ∆re+, then (n + 2)β − α ∉ ∆re+.
Indeed, assume for a contradiction that (n + 2)β − α ∈ ∆re+. Since (ad y)n+2x∗ ≠ 0

by Claim 2 (and hence also (ad y∗)nx ≠ 0), and since [(ad y)n+2x∗ , (ad y∗)nx] = 0 by
(4.7), Lemma 3.7(1) then implies that

0 ≤ ((n + 2)β − α∣α − nβ) = (β∣β) − ((n + 1)β − α∣(n + 1)β − α),
contradicting (2.12).

We can now prove that the cases (1)–(4) cannot occur. For case (1), this follows
from Claim 2.

In case (2), Claims 2 and 4 imply that (ad y)n+2x∗ ≠ 0 and (n + 2)β − α ∈ ∆im+,
and Claim 3 yields α − nβ ∈ ∆im+. Since, moreover,

((n + 2)β − α∣α − nβ) = (β∣β) − ((n + 1)β − α∣(n + 1)β − α) < 0
by (2.12), whereas the difference between (n + 2)β − α and α − nβ is not a root by
(2.8), Lemma 4.1 implies that [(ad y)n+2x∗ , (ad y∗)nx] ≠ 0, contradicting (4.7).

In case (3), there exists some w ∈W such that wα − (n − 1)wβ = α i for some i ∈ I.
On the other hand, Claim 3 implies that α − nβ ∈ ∆im+ and hence

α i −wβ = w(α − nβ) ∈ ∆im+ ,

contradicting the fact that wβ ∈ ∆im+.
Finally, since the cases (1), (2) and (3) cannot occur, we deduce that (n + 1)β −

α, α − (n − 1)β ∈ ∆im+. Since 2β ∈ ∆im+ by (2.8), Lemma 3.6(2) then implies that

((n + 1)β − α∣α − (n − 1)β) < 0,
and hence case (4) cannot occur either, as desired. ◻
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�eorem 4.4 Let α, β ∈ ∆. If (α∣β) < 0 then [x , y] ≠ 0 for every nonzero x ∈ gα and
y ∈ gβ such that Cx ≠ Cy.

Proof If α or β is a real root, this follows fromLemma 3.7(1). Assume now that α, β ∈
∆im . �en Lemma 3.6(1) implies that either α, β ∈ ∆im+ or α, β ∈ ∆im−, and there is
no loss of generality in assuming that α, β ∈ ∆im+ (using the action of ω). By Lemma
3.10(1), we may moreover assume that α ≠ β. �e theorem then follows in that case
from Lemma 4.1, Lemma 4.2, or Lemma 4.3, depending on whether α − β ∉ ∆, α − β ∈
∆re , or α − β ∈ ∆im . ◻

Lemma 4.5 Let α, β ∈ ∆im+ with (α∣β) < 0. Let Y be a nonzero subspace of gβ , and let
x , x′ ∈ gα be nonzero. If [x′ ,Y] ⊆ [x ,Y], then Cx′ = Cx.
Proof Write Y = ⊕n

i=1 Cy i for some linearly independent y i ∈ gβ . Consider the
complex matrix Λ = (λ i j)1≤i , j≤n defined by

[x′ , y i] = n∑
j=1

λ i j[x , y j] for all i = 1, . . . , n.
In view of �eorem 4.4, it is sufficient to show that the equation

[x′ − ax , n∑
i=1

µ i y i] = 0
admits a nontrivial solution (a, µ1 , . . . , µn) ∈ Cn+1, in the sense that (µ1 , . . . , µn) ≠(0, . . . , 0). �is equation can be rewritten as

n∑
i=1

n∑
j=1

µ iλ i j[x , y j] = n∑
i=1

aµ i[x , y i],
and it is thus sufficient to find a nontrivial solution to the equation

n∑
i=1

n∑
j=1

µ iλ i j y j = n∑
i=1

aµ i y i .

In turn, this last equation is equivalent to the system of equations

n∑
i=1

µ iλ i j = aµ j for j = 1, . . . , n,
which we can rewrite as

ΛTµ = aµ, where µ ∶= ⎛⎜⎝
µ1
⋮

µn

⎞⎟⎠ .

In other words, it is sufficient to find a (nonzero) eigenvector µ of ΛT , which of course
always exists over C. ◻

Corollary 4.6 Let α, β ∈ ∆im+ with α ≠ β. �en one of the following holds:

(1) [gα , gβ] = {0}. In this case, either α + β ∉ ∆ or α, β are proportional isotropic
roots.
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(2) dim[gα , gβ] ≥max{dimgα , dimgβ}, with equality if and only if
min{dimgα , dimgβ} = 1.

Proof If α + β ∉ ∆, or if α, β are proportional isotropic roots, then [gα , gβ] = {0}
(see Lemma 3.10(2)). We may thus assume by Lemma 3.6(2) that (α∣β) < 0. Up
to permuting α and β, we may moreover assume that dimgα ≤ dimgβ . Let x ∈ gα
be nonzero. �eorem 4.4 then implies that dim[gα , gβ] ≥ dim[x , gβ] = dimgβ , with
equality if dimgα = 1. On the other hand, if dimgα ≥ 2, then choosing some x′ ∈
gα/Cx, we deduce from Lemma 4.5 that [x′ , gβ] /⊆ [x , gβ], so that dim[gα , gβ] >
dim[x , gβ] = dimgβ , as desired. ◻

5 Solvable and Nilpotent Subalgebras

We fix again a symmetrisable GCM A, and keep all notations from §2. In this section,
we characterise the solvable and nilpotent graded subalgebras of g(A). We recall that
a Lie algebra L is solvable (resp. nilpotent) if L(n) = {0} (resp. Ln = {0}) for some
n ∈ N, where the subalgebras L(n) and L

n of L are defined recursively by

L
(0) = L0

∶= L, L
(n+1)

∶= [L(n) ,L(n)], and L
n+1
∶= [L,Ln] for all n ∈ N.

We also recall that, given a subalgebra L of g(A), an element x ∈ L is called ad-
locally nilpotent on L if for every y ∈ L, there exists some N = N(y) ∈ N such that(ad x)N y = 0. More generally, x ∈ L is called ad-locally finite on L if for every y ∈ L,
there exists a finite-dimensional subspace V = V(y) ⊆ L containing y and such that[x ,V] ⊆ V . For instance, the Chevalley generators e i , f i (i ∈ I) are ad-locally nilpotent
on g(A), while the elements of the Cartan subalgebra h are ad-locally finite on g(A).
Lemma 5.1 Let β ∈ ∆im+ and γ ∈ ∆re be such that β ± γ ∈ ∆re . �en (β∣γ) = 0. If,
moreover, β ∈ ∆im+

an , then for any x ∈ gβ , the following assertions are equivalent:
(1) [x , eγ−β] ≠ 0.
(2) [x , eγ] ≠ 0.
(3) (ad x)neγ−β ≠ 0 for all n ∈ N.
Proof Note that

0 < (β ± γ∣β ± γ)(γ∣γ) = (β∣β)(γ∣γ) ± 2
(β∣γ)
(γ∣γ) + 1 =

(β∣β)
(γ∣γ) ± β(γ∨) + 1

by (2.10) and (2.12). �us

0 ≥ (β∣β)(γ∣γ) > ∣β(γ∨)∣ − 1
by (2.12), so that β(γ∨) = 0 = (β∣γ) (recall that β(γ∨) ∈ Z by Lemma 3.1). �is proves
the first claim.

Assume now that (β∣β) < 0 and let x ∈ gβ . Set α ∶= γ − β ∈ ∆re . If [x , eα] = 0, then
for any z ∈ g−β , (2.11) yields

[z, [x , eγ]] ∈ C(β∣γ)eγ +C[x , eα] = {0},
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that is, [[x , eγ], g−β] = {0}. �us, if [x , eα] = 0, then [x , eγ] = 0 by Lemma 3.7(2) as
deg([x , eγ]) + (−β) = γ ∈ ∆. In other words, if we consider the linear maps

u1∶ gβ → gγ ∶ z ↦ [eα , z] and u2∶ gβ → gγ+β ∶ z ↦ [eγ , z],
then keru1 ⊆ keru2 ⊆ gβ . On the other hand, note that u1 and u2 are nonzero by
Lemma 3.7(2). Since dim(gγ) = 1, we deduce that keru1 has codimension 1 in gβ and
hence that keru1 = keru2.�is proves the equivalence of (1) and (2). Finally, if (1) (and
hence also (2)) holds, we already know that (ad x)neα ≠ 0 for n = 1, 2.�at it holds for
all n ∈ N then follows from �eorem 4.4 since (β∣α + nβ) = (n − 1)(β∣β) < 0 for all
n ∈ N with n ≥ 2 by assumption. ◻

Lemma 5.2 Let α ∈ ∆re and β ∈ ∆im+
i s be such that (α∣β) ≥ 0. Let w ∈W be such that

wβ ∈ K0. �en the following assertions hold:

(1) Either supp(wα) ⊆ supp(wβ), or supp(wα) ∪ supp(wβ) is not connected.
(2) If x ∈ gα and y ∈ gβ are such that [x , y] ≠ 0, then (ad y)nx ≠ 0 for all n ∈ N.
Proof Using the W

∗-action, we may assume that β ∈ K0 (i.e., w = 1), so that J ∶=
supp(β) ⊆ I is of affine type by (2.13). In particular, (β∣γ) = 0 for all γ ∈ Q+ with
supp(γ) ⊆ J by (2.14). Write α = αJ + α

′ with supp(αJ) ⊆ J and J′ ∶= supp(α′) ⊆ I/J.
By assumption, (β∣α′) = (β∣α) ≥ 0.Writing β = ∑ j∈J k jα j (k j > 0) and α′ = ∑i∈J′ k

′
iα i

(k′i > 0), we thus have
0 ≤ ∑

j∈J

∑
i∈J′

k′ik j(α i ∣α j),
so that (α i ∣α j) = 0 for all i ∈ J′ and j ∈ J (recall that (α i ∣α j) ≤ 0 for all i ≠ j). But since
supp(α) is connected, this implies that either αJ = 0 or α′ = 0, yielding (1).

Let now x ∈ gα and y ∈ gβ be such that [x , y] ≠ 0. In particular, α + β ∈ ∆ and
hence supp(α) ∪ supp(β) is connected, so that supp(α) ⊆ supp(β) by (1). �us α, β
are roots of the affine Kac–Moody algebra with GCM (a i j)i , j∈J , and (2) follows
from the realisation of affine Kac–Moody algebras as (twisted) loop algebras over a
simple finite-dimensional Lie algebra g̊ with Cartan subalgebra h̊ ⊆ h (see [Kac90,
�eorems 7.4 and 8.3]): the element y of gβ is of the form y = tm ⊗ h for some h ∈ h̊
and m ∈ N∗ (t being the indeterminate in the loop algebra), and hence (ad y)nx =
tmn
⊗ α(h)nx for all n ∈ N. �us (ad y)nx ≠ 0 (n ∈ N∗) if and only if α(h) ≠ 0 if and

only if [y, x] ≠ 0, as desired. ◻

�eorem5.3 Let α ∈ ∆+ ∪ ∆re and β ∈ ∆im+. Let x ∈ gα and y ∈ gβ be such that [x , y] ≠
0. �en (ad y)nx ≠ 0 for all n ∈ N.
Proof Using the W∗-action, there is no loss of generality in assuming that α ∈ ∆+.
Note also that

(ad y)nx ≠ 0 for all n ∈ N if (α∣β) < 0.(5.1)

Indeed, if (α∣β) < 0, then (β∣α + nβ) ≤ (β∣α) < 0 for all n ∈ N by (2.12), so that the
conclusion follows inductively on n from�eorem 4.4.

Assumefirst that α ∈ ∆im+. Since [x , y] ≠ 0, Lemma 3.10(2) implies that α, β are not
proportional isotropic roots. As α + β ∈ ∆+ (again because [x , y] ≠ 0), Lemma 3.6(2)
then implies that (α∣β) < 0, so that the claim follows from (5.1).
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Assume next that α ∈ ∆re+ and that β ∈ ∆im+
i s . If (α∣β) < 0, the claim follows from

(5.1). On the other hand, if (α∣β) ≥ 0, the claim follows from Lemma 5.2(2).
Finally, assume that α ∈ ∆re+ and that β ∈ ∆im+

an . Set γ ∶= α + β = deg([x , y]) ∈ ∆+.
If (β∣γ) < 0, then (β∣γ + nβ) < 0 for all n ∈ N∗ by (2.12), so that the claim follows
inductively on n from�eorem 4.4. We may thus assume that (β∣γ) ≥ 0. If γ ∈ ∆im+,
then Lemma 3.6(1,2) implies that (β∣γ) = 0 and β + γ ∉ ∆. Hence, in that case, Lemma
3.4 yields some w ∈W such that supp(wβ) ∪ supp(wγ) = supp(wβ) ∪ supp(wα) is
not connected, contradicting the fact thatw(α + β) ∈ ∆.�us γ ∈ ∆re+. Hence β + γ ∈
∆+ (this is because β − γ ∈ ∆re and β ∈ ∆im+; see Lemma 3.1), and since

(β + γ∣β + γ) = (β − γ∣β − γ) + 4(β∣γ) = (α∣α) + 4(β∣γ) > 0
by (2.12), we conclude that β + γ ∈ ∆re+ by (2.12). But then β ± γ ∈ ∆re , so that(ad y)nx ≠ 0 for all n ∈ N by Lemma 5.1, as desired. ◻

Lemma 5.4 Let α ∈ ∆im and β ∈ ∆ be such that (α∣β) < 0. Let x ∈ gα and y ∈ gβ be
nonzero and such that Cx ≠ Cy. �en the subalgebra of g(A) generated by x and y is
not solvable.

Proof Up to using the action of ω, we may assume that α ∈ ∆im+. �us β ∉ ∆im− by
Lemma 3.6(1). Since [x , y] ≠ 0 by�eorem 4.4, it then follows from�eorem 5.3 that(ad x)n y ≠ 0 for all n ∈ N.

We define a bracket map [[⋅]]∶ ⋃n∈N g(A)2n → g(A) recursively on n ∈ N (where
g(A)m ∶= g(A) × ⋅ ⋅ ⋅ × g(A),m factors), by setting [[x]] ∶= x for all x ∈ g(A), and
[[x1 , . . . , x2n ]] ∶= [[[x1 , . . . , x2n−1]], [[x2n−1+1 , . . . , x2n ]]] for all x1 , . . . , x2n ∈ g(A).

Since (α∣α) ≤ 0 by (2.12) and (α∣β) < 0 by hypothesis, there exists some r ∈ N∗ such
that

(rα + β∣rα + β) < 0.
For each n ∈ N, set yn ∶= (ad x)rn y ≠ 0. We now show inductively on n that

zn ∶= [[y i1 , . . . , y i2n ]] ≠ 0 for all n ∈ N and all i1 < i2 < ⋅ ⋅ ⋅ < i2n ,
so that the subalgebra generated by x and y is indeed not solvable. For n = 0, this
is clear. Let now n ∈ N∗ and i1 , . . . , i2n ∈ N∗ with i1 < i2 < ⋅ ⋅ ⋅ < i2n . By induction
hypothesis,

z1n ∶= [[y i1 , . . . , y i2n−1 ]] ≠ 0 and z2n ∶= [[y i2n−1+1 , . . . , y i2n ]] ≠ 0.
Note that

i(1) ∶= i1 + ⋅ ⋅ ⋅ + i2n−1 ≥ 2n−1 and i(2) ∶= i2n−1+1 + ⋅ ⋅ ⋅ + i2n ≥ 2n−1 .
Since (α∣α) ≤ 0 and (α∣β) < 0, we deduce that
(deg(z1n)∣deg(z2n))=(ri(1)α + 2n−1β∣ri(2)α + 2n−1β) ≤ 22n−2(rα + β∣rα + β) < 0.

Since, moreover, deg(z1n) ≠ deg(z2n) (because i(1) < i(2)), �eorem 4.4 implies that
zn = [z1n , z2n] ≠ 0, thus completing the induction step. ◻
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Lemma 5.5 Let L be a solvable graded subalgebra of g(A). �en [h ∩L1 ,L] = {0}.
Proof Assume for a contradiction that there exists some h ∈ h ∩ [L,L] and some
x ∈ L ∩ gα (α ∈ ∆) such that [h, x] ≠ {0}. �en h is of the form

h = m∑
i=1

[x−β i
, xβ i
]

for some β1 , . . . , βm ∈ ∆+ and some x±β i
∈ L ∩ g±β i

with [x−β i
, xβ i
] ≠ 0. Note that

β1 , . . . , βm ∈ ∆im+
i s , for otherwise L would contain a copy Cx−β i

⊕Cβ♯i ⊕Cxβ i
of

sl2(C) (see (2.11)). Since
0 ≠ [h, x] ∈ m∑

i=1

C[β♯i , x] =
m∑
i=1

C(β i ∣α)x
by (2.11), there exists some r ∈ {1, . . . ,m} such that (βr ∣α) ≠ 0. In particular, α ≠ ±βr .
Since x±βr

and x generate a solvable subalgebra, Lemma 5.4 then implies that (α∣βr) ≥
0 and (α∣ − βr) ≥ 0, yielding the desired contradiction. ◻

Lemma 5.6 Let α, γ ∈ ∆re be such that β ∶= α + γ ∈ ∆im+ and (α∣β) = 0 = (γ∣β). �en
the subalgebra generated by eα , eγ is not solvable and [eα , [eα , eγ]] ≠ 0.
Proof Let L denote the subalgebra of g(A) generated by eα , eγ . By assumption, we
have

(α∣α) = −(α∣γ) = (γ∣γ).
In particular,

⟨γ, α∨⟩ = 2(γ∣α)
(α∣α) = −2 =

2(α∣γ)
(γ∣γ) = ⟨α, γ∨⟩(5.2)

by (2.10).
Assume first that γ − α ∉ ∆, so that

[eα , e−γ] = 0 = [e−α , eγ].(5.3)

�en S(α, γ) = {γ, γ + α, γ + 2α} and S(γ, α) = {α, α + γ, α + 2γ} by Lemma 3.1, so
that

(ad eα)3eγ = (ad e−α)3e−γ = (ad eγ)3eα = (ad e−γ)3e−α = 0.(5.4)

Consider the GCM B = ( 2 −2
−2 2

). Denoting by eB1 , e
B
2 and f B1 , f

B
2 the Chevalley

generators of g′(B) ⊆ g(B), the assignment

eB1 ↦ eα , eB2 ↦ eγ , f B1 ↦ e−α , and f B2 ↦ e−γ

defines a Lie algebra morphism ϕ∶ g′(B)→ g(A) (see §2.2), as follows from the
relations (2.7), (5.2), (5.3) and (5.4). Since g′(B) is simple modulo centre (see §2.2),
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the restriction of ϕ to n+(B) then defines an isomorphism n+(B) ≅ L. In particular,[eα , [eα , eγ]] ≠ 0. Moreover, it follows from (2.5) that the assignment

eB1 ↦ ( 0 1
0 0

) and eB2 ↦ ( 0 0
−1 0

)
defines a surjective Lie algebra morphism n+(B)→ sl2(C), and hence L is not
solvable.

Assume next that γ − α ∈ ∆.�en γ − α ∈ ∆re and γ − 2α ∉ ∆ by Lemma 3.1, so that

[eα , eα−γ] = 0 = [e−α , eγ−α].(5.5)

Note also that

⟨γ − α, α∨⟩ = −4 and ⟨α, (γ − α)∨⟩ = 2(α∣γ − α)
(γ − α∣γ − α) =

4(α∣γ)
−4(α∣γ) = −1(5.6)

by (5.2). Lemma 3.1 then implies that S(α, γ − α) = {γ + nα ∣ − 1 ≤ n ≤ 3} and that
S(γ − α, α) = {α, γ}, and hence

(ad eα)5eγ−α = (ad e−α)5eα−γ = (ad eγ−α)2eα = (ad eα−γ)2e−α = 0.(5.7)

Consider the GCM C = ( 2 −4
−1 2

). Denoting by eC1 , e
C
2 and f C1 , f C2 the Chevalley

generators of g′(C) ⊆ g(C), the assignment

eC1 ↦ eα , eC2 ↦ eγ−α , f C1 ↦ e−α , and f C2 ↦ eα−γ

defines a Lie algebra morphism ψ∶ g′(C)→ g(A) (see §2.2), as follows from the
relations (2.7), (5.5), (5.6) and (5.7). As before, the restriction ofψ to n+(C) is injective.
SinceCeγ = C[eα , eγ−α] by Lemma 3.8, this implies thatψ restricts to an isomorphism
L
′ ≅ L from the Lie subalgebraL′ of n+(C) generated by eC1 , [eC1 , eC2 ] toL. In partic-

ular, [eα , [eα , eγ]] ≠ 0. Moreover,L′ (and henceL) is not solvable: in the notations of
[Kac90, Exercises 8.15 and 8.16],L′ can be identifiedwith the subalgebra of the twisted
loop algebra L(sl3(C), µ) generated by CL1 = CeC1 and CL3 = C[eC1 , eC2 ] (see also
[Mar18, Example 5.27]). Straightforward computations using [Kac90, Exercises 8.16]
show that L′ contains CL7 = C[L3 , [L3 , L1]] and CL8 = C[L1 , L7], and that

[L1 , L7] = L8 , [L8 , L1] = t2L1 , [L8 , L7] = −t2L7 ,

so that the subalgebra generated by L1 , L7 , L8 (and hence also L′) is not solvable. ◻

Lemma 5.7 LetL be a graded subalgebra of g(A) such that each homogeneous element
ofL is ad-locally finite onL. �en Ψ ∶= {α ∈ ∆re ∣L ∩ gα ≠ {0}} is a closed set of roots.
Proof In view of Lemma 3.8, it is sufficient to show that if α, γ ∈ Ψ then α + γ ∉ ∆im .
Assume for a contradiction that β ∶= α + γ ∈ ∆im+ for some α, γ ∈ Ψ (the case β ∈ ∆im

−

will then also follow, using the action of ω). Up to conjugating L by some element of
W
∗, there is no loss of generality in assuming that γ is a simple root, and hence that

α, γ ∈ ∆re+.
As

2(α∣γ) = (α + γ∣α + γ) − (α∣α) − (γ∣γ) < 0
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by (2.12), Lemma 3.7(1) yields [eα , eγ] ≠ 0. On the other hand, γ + 2α ∈ ∆ and α + 2γ ∈
∆ by Lemma 3.1. If γ + 2α ∈ ∆im+, then

4(γ + α∣α) = (γ + 2α∣γ + 2α) − (γ∣γ) < 0
by (2.12), and hence [eα , [eα , eγ]] ≠ 0 by Lemma 3.7(1), so that [eα , eγ] ∈ L is not ad-
locally finite on L by�eorem 5.3, a contradiction. �us γ + 2α ∈ ∆re+ and, similarly,
α + 2γ ∈ ∆re+. Lemma 5.1 then yields that

(β∣α) = 0 = (β∣γ),
and hence [eα , [eα , eγ]] ≠ 0 by Lemma 5.6, again contradicting�eorem 5.3. ◻

We are now ready to describe the graded subalgebras of g(A) all whose elements
are ad-locally finite. Let us remark that a subalgebra of g(A) that contains h is
automatically graded by [Kac90, Proposition 1.5].

�eorem5.8 LetL be a graded subalgebra of g(A) such that each homogeneous element
of L is ad-locally finite on L. �en there exists a closed set of real roots Ψ ⊆ ∆re , and
abelian subalgebras L0 ⊆ h, Lim+ ⊆ nim+ and Lim− ⊆ nim− such that

(1) L = L0 ⊕ gΨ ⊕L
im+
⊕L

im−;
(2) [gΨ ,Lim+] = {0} = [gΨ ,Lim−];
(3) [Lim+,Lim−] ⊆ L0 ⊕ gΨ .

Moreover, denoting by L
im the subalgebra generated by L

im+
⊕L

im−, we have the
following equivalences:

(4) gΨ is a nilpotent subalgebra ⇐⇒ Ψ does not contain any pair of opposite roots.
(5) L

im is nilpotent ⇐⇒ [Lim ,L0 ∩L
im] = {0} ⇐⇒ L

im is solvable. In that case,
L

im is nilpotent of degree at most 2.
(6) L is solvable ⇐⇒ L

im and gΨ are nilpotent subalgebras ⇐⇒ [L,L] is nilpotent.
(7) L is nilpotent ⇐⇒ [L0 ,L] = {0} ⇐⇒ every homogeneous element of L is ad-

locally nilpotent onL. In that case, the nilpotency class ofL is at mostmax{2,NΨ},
where NΨ is the nilpotency class of gΨ .

Proof (1)(2) Since L is graded, it admits a triangular decomposition

L = L− ⊕L0 ⊕L
+,

where L± ∶= L ∩ n± and L0 ∶= L ∩ h. Moreover, by Lemma 5.7,

Ψ ∶= {α ∈ ∆re ∣ L ∩ gα ≠ {0}}
is a closed set of real roots. Setting Lim±

∶= L± ∩ nim±, we have

L = L0 ⊕ gΨ ⊕L
im+
⊕L

im− .

Note also that, in view of the ad-local finiteness assumption on the elements of L,
�eorem 5.3 implies that Lim± is abelian and that [gΨ ,Lim±] = {0}.
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(3) To show that [Lim+ ,Lim−] ⊆ h⊕ gΨ , assume for a contradiction that there is
some x ∈ Lim+ and y ∈ Lim− such that [x , y] is a nonzero element of nim+ (the case
where [x , y] ∈ nim− being symmetric, using the action of ω). Let α ∶= deg(x) and
β ∶= −deg(y), so that α, β, α − β ∈ ∆im+. Since [x , y] ≠ 0 and α ≠ β, Lemma 3.10(2)
implies that α, β (and hence also α and α − β) are not proportional isotropic roots.
Moreover, as supp(wα −wβ) ⊆ supp(wα) for all w ∈W, Lemma 3.4 implies that
α + (α − β) ∈ ∆im+. Hence (α∣α − β) < 0 by Lemma 3.6(2), so that [x , [x , y]] ≠ 0 by
�eorem 4.4. �erefore, �eorem 5.3 implies that (ad x)n[x , y] ≠ 0 for all n ∈ N, a
contradiction.

(4) �is readily follows from Proposition 2.1.
(5) Note first that

L
im = Lim+

⊕L
im−
⊕ [Lim+ ,Lim−]

by (2) and (3). If [Lim ,L0 ∩L
im] = {0}, then

[Lim ,Lim] = [Lim+ ,Lim−] ⊆ (L0 ∩L
im) + gΨ

by (2) and (3), and hence [Lim , [Lim ,Lim]] = {0} by (2), that is, Lim is nilpotent of
degree at most 2. IfLim is nilpotent, then it is solvable. Finally, ifLim is solvable, then

[L0 ∩ [Lim ,Lim],Lim] = {0}
by Lemma 5.5. Since L0 ∩L

im ⊆ [Lim+ ,Lim−] ⊆ [Lim ,Lim], this implies that[Lim ,L0 ∩L
im] = {0}, as desired.

(6) Assume first thatL is solvable. �en gΨ is a nilpotent subalgebra: otherwise, Ψ
contains a pair of opposite roots by (4), and hence gΨ + [gΨ , gΨ] contains a copy of
sl2(C), a contradiction. Moreover, as Lim ⊆ L is solvable, it is nilpotent by (5).

Assumenext that gΨ andLim are nilpotent subalgebras.�enL(1) = [L,L] ⊆ gΨ +
L

im by (1) and (2). Since [gΨ ,Lim] = {0} by (2), we deduce that L(1) is nilpotent.
Finally, if L(1) is nilpotent, then L is solvable.

(7) If every homogeneous element ofL is ad-locally nilpotent onL, then [L0 ,L] ={0}, for if h ∈ L0 and x ∈ L ∩ gα (α ∈ ∆) are such that [h, x] = α(h)x ≠ 0, then(ad h)nx = α(h)nx ≠ 0 for all n ∈ N.
Assume next that [L0 ,L] = {0}. In particular, Ψ does not contain any pair of

opposite roots (otherwise, if ±α is such a pair, then Cα∨ = C[e−α , eα] ⊆ L0 but[α∨ , eα] = 2eα ≠ 0), and hence gΨ is a nilpotent subalgebra by (4). Similarly, Lim is
nilpotent by (5). Since [gΨ ,Lim] = {0} by (2), it then follows from an easy induction
on n that Ln ⊆ gnΨ + (Lim)n for all n ∈ N, so that L is nilpotent. Moreover, since(Lim)2 = {0} by (5), the nilpotency class of L is at most max{2,NΨ}.

Finally, if L is nilpotent, then of course every homogeneous element of L is ad-
locally nilpotent on L. ◻

Note that the spaces gΨ for Ψ a closed set of real roots are described in Proposition
2.1. �e abelian graded subalgebras of nim±, on the other hand, are described in the
following proposition.

Proposition 5.9 LetLim+ be a graded subalgebra of nim+. �en the following assertions
are equivalent:
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(1) All elements of Lim+ are ad-locally finite on L
im+.

(2) L
im+ is abelian.

(3) �ere exists some w∗ ∈W∗ such that w∗Lim+ has the form

w∗Lim+ = Cxβ1
⊕ ⋅ ⋅ ⋅ ⊕Cxβn

⊕Lδ1 ⊕ ⋅ ⋅ ⋅ ⊕Lδm ,
where

• β i ∈ ∆im+
an ∩ K0 and xβ i

∈ gβ i
for i = 1, . . . , n;

• δ i ∈ ∆im+
i s ∩ K0 and Lδ i is a subspace of gN∗δ i for i = 1, . . . ,m;

• the union of the m + n subdiagrams

supp(β1), . . . , supp(βn), supp(δ1), . . . , supp(δm)
of Ŵ(A) has m + n distinct connected components (namely, the above m + n
subdiagrams).

Proof We prove that (1) Ô⇒ (3), the implications (3) Ô⇒ (2) Ô⇒ (1) being clear.
If (1) holds, then �eorems 4.4 and 5.3 imply that (α∣β) ≥ 0 for all distinct α, β ∈
∆im+ such that Lim+

∩ gα ≠ {0} ≠ Lim+
∩ gβ . By Lemma 3.6(2), we thus find some

γ1 , . . . , γn ∈ ∆im+
an and some γn+1 , . . . , γn+m ∈ ∆im+

i s with γ i + γ j ∉ ∆ whenever i ≠ j,
such that

L
im+ = Cxγ1 ⊕ ⋅ ⋅ ⋅ ⊕Cxγn ⊕Lγ1 ⊕ ⋅ ⋅ ⋅ ⊕Lγm

for some xγ i
∈ gγ i

and some subspaces Lγ i
⊆ gN∗γ i

. �e statement (3) then follows
from Lemma 3.4. ◻

Note also that, since in a nilpotent subalgebra of g(A), every element is ad-
locally nilpotent (hence ad-locally finite), �eorem 5.8 gives a complete description
of nilpotent graded subalgebras of g(A). In particular, it has the following corollary.
Let N ∈ N be as in the statement of Proposition 2.1.

Corollary 5.10 Let L be a graded subalgebra of g(A). �en L is nilpotent if and only if
every homogeneous x ∈ L is ad-locally nilpotent on L. In that case, the nilpotency class
of L is at mostmax{2,N}.
Proof �is readily follows from Proposition 2.1 and�eorem 5.8(7). ◻

Remark 5.11 Let L be a nonabelian nilpotent graded subalgebra of g(A) (with
nilpotency class NL ≥ 2), and let gΨ be as in �eorem 5.8. �en �eorem 5.8(7)
implies that either gΨ is abelian and NL = 2, or else NL coincides with the nilpotency
class of gΨ . In the latter case, the (proof of the) last statement of Proposition 2.1 then
implies that NL is the supremum of the nilpotency classes of the (finite-dimensional)
subalgebras gΨ′ with Ψ′ a nilpotent subset of Ψ (in the terminology of [CM18]). A
uniform upper bound for the nilpotency class of such gΨ′ was obtained in [Cap07].

As shown by the following example, it is in general not true that in a solvable graded
subalgebra L of g(A), every element is ad-locally finite on L.

Example 5.12 Assume that A = ( 2 −2
−2 2

), and let α1 , α2 be the simple roots of the

corresponding affine Kac–Moody algebra g(A). Let δ ∶= α1 + α2 ∈ ∆im+. For eachm ∈
N, set
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L[m] ∶= gδ ⊕ gΨm
, where Ψm ∶= {nδ + α1 ∣ n ≥ m} ⊆ ∆re+.

�en gδ and gΨm
are abelian subalgebras of g(A), and we have

[gδ , gnδ+α1
] = g(n+1)δ+α1

for all n ∈ N.
In particular, L ∶= L[0] is a (graded) subalgebra of g(A). Moreover, [L,L] = gΨ1

is
abelian, and hence L is solvable (but not nilpotent, as Ln = gΨn

for all n ∈ N∗). Note,
however, that the nonzero elements of gδ are not ad-locally finite on L.

Let now d ∈ h be such that δ(d) = 1 and α1(d) = α2(d) = 0. �en L̂ ∶= Cd ⊕L

is also a graded subalgebra of g(A), such that L̂n = L[1] for all n ∈ N∗. Hence L̂ is

solvable, but L̂1 = L[1] is not nilpotent. Note, however, that L̂(2) = [L[1] ,L[1]] = gΨ2

is nilpotent.

Nevertheless, as shown by the following lemma, the (affine) situation described in
Example 5.12 is the only type of obstruction for a solvable graded subalgebra of g(A)
to satisfy the hypothesis of �eorem 5.8.

Lemma 5.13 Let L be a solvable graded subalgebra of g(A), and let x ∈ L be homoge-
neous, of degree α ∈ ∆+. Assume that there exists some homogeneous y ∈ L, of degree
β ∈ ∆, such that (ad x)n y ≠ 0 for all n ∈ N. �en (α∣α) = 0. Moreover, if w ∈W is such
that wα ∈ K0, then supp(wβ) ⊆ supp(wα).
Proof If α ∈ ∆re , then x is ad-locally nilpotent on g(A) by Lemma 3.1, and hence
also on L. �us α ∈ ∆im+ and hence (α∣α) ≤ 0 by Lemma 3.6(1). Up to replacing y
with (ad x)n y for some large enough n, we may moreover assume that β ∈ ∆+.

If (α∣α) < 0 or if (α∣β) < 0, then (α∣β + nα) = (α∣β) + n(α∣α) < 0 for some large
enough n ∈ N. But then x and (ad x)n y ∈ L generate a nonsolvable subalgebra ofL by
Lemma 5.4, a contradiction. �us (α∣α) = 0 and (α∣β) ≥ 0.

If β ∈ ∆im+, then Lemma 3.6(2) implies that α, β are proportional isotropic roots,
and hence [x , y] = 0 by Lemma 3.10(2), a contradiction. �us β ∈ ∆re+, and the
claim follows from Lemma 5.2(1) (note that supp(wα) ∪ supp(wβ) is connected, for
otherwise α + β ∉ ∆, contradicting the fact that [x , y] ≠ 0). ◻

Corollary 5.14 Assume that Ŵ(A) does not contain any subdiagram of affine type. Let
L be a graded subalgebra of g(A). �en the following assertions are equivalent:

(1) L is solvable.
(2) [h ∩L1 ,L] = {0} and every homogeneous element of L is ad-locally finite on L.
(3) L

1 is nilpotent.

Proof �e implication (3) Ô⇒ (1) is clear. IfL is solvable, then the homogeneous
elements of L are ad-locally finite on L by Lemma 5.13 (i.e., by assumption and
(2.13), g(A) has no isotropic roots), and [h ∩L1 ,L] = {0} by Lemma 5.5, proving(1) Ô⇒ (2). Finally, assume that (2) holds. �en L has a decomposition L = L0 ⊕

gΨ ⊕L
im+
⊕L

im− as in �eorem 5.8(1). Moreover, �eorem 5.8(4) implies that gΨ
is a nilpotent subalgebra, because if ±α ∈ Ψ, then 2eα = [[e−α , eα], eα] ∈ [h ∩L1 ,L],
contradicting (2). Similarly,�eorem 5.8(5) implies thatLim is a nilpotent subalgebra,
because h ∩Lim ⊆ h ∩ [Lim+ ,Lim−] ⊆ h ∩L1.�erefore,�eorem 5.8(6) implies that
L

1 is nilpotent, proving (2) Ô⇒ (3). ◻
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As illustrated by Example 5.12, the implications (1) Ô⇒ (2) and (1) Ô⇒ (3) in
Corollary 5.14 fail as soon as Ŵ(A) contains a subdiagram of affine type. Nevertheless,
a weaker form of the equivalence (1) ⇐⇒ (3) can still be proved in general, as shown
by the following theorem.

�eorem 5.15 Let L be a graded subalgebra of g(A). �en L is solvable if and only if
L
(2) is nilpotent.

Proof If L(2) is nilpotent, then it is solvable and hence L is solvable. Assume
now that L is solvable. To prove that L(2) is nilpotent, it is sufficient to prove by
Corollary 5.10 that every homogeneous element of L(2) is ad-locally nilpotent on
L
(2). Assume for a contradiction that there exist some x , y ∈ L(2) such that (ad x)n y ≠

0 for all n ∈ N.
Set α ∶= deg(x) and β ∶= deg(y). Note that α, β ∈ ∆ by Lemma 5.5, and hence α ∈

∆im by Lemma 3.1. Up to using the action of ω, we may assume that α ∈ ∆im+. Lemma
5.13 then implies that α ∈ ∆im+

i s . Up to using theW∗-action, we may then assume that
α ∈ K0, and hence that supp(α) is of affine type by (2.13).

Since x ∈ L(2), there exist some homogeneous x1 , x2 ∈ L1 with [x1 , x2] ≠ 0 such
that γ1 + γ2 = α, where γ1 ∶= deg(x1) and γ2 ∶= deg(x2). Note that γ1 , γ2 ∈ ∆byLemma
5.5. Moreover, Lemma 5.4 yields

(γ1∣α) ≥ 0 and (γ2∣α) ≥ 0.(5.8)

If γ i ∈ ∆re for some i ∈ {1, 2}, then (5.8) and Lemma 5.2(1) imply that supp(γ i) ⊆
supp(α) (note that supp(γ i) ∪ supp(α) is connected as γ1 + γ2 = α). Since γ1 + γ2 = α,
we then have supp(γ1), supp(γ2) ⊆ supp(α), and hence γ1 , γ2 ∈ ∆re by (2.15). More-
over, (γ1∣α) = 0 = (γ2∣α) by (2.14), contradicting Lemma 5.6. �erefore, γ1 , γ2 ∈ ∆im .

Up to permuting γ1 and γ2, we may assume that γ1 ∈ ∆im+. If γ2 ∈ ∆im+, then
supp(wγ1) ⊆ supp(wα) for all w ∈W (because wα ∈ ∆im+ is the sum of wγ1 ∈
∆im+ and wγ2 ∈ ∆im+), and if γ2 ∈ ∆im−, then supp(wα) ⊆ supp(wγ1) for all w ∈W
(because wγ1 ∈ ∆im+ is the sum of wα ∈ ∆im+ and −wγ2 ∈ ∆im+). In both cases,
Lemma 3.4 implies that α + γ1 ∈ ∆im+. We then deduce from (5.8) and Lemma 3.6(2)
that α and γ1 are proportional isotropic roots. But then γ1 , γ2 are also proportional
isotropic roots, so that [x1 , x2] = 0 by Lemma 3.10(2), a contradiction. ◻

Weconclude this section by illustrating�eorem 5.8 and Proposition 5.9with some
examples of nilpotent graded subalgebras of g(A).
Example 5.16 Let Ψ ⊆ ∆re be a closed set of real roots such that Ψ ∩ −Ψ = ∅. �en
L ∶= gΨ is a nilpotent graded subalgebra of g(A) by Proposition 2.1.

Example 5.17 Let δ ∈ ∆im+
i s , and let Lδ be a graded subalgebra of the (abelian) Lie

algebra gN∗δ . Let also Ψ ⊆ ∆re+ be a closed set of roots such that [gΨ ,Lδ] = {0}.�en
L ∶= gΨ ⊕Lδ is a nilpotent graded subalgebra of g(A).

For instance, if A is of type A
(1)
n−1 for some n ≥ 4, then g(A) is a double 1-

dimensional extension of sln(C[t, t−1]) (see [Kac90, �eorem 7.4]). Writing E i j for
the matrix of sln(C[t, t−1])with a “ 1” in position (i , j) and “ 0” elsewhere, one could
then take gΨ = CE12 and Lδ = C(tE33 − tE44).
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Example 5.18 Let β ∈ ∆im+
an and i ∈ I be such that dimgβ+α i

< dimgβ . �en there
exists some nonzero x ∈ gβ such that [e i , x] = 0. In particular, L ∶= gΨ ⊕Cx is a
nilpotent graded subalgebra of g(A), where Ψ ∶= {α i}.
Example 5.19 Assume that

A = ⎛⎜⎝
2 −2 −1
−2 2 −1
−1 −1 2

⎞⎟⎠ .
Consider the nonzero elements

y ∶= [e3 , [e2 , e1]] + 2[e2 , [e3 , e1]] and

x ∶= s∗1 y = [[e1 , e3], [e1 , e2]] + [e3 , [e1 , [e2 , e1]]]
of g(A) (see [Mar18, Equation (4.7), p. 69]). �en [ f1 , y] = 0, and hence also [e1 , x] =
s∗1 [ f1 , y] = 0. Note, moreover, that

y∗ ∶= ω(y) = −[ f3 , [ f2 , f1]] − 2[ f2 , [ f3 , f1]] ∈ nim− and x ∈ nim+.

Finally, a straightforward computation yields that

[y∗ , x] = −24e1 .
Consider the closed set Ψ ∶= {α1} ⊆ ∆re and set Lim+

∶= Cx and L
im−
∶= Cy∗. �en

L ∶= gΨ ⊕L
im+
⊕L

im−

is a graded subalgebra of g(A) isomorphic to the 3-dimensional Heisenberg algebra.
In particular, L is nilpotent of degree 2, whereas gΨ is abelian: this shows that the
upper bound on the nilpotency class provided in�eorem 5.8(7) cannot be improved.
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