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Abstract. In a previous paper [P. Mardesi¢ and M. Resman. Analytic moduli for parabolic
Dulac germs. Russian Math. Surveys, to appear, 2021, arXiv:1910.06129v2.] we determined
analytic invariants, that is, moduli of analytic classification, for parabolic generalized
Dulac germs. This class contains parabolic Dulac (almost regular) germs, which appear
as first-return maps of hyperbolic polycycles. Here we solve the problem of realization of
these moduli.
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1. Introduction and main definitions

Dulac germs, called almost regular germs in [2], appear as first-return maps on transversals
to hyperbolic polycycles in planar analytic vector fields; see, for example, [2, 10]. From
the viewpoint of cyclicity of planar vector fields, the most interesting case is the case of
Dulac germs tangent to the identity. Using notation similar to the case of one-dimensional
analytic diffeomorphisms, we call such germs which are not roots of the identity parabolic
Dulac germs.

In [7], we described the Ecalle—Voronin-like moduli of analytic classification for a big-
ger class of parabolic generalized Dulac germs. Parabolic generalized Dulac germs defined
in [7] are a class of germs, including parabolic Dulac germs, that admit a particular type of
transserial power-logarithmic asymptotic expansion, called the generalized Dulac asymp-
totic expansion. They are, like Dulac germs, defined on a standard quadratic domain: a
universal covering of C punctured at the origin with a prescribed decreasing radius as
the absolute value of the argument increases. Their moduli are given as a doubly infinite
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sequence of pairs of germs of diffeomorphisms fixing the origin, having a symmetry
property with respect to the positive real axis and a rate of decrease of radii of convergence
adapted to the standard quadratic domain of definition. Similarly to the well-known
case of analytic parabolic germs treated in [12], it was shown in [7, 8] that the formal
class of a generalized Dulac germ is described by three parameters, but the normalizing
change diverges and defines analytic functions only on overlapping attracting and repelling
sector-like domains called petals. There are countably many petals filling the standard
quadratic domain and the comparison of normalizing changes on their intersections,
together with the formal class of the germ, gives its modulus of analytic classification.

As a continuation of [7], in this paper we describe the space of moduli, that is, we solve
the problem of realization of moduli of analytic classification in the class of parabolic
generalized Dulac germs. For each formal class and a double sequence of germs of
diffeomorphisms fixing the origin with controlled radii of convergence, we construct an
analytic germ defined on a standard quadratic domain realizing them.

However, on a big standard quadratic domain we did not succeed in attributing a unique
power-logarithmic transserial asymptotic expansion to the constructed germ. Transseries
are indexed by ordinals, which can either be successor ordinals or limit ordinals. The
definition of a transserial asymptotic expansion of a certain type is dependent on the
choice of the summation method at limit ordinal steps. This choice is called a section
function in [9]. To ensure uniqueness of the asymptotic expansion, we should be able to
make a canonical choice of the section function. See [9] for more details on the problem
of well-defined transserial asymptotic expansions and the notion of section functions.

Moreover, we prove that, on a smaller linear domain, there exists a parabolic generalized
Dulac germ of a given formal type which realizes the given sequence of diffeomorphisms
as its analytic moduli. On this smaller domain we are able to choose a canonical method
of summation on limit ordinal steps, a Gevrey-type sum, corresponding to the definition
of the generalized Dulac asymptotic expansion requested in the definition of generalized
Dulac germs.

In both constructions we use a Cauchy—Heine integral construction as [5], for example,
motivated by the realization of analytic moduli for saddle nodes in [11]. The advantage of
the Cauchy—Heine construction over the standard use of the uniformization method, as in
[12], is that Cauchy—Heine integrals provide the control of power-logarithmic asymptotic
expansions.

Let us first recall briefly the main definitions and results from [7].

1.1. Main definitions. Recall from Ilyashenko [2] the definition of almost regular germs.
We call them Dulac germs in [7] and also here. They are defined on a standard quadratic
domain Rc. This is a subset of the Riemann surface of the logarithm, in the logarithmic
chart ¢ = —log z given by

@(CT\KO,R)), p(0)=C+CC+D'Y? >0, R>0, (1.1)

where CT = {¢ € C: Re(¢) > 0} and K(0, R) = {¢ € C : |¢| < R)}; see Figure 1. In the
following, we switch between the two variables, the z-variable and the ¢-variable, as
needed. In an abuse of terminology, we use the same name standard quadratic domain
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FIGURE 1. Several standard quadratic domains 7%(;, C > 0, in the logarithmic chart.

for the domain in the ¢-variable defined by (1.1) and for its preimage by ¢ = —log z in
the universal covering of C*. For the z-variable we use the notation R ¢, while we use the
notation R ¢ for its image by { = —log z in the ¢-variable.

Definition 1.1. ([7, Definition 2.1], adapted from [2, 10]) We say that a germ f is a Dulac

germ if it:

(1) is holomorphic and bounded on some standard quadratic domain R¢ and real on
{z€Rc: Arg(z) =0}

(2) admits in R¢ a Dulac asymptotic expansion (uniformly on Rc, see [3, §24E]: for
every A > 0, there exists n € N such that

n
’f(z) =Y i Pi(—log )| = 0(2H),
i=1
uniformly on R¢ as |z] — 0)
o0
f@ =) "Pi(-logz), ¢>0,z—0, (1.2)
i=1

where A; > 1,i € N, are strictly positive, finitely generated and strictly increasing to
400 and P; is a sequence of polynomials with real coefficients, and P = A, A > 0.
(Finitely generated in the sense that there exist n € N and o) >0, ..., a, > 0,
such that each A;, i € N, is a finite linear combination of «;, j =1,. .., n, with
coefficients from Zxo. For Dulac maps that are the first-return maps of saddle
polycycles, the o, j =1,...,n, are related to the ratios of hyperbolicity of the
saddles.)

Moreover, if a Dulac germ is tangent to the identity, that is,
f@) =z+0@@), z€Rc,
and if f°? #id, g € N, we call it a parabolic Dulac germ.

By a germ on a standard quadratic domain [2], we mean an equivalence class of
functions that coincide on some standard quadratic domain (for arbitrarily large R > 0
and C > 0).
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The radii of the standard quadratic domain in the z-variable tend to zero at an
exponential rate as we increase the level of the Riemann surface. If by 6 € [(k — 1),
(k + 1)) we denote the arguments of the kth level of the surface R¢, k € Z, and by
O = km, k € Z, then the maximal radii r (6;) by levels k € Z decrease at most at the rate

Ke  PVUKT/Z k| > 0o for some D > 0, K > 0.

In [7, Definition 2.3], a larger parabolic generalized Dulac class is introduced. It
contains parabolic Dulac germs. We repeat the definition of parabolic generalized Dulac
germs in Definition 1.4 below. The Dulac asymptotic expansion requested in Definition 1.1
of Dulac germs is substituted by a particular transserial power-logarithmic asymptotic
expansion.

In this paper we give realization results for any given sequence of moduli satisfying
some uniform bound in the parabolic generalized Dulac class, but for parabolic generalized
Dulac germs defined on a smaller domain that we call a standard linear domain. For
technical reasons in the Cauchy—Heine construction, on the standard quadratic domain
we get realization results by germs for which we are unable to prove unicity of the
transserial asymptotic expansion after the first three terms. To be able to define the
unique transserial asymptotic expansion of a germ of a certain type, we should be able
to prescribe a canonical method of summation, or section function [9], at limit ordinal
steps. In the linear case, the estimates of the Cauchy—Heine integrals give us sufficiently
good Gevrey-like bounds, and thus a canonical way to attribute the sum, at limit ordinal
steps. This canonical choice is the one defining parabolic generalized Dulac germs and
expansions; see Definitions 1.3 and 1.4 below. On the other hand, the bounds in our
construction on standard quadratic domains are weaker.

It is important to note that the germ obtained by Cauchy—Heine construction on a linear
domain is not the restriction of the germ constructed on a larger quadratic domain, since we
apply Cauchy—Heine integrals along different lines of integration; see (3.8) under condition
(3.9) for standard quadratic domains or (3.10) for standard linear domains. For details, see
Remarks 3.6 and 5.2.

By [3, 10], a standard linear domain is not sufficiently large to apply Phragmen-Lindelof
and get injectivity of the mapping f +— f, where fis the generalized Dulac asymptotic
expansion of f.

Definition 1.2. A standard linear domain ﬁa,b, a > 0, b > 0, in the logarithmic chart is a
subset of C given by

ﬁa,b = {; € Ci: b—aRe(t) <Im(¢) < —b + aRe(¢), Re(¢) > g},

see Figure 2.
Analogously, by R, , we denote the image by z = e~¢ of R, . This is a subset of the
Riemann surface of the logarithm.

We recall from [7] the definition of the parabolic generalized Dulac class. We will call
an £-cusp an open cusp that is the image of an open sector V of positive opening at O by
the change of variables £ = —(1/log z), and we will denote it by S = £(V); see Figure 3.
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FIGURE 2. Several standard linear domains ﬁa,h, a >0, b > 0, in the logarithmic chart.
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FIGURE 3. £-cusp.

Any open £-cusp £(V') C S, where V/ C V is a proper subsector, will be called a proper
£-subcusp of S.

Definition 1.3. (log-Gevrey asymptotic expansions on £-cusps [7, Definition 4.1]) Let F be
a germ analytic on an £-cusp S = £(V). We say that F' admits I?(Z) =Y o ailk, a; € C,
as its log-Gevrey asymprotic expansion of order m > 0 if, for every proper £-subcusp S’ =
£(V')y C S, V' C V, there exists a constant Cgs > 0 such that, for every n € N, n > 2, we
have

<Cg-m™".log"n-e”®lemyn yes

n—1
‘F(ﬁ) - Z aitk

k=0

For more details on properties of log-Gevrey classes and for the proof of their
closedness to algebraic operations +, - and to differentiation, see [7, §4]. We state here
just the following variation of Watson’s lemma for log-Gevrey expansions, which will
be of immediate importance for the definition and the uniqueness of generalized Dulac
expansions. If F (€) is the log-Gevrey asymptotic expansion of order m > 0 of a function
F analytic on an £-cusp S = £(V), where V is a sector of opening strictly larger than 7w /m,
then F is the unique analytic function on S that admits F (€) as its log-Gevrey asymptotic
expansion of order m. The proof can be found in [7, §4, Corollary 4.4].

We prove in [7, Proposition 2.2] that every parabolic germ f on R¢ (respectively, R, p)
that satisfies the uniform asymptotics

|f(2) — (z — az%0™)| < c|lz%™*Y), 7 € Re (respectively, Ryp), a > 1, m € Z,
a#0, c>0,
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FIGURE 4. Outline of the dynamics of a generalized Dulac germ on petals Vji, J € Z, along a standard quadratic
domain ﬁc in the logarithmic chart, case @ > 0 in (1.3) [7, Figure 3.1].

has a local flower-like dynamics at the origin. That is, R¢ (respectively, R, ) is a union
of countably many overlapping invariant attracting and repelling petals (a petal is a union
of sectors whose openings increase continuously, up to some fixed opening, while their
radii decrease; see, for example, [5]) Vj+ (respectively, Vj_), J € Z, centered at directions
a~V@=D (respectively, (—a)~1/@~D) and of opening 27 /(a — 1).

The dynamics in the ¢-variable on a standard quadratic domain Re is shown on
Figure 4. The sectors of opening 6 > 0 in the z-variable become horizontal strips of
width 6 > 0O in the ¢-variable. Analogously, the images of petals of opening 27 /(o — 1)
in the z-variable are open sets tangentially approaching strips of width 27 /(e — 1), as
Im(¢) — +o0, in the {-variable. We denote them in the ¢ -variable by \7].‘" and \7]._, Jj €Z;
see Figure 4. In an abuse of terminology, in the ¢-variable we also call them petals.

Definition 1.4. (Parabolic generalized Dulac germs [7, Definition 2.3]) We say that a

parabolic germ f, analytic on a standard quadratic domain R¢ (or standard linear domain

Ra.p), that maps {arg(z) = 0} N R¢ (respectively, {arg(z) = 0} N R, p) to itself, satisfying
|f(z) —z+az%l" < clz%e™, a #0,a>1, meZ, c>0,

] (1.3)
z € Rc (respectively, z € Rup),

is a parabolic generalized Dulac germ if, on each of its invariant petals Vji, j€Z,of
opening 27 /(e — 1), it admits an asymptotic expansion of the form

n
f@=z+ Z s R;”i(ﬂ) +o(z% o), 5, >0,
i=1
foreveryn € N,as z — O on Vji. Here, o1 = «, o; > 1 are strictly increasing to 400 and

finitely generated, and Rl.j ’i(Z) are analytic functions on open cusps Z(Vji) which admit

common log-Gevrey asymptotic expansions R;i (€) of order strictly larger than (o — 1)/2,
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as{ — O:

o0
Ri(0) = Z aitk, dal eR, N; € Z.
k=N;

We then say that the transseries fgiven by

o
@ =z+) 2Ri(0) (1.4)
i=1
is the unique generalized Dulac asymptotic expansion of f. Such fis called a parabolic
generalized Dulac series.

Note that all coefficients of the expansion are real, due to the invariance of R under f.

Moreover, we assume in what follows that a > 0 in (1.3). That is, Ry NR¢ is an
attracting direction. If a < 0, we consider the inverse generalized Dulac germ f~!. Indeed,
it was proven in [7, Proposition 8.2] that parabolic generalized Dulac germs form a group
under composition.

A generalized Dulac asymptotic expansion is an asymptotic expansion in the formal
class of transseries E(R). The class of power-logarithmic transseries Z(R) was first
introduced in [8], as the class of transseries of the form

o o
f(z) = Z Z ai,mzaigm, aim € R,

i=1 m=N;
where o; > 0 are finitely generated and strictly increasing to 400, and N; € Z, i € N.
Here, £ = 1/(—log z). As discussed in [9], an asymptotic expansion of a germ in Z(]R) is
in general neither well defined nor unique. The generalized Dulac expansion is a sectional
asymptotic expansion (see [9] for precise definition of sections) that becomes unique after a
canonical choice of section functions (the summation method) at limit ordinal steps—here,
the log-Gevrey sums of a certain order.

The parabolic Dulac (almost regular in [2]) germs from Definition 1.1 are trivially
parabolic generalized Dulac germs. In that case we have a canonical choice for summation
at limit ordinal steps, since R in (1.4) are polynomials in £, Polynomial functions in £~
are convergent Laurent series in £.

Recall the following formal classification result from [8], repeated in [7] for the case
of real coefficients. By a normalizing change of variables ¢ € Z(R) of the form ¢(z) =
cz + h.o.t. (higher-order terms, lexicographically with respect to orders of monomials),
¢ # 0, every parabolic transseries fe E(R) of the form

f(z) =z—az*¢" +hot, a>0 a>1, meZ,
can be reduced to a formal normal form given as a formal time-1 map of a vector field:

fo := Exp(Xo).id = z — 220" + pz2* 1>t 4 hout.,

—zom d (1.5)
1+ (—a/2)z271m + ((m/2) + p)ze~tem+l dz’
The triple (o, m, p), @ > 1,m € Z, p € R, are called the E(R)—formal invariants of f

where Xo(z) =
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In [7], we introduced the notion of analytic conjugacy or analytic equivalence of
parabolic generalized Dulac germs; see [7, Definition 2.4]. We repeat the definition here.
For simplicity, we work here with normalized parabolic generalized Dulac germs whose
second coefficient is equal to —1. Each parabolic generalized Dulac germ of the form
f() =z —az®l™ 4+ 0(z*€™), a > 0, can be brought into a parabolic generalized Dulac
germ of the form

f@D=z—z%¢" 40", a>1 mel. (1.6)

This is done simply by a real homothety ¢(z) = a!/©@ =Dz, taking a'/@~1 e R, , which
preserves the invariance of R in the definition of generalized Dulac germs.
In the case where a < 0, we work with the inverse parabolic generalized Dulac germ.

Definition 1.5. (Analytic equivalence of parabolic generalized Dulac germs [7, Definition

2.4]) We say that two normalized parabolic generalized Dulac germs f and g of the form

(1.6) defined on a standard quadratic domain R¢ (or on a standard linear domain R, p)

are analytically conjugated if:

(1) their generalized Dulac asymptotic expansions fand g are formally conjugated in
E(R) (that is, have the same Z(R)—formal invariants (o, m, p), « > 1, m € Z, p €
R); and

(2) there exists a germ of a diffeomorphism /(z) = z + o(z) of a standard quadratic
domain R¢ (or a standard linear domain R, ), such that

g= h'o foh onRc (respectively, R,p).

In [7, Theorem B] we derived the following result on the moduli of analytic classifica-
tion for parabolic generalized Dulac germs in the Ecalle-Voronin sense. For more details,
see [7].

Let f be a parabolic generalized Dulac germ defined on a standard quadratic (or linear)
domain, belonging to E(R)—formal class 2, m, p), meZ, peR. Asin [7], a =2 is
taken for simplicity. This can be done without loss of generality, since any normalized
generalized Dulac germ of the form (1.6) can be brought into the form f(z) = z — 22em 4
o(zzﬂm), m € Z, by the change of variables

2 (o — l)f(m/otfl)zl/afl, (1.7)

analytic on a standard quadratic (i.e. standard linear) domain and depending only on «
and m. Therefore, two parabolic generalized Dulac germs are analytically conjugated if
and only if, after the change of coordinates (1.7), the corresponding germs are analytically
conjugated_. For details, see [7, Proposition 9.1].

Let (&) jez be the analytic Fatou coordinates of f on attracting and repelling petals
Vi, j € Z, along the domain (standard quadratic or standard linear). Recall that a Fatou
coordinate \lfi of a generalized Dulac germ f is an analytic map, defined on the petal Vi,
J € Z, conjugating the map f on the petal to a translation by 1:

Wiof-wi=1 onVl, jeZ
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The existence and the uniqueness, up to an additive constant, of the petalwise analytic
Fatou coordinate of a generalized Dulac germ under some additional assumption on its
power-logarithmic asymptotic expansion are proven in [7, Theorem A].

We proved in [7, Theorem B] that there exists a symmetric (with respect to the
R, -axis) double sequence (h{), hlo) jez of pairs of analytic germs of diffeomorphisms
from Diff(C, 0), defined on discs of radii o; bounded from below by

o; > Kie K< e 7, for some Ky, K. C > 0, (1.8)

that satisfy

hé(t) — e—zmwi’—lo(q/[)—l(_log 127 4 e (T, 0), 9
() = il og /e ¢ (C,0), j el )

We proved that this sequence of pairs of diffeomorphisms and the formal class (2, m, p)
form a complete system of analytic invariants of a parabolic generalized Dulac germ f.
These diffeomorphisms are called the horn maps for f.

As in [7], we say that the sequence of pairs (h{), hlo) jez of analytic germs of
diffeomorphisms is symmetric with respect to R if the following holds (on the domains
of definition of A and hl,, j € Z):

(hy"™H=10) = k(). 1€ (C,0), jeZ (1.10)

This symmetry of moduli for parabolic generalized Dulac germs comes from the invariance
of Ry under f, by the Schwarz reflection principle; see [7, Proposition 9.2].

Note that the lower bound (1.8) comes from the standard quadratic domain of definition
of f. However, the construction of moduli of analytic classification from [7, Theorem B]
goes through in the same way for parabolic generalized Dulac germs defined on smaller
standard linear domains. In the case where the germ is defined only on a standard linear
domain, it is easy to see that the radii of definition of its horn maps may decrease more
quickly. More precisely, they are bounded from below by

oj > Kie XV j ez, forsome K|, K, C > 0. (1.11)

By horn maps we in fact mean the equivalence classes of germs, up to the following
identifications. Two sequences

(), hlo; 6))jez and (k). klo; &) jer (1.12)

with maximal radii of convergence o; (respectively, ¢;), satisfying lower bounds of the
type (1.8) or (1.11), are equivalent if there exist sequences (8;)jez, (Vj)jez € C* such
that

hy) = Bj—1 - K (vjn),  hlo(t) = yj - Ko(Bjt), j €L (113)

Additionally, we assume that the sequences of pairs (1.12) are both symmetric as in
(1.10), since they represent the moduli of generalized parabolic Dulac germs for which R
is invariant. In this case, the complex sequences (y;) jez, (B}) jez in equivalence relation
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(1.13) are not arbitrary. Indeed, if such sequences exist, they should, by (1.10) and (1.13),
be related to germs of diffeomorphisms ké and k%, j € 7Z, by the following:

1 1 ;
.kgo(=t> =y -kk(Bjt), te€(C0), jelZ (1.14)
V—j+1 B—j

By basic calculations (comparing the coefficients with each power t* in the Taylor
expansion of (1.14)), depending on the nature of diffeomorphisms k2., j € Z, the equality
(1.14) is equivalent to the following conditions on the sequences (8;) jez and (y;) jez:

() yj-v=j1=1/(B=; - Bj), for j € Z for which kL, is linear;

2) B ~;3Tj:r, Yj - ¥—j+1 = 1/r, for any r € C such that r™ =1, for j € Z for
which the non-constant part (the part obtained by subtracting from kéo /id the
constant term in its Taylor expansion) of kZ./id is a diffeomorphism in the variable
t™ forsomem € N, m > 2;

(3) Bj-B—j=1, yj - y=j51 =1, forall other j € Z (the generic case).

2. Main results
For simplicity, as in [7], we consider here only parabolic generalized Dulac germs of order
2 in variable z, defined on a standard quadratic domain R,

f) =z—az?l™ +0i2"), a>0 meZ_.

The more general case o > 1 can be reduced to the case o = 2, as discussed above.
Also, the realization result for « > 1 can be concluded in the same way as for « = 2. The
number of petals on each level of the surface of the logarithm depends on «.

In this paper we solve the realization problem in the subset of prenormalized parabolic
generalized Dulac germs:

f2) =z — 220"+ p3 "t L oY, meZ, p el

Note that its formal invariants are (2, m, p).
By Proposition A.l in the Appendix, the sectorial Fatou coordinate of prenormalized
germ f is of the form

+ _ + +
\IJ/. _\I’nf—i-Rj oan,

where Wy is the Fatou coordinate of the formal normal form fy of f, globally analytic on
Rc, and Rjt =o(l),asz—>0,z€eV ji, are analytic on petals. Here, the formal normal
form fj of f is an analytic germ on R¢, given as the time-1 map of an analytic vector field
onRc¢:

fo 1= Exp(Xo).id = z — 220" + p> 02"+ o(32m Y,
—z2em d 2.1
— 2" + ((m/2) + p)ztm+ldz

Xo(z) = 7

(see (1.5) in the case a = 2).
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2.1. Main theorems. Let

f@) =z—220"+ 0™, mel,
be a parabolic generalized Dulac germ. Let \p]_i, J € Z, be its sectorially analytic Fatou
coordinates on petals V/.i, precisely defined in [7, Theorem A].

To a sequence of horn maps of f, (hj, héo)jeZ defined in [7, Theorem B] and in (1.9),
there naturally corresponds a sequence of exponentially small cocycles (G(J), Gl jezs

defined and analytic on intersections Voj and Vojo of consecutive petals, such that
Gl(@) = gl (e ™M), ze vV,
Glo(2) 1= glo (@), L c V.,
Here, Voj = VJ{_I N Vi and ngo = V;j N Vi,j € Z (see Figure 4), and gé, g'ojo, jez,
are analytic germs at ¢ ~ 0, such that
()71 (0) = 12780, pl (1) = 1e2TiERO a0, 22)

The following is an equivalent formulation of (1.9) using G{),Oo and g{)’oo, j e

. . . o i—1 . .
v ) =W () = gl (e D) =Gl), zeV,
W () = W (2) = glo (V) = GLo(z), zeVd, jel.

PROPOSITION 2.1. (Uniform bounds by levels for horn maps of parabolic general-
ized Dulac germs on standard linear or quadratic domains) Let f(z) =z —7Zem 4
p3 2t L o302t m e Z, p € R, be a prenormalized analytic germ on a standard
quadratic or standard linear domain. Assume that there exists a constant C > 0 such that

|f(2) — 2+ 220" — p3 02" < €12 672 (2.3)

on some quadratic or linear subdomain. Let (hé, hé.o)jez, be a sequence of its horn
maps (constructed in [7, Theorem A]). Let gé’oo (t), j € Z, be defined as above in (2.2).
Then the following uniform bounds hold (uniform in j): there exist uniform constants
c1, €2, di, do» > 0 such that, equivalently,

oo (0) — 1] < dilt?, () (1) — 1] < dalt], 2.4)
or
8ol <ciltl, 18 D <2, 0 <t <0j. jeL 2.5)

The proof, which is a consequence of uniform asymptotics (2.3), is in the Appendix.

Note that parabolic prenormalized generalized Dulac germs, due to (1.3), satisfy
assumption (2.3), so the sequences of pairs of their horn maps satisfy uniform bounds
(2.4).

We now state two realization theorems, Theorem A and Theorem B. They both deal
with the following realization problem: given a formal class (2, m, p), m € Z, p € R, and
a sequence of pairs of analytic germs of diffeomorphisms (h(]), hlo) jez fixing the origin,
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symmetric with respect to Ry, with radii of convergence o satisfying a lower bound of
the type (1.8) and satisfying bounds (2.4), does there exist a parabolic generalized Dulac
germ belonging to formal class (2, m, p) and realizing this sequence as its sequence of
horn maps? This result can be considered as a generalization of the realization result for
regular (i.e. holomorphic) parabolic germs in [12].

First, in Theorem A, we answer the realization question positively in the class of
prenormalized germs of the form

f(2) =z — 220" + p2e¥" ! 4 o(Pe¥ Y, zeRe, (2.6)

leaving R, invariant and analytic on a standard quadratic domain. However, we do
not claim the uniqueness of the transserial asymptotic expansion of f in Z(R) after
the first three terms given in (2.3). In particular, we do not claim that the constructed
germ is a parabolic generalized Dulac germ: we are unable to prove that it admits the
generalized Dulac asymptotic expansion as defined in Definition 1.4, with sufficiently
strong log-Gevrey bounds at limit ordinal steps; see Remark A.3.

In Theorem B, we realize any sequence of pairs satisfying bounds (2.4) by parabolic
generalized Dulac germs of the form (2.6) belonging to the formal class (2, m, p), but
on a smaller standard linear domain. Note that such germs admit a well-defined unique
generalized Dulac asymptotic expansion. On smaller standard linear domains the map
f— ]‘\, for parabolic generalized Dulac germs f, is well defined, but the domain is too
small to apply Phragmen—Lindelof [3] and get injectivity.

Note that in [7, Theorem B] we construct the moduli of parabolic generalized Dulac
germs defined on standard quadratic domains. However, the result can be deduced in
the same way for parabolic generalized Dulac germs on smaller standard linear domains,
with the only difference that the rate of decrease of moduli follows the rule (1.11) instead
of (1.8).

To conclude, we prove in Theorem B that, on a standard linear domain, there is a
bijective correspondence between analytic classes of parabolic prenormalized generalized
Dulac germs belonging to the same formal class and all sequences of pairs of analytic
germs of diffeomorphisms satisfying bounds (1.11) and (2.4), with appropriate identifica-
tions on both sides.

THEOREM A. (Realization by parabolic germs on a standard quadratic domain) Ler p € R,
m € Z. Let (h}, hlo; 0j)jez be a sequence of pairs of analytic germs from Diff(C, 0),
symmetric with respect to Ry as in (1.10), and with maximal radii of convergence o

bounded from below by
oj > KleiKeC\/m, j ez,

for some C, K, K1 > 0. Let the elements of the sequence on their respective domains of
definition satisfy the uniform bound (2.4). Then there exists a germ

f2) =z — 220" + p2 02" o2 2m T, 2.7)

analytic on a standard quadratic domain, leaving R invariant and satisfying (2.3), that
realizes this sequence as its horn maps, up to identifications (1.13).
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To be able to define horn maps of such a germ, recall from [7, Theorem A] that a germ
f analytic on a standard quadratic domain and satisfying uniform estimate (2.3) admits
petalwise dynamics and the existence of petalwise analytic Fatou coordinates along the
standard quadratic domain, as described in [7, Theorem A] and recalled here in Figure 4.
The same can be deduced for standard linear domains.

THEOREM B. (Realization by parabolic generalized Dulac germs on a standard linear
domain) Let p € R, m € Z. Let (h)), hi; 0;) jez be a sequence of pairs of analytic germs
from Diff(C, 0), symmetric with respect to Ry as in (1.10), and with maximal radii of
convergence o j bounded from below by

_KeCll
oj>Kie X, jez,

for some C, K, K1 > 0. Let the elements of the sequence on their respective domains of
definition satisfy the uniform bound (2.4). Then there exists a prenormalized parabolic
generalized Dulac germ

g(Z) =7 — Z2£m + pZ3£2m+1 +0(Z3€2m+1),

analytic on a standard linear domain and satisfying (2.3), that realizes this sequence as its
horn maps, up to identifications (1.13). In particular, g admits a unique generalized Dulac
asymptotic expansion, as 7 — Q.

Note that on a standard linear domain we realize any sequence of moduli by a
prenormalized parabolic generalized Dulac germ belonging to any formal class (2, m, p),
meZ,peR.

Remark 2.2. Note the difference between Theorem A and Theorem B. In Theorem A we
realize a sequence of pairs of diffeomorphisms as moduli of a parabolic diffeomorphism
f on a larger (quadratic) domain, but we do not claim that f admits the generalized
Dulac asymptotic expansion. In Theorem B, the constructed parabolic diffeomorphism
g realizing the moduli has the required asymptotic expansion, but is defined on a smaller
(linear) domain.

In the course of the proof of Theorems A and B in §§3-5, it can be seen that the
parabolic generalized Dulac germ f constructed in Theorem B is not just the restriction
to a linear domain R,;, C Rc of a germ g constructed in Theorem A for the same
sequence of pairs of horn maps on a larger quadratic domain R ¢; see Remarks 3.6 and 5.2.
Therefore, we have not proven that the parabolic generalized Dulac germ constructed
on a linear domain and realizing the given sequence of pairs can be extended as an
analytic germ to a standard quadratic domain. As far as we know, nothing can be directly
concluded about Gevrey nature and uniqueness of the asymptotic expansion after the first
three terms of the germ constructed in Theorem A on a standard quadratic domain and
realizing the given sequence of pairs of horn maps, or of any other representative of the
same analytic class on a standard quadratic domain. This prevents extending the realization
result in the class of parabolic generalized Dulac germs from linear to a larger, standard
quadratic domain, which remains an open question. However, we can deduce the following
corollary.
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COROLLARY 2.3. Let (hé, héo) jez be a sequence of pairs of analytic diffeomorphisms,
symmetric with respect to Ry as in (1.10), and satisfying (2.4). Let m € Z and p € R. Let
f(2) be the germ defined on a standard quadratic domain R¢ of the form

f(Z) =z ZZEm + pz3z2m+1 +0(Z3£2m+1),

which by Theorem A realizes the above sequence of pairs as its horn maps. Moreover,
let g(z) be the parabolic generalized Dulac germ of the same form defined on a standard
linear domain Rap C Rc that by Theorem B realizes the above sequence of pairs as its
horn maps. Then there exists an analytic diffeomorphism ¢(z) = z + 0(z) on Rgp, such

that ¢! o g o ¢ can be extended from R, analytically to the germ f on Rc.

Proof. From the equality of horn maps of f and g on R, C Rc, by the proof of
[7, Theorem B] it follows that f and g are analytically conjugated on R, by ¢(z) =
z+0(z). The statement follows by uniqueness of analytic continuation from R,p
to Rc. O

However, since f is not in general parabolic generalized Dulac, we cannot deduce
anything about the nature and uniqueness of the power-logarithmic asymptotic expansion
of the conjugacy ¢ from Corollary 2.3.

3. Realization of infinite cocycles on standard linear and standard quadratic domains

In this section we prove Propositions 3.1 and 3.2 which are realization propositions for
exponentially small cocycles on standard quadratic domains R¢c C R, or standard linear
domains R, C R, respectively. Here, R is the Riemann surface of the logarithm. We
adapt the construction from [6] for realization of a cocycle in C, using Cauchy—Heine
integrals. Propositions 3.1 and 3.2 are prerequisites for proving Theorems A and B.

In §4, we prove Theorem A. Motivated by [11] and realization of analytic moduli for
saddle-node vector fields, we find a (prenormalized) parabolic germ f in any formal class
(2, m, p),m € Z, p € R, analytic on a standard quadratic domain, such that its differences
of sectorial Fatou coordinates realize a given cocycle on intersections of its petals. We use
Proposition 3.1 at each step of the iterative construction of the Fatou coordinate, starting
the construction with the Fatou coordinate of the formal normal form and then improving
the approximation at each step. Note that f is just analytic on a standard quadratic domain;
we do not claim any asymptotic expansion in Z(R) of f after the three initial terms.

In §5, we prove Theorem B. Using Proposition 3.2, we prove that, if we perform the
construction from §4 on a smaller standard linear domain, we get that f additionally
admits a generalized Dulac asymptotic expansion. In this proof, for standard quadratic
domains instead of standard linear, a log-Gevrey property of sufficient order on limit
ordinal steps of the expansion does not seem to hold, as shown in Remark A.3. For
standard quadratic domains there is a technical problem of too long lines of integration in
Cauchy-Heine integrals. This results in insufficient Gevrey-type estimates which prevent
canonical summability on limit ordinal steps, and gives non-uniqueness of asymptotic
expansion in E(R).
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Classically (see, for example, [6]), we say that a function & defined and holomorphic
on an open sector V is exponentially flat of order m > 0 at 0 in V if, for every subsector
V’ C V, there exist constants C > 0 and M > 0 such that

|h(z)| < Ce~ M/ z ey, (3.1)

PROPOSITION 3.1. (Realization of infinite cocycles on standard quadratic domains) Let
VO] (respectively, Vi), j € Z, denote open petals of opening 7 centered at directions (4] —
3)7 /2 (respectively, (4j — 1)1 /2), j € Z, along a standard quadratic domain. That is, if
we denote by r j the radii of VOJ and Vi, at their central directions, then there exist constants
C >0, K > 0such that

rj>Ke SV, ez (3.2)

Let Vj+ (respectively, Vj_ ), J € Z, denote the open cover (this means that the standard

quadratic domain is covered by open petals as in Figure 4; the petals Voj and VC;’;J, j €Z,
are the intersection petals of pairs of consecutive petals) of the standard quadratic domain
by petals of opening 2w centered at directions 2 jm (respectively, (2j — 1)), such that

vt = Vi Vi v =vinv (3.3)

are their intersection petals. . .

Let (G(J), Géo)jez be pairs of holomorphic functions on VOJ and Vi, j €7, not
identically equal to zero and uniformly flat of order m > 0 at 0. That is, for subsectors
U({ C VOJ and U, C Vi, centered at central lines of VOJ and V4, and of uniform opening
in j € Z, there exist C > 0 and M > 0 independent of j, such that

G (@) < Cem MM syl | jel (3.4)

Then there exist analytic functions Rjj.E (z) = 0(1), as z — 0, defined on petals Vji, Jj €z,

such that
R @ - R.@) =Gl2), zeVy, 43)
R —RL) =GLGk), zeVi, jel

Moreover, for subsectors Sj-t C Vji centered at central lines of Vji and of uniform opening
in j, there exists a uniform (in j) constant C > 0 such that

IRF ()| <Cltl, zeS, je (3.6)
Here, ¢ := —(1/log ).

PROPOSITION 3.2. (Realization of infinite cocycles on standard linear domains) Let all
assumptions and notations as in Proposition 3.1 hold, except that (3.2) is replaced by

ri>Ke “Vl jez C,K>0. (3.7

Let {Vj+, Vj_} jez be an open cover of a standard linear domain by petals of opening

2m centered at directions 2jm (respectively, (2j — 1)x), and let Voj and Vo];, be the
intersections of consecutive petals as in (3.3), j € Z. Then there exist analytic functions
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R/.i(z) =o0(1), as z — 0, defined on petals V/»i, Jj € Z, such that (3.5) and (3.6) hold.
Moreover, if we put £ :== —(1/log z) and

RY(0):=Ri(2), (Lel(Vy), je,

then there exists R(£) € C[[£]], the common log-Gevrey asymptotic expansion of order m
of any Rji(ﬂ), j€Z, ast — 0inf-cusp E(Vji).

We will say that functions (Rjt(z)) jez Or transseries I?(Z) € C[[£]] constructed in

Propositions 3.1 and 3.2 realize the given cocycle (Gé, Géo) jez on a standard quadratic
(respectively, standard linear) domain.

We prove Propositions 3.1 and 3.2 simultaneously. The proof is based on the following
Lemmas 3.3-3.5.

For simplicity, we work in the logarithmic chart { = —log z. Put

Goo@) =Gl o(e™), j e

Then Gé,oo are defined and analytic on petals (in the ¢-variable, open sets tangential, as
Re(¢) — oo, to horizontal strips of a given width, which corresponds to the opening of
the petal in the z-variable) in the logarithmic chart \70] o = —log(VOJ o) The petals \701 .
in the logarithmic chart are bisected by the lines endin;g atRe(¢) = 00 ’

Cé~~~[—logrj+i(4j—3)%,+oo+i(4j—3)%},
(3.8)

P T T
Cl, - -- [—10grj +i(4j — 1)5, +oo+i(4j — 1)5:|,

corresponding to the central rays [0, r; ei(4j_3)”/2] of Voj, that is, [0, r; e"(4j_1)”/2] of Vojo
in the original z-chart. Note that (3.2) gives

—logrj < CVljl, Jj€eZ 3.9)
for a standard quadratic domain from Proposition 3.1, and (3.7) gives
—logr; < Cljl, Jje€Z, (3.10)

for a standard linear domain from Proposition 3.2. _ ‘
In the ¢-chart, (3.4) becomes: for substrips Uj ., C Vj bisected by Cj ., and of
uniform opening in j, there exist M, C > 0 such that

mRe(¢)

G (@) < CeM"™ e ) L jel. 3.11)

That is, Géoo, j € Z, are uniformly (in j € Z) superexponential of order m > 0, as
Re(¢) — ocoin ‘7({00.

LEMMA 3.3. (Cauchy-Heine integrals) Let ﬁg ; (respectively, ﬁ; i ), j € Z, be the parts
of the standard quadratic domain ﬁc in the logarithmic chart containing \70/ (respectively,
VL) and all points of the domain above \70] (respectively, VL) Equivalently, let ﬁg ;
(respectively, ﬁgo i be the parts containing Voj (respectively, \N/Ojo ) and all points of the
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N
21 eV / oo
(41—1>n/2ﬂ 2 cl
4j - 32 J < Vi c
L
Roj  Reoj

FIGURE 5. Outline of position of petals Vji and VOJ o> J € Z, on a standard quadratic domain ﬁc in the
logarithmic chart.

domain below them; see Figure 5. Let (Gj R ééo)jez defined on (\70] R VOjO)jeZ, be an infinite
cocycle, uniformly flat of order m > 0, as in (3.4).
(1) Let the functions F0 and F o It J € Z, be defined as the Cauchy—Heine integrals of

Go,], Goo’] along lines Cé’oo

1 G’ (w 1 +ooti(4j=3)m/2 G (w
E= o [ Dy, L o) 4,
2ri Je] w—¢ 270 ) tog rj+iaj—3)m/2 W —§
' ) (3.12)
1 Gi | prootiGi-a/2 &Gl
(;) _ 4 oo (W) dw=— 2o (W)
2mi Jel, w—¢ 270 ) tog rjti4j—z/2 W—&

They are well defined and analytic on the standard quadratic domain ﬁc strictly
above (+) (respectively, below (—)) the integration line.
(2) By varying the integration paths inside the petals VOJ 0 Y ( respecttvely, ) may

be extended analytically to the whole domains RO T (respectively, ’R;EO ; ).
(3) We have that

F+-(z> — Fo;(0) =Gh@). ¢eVy,

i - (3.13)
O - FL ) = Gh@). ¢ eV

The statement of this lemma holds even without the existence of the uniform constant
in j € Z in bound (3.4).

Proof. We use the Cauchy-Heine construction based on the classical Cauchy’s residue
theorem. For more details on the Cauchy—Heine construction in C that we adapt here for
standard quadratic (linear) domains, see, for example, [4, 5].

(1) Obvious. ' _

(2) Suppose that we wish to extend I:"OT ; above the central line Cé of petal \70] . We

replace the integration path Cé in the Cauchy—Heine integral by the union of a horizontal
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e _ (c/)/ g
e o @,
VO 2jn

FIGURE 6. The change of integration path in the ¢-variable and Cauchy’s integral theorem in the proof of
Lemma 3.3(2).

line (C] )" above C(J) in V0 and the portion of the boundary of the petal V0 between the
two lines, denoted by S ; see Figures 5 and 6. Here, (C’ )" is a horizontal line at some
height 0 € ((4j —3)7/2, (2j — 1)7) in the standard quadratic domain in the ¢-variable.
It corresponds, in the z-variable, to the ray at angle 6 inside the petal VOJ . For simplicity,
we are notationally imprecise, as we do not stress the dependence of (Cj )’ and S 7 on the
height 0. Let yp : (C’ Y U S] be this new integration path. Then, for any ¢ below C, / the
Cauchy-Heine integral along Yo 1s, by the Cauchy’s integral theorem, equal to F 0./ That

is, for ¢ € ﬁc below Cj, we get

3 1 G/ 1 G/
Fry=- [ G0y, L / 0@
"] 2ri Jei w—¢ 2mi J,, w—¢
1 G/ 1 G/
— G GO

= 27 cly w—¢ v 2mi s;w—¢
see Figure 6.

Therefore, the new integral f (G (w) /(w — ¢)) dw along yp is the analytic extension
of F0 up to the line (C’ )'. By varying the line (Cj )’ above the central line Cj inside the

petal VO , we get the desired analytic extension up to the line at height (2 J = ). In this
way, F (; ) given by formula (3.12) can be extended analytically to whole Ro . The same

ot
can be done for FJr (¢) on R+ and for F_ ({) on ROO’J, jeZ.

If we now wrlte
1 G!
(é’) / o) dw,
2mi Siw—=2¢

we notice that )Z({(g) is an analytic germ at £ = oo (in the sense that & f(({(l /&)
is analytic at & = 0), that is, that there exists M; > 0 such that )Zoj (¢) is analytic for
¢ e€C, [¢]| > M;. Consequently, it admits a Taylor asymptotic expansion in ¢l as
[¢] — oo. This will be important for later proofs.

We stress once again that here (Cj )’ and Sé , and therefore also ({) and M;, depend

on the height 6 of the line (C0 ) up to which we extend. They are dependent not only on the
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7S, Coy >

FIGURE 7. The residue theorem in the proof of Lemma 3.3(3).

petal, but also on the height in the petal up to which we extend. Here and in what follows,
we omit this dependence in the notatiqn for simplicity.

(3) Since V! = R+ n R , VL= R* NR, s (3.13) follows directly by the
residue theorem after analytlc extensions of F (€ ) to R described in (2). To
illustrate, let us prove the first line of (3.13). Take any ¢ € V] Take any two lines inside

petal \70j such that ¢ is strictly between them. Denote them by Cg, and Cp,, at heights
61 > 6,. Now, by part (2), we have

~J ~J
F©) = G0W) gy o [ G g,
27i Cp W2 2mi Sp, W&
~J ~J
b0 = — f G0 oy L[ G0,
27i cy w—<¢ 2mi Soy W&

where Sy, (respectively, Sp,) are the portions of the boundary of \N/(‘)i between the lines Cé

and Cy, (respectively, C(J) and Cy,). Subtracting Fo+ ; @) — Fo_j (&), the statement follows by
the residue theorem. See Figure 7. O

LEMMA 3.4. Let (G/, Goo)jez be an infinite cocycle as described in Proposition 3.1
or 3.2. Let F()i/’ Foioj and their corresponding domains ’R,Oj, Ri be as defined in
Lemma 3.3. Let

J J +o00
Rj;:((Z NESDY ;,k)Jr(Z Ok+2 )) jez,
k=—00 k=—00 k=j+1 k=j+1 ./
_ J _ Jj—1
R;:=(<Z okt >+(Z F0k+Z ))' jez.
k=—00 k=—00 k=j+1 /
(3.14)

Then Iéjﬁ are well-defined analytic functions on petals \7ji, Jj €.
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FIGURE 8. Illustration of formula (3.14) for Iég on \70+. The figure illustrates in which domains ﬁ(f/ 0,j the petal

\70+ is fully contained. To get Ra' , we sum the corresponding functions F()i/oo’j from (3.12).

Moreover, the functions I%li realize the cocycle (G(]), Géo) jez:

L@ =Ry @) =G@), ¢ eV,

. . . . (3.15)
Ry (6) = R (©) = G(6), ¢ €V, jel

As shown in Figure 8, to get functions Iéi defined by (3.14) on Vj.i, on corresponding
petal (strip) Vj.i we sum all functions F0 o F ok k € Z, from (3.12) which are well defined
on VE,

The proof of Lemma 3.4 is given in the Appendix. We prove that, for every j € Z, the
series in (3.14) converges uniformly on compacts in Vj.i, thus defining analytic functions

Iz’f on Vj.i by the Weierstrass theorem.
We prove in Lemma 3.5 the asymptotics for Iéf constructed on Vji in Lemma 3.4.

We have that I?f({) =o(1l), as Re(¢) — oo in Vj.i, moreover uniformly in j € 7. Also,
for standard linear domains we show additionally the complete log-Gevrey asymptotic
expansion of RJ".—L(;) in C[[¢~"]], as Re(¢) — oo on V/.i.

LEMMA 3.5. (log-Gevrey asymptotic expansion of IQ;.—L(;“), Jj €Z) Let Iéjc, Jj€Z, be

constructed as in Lemma 3.4 on petals V ji on a standard quadratic or a standard linear
domain.

(1) On both domains (standard linear and standard quadrallc) there exist subdomains
(linear, quadratic) Rcr C Rc such that, for substrips U - V N Rcr centered at

center lines of Vj and of width 0 < 6 < 27 independent of j € 7, there exists a
uniform in j € Z constant Cy > 0 such that

IRT(OI < ColgI™', ¢ €U

https://doi.org/10.1017/etds.2020.139 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.139

Realization of analytic moduli for parabolic Dulac germs 215

2 I Iéf are constructed on a standard linear domain, then there exists a formal series
Re CI[¢ "1, such that any Rji &), j € Z, admits R as its log-Gevrey asymptotic

expansion of order m, as Re({) — 400 in \7]7:. Here, m > 0 is given in (3.4).

The proof is given in the Appendix. Also, in Remark A.3 in the Appendix we show a
technical obstacle for proving statement (2) on a standard quadratic domain.

Proof of Propositions 3.1 and 3.2. Let R’f be as constructed in Lemma 3.4 on petals Vj.i in
the ¢ -variable, j € Z, on either a standard quadratic or a standard linear domain. Returning
to the variable z = ™%, we put

RI@):=R; (), zeVi jel
By Lemma 3.4, Rjt (z) are analytic on VjﬂE and we have

R0 - R =G)k), zeV],

J iy — iy — (3 i (3.16)
R1(z) = RL(2) = G(2), 7€V, jEL

Moreover, putting £ := ¢~!, from Lemma 3.5 we get that the functions Iéf @) = Rf ()
constructed on a standard linear domain on £-cusps E(Vji), J € Z, admit a log-Gevrey
power asymptotic expansion of order m. By exponentially small differences (3.16) on
intersections of petals, we get that all Iéj.t (¢) admit a common k\(ﬁ) € C[[€]] as their
log-Gevrey asymptotic expansion of order m. The uniform bound (3.6) for both domains
(linear and quadratic) follows by statement (1) of Lemma 3.5. Thus Propositions 3.1
and 3.2 are proven. O

Remark 3.6. Observe that the functions R (z) constructed in the proof of Proposition 3.2
by Cauchy-Heine 1ntegra1s on petals along a standard linear domain are not petalwise
restrictions of RT j (z) constructed along standard quadratic domain in the proof of
Proposition 3.1.

Indeed, the lines of integration Cg’oo are changed (asymptotically shorter for standard
linear domains). Therefore, we cannot claim that Rji defined on petals of a standard linear
domain can be analytically extended to petals of a standard quadratic domain. Therefore,
we do not claim in Proposition 3.1 that there exist R () defined on £-images of petals
of a larger standard quadratic domain which admit a log Gevrey asymptotic expansion, as
¢ — 0.

4. Proof of Theorem A
The proof is very involved, so we first give an outline. We then state necessary lemmas,
and prove Theorem A at the end of the section.

4.1. Outline of the proof of Theorem A.  Let (hé, héo; 0})jez be a symmetric sequence
(1.10) of analytic germs of diffeomorphisms from Diff(C, 0), satisfying the uniform bound
(2.4). Let p € R and m € Z. Here we construct a parabolic germ f, defined on a standard
quadratic domain, of the prenormalized form

f@) =z —220" + p2 02" Lo B3P, 2 e Re,
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whose sectorial Fatou coordinates realize the given sequence as its horn maps. Let VJr
(respectively, V ), j € Z, be petals covering a standard quadratic domain of opening 271
centered at 2 jr (respectively, (2j — 1)), and let Vo = Vj+—1 N Vj R VOO = Vj+ N Vj be
their intersecting petals of opening 7, as shown in Figure 4. We construct f by constructing
its sectorial Fatou coordinates \I-fjE on Vji, Jj € Z, in an iterative construction described
below, which satisfy

V() = @) = gge YD), ze vy,

4.1
2ni\I/;r(z))’ @)

\I/;(z) — ‘l’j-r(z) = ggo(e z € Vojo, j €Z.

Here, gé s ggo, Jj € Z, are analytic germs at ¢ ~ 0, related to given ! s héo, j € Z, by:
70y = 12O, hl) = 127820 1~ 0, (4.2)

Then, due to (4.1) and (4.2), f realizes the sequence of pairs of diffeomorphisms
(h(/), hl) jez as its horn maps. Indeed, (4.1) is an equivalent formulation of this statement;
see §2.1 for more details.

The idea of successive approximations is taken from [11] for realizing the moduli of
analytic classification for saddle-node vector fields. We will use the cocycle realization
Proposition 3.1 and, by Lemma 4.1(1), iteratively realize the cocycles ("Gj nGoo)/EZ’
n € Ny, where

"G(2) = g VD) 2 e vy,
"Glo(z) = glo (¥ Vi), eV,

Here, (\I/}? 1 )neN, on Vi are successive approximations of the final Fatou coordinate \Il]j.t,
€ 7, starting wi e Fatou coordinate of the (2, m, p)-formal normal form V" | := Wyt
j € Z, starting with the Fat dinate of the (2, m, p)-formal Iform W) = ¥

on Vi. More precisely, we construct them as follows:
W (2) o= Wne(2) + R1 (), ze Vi neN,
where
RY,(2):=0, zeVi
R, () = R'_(2) = g (¢ VIle®) .= n-1Gl (), ze V{, 4.3)
R! ()~ R" ,(2) = gl (@A @) =16 (2), ze Vi neN.
At each step n, the functions R" +(2) = o(1), z — 0, are obtained using Proposition 3.1 for

the realization of the previous cocycle (G lG] =G/ 20) jez- The cocycle itself is obtained

by applying go, gC>o to the exponentials of the Fatou coordinates from the previous step.
In this manner, we make corrections of the Fatou coordinate at each step, starting from the
natural initial choice Wy, the Fatou coordinate of the formal normal form.

We then prove, in Lemma 4.1(2), the uniform convergence of the Fatou coordinates
\D;?’i (i.e. of R?,i)’ as n — 0o, on compact subsectors of petals Vf[. Thus, as limits,
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we get analytic Fatou coordinates, which we denote by \IJ?E = Wpr + R/j.t, on petals V/.i.
By taking the pointwise limit, as n — 00, to (4.3), we get that ‘~Il]j.E satisfy (4.1) and thus
realize the given sequence of pairs of horn maps (hé, h{;o) jez-

Finally, we recover the germ f from its sectorial Fatou coordinates, using the Abel
equation. On each petal, f(z) := (‘-Iljj.t)_l(l + \Iljj.t(z)), Z € Vji. We show that f glues
to an analytic function on a standard quadratic domain. It is of the prenormalized
form (2.7) due to the form of \Iljj.E = Wpr + Rf, Rj: =o0(1), as z — 0 on Vji, and
Proposition A.l in the Appendix. The uniform bound (2.3) is proven by Lemma 4.1(3).
To prove Lemma 4.1(3), we prove that the uniform bound (3.6) from Proposition 3.1 holds
with the same constant for R;” . in each iterative step n € N.

We prove in Lemma 4.5 that symmetry of horn maps (1.10) implies that R is invariant

by f.

4.2. The main lemmas.

LEMMA 4.1. Let (hj, héo; 0j)jez, where

oj > Klefkecm, |j| = oo, for some C, K, K| > 0,
be a symmetric sequence (1.10) of pairs of analytic germs from Diff(C, 0), satisfying the
uniform bound (2.4). Let the sequence of pairs of analytic germs of diffeomorphisms
(g(]), géo; 0;j)jez be defined from (hl, hls; 0j)jez by (4.2). Let p € R and m € Z, and
let Wyt be the Fatou coordinate of the (2, p, m)-model fo from (2.1). Let {Vji}jez be a
collection of petals of opening 27, centered at jm, along a standard quadratic domain.

(1)  The following sequence of analytic maps ‘-IJ;’ 1, 1 € Ny, on petals Vji, is well defined
by the following iterative procedure:

W (2) = Wnr(2) + R 1 (2), z €V, neN,
where
R?’i(z) =0, z € Vji,
R Q)= R"_(2) = g/ (e Vinia @y —nm1gi vi (4.4)
-1+ Z J— z) = go (e ; ) = O(Z)’ Z € . R
. cn—1 . .
R} () = R} () = gl ) = "1GL (), zeVh. neN.
Here, for everyn € N, ("1 Gé (z),) ! Géo (2)) jez is an infinite cocycle satisfying all
assumptions of Proposition 3.1, and R;-L, 1, n €N, are analytic germs on petals Vji,
Jj € 7Z, that realize this cocycle, given by Proposition 3.1.
(2) For every j € Z, the sequence (\Il;” L )neN converges uniformly on compact subsec-

tors of Vji, thus defining analytic functions \IJJJF on petals VjjE at the limit. Moreover,
\I/;—L, J € Z, satisfy

. _ PR .
V(@) = V) = gje YD), ze vy, ws)
. o1+ . *
Vi) - V@) = ghe(™ D), zeVd, jel
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(3)  For the petalwise limits R. , J € Z, the following uniform bound holds. For every
collection of subsectors S; C V centered at jw and of opening strictly less than
27 independent of j € Z, there exlsts a uniform constant C > 0 (independent of j),
such that

IRF (I <Cltl, z€S;, jel (4.6)

For simplicity, in the proof of Lemma 4.1, we pass to the logarithmic chart. We denote
by Vji the petals Vji in the logarithmic chart. Let

WIL(0) =W (e, RIL(Q) =R} (), ;eﬁﬁjez,neN. (4.7)

In the proof of statement (2) in Lemma 4.1, we use the following auxiliary lemma,
whose proof is in §A.4. Due to a technical detail in the Cauchy—Heine construction (the
presence of a logarithmic singularity at the border of the standard quadratic domain),
we are unable to prove uniform convergence of (R +)n On V , as n — oo. Instead, we
prove uniform convergence of their exponentials on petals, Wthh then implies uniform
convergence on compact subsets for the initial sequence.

LEMMA 4.2. Let the assumptions of Lemma 4.1 hold. Let Ié;’i n € N, be as defined in
statement (1) of Lemma 4.1 (in the logarithmic chart; see (4.7)). The sequence

27i R"
(e I )neN

is a Cauchy sequence in the sup-norm on petal Vj.i, for every j € Z.

Proof of Lemma 4.1. Proof of statement (1). We check that, in every step of the
construction, all assumptions of Proposition 3.1 are satisfied. The basis of the induction
is obvious by putting R(}’ L =0, \i'?’ 4= Wy on V.. Suppose that ‘i’f . are constructed
and analytic for 0 < k < n. By Remark A.5 and the uniform bound (2.5) on gé , we get that
there exist constants ¢ > 0 and C; > 0 independent of j € Z, such that:

- . _ . Fn—1 - _ sqn—1 - =S
"GO = 1gh (7T )| < elem VIR < ¢TI )
= C M) e Y (4.8)

Now, for every collection of central substrips U i C VOj of width independent of j € Z and
for every § > 0, there exist constants C, D > (0 independent of j € Z such that

I (Ppe(0))] = —Im(Py(2)) > ClWpe()] = DR ¢ c ;. (4.9)

Independence of j € Z is important for the bound (4.9) above, since, for every collection of
substrips U i C 170] of width 0 < 6 < 2 independent of j, there exists a constant ¢y > 0
such that —Im(e %) > cp - [Re(e )|, ¢ € U;.

The last inequality is obtained usmg the exact form of Wyr(z) given in (A.1) and the fact
that, for a standard quadratic domain RC, there exists d > 0 such that Im(¢) < d - Re2(¢),
¢ eRe. '

Therefore, combining (4.8) and (4.9), for a collection of substrips U ;i C \70] of a given
width 0 < 6 < 27 independent of j € Z, there exist constants C, M > 0 independent of
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J € Z and of the step n € N, such that

1G] < ce M ey, jeZ neN. (4.10)

A similar analysis is done for ”’16{;0(;“) on 17(;’;, J € Z. Therefore, assumption (3.4) of

Proposition 3.1 is satisfied in every step with m = 1 — §, for every § > 0. The existence

and analyticity of 15;’ L on V].i then follow directly by Proposition 3.1. Also, (4.4) follows
directly from (3.5) in Proposition 3.1.

To be precise, for later use, by Lemma 3.4 in the proof of Proposition 3.1, I?;.', 4 on petals

\7]#, Jj € Z,n € N, are given as the sum of the Cauchy—Heine integrals as follows:

(£ B (£ £ )

bl

-
=—00 k= j+1 f
J Jj—1
B . ot ot .
R (SR SRV R (SRR oo ) [ IEE
k=—00 k=—00 k=j+1 /
(4.11)
where
+00 .
> MEg @)
k=j+1

1 / g(j)'+1( —2ﬂl(\llnf(w)+R" 1(w))) =27 (U (w)+ R 1Jr(w)))

go(e
w—¢ 2711 Z / - dw,

v k= +2
C(/)+1 =J

2mi

¢ eVl Im@) < 4j+ 1)5 — ¢ (region (1)),

| gt (e —271i (U (w)+ R ‘(w))) . sl
/ 0 dw—l—g’“( —2mi(Wnr(O)+RG ({)))

2mi w—¢
C(/)‘H
! -io gg (efzm'(\i/nf(w)+1§,f:1‘.+(w)))
+o— / dw,
_ 2mi Pt w—¢

Ck

¢ €V () = @)+ D3 + e (region ),

dw

1 / g(J)‘+1(e—zm<ﬁfnf<w>+1?;‘;‘<w>)) s L [ géﬂ(-zm<wnf(w>+1e"+<w>>)
w—¢ 2mi w—¢
Co Sitas
—2mi (U (w)+RIZ |, (w))
e B
Z /go( )dw,
i

w—
k= j+2 ¢

2mi

¢ € f/;r, 4+ 1)% —e<Im() < @j+ 1)% + & (region (3)).
(4.12)

The other three sums in Ié'f and the sums in Ié” in (4.11) can be written analogously.

Here, ¢ > 0 is sufficiently small Recall that C]Jrl {¢ e RC Im(¢) = @4j+ )z /2}
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FIGURE 9. The three regions of \7/."' with respect to the critical line Cé‘“ of integration, and the critical points

sé“, sd € \7,.+ generating logarithmic singularities in the proof of Lemma A 4.

is the line Cé 1 shifted upwards by
j+1
0,4-2¢>

is the central line of the petal f/(‘)i 1. The line Céjrlzg

+2¢ in Voj H, and Sé 112 . 1 the boundary arc of \70j +1 between the lines Cé“ and C
independent of n € N. Note that

g(])'+1(efzni(xilnf(w)+1é;?;‘ ), »
SH’] w—Z<

0,4-2¢

is, as in the proof of Lemma 3.3, an analytic function at { = oo. It depends on j € Z and
onn € N.

Regions (1)—(3) in (4.12) are regions where Cauchy-Heine formulas differ due to the
critical line of integration Cé i lying inside the petal Vj+. To simplify calculations, we
assume that there is only one critical line of integration inside Vj+, while in reality there

is another, Céo, the central line of f/go. No new phenomena are generated if we add another
line, just more regions and longer expressions in (4.12), so we simplify without real loss
of generality. The regions are shown in Figure 9. More details are given in the following
remark.

Remark 4.3. (Regions (1)—(3) introduced in (4.12)) The functions Ié;’, 4+» n €N, in our
iterative process are defined as infinite sums of Cauchy—Heine integrals on corresponding
petals Vji, similarly to (3.12) and (3.14). In every step we use another exponentially small

cocycle defined from functions obtained in the previous step. Note that functions Iéf in

(3.14) cannot be expressed by the same formula throughout the whole petal Vj.i, since
integrals are not well defined along two critical lines of integration that fall inside each
petal. Recall that, standardly, in the Cauchy—Heine construction, to extend the function
analytically beyond the line of integration, we change the paths of integration, as in the
proof of Lemma 3.3.

Each petal \7]7: in ¢-chart is divided into horizontal strip-like regions (sectors in the
z-variable). In each region, we have an explicit, but different integral formula.

We take ¢ > 0 small. Take petal Vj+. Region (3) is the open e-neighborhood of two

critical lines CéH and CZ,. These two lines are among the lines of integration in (3.14) for

https://doi.org/10.1017/etds.2020.139 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.139

Realization of analytic moduli for parabolic Dulac germs 221

V/.Jr, and analogously later in the iterative construction given by (4.11). At the same time,
they lie inside ‘7+ The problem in this region is that, although we may exchange the line

of integration with a line outside the region and a part of the boundary (here, ctl and

0, +2£
Sé :25) we cannot bound the variable ¢ € Vj+ away from the part of the boundary, and

logarithmic singularities appear in iterations at sé *1and sgo; see Figure 9. This prevents an
easy proof of convergence in our iterative process. The other strips of \7].+ constitute regions
(1) and (2), which are simpler to analyze, as there are no logarithmic singularities. In region
(3), the bounds that we need for convergence of iterates in the proof of Lemma A.4 will be
significantly more complicated.

Proof of statement (2). At each step of the iterative Cauchy-Heine construction, two
logarithmic singularities appear at points sé“ and s, at the boundary of each petal VJ.Jr

in region (3), j € Z. To be precise, they appear at endpoints of Cé“ and CC{O at the
boundary of the domain. Therefore, we will not be able to prove that the sequence of
iterates (R" + (; ))n is uniformly Cauchy on the whole petal v/ I . More details on the nature
of the smgularltles can be found in §A.4. However, by Lemma 4.2, the sequence

(2RO (4.13)

is uniformly Cauchy on petals v/ , J € Z. By taking the exponential, we have eliminated
the logarithmic singularities. It follows from (4.13) that (R”+(§))n is uniformly Cauchy

on all compact subsets of the petal V! , away from singular points s/ 1 and slo with

logarithmic singularities, which lie at the boundary of the petal VJ+. Indeed, note that

™ Ri+© does not vanish in any point ¢ € V.. By the mean value theorem, writing

RY | = (1/2i) log(e*™ Ki+), we have

IR () — RIN(©)]

1 s pn pn+1 -~
< =— sup O PR O e vi.
2ﬂt€[0 1 |t627'[lR/+(§) +(1 ) 27‘[le‘+ (§)|
By Lemma A.4 (1), we get that ¢ +> sup, o ) 1/(|tesz?+(C) + (1 —1)e iRy O is

unlformly bounded on every compact in the petal V+ away from singular points sj 1 and
sl We conclude that the sequence (R;?’ In 18 uniformly Cauchy on every compact in tﬂhe
petal Vj+. Therefore, by the Weierstrass theorem, it converges to an analytic function R}"
on the petal \ﬂ/j'*', J € Z. The same can be concluded for Iéj_ on petals \7j_, JjEZ.

Let us now denote the pointwise limits by Ié]i
RE@) = lim R} (), UF@) = Uu(@) + Rj2(), ¢ e VL
That is, returning from the ¢-variable to the original variable z, we put

RE(0) = RE(™Y, W@ = Un()+RIWO), zeVl je
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Here, Wp(2) (i.e. \ilnf(g)) are the Fatou coordinates of the (2, m, p)-model, analytic on the
whole of R¢, and given explicitly in (A.1). All functions defined above are analytic on
their respective petals. Now, passing to the limit in (4.4), we see that R;.—L (z) and thus also
\I/]jE (z) (since Wye(z) is analytic on the standard quadratic domain) realize the requested
sequence of pairs (gé ) ggo) jez at intersections of petals, as in (4.5).

Proof of statement (3). We use the uniform estimate (4.10) for ”(N}‘(’)'goo(g) by n e N,
deduced in the proof of statement (1), and repeat the proof of (3.6) in Proposition 3.1 (see
the proof of Lemma 3.5 in the Appendix), but with this uniform estimate. We get that there
exists a uniform (in j) constant C > 0 such that, for substrips S ;i C Vji centered at the line
{Im(¢) = jm} and of the same opening for all j € Z, the following estimate holds:

IR ) <ClEI™", ¢e8) jeZ neN (4.14)

Passing to the limit as n — oo in (4.14), and returning to the original variable z = =%,
statement (3) is proven. m|

4.3. The symmetry of the horn maps and R, -invariance. We have proven in [7,
Proposition 9.2] that, for a parabolic generalized Dulac germ f, the fact that f(Ry N
Rc) C Ry NRe implies the symmetry (1.10) of its analytic moduli. Here, in an abuse
of notation, Ry := {z € R : Arg(z) = 0}. In general, the converse of [7, Proposition 9.2]
does not hold. That is, the symmetry of horn maps of f does not imply R -invariance of f
in general, as Example | below shows. Instead, Lemma 4.4 provides a characterization of
analytic germs on standard quadratic domains having symmetric sequences of horn maps.

Example 1. Take f(z) =z — z> on R¢. Obviously, f is a simple parabolic generalized
Dulac germ and f(R4+) € Ry. By [7, Proposition 9.2], since f is R -invariant, its moduli
are symmetric. Now take ¢(z) = z + iz>, and define an analytic germ f] ;== ¢ 'o fog
on R¢. Since ﬁ(z) =z—-72+4 o(zz), /1 admits the same petals as f. By [7, Theorem B],
since ¢(z) is analytic on Rc, f1 has the same horn maps as f. Therefore, the horn maps
of fi are symmetric, but R} is not f1-invariant.

We can easily generate more complicated examples by taking an R -invariant parabolic
generalized Dulac germ and by conjugating it by ¢(z) = z + 0(z) which is analytic on a
standard quadratic domain, and whose asymptotic expansion ¢ belongs to f((C), but not to
E(R). Thus the invariance of R is not preserved in general.

Indeed, analytic modulus is an invariant of analytically conjugated parabolic germs.
On the other hand, having the real axis invariant is obviously not an invariant property
under complex changes of coordinates. If one of the germs has the real axis invariant,
all analytically conjugated germs also have an invariant real analytic curve through the
singularity, but it is not in general the real axis.

LEMMA 4.4. (Symmetry of the horn maps) Let f be an analytic germ on a standard
quadratic domain R¢ with a sequence of horn maps (h(]), hlo: 0j)jez, withoj as in (1.8)
(note that, by saying that f has horn maps (hé, hgo; 0;)jez, we have implicitly assumed
the dynamics and the existence of invariant petals VjjE C Rc, j € Z). The sequence of
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horn maps is symmetric, that is,

(hy"™H=1) =kl (), 1€ (C,0), jez, (4.15)
if and only if there exists an analytic germ ¢(z) = 7 4 0(z) on R¢ such that
f@=¢"ofopk). zeRec. (4.16)

Note that (4.16) is trivially satisfied for germs f such that f(R;) € R, taking ¢ = id,
by the Schwarz reflection principle.

Proof. Let f be analytic on a standard quadratic domain R¢. Let f1(z) := m,. z € Rec.
It is an analytic function on R¢ by the Cauchy—Riemann conditions. Let (k(]), kil o i)jez
be its sequence of horn maps (o; remains the same, due to symmetry of standard quadratic
domains). Then, by the proof of [7, Proposition 9.2], we have that

(k" ™H=10)y = nle @,  Wo)1@) =hy TN D, 1€ (C0), jeZ.  (417)

By (4.17) and symmetry (4.15) of the horn maps of f, we conclude that f; and f have
the same sequence of horn maps. By [7, Theorem B], there exists an analytic function
©(2) = z 4+ 0(z) on R such that

f@=¢""ofop@, z€Re
The other direction is proven similarly. O

However, in Lemma 4.5 we show that, if we take a symmetric sequence of pairs of
analytic germs from Diff(C, 0), by the Cauchy—Heine construction from Lemma 4.1 we
realize the sequence by a representative that is indeed Ry -invariant, as its horn maps. The
reason lies in the symmetry of the Cauchy—Heine construction.

LEMMA 4.5. Let (hj, héo; 0j)jez, with o as in (1.8), be a symmetric sequence of pairs
of analytic germs from Diff(C, 0), such that
(hg"T™H=1t) = hl (), 1€ (C,0), je (4.18)

Let lIin(z) = Wpr + Iéji ), Iz’j-[(ﬁ) = Rji (), z € Vji, be as constructed by the iterative
Cauchy—Heine construction in Lemma 4.1, realizing the sequence of pairs (hé, héo; 0j)jez

on intersections of petals v, Vojo, Jj € Z, either on a standard linear or a standard
quadratic domain. Then:

(a) ‘-I—'ar on V0+ is R -invariant. That is,
WJ(I&. NRc) CRLNRc (respectively, Rap).

(b) in the case of construction on a standard linear domain, the asymptotic expansion
R() of R]j.E(Z), as £ — 0 on L-cusps E(Vji), belongs to R[[£]]. That is, the
coefficients of the expansion are real.

The proof is given in the Appendix.
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4.4. Proof of Theorem A. Let (hé, héo; o) jez be a sequence of pairs of analytic germs
of diffeomorphisms, as in the statement of Theorem A. Let VjjE be the petals of opening 27,
centered at jm, j € Z, along a standard quadratic domain, as in Figure 4. By Lemma 4.1,
we construct analytic functions \IJJjE on V/ﬂE that satisfy (4.5). This is equivalent to the

relation (1.9) for the realization of horn maps. We now define f such that \Iin are its
petalwise Fatou coordinates. We define f by petals, using Abel equation, as

fE@=wH A+ ViR), eV jel (4.19)

Now we prove that the f ;—L, defined and analytic on petals Vji, glue to an analytic function
f on the whole standard quadratic domain R¢. That is, we prove that

fF@=f@. zevi=vinv,

+ e j_ y+ - e (4.20)
fjfl(z)—fj (), zeV _ijlmvj’Je .

Indeed, for Fatou coordinates \Il]jE of two consecutive petals by (4.5) of Lemma 4.1 we have
that

wi @D ) = w =g ), we T (%),
T o (W)™ (w) = w+ gl (™), we W (VL), je
This implies
oo (W w4 = o (T w41, we w1V,
Voo )T w4 =W o (W) w)+1, we W (VL) jeZ

Composing the first equation by \I/j from the right and by (\IJj )~! from the left, and the
second by \Ilj from the right and (\Ilj )~ ! from the left, by (4.19) we get (4.20).

The prenormalized form (2. 7) of f follows from Proposition A.1 and the prenormalized
form of the Fatou coordinates ‘-IJ = Wyr + R constructed in Lemma 4.1. Here, Ri(z)
o(l),asz — Oon V , and Wy is the Fatou coordlnate of (2, m, p)-formal model.

The uniform bound | f(z) — 2+ 220" — p202" 1 < C|12302" 2|, € >0, z€Re,
follows by Lemma 4.1(3). Indeed, the uniform bound (4.6) gives that there exists d > 0,
independent of j € Z, such that |\Ili(z) Wni(2)| < dle], z€S; C VjE where SjE are
subsectors of VjE of the same opening strictly larger than & for all j € Z. The same
reasoning as in the proof of Proposition A.l now gives the bound |f(z) — fo(2)| <
e|z3€2m+2|, 7 € R¢, e > 0. Then, using the uniform bound for the model derived from
fo= \Iln_fl(l + Wy¢) on R, where Wy is given explicitly by (A.1), | fo(z) — z + 224" —
pZ2 07 < 0112302 2)) 7 € Re, ¢1 > 0, we get the required bound for f.

Finally, on VO+ the germ f is given by

Flyr = @H A+, 4.21)

and glues analytically along other petals. By Lemma 4.5, \IJJr is Ry -invariant. It is also
injective on Ry N VF, so the inverse (\I!ar )y~ lis R -invariant on \IJ(J{ (V0+). We conclude
by (4.21) that f is R4-invariant.
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5. Proof of Theorem B
The analogue of Lemma 4.1 holds (with the same proof) also on standard linear domains.
Given a sequence of pairs of analytic germs of diffeomorphisms (ho, hoo, oj) ]eZ7 with
radii of convergence satisfying bounds (1.11), we construct analytic functions w i (z) on
petals VjjE centered respectively at directions 2j if the exponent is 4, corresponding to
attracting petals, or at (2j — 1) if the exponent is —, corresponding to repelling petals,
but along a standard linear domain, that realize this sequence of diffeomorphisms on
intersections of petals VO]’ 00> @8 in (4.5). We construct them as the uniform limits R?E
on compact subsets of VJ.lL of iterates R;?’ 1(2), as n — oo, defined inductively as in
Lemma 4.1. In each inductive step, we use Proposition 3.2 for realization of cocycles
on standard linear domains, instead of Proposition 3.1 for standard quadratic domains.
Proposition 3.2 additionally gives us information on asymptotic expansion of R;.” neN
Let Ié;’i ) = R;”i(z), Z € Vji, where ¢ := —(1/log z). Then, by Proposition 3.2, each

R" jE(Z) Jj € Z, admits log-Gevrey expansion in C[[¢]] of every order 1 — 4§, § > 0, as
¢ — 0in z(vi)

We now prove that there exists R(E) € C[[£]] such that the limits

SEo 1 .
RE@ = lim RIL(0), eV, jel

admit R (€) as their log-Gevrey asymptotic expansion of order 1 — §, for every é > 0, as
£ — Oon E(Vji). Moreover, we prove that ﬁ(ﬁ) e R[[£]].

We work again in the logarithmic chart { = —log z. As in the proof of Lemma 3.5 in
the Appendix, on standard /inear domains it follows that

+oo N
> "For©) =) aje
k=j+1 j=0
+00 k(= 2mi (Une) R, (W) N
_y 1 gple =L Dw
sl > f : e dw|,
k=jt1 1Y€

¢ € \7j+ in region (1), N € N.

Here we again consider, instead of the whole of I??, +(¢) given by (4.11), only one part of
the sum Z,:“;x; 1 n ~0fk(§), ¢ € ‘7].+; see (4.12). For the other three parts of the sum the
conclusions follow similarly. To get the bound for R;f’ + (&), we sum the bounds afterwards.
For¢ € \7+ in regions (2) and (3), the conclusion follows similarly Finally, the same can
be done for R” on V .Let § > 0. Due to uniform bounds of g from (2.5) and of R
(see Remark A 5) Wlth respect to n € N and k € Z, we conclude that there exist unlform
constants ¢ > 0 and d > 0 such that
gk (¢~ 2T TRT L)) g =2+ BT @) g =2mi B/ g ¢k,
5.1)
foreveryn € Nand k € Z.
Now, following the proof of Lemma 3.5 in the Appendix and using (5.1), we obtain
Gevrey bounds which are uniform wzth respect to n € N. That is, on every substrip
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W C \7/.+, for every N € N, there exists a constant CX,V > 0 such that, for every n € N,
we have that

N
’R;mo - Al

i=0

< CX,I’(l —§) " Ne=(N/logN) logN N . |§|7N’ ¢ e W e Vf-

) | (5.2)
Here, CY is uniform in the iterate n € N. Also, A]" € C is given by

ad I pn— .

AT = D / g/(;(e—zni(wnfw)+Rk71',+(w)))wz dw.

~ Jck
k:]J,»] 0

As discussed before in the proof of Lemma 3.5, the above sum converges for every
n €N, j € Z,so the coefficients A{ " € C are well defined. To prove that, for every j € Z,

i € Ny, (A]"), converges asn — oo, we use the dominated convergence theorem. Indeed,
by a change of variable of integration, the above integrals fck can be considered as line
. . 0

integrals. Now (5.1) and the convergence of the integrals

/ |e_2ni(®nf(w)/2)|wi dw, keZ,
C

k
0

due to the exponential flatness of e =27 (¥nf(®)/2) op Cg, k € Z, ensure all the assumptions
of the dominated convergence theorem. We put

Al.j :=nliﬁngo A{’" eC, jeZ, ieN.
Now passing to the limit lim,_, ., in (5.2), we get that 1?7({) = limy,_ 00 R?,Jr(g“),
¢ e f/;r, admits a log-Gevrey asymptotic expansion of order 1 —48 in C[[¢~']], as
Re(¢) — oo.

In addition, the asymptotic expansions of IéjE (¢) are the same for every j € Z, because
of exponentially small differences on intersections of petals (4.5). Recall that \ifj.t = Wpp +
Iiji on Vli, where Wy is globally analytic on a standard quadratic domain. We denote this
expansion by ﬁ(;‘l) € C[[¢~"]]. That is, putting £ := ¢~ = —(1/log z), all Iéjt(z) =
Iéf(g“ ) admit R (€), as their log-Gevrey asymptotic expansion of order 1 — §, as £ — 0 on
E(Vji), j e

Finally, we prove that f, expressed as in (4.19) from lffji, and which, by the proof of

Theorem A, glues to an analytic function on a standard linear domain ’féa,b, is a parabolic
generalized Dulac germ. The uniform bound (2.3) and the prenormalized form of f follow
from Lemma 4.1(3) and by Proposition A.1, exactly as in the proof of Theorem A. Also,
the invariance of R follows by Lemma 4.5, as in the proof of Theorem A.

We prove only the existence of the generalized Dulac expansion fof f. Tt follows by
(4.19) and by the log-Gevrey asymptotic expansions of IéjE () on E(Vji), J € Z, proven
above. We return to the original variable z. On each petal V/i, we expand (4.19) as a
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Taylor series:

fi(Z)_Z'i_;-i_i( 1 >/. 1
P @ 2\ @) e

1

@Ho i

1
+ y(previous term)’ -
In the following, we put Iéf(@) = R;E(z), zZ € Vji. Let ﬁ(ﬁ) denote its log-Gevrey
asymptotic expansion of order 1 — §, § > 0, in C[[£]], the same for all j € Z. We have
that

WY (@) =~ 14 (ﬁ +p>f - ﬁ(1@-[)/(@ peER, meZ zeV;i

J 22 g 2 z oz 7 ' ' ' J
Here, the germs (Ié;.—L)/ (¢) are analytic on £-cusps E(Vji), j € Z.By [7, PropositionA4.7],
they expand log-Gevrey of order 1 — §, for every § > 0, in their formal counterpart R’ (£),
as £ — 0 on £-cusp Z(Vji). By [7, Proposition 4.7], R (¢) is obtained by termwise (formal)
derivation of R (£). The same conclusion can be drawn for all finite derivatives (Iéji)(k) ),
k € N, by [7, Proposition 4.7]. Furthermore, we define analytic functions Hf(@) on
£-cusps Z(Vji), Jj € Z, via the equation

1 _ _Z2£m B _ZZZm
(\I’ji)/(Z) Cl—zem — (m/2 + p)zem+! +ng+2(1‘é;|:)/(£) ] _{_ZHji(Z)‘

By [7, Propositions 4.5-4.7] about closedness of log-Gevrey classes to algebraic operations
and to differentiation, they expand log-Gevrey of order 1 — §, for every 6 > 0, in the
common formal counterpart H(£), as £ — 0 on respective £-cusps E(Vji), Jj € Z. Note
that

e 2m N k k(= cpyk
— =" —D*z"(H: (£))". 54
D Y (=D R HTF ) (5.4)
J k=0
Putting (5.4) in (5.3), and regrouping the terms with the same powers of z, we get

9]
f@Q=z2=20"+p2" T £ K050, zeVE jeZ  (55)
k=3

Here, ijk (), k € N, k > 3, are realized as finite sums of finite products of £ and HjjE )
and their finite derivatives (of order at most k — 2), the same for all petals j € Z. Therefore,
by [7, Propositions 4.5-4.7] about closedness of log-Gevrey classes to algebraic operations
and differentiation, they expand log-Gevrey of order 1 — §, for every § > 0, in their formal
counterpart, denoted Qk (€). Note that ¢-cusps Z(Vji) are £-images of sectors of opening
2m > .

Finally, by Lemma 4.5(b), R (€) € R[[£]]. Therefore, all Qk (€), as algebraic combina-
tions of R\ (¢), its derivatives and powers of £ with real coefficients, belong to R[[£]]. This
proves the generalized Dulac expansion of f from Definition 1.4. O
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In Remark A.3 we explain why the arguments giving the asymptotic expansion in
Theorem B do not work for quadratic domains in Theorem A.

Remark 5.1. Note that, although f is analytic on the whole standard linear domain R, p,
the coefficient functions Q]i’k(ﬁ), keN, k>3, in its expansion (5.5) are analytic in
general only on £-cusps K(Vji) and do not glue (in j) to an analytic function on the whole
of £(R,p). Indeed, this is obviously not true already for Q% @ :=1- Hji (0), by (5.4).
On overlapping cusps E(Vji), the £-images of petals Vji, they have exponentially small
differences.

Remark 5.2. Let the germs f (respectively, g) be the germs obtained by Cauchy—Heine
construction on a linear (respectively, quadratic domain realizing the same sequence of
moduli. It is important to note that, in general, f is not the restriction of the germ g, since
we apply Cauchy—Heine integrals along different lines; see Remark 3.6.

Nevertheless, f and the restriction of g to a linear domain by construction have the same
moduli on the linear domain, and are thus analytically conjugated on the linear domain.
However, we are not sure if the analytic conjugacy between the two germs on the linear
domain can be analytically extended to a quadratic domain, or if there is some singularity
outside the smaller domain preventing the extension. If the former was the case, we would
have a representative of the analytic class of g on a quadratic domain whose restriction
to the linear domain is f; that is, a representative with the generalized Dulac asymptotic
expansion. This would positively resolve the question of extending the realization result
to parabolic Dulac germs on a standard quadratic domain, which for the moment remains
open.

6. Prospects

The realization Theorem B for uniformly bounded sequences of pairs of germs of analytic
diffeomorphisms fixing the origin as horn maps is proven in the larger class of parabolic
generalized Dulac germs on standard linear domains, which contains parabolic Dulac
germs. The question whether the construction can be extended to standard quadratic
domains remains open. Another important problem is to characterize uniformly bounded
sequences of pairs of analytic diffeomorphisms which can be realized as horn maps of
parabolic Dulac germs.
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A. Appendix
PROPOSITION A.1. Let f be a parabolic generalized Dulac germ on a standard quadratic
(or standard linear) domain. It is prenormalized, that is, of the form

f2) =z — 220"+ p3 0" 4 o(Z20™), meZ, peR,
if and only if its sectorial Fatou coordinate is of the form
U =Wy + RS on Vi,

where Rj = o(1),asz — 0, z € V ji, and Wy is the global Fatou coordinate of the formal
normal form fo given by

o dz m
Wine(z) 1= — —,—+logz— (5 +p ) log(—log z). (A.D)
0 274 2

Here, 7 is a freely chosen initial point in the standard quadratic (or linear) domain (the
choice of additive constant in WVyy).

Proof. One direction is proven by Taylor expansion of the Abel equation. For the other,
putting f = fo + h and wf = Wy + ch in f= (\Ifj.t)—l(l + \yji) and comparing initial
terms, we estimate /1(z) = O (z3¢2"12), as z — 0. The estimate is not necessarily uniform
for all petals. 0

A.l. Proof of Proposition 2.1.  In the proof of Proposition 2.1, we use Lemma A.2.

LEMMA A.2. (Uniform bound on the Fatou coordinate of a uniformly bounded germ)
Let f(z) =z — 2™ 4+ p202" ! L o302, meZ, peR, be a prenormalized
analytic germ on a standard quadratic or standard linear domain R.. Let [ satisfy
the uniform bound (2.3). Let WVni(2), z € R, be the Fatou coordinate of the formal
(2, m, p)-normal form fo defined in (A.1). Then, for every 0 <0 < 27, there exists a
constant Cy > 0, such that, for all subsectors W0/ C VjjE of opening 0 < 0 < 2m, j € Z,
we have

(@) — W (D)) < Col(lz), z€ Wi C V7 (A2)

Proof. The proof is divided into two steps. In step 1, we show a uniform bound on |Wy¢(z)]
on a standard quadratic (linear) domain. In step 2, using this bound, we prove (A.2).
Step 1. Using the explicit form (A.1) of Wy, we prove that there exists C > 0 such that

[War(2)| < Clz '™, z €Re. (A.3)

In the course of the proof, we will pass to a smaller standard quadratic subdomain whenever
needed, because we work with germs. Note that, for every («, m) < (B, k), there exist
a constant C and a sufficiently small standard quadratic domain R such that |z# 7 <
C|z%€™|, z € R.. Note also that this is not the case for the whole Riemann surface of the
logarithm of sufficiently small radius.
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By two partial integrations, we get, up to a constant term,
|Wap(z) — 27 €™ +mz~ et

Z
—m(m —1) / 272072 flog z — (% + ,o) log(—log z)
20

_ m
<|m||m—1]-1G@z) — Gzo)| + 1€~ + ‘5 +p‘ - [log(—log 2)|
<CUG@I+ 1L+ 16,1, z € Re. (A.4)

Here, zg € R, is fixed, and G(z) denotes the primitive function such that G’'(z) =
z7207"+2_ We now prove that there exists a constant d > 0 such that

IG@)| <dlz7' e, zeR.

We pass to the logarithmic chart £ = —log z and put H(¢) := G(e~%). Then we have
H'(¢) = —e{g“m_z. Let ¢y := —log zo be fixed. We may take, for example, {p € Ry.
Let y; be the rectangular path from ¢g to ¢, ¢ € ﬁc, consisting of horizontal segment
[£o0, ¢1] and vertical segment [{1, ¢]. Then

HQE) —HG) = | H@dn, ¢ eRe.
Ye

Evidently, the integral depends only on ¢y and ¢, and not on the integration path, since Re
is simply connected. We integrate partially r — 2 times, where r is such that m —r < 0,
and get

1G(2) = G(zo)| = [H(§) — H()

& ¢
= ‘/ e”nm_rdn—l—f e dn
) &

+ C‘m—Zegé.mi2 +-- 4+ Cm—r-i-leé’zmirJrl — H(%)

< |H(&)| + |Cm_2||€§ ||€-|m72 4+ 4+ |Cm—r+1||€{||§'|n17r+l
+ (Supn€[§o,§1]|en||fl|m_’)|§1 _ §0| + (SuPne[gl,gﬂen||'7|m_r)|§1 _ §|

(A.5)
We now bound the remainder, using m —r < 0:
SUP,creo 1€ 1™ IEL = Lol + (Sup, e, ole” 11" 11 = ¢
< (sup,ey, € PRe(m)™ ") - 1€ — &l
< CeRORe(0)" " I¢] < Clzl ™ ez~ —log 2|
< D|z| T  r e Ry, z € Re (A.6)

Here, R is a standard quadratic subdomain such that Re(¢) > Re(¢p), ¢ > 0, D > 0,
and ¢pu—2,...,Cnm—r+1 € C. Indeed, note that |¢] — ol < |¢ —¢ol and |¢] — ¢ <
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[¢ — ¢ol, that x — e*x™~" is an increasing function for x € R sufficiently big and
Re(¢) > Re(n), n € v¢, ¢ € Ry

The last inequality follows from the fact that R is a standard quadratic domain.
Therefore, for z € R/, we have that |log 7> = log2 |z] + Arg(z)z. Moreover, there exists
d > 0 such that |Arg(z)| <d 10g2 |z], z € R . Therefore we get that there exists d; > 0
such that

e(zl) < dlelV?, el < e(zl), z € Re, (A7)

for some d; > 0. For a standard linear domain, there exists d > 0 such that |Arg(z)| <
d(—log |z]), z € R4, and we get similar bounds to (A.7) and proceed similarly.

By (A.5) and (A.6), for r € N sufficiently big, such that —(m —r)/2 — 1 > —m + 1,
there exist constants Cy, D > 0 such that

1G (@) — cm—nz "2 — s — gy T < DT O/

IG(2)| < C1lz 2|, zeRe.
(A.8)

Here, the last inequality in (A.8), and then (A.3) from (A.4) and (A.8), follow by the
comment on the lexicographic order of power-logarithmic monomials on the standard
quadratic or standard linear domain at the beginning of step 1.

Step 2. We prove (A.2) using (A.3) proven in step 1. We repeat the construction of the
Fatou coordinates for f on petals, described in detail in [9] and in [7, §8], but deducing
the uniform bounds. Consider the Abel equation for f:

V(@) - Vi@ =1, zeV
Denote Rl.i = ‘lflj.t — Wyr on V/.i. The Abel equation becomes

Ry (f(@) = Ry () =1 — (Wni(f(2) — Yur(2), z€ V"

Denote 8(z) := 1 — (Wne(f(2)) — Wye(z)). This is an analytic function on R.. Let h(z) =
f(2) — fo(z). Then, by uniform bound (2.3), |A(z)| = O (z>£¥"*?), uniformly as z — 0
on R.. We compute

18(2)] = 11 = (Wnr(fo(2) + 1(2))) + Wnr(2)]
= |1 = Wne(fo(2)) — R1(2) + ¥ne(2)| = [R1(2)]-

Here, by Taylor’s theorem (e.g. [1]), Wnt(fo(z) + h(2)) = Wnr(fo(2)) + R1(z), where

R0y = M@ ¢ R such that h(2)] < 2.

p — |h(2)] 2
in which M (z) := maXgecsB(fy(z).0) |Wnf(§)]. For z € Re, put p(z) := (|fo(2)|/4) > 0.
We now take rp > 0 such that |z| < rg implies |h(z)| < (p(z)/2). Indeed, by the
uniform bound (2.3), there exists r > 0 such that |h(z)| < C|z3¢*"*t2| < D|z|, z €
Rer |zl <r. As in step 1, |Wye(2)| < E|z~'£7"|, E > 0, z € R.. By uniform bound
(2.3) on fy, it follows (write, for example, & = |fo(z)|e"A80@) 4 (| fo(z)|/4) -
(cos@ +isin@), 0 €[0,21), z€Re, and fo(z) = |z]e! 2D + O(z'1) - (cos ) +
i sinf;), 6; €[0,27), ¢ > 0, with O(z'*%) uniform on R,.) that there exist constants
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Ci>0, Di>0,i=1,...,4,suchthat, forz € R., &€ € dB(fo(2), | fo(z)|/4), we have

CilE] < Calz] = C3lfo(2)] < C4lE],
D1Arg(&) < DyArg(z) < D3Arg(fo(z)) < DsArg(%).

Therefore, there exists a constant K >0 such that |E71¢(&) ™| < K|z "¢, z€ Re,
£ € 9B(fo(2), | fo(z)|/4). Hence, M(z) < d|z~'¢™"|, z € R., for some constant d > 0.
Finally,

18(z)| = |R1(2)| < Clz¢"*?|, zeR., C>0.

Now, iterating the equation R;r( f) — R;’ (z) = 8(z) on each petal VjJr (on repelling
petals Vf we consider the inverse f~!), we get the series

Ri @) == 8(f*@). zeVf,
k

uniformly convergent on compact subsets of the petal (see [9]). Note that here
18(f% ()| < cl fX)L(f*(2))" 2|, z € Re, holds uniformly on petals. On the other
hand, directly as in [7, §8], due to the bound (2.3) of f, the bound on | f °k(z)| is deduced
uniformly in j € Z on subsectors ng C VjJr of the same opening 6 € (0, 2r). Finally,

applying [7, Proposition 8.3], and using the existence of uniform bounds for | °(z)| and
for [8(z)| by levels, we get that there exists Ky > 0, independent of j € Z, such that, for
every subsector Wej C Vj+ of opening 0 < 6 < 2,

IRT ()| < Ko - £(Iz), z € W] c v

We repeat the procedure similarly for repelling petals Vj_, J € Z, and take the maximum
of the two constants. O

Proof of Proposition 2.1.

Let f be prenormalized and let the uniform bound (2.3) hold. Let Wy¢(z), z € R, be the
Fatou coordinate of the formal (2, m, p)-normal form fy, defined in (A.1). By Lemma A.2,
for the Fatou coordinate of f, the following uniform bound holds:

W (2) — Yar(2)] < Cot(lzl), z€ Wy C V5,

where Wy C VjjE are subsectors of opening 0 < 6 < 2w, and Cy > 0 is uniform for all
J € Z. On standard quadratic domains, there exists a > 0 such that [¢]| < £(|z]) < a+/|¢]
(on a standard quadratic domain, the following bound holds:

m
|z (log 2)"| < |Z|£<\/ log” |z +902) < Clzl* log™" [z],

¢ = Arg(z), ¢ > 0, m € Z, since |p| < log2 |z| and || cannot increase to +o0o uncon-
trolled by |z|). On standard linear domains, there exists a > 0 such that |[£| < £(|z]) < al€].
Therefore,

WF(2) = War(@) < Co/IEl, ze Wy C V], j el
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Let us estimate the horn maps of f from (1.9):
ey o e o e

hlo(r) 1= 2TIYReWDT o027 ) e 7

By uniform bound (A.2) on \I»';.—L (i.e. by its prenormalized form \Iljj.E (z) = Wpe(2) + Rf (2),
RjE =o0(), z—0,ze Wy C VjjE uniformly in j), we compute

Wi o (W) (w) = w4 o(1), (A.9)

where o(1) is uniform in j as Im(w) — £o0 in ‘-If:jF(Wg). Since the spaces of orbits of
both positive and negative petals Vf:] and V/ are contained in every sector around the
centerline of Vj, (A.9) implies

rjt) =1(1+o(1)), -0,

uniformly in j € Z. Since hé are parabolic analytic diffeomorphisms, for § > 0 and for
every j € Z, there exist constants ¢; > 0, j € Z, such that

I @0) — 1] < ¢jleP, el < 8. (A.10)

Let us take here ¢; := sup|,|<3(|hé(t) —th/|t)> = supy; <5 (lo(®)1/[¢1)(1/]t]). Since o(7) is
uniform in j, (c;); is bounded from above, and from (A.10) it follows that

I (6) — 1] = 0(?), |t| = 0,

where O(-) is uniform in j € Z. The same analysis is repeated for hl (), j €Z. O

A.2. Proof of Lemma 3.4. We prove the uniform convergence of the series (3.14) in
the definition of Iéf on compacts in Vj.i, hence analyticity of Rlﬂ? on f/ji follows by the
Weierstrass theorem.

Let us fix j € Z. Take, for example, Ié‘”‘ on \7+ It suffices to show the uniform
convergence on compact subsets of V+ of Zk i+l Fo_, « The convergence of the other
three terms in the sum for R}" follows analogously. Let K C f/j'" be a compact substrip of
‘N/j+ (i.e. the image in the logarithmic chart of the closed subsector K C Vj+ in the original
z-chart). Let (Cg + )’ be the line at height 6’ in \70j + such that K is completely contained
in part of \7].+ up to the line (C({—H)’. Let us analyze the series (3.14) for ¢ € K, using (3.12)
cJH!

and the fact that two Cauchy—Heine integrals along different lines Cé 1 and (Cy ) in

/ Gk (w) dw>,
ckw—¢

\70j 1 differ by an analytic germ at { = oo

Gé+1( ) ~]+] 1 +oo
Z Fk(g) 271'1 fCHl)/ w—2¢ dw + x (§)+; :X: (

k=j+1
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(see Figure 5). Here,

G w i
7@ = / % W) 4, rer,
SO+1 w — g‘

is an analytic function for ¢ € K and at ¢ = oo, as explained before, which depends on
the chosen height #', that is, on K. Indeed, the integration is done along the boundary arc
86“ of Vi ™1 between heights corresponding to lines Cé“ and (CéJrl ), where subintegral
function has no singularities for w € K. Indeed, we can always restrict to a smaller
standard quadratic domain.

It suffices to show the uniform convergence on K of ZIZX;‘H (fc(; (Gé(w))/(w —¢) dw).

In the following computation, we assume the lines of integration Cg along a standard
quadratic domain; thus the Vj.i are covering a standard quadratic domain. Even sharper
estimates for convergence can be repeated for a standard linear domain. By (3.11), we have
the following bounds:

‘/ G’é(w) ' ’/+oo+z(4k D2 G (w) dw'
Cs

kow — log ry+i(4k—3)m/2 W — ¢

T
=lt=w-—i(lk—-3)—
w —i( )2

0o |k : _
< /+ |G0(t +i(4k —3)m/2)| dt
vk lw—¢|

L[] T
< - Golt+i(dk —3)— )| dt

1 [T li@k=3r2)
Ce Me dt

S —
b Jux
400 +00 mt
¢ / me gy = € e MM gy
b JJx b J/x emt
7= oM oty — CremVRem M A
be™ vk

Indeed, for every k > j + 1, C is on some (uniformly) bounded distance from K in the
logarithmic chart. That is, for every ¢ € K and every CO, k> j+1,|¢ —w| > b, where
b > 01is independent of k. Also note that, by (3.9), we have at least —log ry ~ Vi, k — oo.
Since t > 0, |t +i(4k — 3)(w/2)| > ¢.
Now the convergence of the series ), e
uniform convergence of the above series on K.
Once we have proven that Iéf are analytic on Vj,i, by (3.13) and (3.14) we get (3.15).

-mvk, ~MemVE ,form > 0, M > 0, proves the

A.3. Proof of Lemma 3.5. The proof is an adaptation of the proof in [5] for the simpler
case of holomorphic germs. Let us fix j € Z and \7].‘" (\7]._ is treated analogously), and

let us choose a fixed horizontal substrip Uc \7].+. By (3.14), Iéj on U is a sum of
countably many Cauchy—Heine integrals. If lines Céo and C({H that lie in the petal V;r
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intersect the strip U the integration is done along the shifted lines (C Y, (C / +1)’ at some

~]+

bounded distance from U whereas error terms Xoo(f ), Xy (¢) (integrals along parts of

the boundary Séo, Sé H, as in the proof of Lemma 3.3, for example) are added. They

depend on U, that is, on the choice of lines Ly, (CSH)’. They are analytic at infinity,
so they expand in Taylor series 5(}{0 fé s C[[¢"]]. In particular, germs analytic at 0
admit log-Gevrey asymptotic expansion of every order; see Definition 1.3.

We divide the proof into three steps. Note that steps 1 and 2 are independent of the type
of the domain (standard quadratic or standard linear).

Step 1. We prove that each integral fc{; (G’(‘)’Oo(w))/(w —¢)dw, k € Z, from the

series (3.14), on its domain of analyticity admits an asymptotic expansion in C[[¢~']],
as Re(¢) — +o0.

Step 2. It is sufficient to treat any of the eight sums in (3.14), since others are treated
analogously. Therefore, we choose one of the sums:

Y Eo=3Y / G(w) . (A12)

k>j+1 k>j+1

By step 1, forevery k > j + 1, fC{; (G’é(w))/(w — ¢) dw admits an asymptotic expansion
in (C[[g“_l]], as Re(¢) — +o0. By appropriate bounds on partial sums of (A.12), we prove
the convergence of coefficients in front of each monomial ¢ ™", n € N, in (A.12), and thus
prove the existence of the asymptotic expansion of (A.12) in C[[¢~']]. We also prove
statement (1) of the lemma.

Step 3. In the case of construction on a standard linear domain, we prove statement
(2) of the lemma: that the asymptotics of Ié]i @) = Iéf (¢~ is in addition log-Gevrey of
order m, as £ — 0in £-cusp E(Vji). In the final Remark A.3 we state the technical problem
in deducing log-Gevrey bounds on a standard quadratic domain.

Proof. Step 1. For every k € Z and for every n € N, we have

ék Gk (w)w"
= Z( Gl o wywP)g Pl 2,
w—7
Therefore we get, for every k € Z,
(w) n—1 Gk (w)wn
/Ck Zap;pl -n/Ck %dw, neN, (Al3)
0,00 0,00
where coefficients a¥ p are given by
ak = — /k G oo (W)W dw. (A.14)

0,00
Due to (even superexponential) flatness of Gg’oo(w) as Re(w) — oo given in (3.11), the
integrals in (A.14) converge. The same holds for integrals fC(’; (Glé ow")/(w —¢) dw
for £ on some bounded distance from the integration line.
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Step 2. To prove convergence of partial sums of (A.12), let us take formula (A.13)
forke{j+1,...,N}, NeN, N> j+1, and make the sum of these. Forg“ef],
where U is a fixed horizontal substrip of f/;r, there exists b > 0 such that | — w| > b,
¢ € CK, uniformly for every k > j 4 1. Now, very similar bounds to (A.11) in the proof
of Lemma 3.4 performed on the right-hand side of (A.13) and on (A.l14) give us the
convergence of Z,](VZ j+1 a’l‘,, as N — oo, and a uniform bound on U on the remainder
Z,](vzj_H fcg((}g(w)w”)/(w —¢)dw,as N — oo. Let us now denote by a, € R, p € N,

the limit a) := Zkz j+l af). We get the asymptotic expansion

—+00
Z / Gow) dw ~ Za,,g—l’—l, Re(¢) > o0, L €U C Vi (A.15)
p=0

k w—
k>j+1

Let us now prove statement (1) of the lemma about the uniform bound. Note that all
bounds on the remainders
(w)w

> / dw+ ) / = qw (A.16)

k>j+1 k=<j

(w)w

from (A.13) can be made uniform in j € Z and ¢ € U; C Vj+, where U; are strips of

the same width for all j € Z, due to the uniform estimate (3.11) of Gé 0or J € Z—in
particular, for n = 1. We conclude here similarly to the proof of convergence (A.11) in
the proof of Lemma 3.4. In fact, in (A.16), for every j € Z and Uc \7].+, exactly two lines

of integration, Cé 1 and Cgo, are changed to shifted lines, (Cé“)’ and (Cgo)’ , connected
to previous ones by the boundary arcs Sé“ and SZ,, and at uniform (in ;) distance from
them. But (A.13) with n = 1 and applied to border lines Sé—H, SZ, gives similarly

Gt w ; Gt wyw ;
/m O—(C) dw — )T = ¢! fM 0—(; dw, bt'ecC.
S w— S w—=

Take ¢ > 0 small. We find a quadratic (respectively, linear) subdomain ﬁcf - ﬁc such
that

Re Clc e Re s dc, dR¢) > &) (A.17)

For ¢ € ’ﬁc/ we therefore have that | — w| > &, w € S({’oo, uniformly in j € Z. Since
Séoo are bounded arcs connecting at most w = /j +ij and w = /j + 1 +i(j + 1),

and the éé o~ are uniformly (in j) superexponentially small, the bound on the remainder

Géo(w)w éé“(w)w
—d —d
,/:5‘-0/0 w—2Z w+/8(_)/+1 w—¢ v

can be made uniform in j € Z, for ¢ € U i C V;F N ﬁc/. This proves statement (1).
Step 3. We prove, on standard linear domains, the log-Gevrey bounds of order m for the
expansion (A.15).
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The lines of integration C](; o in Cauchy—Heine integrals on a standard linear domain in
the logarithmic chart are, by (3.8) and (3.10), the half-lines

k . V4 . T
Cy - ~k+i(k = 3)5, +oo+i(dk —3)7 ),
ck - [~k+i(4k—1)%,+oo+i(4k—1)%), k eZ.

Let j € Z. On every substrip Uc \71* (the same analysis can be repeated for \7]7), by

(A.13), we have
n—1 k
28w B |- 5 [
P le B p=0 k=j+2

Z f Gyw)'/? - GE(w)'/? - w" w
W=7

k=j+2

<lgI™

- 'g:Re(w) =& =w—i(4k—3)£'

<lg Z/

Ak 1/2
M & rel.

1GE (w >|‘/2s+i(4k—3>%

log ry~k — w|
(A.18)

By (3.11), the GS ~(w) are superexponentially small on lines Cg o> and moreover
uniformly in k € Z. That is, there exist constants C, M > 0, independent of k € Z, such
that

1GE )] < CeM™ ™y ech .
Thus, in (A.18), by direct integration, we get that

00 /+m |G/(§(w)l/2| 4

w<Dj. (A.19)
k=j+2 —log ry~k |w - é‘l

Let us now bound

n
E4i(dk — 3)%’ < CeMe™ (\/52 n k2)" < DpeM™En pso,
(A.20)
for & = Re(w) € (—log ry, +00) ~ (k, +00). We sometimes omit constants for simplicity
(where they do not influence the type of the final result). The last inequality is the
consequence of the fact that lines C’é lie in a standard linear domain. Therefore, for w € Cé‘,
we have that £ = Re(w) > Im(w) ~ k.
Similarly, we estimate the term

G w)|'?

j+1

|- ’/ dw—Zbc"‘
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We get similar bounds to (A.19) and (A.20), but on a subdomain ﬁar,b/ - ﬁa,b, defined as
in (A.17).

Now, maximizing the function £ > De™™ eméé " by &, we easily get that the point of
maximum is & such that "5 ~ (1/M)(n/log n) and m&y ~ log n, as n — oc. Therefore,
there exists D; > 0 such that

De M gn < pymte= /g M 100n £ 50, peN. (A21)

By (A.19)—-(A.21), from (A.18) we get that there exists ¢ > 0 such that

Gj+l(w) Gk(w) n—1
‘/(CHI w—¢ dw +Z/ dw‘ZCPC’”
0
<

< cem e 12 o0 2T, ¢ euch/. (A.22)

Here, ¢, = ap + by, p € N. The same can be concluded for the other three terms of the
sum for R;r given in (3.14). By Definition 1.3 of log-Gevrey asymptotic expansions, we

conclude that Iéj({) admits a log-Gevrey power-asymptotic expansion of order m > 0 in
¢! asRe(¢) - +o0in VJ.JF. Thus statement (2) is proven. O]

Remark A.3. (Bounds for asymptotic expansion of Ri on standard quadratic domains) On

a standard quadratic domain, the lines of 1ntegrat10n ck
are the half-lines

0.00° k € Z, in the logarithmic chart

ck ... [~~/%+i(4k—3)%,+oo+i(4k—3)%>,

ck ... [~«/E+i(4k—1)%,+oo+i(4k—1)%), keZ.

The other difference with respect to standard linear domains is the bound (A.20). On
a standard quadratic domain we have £2 = Re(w)? > k ~ Im(w) = 2k + 1)(1/2), so

(A.20) becomes
n 711, n 711,
E4i(dk — 3)%‘ < CeMe if(,/‘gﬂ +k2) < De M g,

In the same way as in the proof of Lemma 3.5 for standard linear domains, for a standard
quadratic domain we get

|G (w)|'/?

De_Me"lEEzn < Dlm—Zne—(Zn/log(Zn)) logzrl(zn)’ &E>0.

The final bound (A.22) on a standard quadratic domain is

G’“(w) % G(w) S
— p=1
‘/Cﬁl w—7¢ W Z fck w—¢ dw ZCpC
k=j+2 0
<cm™ —(2n/log 2n) 10g2n(2n) |;.| n ; c U N RC” (A23)

where ﬁc/ C ﬁc is a quadratic subdomain, as in (A.17), and UcC ‘7]* a horizontal
substrip.
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The bounds (A.23) obtained on standard quadratic domain are weaker than log-Gevrey
of order m, for any m > 0. Therefore, they are too weak to attribute a unique log-Gevrey
sum to R(£) on £-cusps z(vji), jez.

A.4. Proof of Lemma 4.2. Lemma A.4 for uniform bounds on iterates Ié;’ LneNis
used in the proof. Lemma A.4 and Remark A.5 are also used in the proof of statement (1)
of Lemma 4.1. In fact, in the proof of Lemma A.4, we conclude inductively the bounds
for every n € N, in the course of iterative construction of the sequence I?;?’ . described
in Lemma 4.1. Therefore, the bounds in Lemma A.4 and Remark A.5 can be deduced
simultaneously with the inductive construction in Lemma 4.1, without a priori assuming
the existence of the whole sequence.

Let us first introduce some notation. Let ¢ > 0. As in the proof of statement (1) of
Lemma 4.1, we denote by Cé 10e the horizontal half-lines in the standard quadratic domain

at distance £2¢ from C(]) , and by c’ ~.+2¢ the horizontal half-lines in the standard quadratic
domain at distance +2¢ from Céo, Jj € Z.By SO 19, (respectively, Soo e ) we denote the
portions of the boundary between CO 1o, and C (respectively, between c’ o2 and Coo)
Jj €Z. By So we denote the endpoint of the half-line C’ and by soo the endpoint of the
half-line Céo, at the boundary of the standard quadratic domain; see Figure 9. Then:

J._ g J J J j
So 1= Sy42e N Cos soo._S 42: NCos  JEL.

LEMMA A.4. Let ¢ > 0 (arbitrarily small) and let the iterates R;’,i on petals Vji of a
standard quadratic domain be defined as in Lemma 4.1. The shape of the petals may be
changed in the course of this proof, and the original standard quadratic domain may be
changed to a smaller one, but the petals remain petals of opening 2m (i.e. of width 2w in
the ¢- varlable ), centered at directions jm, j € Z, of a standard quadratic domain. Let so
and soo, J € Z, be the endpoints of the half-lines CJ and CJ Then the following bounds
hold.

(1) There exists K > 0 such that:

o for¢ e ‘7]-+ such that d (¢, Cé“) <eord(, Céo) < & (region (3)),

¢ _S({+l| j+1
K log 7] s d(g',C'0 ) <&,
LRGIE ,,~
K log |§|_€_—700| d(,Cl) <e, jeZ, neNy;
for¢ € ‘7].7 such that d (¢, Cgo) <eord(, Cg) < ¢ (region (3)),
_ ,
K log % (. cl) <e,
IR (@) < ‘
1z — 5§ i .
Klogli—l’ d(,C)) <e, jelZ, neNy.
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o for¢ e V+ such that d(¢, C]Jr )>e¢eand d(C, cl %) > &, and for ¢ € V such
that d (¢, C %) > eand d(¢, CJ) > ¢ (regions (1) and (2)),

IR?,i(i)l <K, j€eZ neN.
(2) There exists D > 0 such that:
e 2T (W @/DFR]_ @) e 7

T ODHRL O o D eV e neN.

The constants D, K are independent of the choice of the petal Vji, Jj € Z, and of the
iterate n € Ng. Moreover, by choosing a standard quadratic domain R¢ of a sufficiently
small radius (that is, with sufficiently big real parts Re({) > Dy, for all ¢ € ﬁc ) as the
domain of definition, the bounding constants D and K can be made arbitrarily small.

In Lemma A4(1), note that [{|> Do >0 on a standard quadratic domain, so
| — sO |/|{| and [¢ — soo|/|§| are bounded as Re(¢) — 400 on VJr Therefore,
¢ = s/Jrl and ¢ = scj,o are the only singularities on Vj+.

Remark A.5. From (2) in Lemma A 4, it immediately follows that (on a standard quadratic
or a standard linear domain)

e 2T OFRI_ 1 () < ple=2min O ¢ e G,
) S (A24)
| an(anf@)“‘R +(§))| < D|eznl(\1’m({)/2)| é. c Vojoy ] c Z, ne NO-

Given the sequence of pairs of analytic germs (gé, géo; 0j)jez as in Lemma 4.1, with
radii of convergence o; bounded from below as in (1.8) (respectively, (1.11)), there exists a
standard quadratic (respectively, linear) domain such that le=2mi (T (©)/ 2| < oj/D, ¢ €
V], and |27 ©/)| < 6,/D, ¢ € VL, j € Z. Now, we conclude by (A.24) that

eim(\y“f@HRE*l#(g)), IS \70j , remains in the domain of the definition of gé, and that

ezm(\p“f@Hk-’;*(c)), ¢ € \7015, remains in the domain of the definition of géo, j € Z, for all

n € Np. This is important to be able to define the iterative algorithm in Lemma 4.1 (1).

Proof of Lemma A.4. We prove (1) and (2) simultaneously by induction.
Step 1. The induction basis for n = 0. Note that I??g 4 = 0 and that the functions

¢ e MR e P and s WO e VL e,

are uniformly exponentially flat of order 1 —§, for every § > 0 (see definition (3.1) of
exponential flatness of some order at the beginning of §3). That is, for substrips U({’Oo C

\70/ o bisected by Cé’oo and of uniform opening in j, there exist M, C > 0 such that

e 27 (Wni(©)/2)| < o= Me! 7RO ¢ el

(A.25)

- _ Me(1-®Re(©) 7l
1271 (Bar©)/2)) < o Me Y celL, jez
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Relation (A.25) follows from the exact form of W, 7~ in the z-chart given by (A.1), as in
the proof of (4.10).

From the above bounds, for every D > 0, we can find a quadratic domain of sufficiently
small radius (sufficiently shifted to the right in the logarithmic chart), such that

e~ 2O/ < p ¢ e 7 127 @/ < p ¢ e VL, (A.26)

uniformly in j € Z. Note that in (A.26) the petals \70/ oo J € Z, may have changed shape
compared to those in (A.25). Due to uniform exponential flatness (A.25), to ensure
boundedness by the same D in all substrips U({,oo of openings approaching m, we may

have to diminish their radii, resulting in new open petals f/(‘){ o Of opening 7, as unions of
such retailored substrips. Thus (2) is satisfied for n = 0. Note that (1) holds trivially for
n =0 and for any K > 0.

Step 2. The induction step. Suppose that (1) and (2) hold uniformly in j € Z for the
nth iterate Ié’/’ 1. We prove (1) and (2) for the following iterate ﬁ;”f_f on petals \7;[, with
the same constants D and K, independent of the induction step n € N and of the petal

J € Z. We proceed by regions in petals Vj.i. We prove here the induction step for Ié?il

+1

on ‘7;“. For the repelling petal and Ié;” the same can be repeated. We will consider, as

in (4.12), only one term of the sum (4.11) in Ié;’f For the other three terms the bounds
follow analogously. We bound separately in each of the three regions (horizontal strips)
introduced in (4.12) and in Remark 4.3.

(1) Region (3): ¢ € \7].+, (4j+1Dm/2 —e <Im() < (4 + 1)/2 + £. We have

too j+1 (e—zm(xif,,f(w)+1§;%_+(w)))

- 1 g
n+l po— 0
> @) < / dw'
0.k . _
k=j+1 2 | Jel, w=¢
1 / g (J)'H (efzm(\bnf(w)ﬂé;, +0)y
— , dw
2 sit w—7<
+00 k(,—2mi (Wnp(w)+RY_, ., (w))
1 e k—1,+
+= > / S0 )dw‘. (A.27)
21 - c w—2<
k:/+2 0

All denominators except for the one in the integral | it * dw can, by absolute value,
0

be bounded away from ¢ by € > 0, that is, |[w — ¢| > &, since the lines of integration are
more than ¢ away from ¢. In each of these integrals, we make a change of variables that
transforms these integrals to integrals along real half-line, as before in (A.11). Using the
uniform bound (2.5) on g’& 0o (8), k € Z, we get that there exists C > 0 such that

18k (e T W OHREL 1O < ) 2mi (IO RE 4 (O))
< C|e—2ni(\f!nf(c)/2+1?2,1_+(;))| ) |e—2ni(®nf(;)/2)| < CDle—ni\i/nf(g)L ¢ eV,

gk (P IOHRLL Oy < cpem W@ ¢ e VE | ke (A.28)
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In the last equality we use the induction hypothesis. As in (A.26), we conclude that
|7 (¥ (©)/2| on respective domains Vj can be made smaller than any constant E > 0
on a standard quadratic domain shifted sufﬁciently to the right, such that Re(¢) > Dy for
some Dy > 0 (and, as before, with shapes of \70/ oo Possibly changed).

Now a similar reasoning to the proof of convergence of (A.11) leads us to conclude that
we can choose a standard quadratic domain of sufficiently small radius such that the sum of
all integrals in (A.27), except for the integral |, s+ * d¢, is smaller in absolute value than

any fixed number, so we take K > 0. We note that the bounds made here do not depend on
a specific petal j € Z, or on the step of iteration n € N.
To conclude the induction step (1), it is left to bound the integral

dw|, ¢eVF di,cl™<e  (A29)

J+1 2m(xi/nf(w)+1§§,+(w)))
‘ /SJ+1

w—¢

The problem in this region is the following: (1) at the point sé“ at the end of the line
Sé of integration (i.e. at the endpoint of Cé 1 on the boundary of the domain), Ié;” +(©)
from the previous step has a logarithmic singularity, thus possibly preventing the mere
well-definedness of this integral; and (2) |w — ¢ is unbounded as ¢ approaches s/ 5y thus
generating a new logarithmic singularity at the point so "in the next iterate R"H First,
the fact that the integral at each step is well defined is verified by the induction hypothe31s
(2) or estimate (A.28). We note that a logarithmic singularity at sOJrl is generated in each
iterate, but they are not accumulating in iteration, due to the fact that R” enters the next
step of integration only as the argument of an exponential that is bounded and does not
possess a logarithmic singularity any more. To solve problem (2), let y (¢) : [0, 1] — S(])Jrl
be a (smooth) parametrization of Sé +l, and denote the endpoints by sé . y(0) and

(])H = y(1). Recall that

j+1 i+1 j+1
s =8 nel"

J+l _ oj+l Jj+1
J =s{t'nc

0 0,+2¢"
We now bound, using the complex mean value theorem for integrals (treating the real and
the imaginary part separately, and applying the integral mean value theorem), (A.28) and

the fact that |y’ (¢)| is bounded (say, by 1) since y is smooth (the boundary of a standard
quadratic domain):

‘/ g(J)'-‘rl(e—ZJTi(\I’nf(w)-ﬁ-R?u(w))) ‘_‘ /1 gé"*‘l(e—2ﬂi(‘Pnf()/(t))+R;?,+(V(t))) V/(t) "
St w—¢ (@) —¢
i+1, =2 (Une(y (O))+R" (v (1)) Ly
<8llg)" (e nfty 1+ || oo / ————dt
o v(@®)—¢
= "(t
< 8CDle ™ WO ooy g - ‘ / ro_ dt‘.
Y@ —¢
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Indeed, for f, g :[0, 1] — C bounded, by the integral mean value theorem for real
functions of a real variable there exist 51, 52, 53, 54 € [0, 1] such that

1
+ ‘fo Re(f(1))Im(g(r)) dt

1 1
‘/o f)g) dr| < A Re(f(1))Re(g(1)) dt

1 1
+ ‘fo Im(f(z))Re(g (1)) dt +’/0 Im(f(1))Im(g (1)) dt

1 1
=|Re(f(S1))|" /0 Re(g(1)) di +|Re(f(S2))|" /0 Im(g(1)) - dt

1
+ [Im(f (sa))] - '/O Im(g (1)) dr

1 1 1
Re(/o g() dl)‘-l- Im(/o g(t) dt>D§ 81 fllzoero,11 /o g(t) dt|.

The norm of exponentially small |e™™! (B ()| can, by shifting a standard quadratic
domain to the right (y(¢) lies in its boundary), be made arbitrarily small (independently
of the step n € N). Furthermore, there exists a uniform constant ¢ > 0 (independent of

J € Z) such that
/1 y' (1)
o Y@ — C

1
+ Im(f (s3))] - ’/0 Re(g(1)) dt

< 4 fllLeeo, - (

( J+l Jj+1 §)|

= |log — log(s;

J+l
<clog |§—|§| ¢ in region (3).

Indeed, note that vd“ lies at some bounded distance from region (3), uniformly in j, and

at Re(¢) = o0 there is no singularity, so the only singularity is { = So Consequently,
we may bound the whole integral (A.29) in region (3) above by any positive constant
multiplied by log(|¢ — sé—H )/1¢]. Again take K > 0.

(2) Regions (1) and (2): ¢ € VJr Im@)<@j+Dr/2—ecorlm(¢)>@j+ )mw/2+e.
The induction step is proven analogously, but more easily, since the denominators in all
integrals are now bounded from below by ¢ (¢ in these regions is at distance greater than
& from all lines of integration), so the logarithm does not appear in bounds. Only one

comment is needed. The line CJ 1 indeed contains the point So 1 as its endpoint, but,
as discussed before, the integral fc,+. (g1+1 —27i (Fy(w)+R" <,+(w>)))/(u) —¢) dw is well
defined since the previous iterate R?’ (w) with logarithmic singularity at sé-H appears
in the integral only as an argument of the exponential, which is bounded. To bound the
integrals by any constant (take K > 0), we use (A.28).

Finally, once we have proven the induction step for (1) in Lemma A.4, the induction
step for (2) in Lemma A.4 follows easily. We have

(e~ 2 (@RI @) | p=2mi (Far(0)/2)) 27RO

|e—7ri\lfnf(§)|D0_2”K|§ — sé“ 7K e \70] in region (3),
le= T Vni(§) |27 K = \70] in regions (1) and (2).
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By shifting a standard quadratic domain sufficiently to the right (Re(¢) > Do), and
by changing the shape of ‘70/ , J € Z, if necessary, both can be made arbitrarily small
(uniformly in j € Z and independently of n € N), so we make them smaller than D > 0.
The same follows for VZ,, j € Z. The induction step for (2) in Lemma A.4 is thus
proven. U

Proof of Lemma 4.2. 'We prove that there exist 0 < ¢ < 1 and ¢ > 0 such that

- pn+l :pn

sup |62anij @) _ 2R} @) < cq",
revi

for every n € Ny and every j € Z. The proof is by induction, considering separately the
three regions of Vj+, asin (4.12).

Suppose that there exist 0 < ¢ < 1 and ¢ > 0 (independent of j € Z and n € Np) such
that, for some n € N,
eril?_’;j_l ©) 82711'1?7

sup e 7+(()| chn’

rev]
for every j € 7. We now prove that this implies, for ¢ in each of the three regions of V j+,

that

. pn+2 . pn+1
sup |627nRj.Jr (o eZij’Jr (§)| < anJrl.
revi
That is,

. 5n+2 - pn+1
sup  |FIRIA @) _ 2TIRL O < oqntl e (1,2,3), j e
¢ e region (i)

We will now find 0 < g < 1 and ¢ > 0, independent of j € Z, such that the induction step
and the basis of the induction hold. Note that, as before, we work for the sake of simplicity
with only one term of the sum in (4.11) for R;?’ L on Vj+. For the other three terms of the

sum the conclusion follows analogously. The same can simultaneously be done for I%;? _

on \7j_, and we omit it.

(1) The basis of the induction, n = 0. By Lemma A.4(1), if we shift the standard
quadratic domain sufficiently to the right (e.g. Re(¢) > Dg) and reshape if necessary.
Then there exists an arbitrarily small constant K > O such that (by Taylor expansion,
le* — 1] <elfl -1, z€©)

|ezni1§},+(c) 1< AR O _
2K {e Vi de.ci™ =6 d@.Ch) = e,

s\ ! T oI+l

j 2n K B .
(f,‘gm') ~1 ceVide.ch) <e.

(A.30)
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- pl ~
To conclude that the Ieszii@) — 1] are bounded from above on the petals V].Jr by some

constant C > 0, independent of j € Z, note that the second and the third term in (A.30)
are bounded at Re(¢) = 400 due to the division by |{| and Re(¢) > Dy > 0. That is, there
exists a constant C and 0 < g < 1 such that

.51 - 50 ~
70O PO < g c eV el

In fact, we can take here any 0 < g < 1, and we will determine the good one in the
induction process. This is the basis of the induction.
(2) The induction step. Now suppose that there exist 0 < ¢ < 1 and C > 0 such that,
for n € Ny,
- pn+1 . pn ~
PO PO < gty ¢ eV je
We prove the induction step (n + 1). We have

- pn+2 pn+1 pn+1 pi+2 pn+l1
|eZmRL+ ¢ eZmR (§)| < |62mR (§)| | 2nz(R €)— R ({)) 1|

< HTIR O (2R ORI Ol

(e -1, ¢e \7;“.

(A.31)

We now estimate |R”+2(§) R”H(;)| on V+ using the induction hypothesis, in regions

(1)—(3). Note that the expression for the dlfference R?’ (@) - R”‘H (¢) is similar to that

=27 (Typ(w)+RY_

in (4.12), except that, instead of glg (e 1’+(w))), in every integral we have the

difference of exponentials:

2 (B (w)+RET L (w)y —2mi (TR L)y e 7,

g (e G

As in the proof of Lemma A.4, we bound the difference |R"+2(§) — R"H(;)l in all

regions (1)—(3). By the complex mean-value theorem, we first estlmate

|8I(§( =27 (Bye(w) +RYF +(w))) —Zni(\ilnf(w)+1§]'('71'+(w)))|

soe

. n+1 P
< sup |(g/6)/(e—2m("l’nf(w)+(TR ) +A-0DR T (w))))l I—ZNl\I’m(w)|
t€[0,1]

e —2mi(RI_ 1+(w)+R”+H(w))| le 2ni1§,’{’jll,+(w) . e2nil€’;§71’+(u})|
< d|e—2mxifnf(w)| . ARy L IR L (w)D) e 2mi R (w) _eznié,’;fl}(w)'
-3 . pn+1 s BN ~
< C|e—2m\llnf(w)| . |62n1Rk71,+(w) . 627”Rk*1-+(w)|, we Vé(, ke,

where constants ¢, d > ( are uniform with respect to petal j € Z and step n € N. The last
two lines follow by Lemma A.4(1) and by uniform bounds (2.5) on (g ). By the induction
hypothesis, there exists ¢ > 0 such that

_2ni(\i1nf(w)+1§1:':rll,+(w))) —2m(®nf(w)+1§g_1,+(w)))| <cCq- |e—2mxi/nf(w)|

gk (e — gie

weVé‘,keZ,neN.

The same can be repeated for Vé‘o, k e Z.
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Now, estimating as in the proof of Lemma A.4(1), we get the following bounds by
regions:

IR0 — R (@)

- Ll .
||€—7Tl\pnf(§)”‘~/j+l . (A log i1 \XCOI | + B> -Cq", ¢eVh, d(;,CéH) <e,
0

IA

Jem ¥ @) - <A log Ll + B) .Cq", ceVi decl) <,

_ P . T, . . l
(e @ g 4 1™ O g) - B-Cq"s £ e VL d. Coucy™) 2 e,

Here, A > 0 and B > 0 are some positive constants, uniform in n € N and in j € Z,
obtained as sums of integrals with exponentially small numerators and bounded denomina-
tors, similarly to the proof of Lemma A.4. Note that, by shifting a whole standard quadratic
domain to the right and possibly reshaping, we can make the first norm arbitrarily small
(less than any § > 0), uniformly in » € N and in j € Z. Now, for every § > 0, there exists
a standard quadratic domain ﬁg such that, for ¢ € 7~25,

L2TIRPZO-RH @)

s\ A koo 1
< 2 ) 2nB§Cq < N2nA8Cq eZnBBCq 7§-€Vj+’ d({,Cé ) < e,

IA

j 2w ASCq" .
—5 n i
<|§|§s|oo|) 2nB§Cq < N2JTA8Cq 27 B8Cqk , Cevj—ﬁ-’ d(é‘,Céo) <,

(2T BCq" ceVi, de.ckuc) =«
(A32)

Here, N > 0 is some positive constant that bounds (|¢ —so |)/ |¢] in region (3),

uniformly in j € Z. Taking § > O sufficiently small (diminishing the domain), putting
(A.32) in (A.31), we get

2;-[[1%'.""2({) 2mRn+](C) n+1 o+
A | <Cq"™", {er,jeZ.

All bounds are independent of the step n € N and of the petal j € Z. The induction step is
thus proven. O

A5, Proofof Lemma4.5. (a)Let (g}, glo) ez be as in (4.4) and (4.5) from Lemma 4.1.
Since

(hg) (1) = 12780, ho(r) = 12780, 1~ 0,
the symmetry (4.18) of (hj , héo)j implies

2rigy = 2migho(t
te?isy () = F2migae()
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;e—zmm — ;gnig&(ﬂ, 1€ (C0), jeZ
Therefore,
B e ;
s 0= —gh@. 1€(C.0) jel (A3

Here, we use that e—27iZ = ¢27i2 7 ¢ C.

The remainder of the proof is done by induction on the iterates of the Fatou coordinate
\IJ;’ 4 (¢) (in the logarithmic chart). We prove, using symmetry (A.33), that, for every n €
Np, the following symmetry of the iterates holds:

- ~ J— ~__ 1 1

U@ = @), eV,

@) =0,Q), teVyl jel (A.34)
Note that this is an analogue of (9.6) in [7, Proposition 9.2] in the logarithmic chart (i.e. in

the ¢-variable). As a consequence, the same symmetry (A.34) holds for the limits \Ifjj.t on

Vji, Jj € Z,as n — 00, defined in Lemma 4.1(2). In particular, for j = 0 and for y € R,
we have that

Vi) =970 =¥ ), ye© +oo)nVy.
Finally, returning to the z-variable, this gives
Vi) =¥ (x), xe RNV

That is, \Ila' R+ N V0+) CRyN V0+, which completes the proof.
It is left to prove (A.34) by induction. For n = 0, (A.34) is trivially satisfied, since
\Il;)’ L) = Uie(0), ¢ € Vji. Here, W,y is the Fatou coordinate of the (2, m, p)-normal

form, p € R. Itis analytic globally on a standard quadratic domain and satisfies Wy,¢(R ) C
R4, due to p € R. Therefore, the basis of induction follows by Schwarz’s reflection
principle.

We now suppose that (A.34) holds for all 0 < m < n, n € N. We prove that it implies
(A.34) forn. Take ¢ € \7/+, for some j € Z.Then¢ € ij. ‘We can show the same for pairs

é‘ € V'is § € V:j+1’

(4.12)), Ié’;’+(§), ¢ € Vj+, is a sum of terms of the form

J € Z. By the Cauchy—Heine construction from Lemma 4.1(1) (see

1 / gk ( o2 (WL (w)) )
C

T = dw,
©) 2mi k w—¢
where each of them has, in the sum, its ‘pair’ by symmetry:
- gn—1
1 —k+1(,—2mi(V (W)
P(w) = — 8o (¢ ) dw. ke
2wi JogkH! w—7<

This ‘pair’ is obtained as the Cauchy—Heine integral along the line

CH! = {g e Re : Im(¢) = (—4k + 3)%},
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which is exactly complex-conjugate to the line
X ~ b4
Cy = {eRc:Im(§)=(4k—3)E ,

due to the symmetry of standard quadratic domains with respect to R . See Figure 5 for
indexing.

On the other hand, the same pair 7(¢) and P(¢) appears also in the sum for
Ié'ij’+(z), e ij Therefore, to show that Ié;?#({) = Ié'jj’+(z), C € \7j+, we show
simply that, on symmetric petals with respect to Ry, P and T exchange places by
conjugation. That is, we show that

T =P@, PO=TE, ¢eV. (A.35)

Indeed, by the change of variables & = Re(w) in the integral, we get

d§

| 4o k(e 2 WL (E i (dk— 3)7/2)y
J

T = 2i " E+i(dk-3)(w/2) —¢

1 +o0 _ggok+1( i WL (Ei(dk— 3):‘[/2))

2mwi Sy, E4+i(dk —3)(/2) —

1 +00 _ggok+l (62711 lI/"_ iy G—i(4k— 3)71/2))

- — : ds.
i Sy, E+i(dk —3)(w/2) —

Here, x; > 0 is the real part of the initial point of half-lines Ck or C: k! Tt is the same for
both lines, due to symmetry of standard quadratic domains w1th respect to Ry . The second
line is obtained directly using symmetry (A.33) of sequence of pairs ( go, glo) jez. In the
third line, we use the induction assumption (A.34) for the previous step n — 1.

Now, complex conjugation of the integral gives

| oo gkl (2B itk 3>n/2>)

TQ) =—— = d
©O="2/, E—i(4k —3)(n/2) — :
| —k+1 72711'(\111;1“1(111)) _
- A G L dw = P@©.
2mi Jogk+ w—{

The same analysis is repeated for P(¢), and for all pairs of terms in the sum for
+(§) (respectively, R 2 +(;’)) Thus (A.35) is proven and R” +(§) = R’jj!+(E), { €

Vj+. Consequently, since \llnf(§ )= nf(g‘ ) on the whole standard quadratic domain (due
to real invariant p € R), it follows that

TRGEL SNGENE

By induction, this holds for all n € N.
(b) Let Rar (z) be such that \IJ(;’ (2) = Wue(2) + Rar (2), z € VI, as constructed by
iterative procedure in Lemma 4.1. Let RJ(Z) = R(J)r (), L e E(V0+). By (1), since Wy
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is R4 -invariant,
R () =R (), ueRyneVh). (A.36)

Let R € C[re1, R = Y keN aplk, ap € C, k € N, be the common asymptotic expan-
sion of Rj.c (), as £ - 0in E(Vji) on the standard linear domain, which was proven to
exist in §5 in the proof of Theorem B. Then, for every N € N, there exists Cy € R such
that

N
Ié(')" (u) — Z akuk
k=1
This implies, by (A.36), that

<Cylu™*Y, ueRy, u—0. (A.37)

N
D N+1
‘Rg(u)— > apuk| < Oy,

k=1
‘ - (A.38)

Ry =Y a-uf| < Cyu™*'|. NeN.
k=1
Now, a; = ar, k € N, follows by (A.37) and (A.38) and by the uniqueness of the

asymptotic expansion of Iéar ) in C[[£]].
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