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Abstract. In a previous paper [P. Mardešić and M. Resman. Analytic moduli for parabolic
Dulac germs. Russian Math. Surveys, to appear, 2021, arXiv:1910.06129v2.] we determined
analytic invariants, that is, moduli of analytic classification, for parabolic generalized
Dulac germs. This class contains parabolic Dulac (almost regular) germs, which appear
as first-return maps of hyperbolic polycycles. Here we solve the problem of realization of
these moduli.
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1. Introduction and main definitions
Dulac germs, called almost regular germs in [2], appear as first-return maps on transversals
to hyperbolic polycycles in planar analytic vector fields; see, for example, [2, 10]. From
the viewpoint of cyclicity of planar vector fields, the most interesting case is the case of
Dulac germs tangent to the identity. Using notation similar to the case of one-dimensional
analytic diffeomorphisms, we call such germs which are not roots of the identity parabolic
Dulac germs.

In [7], we described the Ecalle–Voronin-like moduli of analytic classification for a big-
ger class of parabolic generalized Dulac germs. Parabolic generalized Dulac germs defined
in [7] are a class of germs, including parabolic Dulac germs, that admit a particular type of
transserial power-logarithmic asymptotic expansion, called the generalized Dulac asymp-
totic expansion. They are, like Dulac germs, defined on a standard quadratic domain: a
universal covering of C punctured at the origin with a prescribed decreasing radius as
the absolute value of the argument increases. Their moduli are given as a doubly infinite
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sequence of pairs of germs of diffeomorphisms fixing the origin, having a symmetry
property with respect to the positive real axis and a rate of decrease of radii of convergence
adapted to the standard quadratic domain of definition. Similarly to the well-known
case of analytic parabolic germs treated in [12], it was shown in [7, 8] that the formal
class of a generalized Dulac germ is described by three parameters, but the normalizing
change diverges and defines analytic functions only on overlapping attracting and repelling
sector-like domains called petals. There are countably many petals filling the standard
quadratic domain and the comparison of normalizing changes on their intersections,
together with the formal class of the germ, gives its modulus of analytic classification.

As a continuation of [7], in this paper we describe the space of moduli, that is, we solve
the problem of realization of moduli of analytic classification in the class of parabolic
generalized Dulac germs. For each formal class and a double sequence of germs of
diffeomorphisms fixing the origin with controlled radii of convergence, we construct an
analytic germ defined on a standard quadratic domain realizing them.

However, on a big standard quadratic domain we did not succeed in attributing a unique
power-logarithmic transserial asymptotic expansion to the constructed germ. Transseries
are indexed by ordinals, which can either be successor ordinals or limit ordinals. The
definition of a transserial asymptotic expansion of a certain type is dependent on the
choice of the summation method at limit ordinal steps. This choice is called a section
function in [9]. To ensure uniqueness of the asymptotic expansion, we should be able to
make a canonical choice of the section function. See [9] for more details on the problem
of well-defined transserial asymptotic expansions and the notion of section functions.

Moreover, we prove that, on a smaller linear domain, there exists a parabolic generalized
Dulac germ of a given formal type which realizes the given sequence of diffeomorphisms
as its analytic moduli. On this smaller domain we are able to choose a canonical method
of summation on limit ordinal steps, a Gevrey-type sum, corresponding to the definition
of the generalized Dulac asymptotic expansion requested in the definition of generalized
Dulac germs.

In both constructions we use a Cauchy–Heine integral construction as [5], for example,
motivated by the realization of analytic moduli for saddle nodes in [11]. The advantage of
the Cauchy–Heine construction over the standard use of the uniformization method, as in
[12], is that Cauchy–Heine integrals provide the control of power-logarithmic asymptotic
expansions.

Let us first recall briefly the main definitions and results from [7].

1.1. Main definitions. Recall from Ilyashenko [2] the definition of almost regular germs.
We call them Dulac germs in [7] and also here. They are defined on a standard quadratic
domain RC . This is a subset of the Riemann surface of the logarithm, in the logarithmic
chart ζ = −log z given by

ϕ(C+ \ K(0, R)), ϕ(ζ ) = ζ + C(ζ + 1)1/2, C > 0, R > 0, (1.1)

where C+ = {ζ ∈ C : Re(ζ ) > 0} and K(0, R) = {ζ ∈ C : |ζ | ≤ R}; see Figure 1. In the
following, we switch between the two variables, the z-variable and the ζ -variable, as
needed. In an abuse of terminology, we use the same name standard quadratic domain
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FIGURE 1. Several standard quadratic domains R̃C , C > 0, in the logarithmic chart.

for the domain in the ζ -variable defined by (1.1) and for its preimage by ζ = −log z in
the universal covering of C∗. For the z-variable we use the notation RC , while we use the
notation R̃C for its image by ζ = −log z in the ζ -variable.

Definition 1.1. ([7, Definition 2.1], adapted from [2, 10]) We say that a germ f is a Dulac
germ if it:
(1) is holomorphic and bounded on some standard quadratic domain RC and real on

{z ∈ RC : Arg(z) = 0};
(2) admits in RC a Dulac asymptotic expansion (uniformly on RC , see [3, §24E]: for

every λ > 0, there exists n ∈ N such that∣∣∣∣f (z) −
n∑

i=1

zλi Pi(−log z)

∣∣∣∣ = o(zλ),

uniformly on RC as |z| → 0)

f̂ (z) =
∞∑
i=1

zλi Pi(−log z), c > 0, z → 0, (1.2)

where λi ≥ 1, i ∈ N, are strictly positive, finitely generated and strictly increasing to
+∞ and Pi is a sequence of polynomials with real coefficients, and P1 ≡ A, A > 0.
(Finitely generated in the sense that there exist n ∈ N and α1 > 0, . . . , αn > 0,
such that each λi , i ∈ N, is a finite linear combination of αj , j = 1, . . . , n, with
coefficients from Z≥0. For Dulac maps that are the first-return maps of saddle
polycycles, the αj , j = 1, . . . , n, are related to the ratios of hyperbolicity of the
saddles.)

Moreover, if a Dulac germ is tangent to the identity, that is,

f (z) = z + o(z), z ∈ RC ,

and if f ◦q 
= id, q ∈ N, we call it a parabolic Dulac germ.

By a germ on a standard quadratic domain [2], we mean an equivalence class of
functions that coincide on some standard quadratic domain (for arbitrarily large R > 0
and C > 0).
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The radii of the standard quadratic domain in the z-variable tend to zero at an
exponential rate as we increase the level of the Riemann surface. If by θ ∈ [(k − 1)π ,
(k + 1)π) we denote the arguments of the kth level of the surface RC , k ∈ Z, and by
θk := kπ , k ∈ Z, then the maximal radii r(θk) by levels k ∈ Z decrease at most at the rate

Ke−D
√

(|k|π)/2, |k| → ∞ for some D > 0, K > 0.

In [7, Definition 2.3], a larger parabolic generalized Dulac class is introduced. It
contains parabolic Dulac germs. We repeat the definition of parabolic generalized Dulac
germs in Definition 1.4 below. The Dulac asymptotic expansion requested in Definition 1.1
of Dulac germs is substituted by a particular transserial power-logarithmic asymptotic
expansion.

In this paper we give realization results for any given sequence of moduli satisfying
some uniform bound in the parabolic generalized Dulac class, but for parabolic generalized
Dulac germs defined on a smaller domain that we call a standard linear domain. For
technical reasons in the Cauchy–Heine construction, on the standard quadratic domain
we get realization results by germs for which we are unable to prove unicity of the
transserial asymptotic expansion after the first three terms. To be able to define the
unique transserial asymptotic expansion of a germ of a certain type, we should be able
to prescribe a canonical method of summation, or section function [9], at limit ordinal
steps. In the linear case, the estimates of the Cauchy–Heine integrals give us sufficiently
good Gevrey-like bounds, and thus a canonical way to attribute the sum, at limit ordinal
steps. This canonical choice is the one defining parabolic generalized Dulac germs and
expansions; see Definitions 1.3 and 1.4 below. On the other hand, the bounds in our
construction on standard quadratic domains are weaker.

It is important to note that the germ obtained by Cauchy–Heine construction on a linear
domain is not the restriction of the germ constructed on a larger quadratic domain, since we
apply Cauchy–Heine integrals along different lines of integration; see (3.8) under condition
(3.9) for standard quadratic domains or (3.10) for standard linear domains. For details, see
Remarks 3.6 and 5.2.

By [3, 10], a standard linear domain is not sufficiently large to apply Phragmen–Lindelöf
and get injectivity of the mapping f �→ f̂ , where f̂ is the generalized Dulac asymptotic
expansion of f .

Definition 1.2. A standard linear domain R̃a,b, a > 0, b ≥ 0, in the logarithmic chart is a
subset of C+ given by

R̃a,b :=
{
ζ ∈ C+ : b − aRe(ζ ) < Im(ζ ) < −b + aRe(ζ ), Re(ζ ) >

b

a

}
,

see Figure 2.
Analogously, by Ra,b we denote the image by z = e−ζ of R̃a,b. This is a subset of the

Riemann surface of the logarithm.

We recall from [7] the definition of the parabolic generalized Dulac class. We will call
an �-cusp an open cusp that is the image of an open sector V of positive opening at 0 by
the change of variables � = −(1/log z), and we will denote it by S = �(V ); see Figure 3.
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FIGURE 2. Several standard linear domains R̃a,b , a > 0, b ≥ 0, in the logarithmic chart.
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FIGURE 3. �-cusp.

Any open �-cusp �(V ′) ⊂ S, where V ′ ⊂ V is a proper subsector, will be called a proper
�-subcusp of S.

Definition 1.3. (log-Gevrey asymptotic expansions on �-cusps [7, Definition 4.1]) Let F be
a germ analytic on an �-cusp S = �(V ). We say that F admits F̂ (�) = ∑∞

k=0 ak�
k , ak ∈ C,

as its log-Gevrey asymptotic expansion of order m > 0 if, for every proper �-subcusp S ′ =
�(V ′) ⊂ S, V ′ ⊂ V , there exists a constant CS′ > 0 such that, for every n ∈ N, n ≥ 2, we
have ∣∣∣∣F(�) −

n−1∑
k=0

ak�
k

∣∣∣∣ ≤ CS′ · m−n · logn n · e−(n/log n)|�|n, � ∈ S′.

For more details on properties of log-Gevrey classes and for the proof of their
closedness to algebraic operations +, · and to differentiation, see [7, §4]. We state here
just the following variation of Watson’s lemma for log-Gevrey expansions, which will
be of immediate importance for the definition and the uniqueness of generalized Dulac
expansions. If F̂ (�) is the log-Gevrey asymptotic expansion of order m > 0 of a function
F analytic on an �-cusp S = �(V ), where V is a sector of opening strictly larger than π/m,
then F is the unique analytic function on S that admits F̂ (�) as its log-Gevrey asymptotic
expansion of order m. The proof can be found in [7, §4, Corollary 4.4].

We prove in [7, Proposition 2.2] that every parabolic germ f on RC (respectively, Ra,b)
that satisfies the uniform asymptotics

|f (z) − (z − azα�m)| ≤ c|zα�m+1|, z ∈ RC (respectively, Ra,b), α > 1, m ∈ Z,

a 
= 0, c > 0,
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FIGURE 4. Outline of the dynamics of a generalized Dulac germ on petals Ṽ ±
j , j ∈ Z, along a standard quadratic

domain R̃C in the logarithmic chart, case a > 0 in (1.3) [7, Figure 3.1].

has a local flower-like dynamics at the origin. That is, RC (respectively, Ra,b) is a union
of countably many overlapping invariant attracting and repelling petals (a petal is a union
of sectors whose openings increase continuously, up to some fixed opening, while their
radii decrease; see, for example, [5]) V +

j (respectively, V −
j ), j ∈ Z, centered at directions

a−1/(α−1) (respectively, (−a)−1/(α−1)), and of opening 2π/(α − 1).
The dynamics in the ζ -variable on a standard quadratic domain R̃C is shown on

Figure 4. The sectors of opening θ > 0 in the z-variable become horizontal strips of
width θ > 0 in the ζ -variable. Analogously, the images of petals of opening 2π/(α − 1)

in the z-variable are open sets tangentially approaching strips of width 2π/(α − 1), as
Im(ζ ) → +∞, in the ζ -variable. We denote them in the ζ -variable by Ṽ +

j and Ṽ −
j , j ∈ Z;

see Figure 4. In an abuse of terminology, in the ζ -variable we also call them petals.

Definition 1.4. (Parabolic generalized Dulac germs [7, Definition 2.3]) We say that a
parabolic germ f , analytic on a standard quadratic domain RC (or standard linear domain
Ra,b), that maps {arg(z) = 0} ∩ RC (respectively, {arg(z) = 0} ∩ Ra,b) to itself, satisfying

|f (z) − z + azα�m| ≤ c|zα�m+1|, a 
= 0, α > 1, m ∈ Z, c > 0,

z ∈ RC (respectively, z ∈ Ra,b),
(1.3)

is a parabolic generalized Dulac germ if, on each of its invariant petals V ±
j , j ∈ Z, of

opening 2π/(α − 1), it admits an asymptotic expansion of the form

f (z) = z +
n∑

i=1

zαi R
j ,±
i (�) + o(zαn+δn), δn > 0,

for every n ∈ N, as z → 0 on V ±
j . Here, α1 = α, αi > 1 are strictly increasing to +∞ and

finitely generated, and R
j ,±
i (�) are analytic functions on open cusps �(V ±

j ) which admit

common log-Gevrey asymptotic expansions R̂i(�) of order strictly larger than (α − 1)/2,
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as � → 0:

R̂i(�) =
∞∑

k=Ni

ai
k�

k , ai
k ∈ R, Ni ∈ Z.

We then say that the transseries f̂ given by

f̂ (z) := z +
∞∑
i=1

zαi R̂i(�) (1.4)

is the unique generalized Dulac asymptotic expansion of f . Such f̂ is called a parabolic
generalized Dulac series.

Note that all coefficients of the expansion are real, due to the invariance of R+ under f .
Moreover, we assume in what follows that a > 0 in (1.3). That is, R+ ∩ RC is an

attracting direction. If a < 0, we consider the inverse generalized Dulac germ f −1. Indeed,
it was proven in [7, Proposition 8.2] that parabolic generalized Dulac germs form a group
under composition.

A generalized Dulac asymptotic expansion is an asymptotic expansion in the formal
class of transseries L̂(R). The class of power-logarithmic transseries L̂(R) was first
introduced in [8], as the class of transseries of the form

f̂ (z) =
∞∑
i=1

∞∑
m=Ni

ai,mzαi �m, ai,m ∈ R,

where αi > 0 are finitely generated and strictly increasing to +∞, and Ni ∈ Z, i ∈ N.
Here, � = 1/(−log z). As discussed in [9], an asymptotic expansion of a germ in L̂(R) is
in general neither well defined nor unique. The generalized Dulac expansion is a sectional
asymptotic expansion (see [9] for precise definition of sections) that becomes unique after a
canonical choice of section functions (the summation method) at limit ordinal steps—here,
the log-Gevrey sums of a certain order.

The parabolic Dulac (almost regular in [2]) germs from Definition 1.1 are trivially
parabolic generalized Dulac germs. In that case we have a canonical choice for summation
at limit ordinal steps, since R̂i in (1.4) are polynomials in �−1. Polynomial functions in �−1

are convergent Laurent series in �.
Recall the following formal classification result from [8], repeated in [7] for the case

of real coefficients. By a normalizing change of variables ϕ̂ ∈ L̂(R) of the form ϕ̂(z) =
cz + h.o.t. (higher-order terms, lexicographically with respect to orders of monomials),
c 
= 0, every parabolic transseries f̂ ∈ L̂(R) of the form

f̂ (z) = z − azα�m + h.o.t., a > 0, α > 1, m ∈ Z,

can be reduced to a formal normal form given as a formal time-1 map of a vector field:

f̂0 := Exp(X0).id = z − zα�m + ρz2α−1�2m+1 + h.o.t.,

where X0(z) = −zα�m

1 + (−α/2)zα−1�m + ((m/2) + ρ)zα−1�m+1
d

dz
.

(1.5)

The triple (α, m, ρ), α > 1, m ∈ Z, ρ ∈ R, are called the L̂(R)-formal invariants of f̂ .
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In [7], we introduced the notion of analytic conjugacy or analytic equivalence of
parabolic generalized Dulac germs; see [7, Definition 2.4]. We repeat the definition here.
For simplicity, we work here with normalized parabolic generalized Dulac germs whose
second coefficient is equal to −1. Each parabolic generalized Dulac germ of the form
f (z) = z − azα�m + o(zα�m), a > 0, can be brought into a parabolic generalized Dulac
germ of the form

f (z) = z − zα�m + o(zα�m), α > 1, m ∈ Z. (1.6)

This is done simply by a real homothety ϕ(z) = a1/(α−1)z, taking a1/(α−1) ∈ R+, which
preserves the invariance of R+ in the definition of generalized Dulac germs.

In the case where a < 0, we work with the inverse parabolic generalized Dulac germ.

Definition 1.5. (Analytic equivalence of parabolic generalized Dulac germs [7, Definition
2.4]) We say that two normalized parabolic generalized Dulac germs f and g of the form
(1.6) defined on a standard quadratic domain RC (or on a standard linear domain Ra,b)

are analytically conjugated if:
(1) their generalized Dulac asymptotic expansions f̂ and ĝ are formally conjugated in

L̂(R) (that is, have the same L̂(R)-formal invariants (α, m, ρ), α > 1, m ∈ Z, ρ ∈
R); and

(2) there exists a germ of a diffeomorphism h(z) = z + o(z) of a standard quadratic
domain RC (or a standard linear domain Ra,b), such that

g = h−1 ◦ f ◦ h on RC (respectively, Ra,b).

In [7, Theorem B] we derived the following result on the moduli of analytic classifica-
tion for parabolic generalized Dulac germs in the Ecalle–Voronin sense. For more details,
see [7].

Let f be a parabolic generalized Dulac germ defined on a standard quadratic (or linear)
domain, belonging to L̂(R)-formal class (2, m, ρ), m ∈ Z, ρ ∈ R. As in [7], α = 2 is
taken for simplicity. This can be done without loss of generality, since any normalized
generalized Dulac germ of the form (1.6) can be brought into the form f (z) = z − z2�m +
o(z2�m), m ∈ Z, by the change of variables

z �→ (α − 1)−(m/α−1)z1/α−1, (1.7)

analytic on a standard quadratic (i.e. standard linear) domain and depending only on α

and m. Therefore, two parabolic generalized Dulac germs are analytically conjugated if
and only if, after the change of coordinates (1.7), the corresponding germs are analytically
conjugated. For details, see [7, Proposition 9.1].

Let (�
j
±)j∈Z be the analytic Fatou coordinates of f on attracting and repelling petals

V
j
±, j ∈ Z, along the domain (standard quadratic or standard linear). Recall that a Fatou

coordinate �
j
± of a generalized Dulac germ f is an analytic map, defined on the petal V

j
±,

j ∈ Z, conjugating the map f on the petal to a translation by 1:

�
j
± ◦ f − �

j
± = 1 on V

j
±, j ∈ Z.
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The existence and the uniqueness, up to an additive constant, of the petalwise analytic
Fatou coordinate of a generalized Dulac germ under some additional assumption on its
power-logarithmic asymptotic expansion are proven in [7, Theorem A].

We proved in [7, Theorem B] that there exists a symmetric (with respect to the
R+-axis) double sequence (h

j

0, h
j∞)j∈Z of pairs of analytic germs of diffeomorphisms

from Diff(C, 0), defined on discs of radii σj bounded from below by

σj ≥ K1e
−KeC

√|j |
, j ∈ Z, for some K1, K , C > 0, (1.8)

that satisfy

h
j

0(t) := e−2πi�
j−1
+ ◦(�

j
−)−1(−log t/2πi), t ∈ (C, 0),

h
j∞(t) := e2πi�

j
−◦(�

j
+)−1(log t/2πi), t ∈ (C, 0), j ∈ Z.

(1.9)

We proved that this sequence of pairs of diffeomorphisms and the formal class (2, m, ρ)

form a complete system of analytic invariants of a parabolic generalized Dulac germ f .
These diffeomorphisms are called the horn maps for f .

As in [7], we say that the sequence of pairs (h
j

0, h
j∞)j∈Z of analytic germs of

diffeomorphisms is symmetric with respect to R+ if the following holds (on the domains
of definition of h

j

0 and h
j∞, j ∈ Z):

(h
−j+1
0 )−1(t) ≡ h

j∞(t), t ∈ (C, 0), j ∈ Z. (1.10)

This symmetry of moduli for parabolic generalized Dulac germs comes from the invariance
of R+ under f , by the Schwarz reflection principle; see [7, Proposition 9.2].

Note that the lower bound (1.8) comes from the standard quadratic domain of definition
of f . However, the construction of moduli of analytic classification from [7, Theorem B]
goes through in the same way for parabolic generalized Dulac germs defined on smaller
standard linear domains. In the case where the germ is defined only on a standard linear
domain, it is easy to see that the radii of definition of its horn maps may decrease more
quickly. More precisely, they are bounded from below by

σj ≥ K1e
−KeC|j |

, j ∈ Z, for some K1, K , C > 0. (1.11)

By horn maps we in fact mean the equivalence classes of germs, up to the following
identifications. Two sequences

(h
j

0, h
j∞; σj )j∈Z and (k

j

0 , k
j∞; σ̆j )j∈Z (1.12)

with maximal radii of convergence σj (respectively, σ̆j ), satisfying lower bounds of the
type (1.8) or (1.11), are equivalent if there exist sequences (βj )j∈Z, (γj )j∈Z ∈ C

∗ such
that

h
j

0(t) = βj−1 · kj

0 (γj t), h
j∞(t) = γj · kj∞(βj t), j ∈ Z. (1.13)

Additionally, we assume that the sequences of pairs (1.12) are both symmetric as in
(1.10), since they represent the moduli of generalized parabolic Dulac germs for which R+
is invariant. In this case, the complex sequences (γj )j∈Z, (βj )j∈Z in equivalence relation
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(1.13) are not arbitrary. Indeed, if such sequences exist, they should, by (1.10) and (1.13),
be related to germs of diffeomorphisms k

j

0 and k
j∞, j ∈ Z, by the following:

1
γ−j+1

· k
j∞

(
1

β−j

t

)
= γj · k

j∞(βj t), t ∈ (C, 0), j ∈ Z. (1.14)

By basic calculations (comparing the coefficients with each power tk in the Taylor
expansion of (1.14)), depending on the nature of diffeomorphisms k

j∞, j ∈ Z, the equality
(1.14) is equivalent to the following conditions on the sequences (βj )j∈Z and (γj )j∈Z:

(1) γj · γ−j+1 = 1/(β−j · βj ), for j ∈ Z for which k
j∞ is linear;

(2) βj · β−j = r , γj · γ−j+1 = 1/r , for any r ∈ C such that rm = 1, for j ∈ Z for
which the non-constant part (the part obtained by subtracting from k

j∞/id the
constant term in its Taylor expansion) of k

j∞/id is a diffeomorphism in the variable
tm, for some m ∈ N, m ≥ 2;

(3) βj · β−j = 1, γj · γ−j+1 = 1, for all other j ∈ Z (the generic case).

2. Main results
For simplicity, as in [7], we consider here only parabolic generalized Dulac germs of order
2 in variable z, defined on a standard quadratic domain RC ,

f (z) = z − az2�m + o(z2�m), a > 0, m ∈ Z−.

The more general case α > 1 can be reduced to the case α = 2, as discussed above.
Also, the realization result for α > 1 can be concluded in the same way as for α = 2. The
number of petals on each level of the surface of the logarithm depends on α.

In this paper we solve the realization problem in the subset of prenormalized parabolic
generalized Dulac germs:

f (z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1), m ∈ Z, ρ ∈ R.

Note that its formal invariants are (2, m, ρ).
By Proposition A.1 in the Appendix, the sectorial Fatou coordinate of prenormalized

germ f is of the form

�±
j = �nf + R±

j on V ±
j ,

where �nf is the Fatou coordinate of the formal normal form f0 of f , globally analytic on
RC , and R±

j = o(1), as z → 0, z ∈ V ±
j , are analytic on petals. Here, the formal normal

form f0 of f is an analytic germ on RC , given as the time-1 map of an analytic vector field
on RC :

f0 := Exp(X0).id = z − z2�m + ρz3�2m+1 + o(z3�2m+1),

X0(z) = −z2�m

1 − z�m + ((m/2) + ρ)z�m+1
d

dz

(2.1)

(see (1.5) in the case α = 2).
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2.1. Main theorems. Let

f (z) = z − z2�m + o(z2�m), m ∈ Z,

be a parabolic generalized Dulac germ. Let �±
j , j ∈ Z, be its sectorially analytic Fatou

coordinates on petals V ±
j , precisely defined in [7, Theorem A].

To a sequence of horn maps of f , (h
j

0, h
j∞)j∈Z defined in [7, Theorem B] and in (1.9),

there naturally corresponds a sequence of exponentially small cocycles (G
j

0, G
j∞)j∈Z,

defined and analytic on intersections V
j

0 and V
j∞ of consecutive petals, such that

G
j

0(z) := g
j

0 (e−2πi�
j
−(z)), z ∈ V

j

0 ,

G
j∞(z) := g

j∞(e2πi�
j
+(z)), z ∈ V

j∞.

Here, V
j

0 := V
j−1
+ ∩ V

j
− and V

j∞ := V
j
− ∩ V

j
+, j ∈ Z (see Figure 4), and g

j

0 , g
j∞, j ∈ Z,

are analytic germs at t ≈ 0, such that

(h
j

0)
−1(t) = te2πig

j
0 (t), h

j∞(t) = te2πig
j∞(t), t ≈ 0. (2.2)

The following is an equivalent formulation of (1.9) using G
j

0,∞ and g
j

0,∞, j ∈ Z:

�
j−1
+ (z) − �

j
−(z) = g

j

0 (e−2πi�
j−1
+ (z)) = G

j

0(z), z ∈ V
j

0 ,

�
j
−(z) − �

j
+(z) = g

j∞(e2πi�
j
+(z)) = G

j∞(z), z ∈ V
j∞, j ∈ Z.

PROPOSITION 2.1. (Uniform bounds by levels for horn maps of parabolic general-
ized Dulac germs on standard linear or quadratic domains) Let f (z) = z − z2�m +
ρz3�2m+1 + o(z3�2m+1), m ∈ Z, ρ ∈ R, be a prenormalized analytic germ on a standard
quadratic or standard linear domain. Assume that there exists a constant C > 0 such that

|f (z) − z + z2�m − ρz3�2m+1| ≤ C|z3�2m+2| (2.3)

on some quadratic or linear subdomain. Let (h
j

0, h
j∞)j∈Z, be a sequence of its horn

maps (constructed in [7, Theorem A]). Let g
j

0,∞(t), j ∈ Z, be defined as above in (2.2).
Then the following uniform bounds hold (uniform in j): there exist uniform constants
c1, c2, d1, d2 > 0 such that, equivalently,

|hj

0,∞(t) − t | ≤ d1|t |2, |(hj

0,∞)′(t) − 1| ≤ d2|t |, (2.4)

or

|gj

0,∞(t)| ≤ c1|t |, |(gj

0,∞)′(t)| ≤ c2, 0 < |t | ≤ σj , j ∈ Z. (2.5)

The proof, which is a consequence of uniform asymptotics (2.3), is in the Appendix.
Note that parabolic prenormalized generalized Dulac germs, due to (1.3), satisfy

assumption (2.3), so the sequences of pairs of their horn maps satisfy uniform bounds
(2.4).

We now state two realization theorems, Theorem A and Theorem B. They both deal
with the following realization problem: given a formal class (2, m, ρ), m ∈ Z, ρ ∈ R, and
a sequence of pairs of analytic germs of diffeomorphisms (h

j

0, h
j∞)j∈Z fixing the origin,
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symmetric with respect to R+, with radii of convergence σj satisfying a lower bound of
the type (1.8) and satisfying bounds (2.4), does there exist a parabolic generalized Dulac
germ belonging to formal class (2, m, ρ) and realizing this sequence as its sequence of
horn maps? This result can be considered as a generalization of the realization result for
regular (i.e. holomorphic) parabolic germs in [12].

First, in Theorem A, we answer the realization question positively in the class of
prenormalized germs of the form

f (z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1), z ∈ RC , (2.6)

leaving R+ invariant and analytic on a standard quadratic domain. However, we do
not claim the uniqueness of the transserial asymptotic expansion of f in L̂(R) after
the first three terms given in (2.3). In particular, we do not claim that the constructed
germ is a parabolic generalized Dulac germ: we are unable to prove that it admits the
generalized Dulac asymptotic expansion as defined in Definition 1.4, with sufficiently
strong log-Gevrey bounds at limit ordinal steps; see Remark A.3.

In Theorem B, we realize any sequence of pairs satisfying bounds (2.4) by parabolic
generalized Dulac germs of the form (2.6) belonging to the formal class (2, m, ρ), but
on a smaller standard linear domain. Note that such germs admit a well-defined unique
generalized Dulac asymptotic expansion. On smaller standard linear domains the map
f �→ f̂ , for parabolic generalized Dulac germs f , is well defined, but the domain is too
small to apply Phragmen–Lindelöf [3] and get injectivity.

Note that in [7, Theorem B] we construct the moduli of parabolic generalized Dulac
germs defined on standard quadratic domains. However, the result can be deduced in
the same way for parabolic generalized Dulac germs on smaller standard linear domains,
with the only difference that the rate of decrease of moduli follows the rule (1.11) instead
of (1.8).

To conclude, we prove in Theorem B that, on a standard linear domain, there is a
bijective correspondence between analytic classes of parabolic prenormalized generalized
Dulac germs belonging to the same formal class and all sequences of pairs of analytic
germs of diffeomorphisms satisfying bounds (1.11) and (2.4), with appropriate identifica-
tions on both sides.

THEOREM A. (Realization by parabolic germs on a standard quadratic domain) Let ρ ∈ R,
m ∈ Z. Let (h

j

0, h
j∞; σj )j∈Z be a sequence of pairs of analytic germs from Diff(C, 0),

symmetric with respect to R+ as in (1.10), and with maximal radii of convergence σj

bounded from below by

σj ≥ K1e
−KeC

√|j |
, j ∈ Z,

for some C, K , K1 > 0. Let the elements of the sequence on their respective domains of
definition satisfy the uniform bound (2.4). Then there exists a germ

f (z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1), (2.7)

analytic on a standard quadratic domain, leaving R+ invariant and satisfying (2.3), that
realizes this sequence as its horn maps, up to identifications (1.13).
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To be able to define horn maps of such a germ, recall from [7, Theorem A] that a germ
f analytic on a standard quadratic domain and satisfying uniform estimate (2.3) admits
petalwise dynamics and the existence of petalwise analytic Fatou coordinates along the
standard quadratic domain, as described in [7, Theorem A] and recalled here in Figure 4.
The same can be deduced for standard linear domains.

THEOREM B. (Realization by parabolic generalized Dulac germs on a standard linear
domain) Let ρ ∈ R, m ∈ Z. Let (h

j

0, h
j∞; σj )j∈Z be a sequence of pairs of analytic germs

from Diff(C, 0), symmetric with respect to R+ as in (1.10), and with maximal radii of
convergence σj bounded from below by

σj ≥ K1e
−KeC|j |

, j ∈ Z,

for some C, K , K1 > 0. Let the elements of the sequence on their respective domains of
definition satisfy the uniform bound (2.4). Then there exists a prenormalized parabolic
generalized Dulac germ

g(z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1),

analytic on a standard linear domain and satisfying (2.3), that realizes this sequence as its
horn maps, up to identifications (1.13). In particular, g admits a unique generalized Dulac
asymptotic expansion, as z → 0.

Note that on a standard linear domain we realize any sequence of moduli by a
prenormalized parabolic generalized Dulac germ belonging to any formal class (2, m, ρ),
m ∈ Z, ρ ∈ R.

Remark 2.2. Note the difference between Theorem A and Theorem B. In Theorem A we
realize a sequence of pairs of diffeomorphisms as moduli of a parabolic diffeomorphism
f on a larger (quadratic) domain, but we do not claim that f admits the generalized
Dulac asymptotic expansion. In Theorem B, the constructed parabolic diffeomorphism
g realizing the moduli has the required asymptotic expansion, but is defined on a smaller
(linear) domain.

In the course of the proof of Theorems A and B in §§3–5, it can be seen that the
parabolic generalized Dulac germ f constructed in Theorem B is not just the restriction
to a linear domain Ra,b ⊂ RC of a germ g constructed in Theorem A for the same
sequence of pairs of horn maps on a larger quadratic domain RC ; see Remarks 3.6 and 5.2.
Therefore, we have not proven that the parabolic generalized Dulac germ constructed
on a linear domain and realizing the given sequence of pairs can be extended as an
analytic germ to a standard quadratic domain. As far as we know, nothing can be directly
concluded about Gevrey nature and uniqueness of the asymptotic expansion after the first
three terms of the germ constructed in Theorem A on a standard quadratic domain and
realizing the given sequence of pairs of horn maps, or of any other representative of the
same analytic class on a standard quadratic domain. This prevents extending the realization
result in the class of parabolic generalized Dulac germs from linear to a larger, standard
quadratic domain, which remains an open question. However, we can deduce the following
corollary.
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COROLLARY 2.3. Let (h
j

0, h
j∞)j∈Z be a sequence of pairs of analytic diffeomorphisms,

symmetric with respect to R+ as in (1.10), and satisfying (2.4). Let m ∈ Z and ρ ∈ R. Let
f (z) be the germ defined on a standard quadratic domain RC of the form

f (z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1),

which by Theorem A realizes the above sequence of pairs as its horn maps. Moreover,
let g(z) be the parabolic generalized Dulac germ of the same form defined on a standard
linear domain Ra,b ⊂ RC that by Theorem B realizes the above sequence of pairs as its
horn maps. Then there exists an analytic diffeomorphism ϕ(z) = z + o(z) on Ra,b, such
that ϕ−1 ◦ g ◦ ϕ can be extended from Ra,b analytically to the germ f on RC .

Proof. From the equality of horn maps of f and g on Ra,b ⊂ RC , by the proof of
[7, Theorem B] it follows that f and g are analytically conjugated on Ra,b by ϕ(z) =
z + o(z). The statement follows by uniqueness of analytic continuation from Ra,b

to RC .

However, since f is not in general parabolic generalized Dulac, we cannot deduce
anything about the nature and uniqueness of the power-logarithmic asymptotic expansion
of the conjugacy ϕ from Corollary 2.3.

3. Realization of infinite cocycles on standard linear and standard quadratic domains
In this section we prove Propositions 3.1 and 3.2 which are realization propositions for
exponentially small cocycles on standard quadratic domains RC ⊂ R, or standard linear
domains Ra,b ⊂ R, respectively. Here, R is the Riemann surface of the logarithm. We
adapt the construction from [6] for realization of a cocycle in C, using Cauchy–Heine
integrals. Propositions 3.1 and 3.2 are prerequisites for proving Theorems A and B.

In §4, we prove Theorem A. Motivated by [11] and realization of analytic moduli for
saddle-node vector fields, we find a (prenormalized) parabolic germ f in any formal class
(2, m, ρ), m ∈ Z, ρ ∈ R, analytic on a standard quadratic domain, such that its differences
of sectorial Fatou coordinates realize a given cocycle on intersections of its petals. We use
Proposition 3.1 at each step of the iterative construction of the Fatou coordinate, starting
the construction with the Fatou coordinate of the formal normal form and then improving
the approximation at each step. Note that f is just analytic on a standard quadratic domain;
we do not claim any asymptotic expansion in L̂(R) of f after the three initial terms.

In §5, we prove Theorem B. Using Proposition 3.2, we prove that, if we perform the
construction from §4 on a smaller standard linear domain, we get that f additionally
admits a generalized Dulac asymptotic expansion. In this proof, for standard quadratic
domains instead of standard linear, a log-Gevrey property of sufficient order on limit
ordinal steps of the expansion does not seem to hold, as shown in Remark A.3. For
standard quadratic domains there is a technical problem of too long lines of integration in
Cauchy–Heine integrals. This results in insufficient Gevrey-type estimates which prevent
canonical summability on limit ordinal steps, and gives non-uniqueness of asymptotic
expansion in L̂(R).
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Classically (see, for example, [6]), we say that a function h defined and holomorphic
on an open sector V is exponentially flat of order m > 0 at 0 in V if, for every subsector
V ′ ⊂ V , there exist constants C > 0 and M > 0 such that

|h(z)| ≤ Ce−(M/|z|m), z ∈ V ′. (3.1)

PROPOSITION 3.1. (Realization of infinite cocycles on standard quadratic domains) Let
V

j

0 (respectively, V j∞), j ∈ Z, denote open petals of opening π centered at directions (4j −
3)π/2 (respectively, (4j − 1)π/2), j ∈ Z, along a standard quadratic domain. That is, if
we denote by rj the radii of V j

0 and V
j∞ at their central directions, then there exist constants

C > 0, K > 0 such that

rj ≥ Ke−C
√|j |, j ∈ Z. (3.2)

Let V +
j (respectively, V −

j ), j ∈ Z, denote the open cover (this means that the standard

quadratic domain is covered by open petals as in Figure 4; the petals V
j

0 and V
j∞, j ∈ Z,

are the intersection petals of pairs of consecutive petals) of the standard quadratic domain
by petals of opening 2π centered at directions 2jπ (respectively, (2j − 1)π ), such that

V
j+1
0 = V −

j+1 ∩ V +
j , V

j∞ = V −
j ∩ V +

j , (3.3)

are their intersection petals.
Let (G

j

0, G
j∞)j∈Z be pairs of holomorphic functions on V

j

0 and V
j∞, j ∈ Z, not

identically equal to zero and uniformly flat of order m > 0 at 0. That is, for subsectors
U

j

0 ⊂ V
j

0 and U
j∞ ⊂ V

j∞, centered at central lines of V
j

0 and V
j∞, and of uniform opening

in j ∈ Z, there exist C > 0 and M > 0 independent of j , such that

|Gj

0,∞(z)| ≤ Ce−(M/|z|m), z ∈ U
j

0,∞, j ∈ Z. (3.4)

Then there exist analytic functions R±
j (z) = o(1), as z → 0, defined on petals V ±

j , j ∈ Z,
such that

R
j−1
+ (z) − R

j
−(z) = G

j

0(z), z ∈ V
j

0 ,

R
j
−(z) − R

j
+(z) = G

j∞(z), z ∈ V
j∞, j ∈ Z.

(3.5)

Moreover, for subsectors S±
j ⊂ V ±

j centered at central lines of V ±
j and of uniform opening

in j , there exists a uniform (in j) constant C > 0 such that

|R±
j (z)| ≤ C|�|, z ∈ S±

j , j ∈ Z. (3.6)

Here, � := −(1/log z).

PROPOSITION 3.2. (Realization of infinite cocycles on standard linear domains) Let all
assumptions and notations as in Proposition 3.1 hold, except that (3.2) is replaced by

rj ≥ Ke−C|j |, j ∈ Z, C, K > 0. (3.7)

Let {V +
j , V −

j }j∈Z be an open cover of a standard linear domain by petals of opening

2π centered at directions 2jπ (respectively, (2j − 1)π ), and let V
j

0 and V
j∞ be the

intersections of consecutive petals as in (3.3), j ∈ Z. Then there exist analytic functions
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R±
j (z) = o(1), as z → 0, defined on petals V ±

j , j ∈ Z, such that (3.5) and (3.6) hold.
Moreover, if we put � := −(1/log z) and

R̆±
j (�) := R±

j (z), � ∈ �(V ±
j ), j ∈ Z,

then there exists R̂(�) ∈ C[[�]], the common log-Gevrey asymptotic expansion of order m

of any R̆±
j (�), j ∈ Z, as � → 0 in �-cusp �(V ±

j ).

We will say that functions (R±
j (z))j∈Z or transseries R̂(�) ∈ C[[�]] constructed in

Propositions 3.1 and 3.2 realize the given cocycle (G
j

0, G
j∞)j∈Z on a standard quadratic

(respectively, standard linear) domain.
We prove Propositions 3.1 and 3.2 simultaneously. The proof is based on the following

Lemmas 3.3–3.5.
For simplicity, we work in the logarithmic chart ζ = −log z. Put

G̃
j

0,∞(ζ ) := G
j

0,∞(e−ζ ), j ∈ Z.

Then G̃
j

0,∞ are defined and analytic on petals (in the ζ -variable, open sets tangential, as
Re(ζ ) → ∞, to horizontal strips of a given width, which corresponds to the opening of
the petal in the z-variable) in the logarithmic chart Ṽ

j

0,∞ = −log(V
j

0,∞). The petals Ṽ
j

0,∞
in the logarithmic chart are bisected by the lines ending at Re(ζ ) = ∞:

Cj

0 · · ·
[

−log rj + i(4j − 3)
π

2
, +∞ + i(4j − 3)

π

2

]
,

Cj∞ · · ·
[

−log rj + i(4j − 1)
π

2
, +∞ + i(4j − 1)

π

2

]
,

(3.8)

corresponding to the central rays [0, rj e
i(4j−3)π/2] of V

j

0 , that is, [0, rj e
i(4j−1)π/2] of V

j∞
in the original z-chart. Note that (3.2) gives

−log rj ≤ C
√|j |, j ∈ Z, (3.9)

for a standard quadratic domain from Proposition 3.1, and (3.7) gives

−log rj ≤ C|j |, j ∈ Z, (3.10)

for a standard linear domain from Proposition 3.2.
In the ζ -chart, (3.4) becomes: for substrips Ũ

j

0,∞ ⊂ Ṽ
j

0,∞ bisected by Cj

0,∞ and of
uniform opening in j , there exist M , C > 0 such that

|G̃j

0,∞(ζ )| ≤ Ce−MemRe(ζ )

, ζ ∈ Ũ
j

0,∞, j ∈ Z. (3.11)

That is, G̃
j

0,∞, j ∈ Z, are uniformly (in j ∈ Z) superexponential of order m > 0, as

Re(ζ ) → ∞ in Ṽ
j

0,∞.

LEMMA 3.3. (Cauchy–Heine integrals) Let R̃+
0,j (respectively, R̃+

∞,j ), j ∈ Z, be the parts

of the standard quadratic domain R̃C in the logarithmic chart containing Ṽ
j

0 (respectively,
Ṽ

j∞) and all points of the domain above Ṽ
j

0 (respectively, Ṽ
j∞). Equivalently, let R̃−

0,j

(respectively, R̃−
∞,j be the parts containing Ṽ

j

0 (respectively, Ṽ
j∞) and all points of the
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(4j – 1)π/2

2jπ

(4j – 3)π/2

(2j – 1)π

FIGURE 5. Outline of position of petals Ṽ ±
j and Ṽ

j

0,∞, j ∈ Z, on a standard quadratic domain R̃C in the
logarithmic chart.

domain below them; see Figure 5. Let (G̃j

0, G̃
j∞)j∈Z defined on (Ṽ

j

0 , Ṽ
j∞)j∈Z, be an infinite

cocycle, uniformly flat of order m > 0, as in (3.4).
(1) Let the functions F̃±

0,j and F̃±
∞,j , j ∈ Z, be defined as the Cauchy–Heine integrals of

G̃0,j , G̃∞,j along lines Cj

0,∞:

F̃±
0,j (ζ ) := 1

2πi

∫
Cj

0

G̃
j

0(w)

w − ζ
dw = 1

2πi

∫ +∞+i(4j−3)π/2

−log rj +i(4j−3)π/2

G̃
j

0(w)

w − ζ
dw,

F̃±
∞,j (ζ ) := 1

2πi

∫
Cj∞

G̃
j∞(w)

w − ζ
dw = 1

2πi

∫ +∞+i(4j−1)π/2

−log rj +i(4j−1)π/2

G̃
j∞(w)

w − ζ
dw.

(3.12)

They are well defined and analytic on the standard quadratic domain R̃C strictly
above (+) (respectively, below (−)) the integration line.

(2) By varying the integration paths inside the petals Ṽ
j

0,∞, F̃±
0,j (respectively, F̃±

∞,j ) may
be extended analytically to the whole domains R̃±

0,j (respectively, R̃±
∞,j ).

(3) We have that

F̃+
0,j (ζ ) − F̃−

0,j (ζ ) = G̃
j

0(ζ ), ζ ∈ Ṽ
j

0 ,

F̃+
∞,j (ζ ) − F̃−

∞,j (ζ ) = G̃
j∞(ζ ), ζ ∈ Ṽ

j∞.
(3.13)

The statement of this lemma holds even without the existence of the uniform constant
in j ∈ Z in bound (3.4).

Proof. We use the Cauchy–Heine construction based on the classical Cauchy’s residue
theorem. For more details on the Cauchy–Heine construction in C that we adapt here for
standard quadratic (linear) domains, see, for example, [4, 5].

(1) Obvious.
(2) Suppose that we wish to extend F̃−

0,j above the central line Cj

0 of petal Ṽ
j

0 . We

replace the integration path Cj

0 in the Cauchy–Heine integral by the union of a horizontal
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(4j – 3)π/2

(2j – 1)π

2jπ

FIGURE 6. The change of integration path in the ζ -variable and Cauchy’s integral theorem in the proof of
Lemma 3.3(2).

line (Cj

0 )′ above Cj

0 in Ṽ
j

0 and the portion of the boundary of the petal Ṽ
j

0 between the
two lines, denoted by Sj

0 ; see Figures 5 and 6. Here, (Cj

0 )′ is a horizontal line at some
height θ ∈ ((4j − 3)π/2, (2j − 1)π) in the standard quadratic domain in the ζ -variable.
It corresponds, in the z-variable, to the ray at angle θ inside the petal V

j

0 . For simplicity,
we are notationally imprecise, as we do not stress the dependence of (Cj

0 )′ and Sj

0 on the
height θ . Let γθ := (Cj

0 )′ ∪ Sj

0 be this new integration path. Then, for any ζ below Cj

0 , the
Cauchy–Heine integral along γθ is, by the Cauchy’s integral theorem, equal to F̃−

0,j . That

is, for ζ ∈ R̃C below Cj

0 , we get

F̃−
0,j (ζ ) := 1

2πi

∫
Cj

0

G̃
j

0(w)

w − ζ
dw = 1

2πi

∫
γθ

G̃
j

0(w)

w − ζ
dζ

= 1
2πi

∫
(Cj

0 )′

G̃
j

0(w)

w − ζ
dw + 1

2πi

∫
Sj

0

G̃
j

0(w)

w − ζ
dw;

see Figure 6.
Therefore, the new integral

∫
γθ

(G̃
j

0(w)/(w − ζ )) dw along γθ is the analytic extension

of F̃−
0,j up to the line (Cj

0 )′. By varying the line (Cj

0 )′ above the central line Cj

0 inside the

petal Ṽ
j

0 , we get the desired analytic extension up to the line at height (2j − 1)π . In this
way, F̃−

0,j (ζ ) given by formula (3.12) can be extended analytically to whole R̃−
0,j . The same

can be done for F̃+
0,j (ζ ) on R̃+

0,j and for F̃±
∞,j (ζ ) on R̃±

∞,j , j ∈ Z.
If we now write

χ̃
j

0 (ζ ) := 1
2πi

∫
Sj

0

G̃
j

0(w)

w − ζ
dw,

we notice that χ̃
j

0 (ζ ) is an analytic germ at ζ = ∞ (in the sense that ξ �→ χ̃
j

0 (1/ξ)

is analytic at ξ = 0), that is, that there exists Mj > 0 such that χ̃
j

0 (ζ ) is analytic for
ζ ∈ C, |ζ | > Mj . Consequently, it admits a Taylor asymptotic expansion in ζ−1, as
|ζ | → ∞. This will be important for later proofs.

We stress once again that here (Cj

0 )′ and Sj

0 , and therefore also χ̃
j

0 (ζ ) and Mj , depend
on the height θ of the line (Cj

0 )′ up to which we extend. They are dependent not only on the
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FIGURE 7. The residue theorem in the proof of Lemma 3.3(3).

petal, but also on the height in the petal up to which we extend. Here and in what follows,
we omit this dependence in the notation for simplicity.

(3) Since Ṽ
j

0 = R̃+
0,j ∩ R̃−

0,j , Ṽ
j∞ = R̃+

∞,j ∩ R̃−
∞,j , (3.13) follows directly by the

residue theorem after analytic extensions of F̃±
0,∞(ζ ) to R̃±

0,∞,j described in (2). To

illustrate, let us prove the first line of (3.13). Take any ζ ∈ Ṽ
j

0 . Take any two lines inside
petal Ṽ

j

0 such that ζ is strictly between them. Denote them by Cθ1 and Cθ2 , at heights
θ1 > θ2. Now, by part (2), we have

F̃+
0,j (ζ ) = 1

2πi

∫
Cθ2

G̃
j

0(w)

w − ζ
dw + 1

2πi

∫
Sθ2

G̃
j

0(w)

w − ζ
dw,

F̃−
0,j (ζ ) = 1

2πi

∫
Cθ1

G̃
j

0(w)

w − ζ
dw + 1

2πi

∫
Sθ1

G̃
j

0(w)

w − ζ
dw,

where Sθ1 (respectively, Sθ2 ) are the portions of the boundary of Ṽ
j

0 between the lines Cj

0
and Cθ1 (respectively, Cj

0 and Cθ2 ). Subtracting F̃+
0,j (ζ ) − F̃−

0,j (ζ ), the statement follows by
the residue theorem. See Figure 7.

LEMMA 3.4. Let (G̃
j

0, G̃
j∞)j∈Z be an infinite cocycle as described in Proposition 3.1

or 3.2. Let F̃±
0,j , F̃±

∞,j and their corresponding domains R̃±
0,j , R̃±

∞,j be as defined in
Lemma 3.3. Let

R̃+
j :=

(( j∑
k=−∞

F̃+
0,k +

j∑
k=−∞

F̃+
∞,k

)
+

( +∞∑
k=j+1

F̃−
0,k +

+∞∑
k=j+1

F̃−
∞,k

))∣∣∣∣
Ṽ +

j

, j ∈ Z,

R̃−
j :=

(( j∑
k=−∞

F̃+
0,k +

j−1∑
k=−∞

F̃+
∞,k

)
+

( +∞∑
k=j+1

F̃−
0,k +

+∞∑
k=j

F̃−
∞,k

))∣∣∣∣
Ṽ −

j

, j ∈ Z.

(3.14)

Then R̃±
j are well-defined analytic functions on petals Ṽ ±

j , j ∈ Z.
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2π

π

–π

–2π

–3π

3π

FIGURE 8. Illustration of formula (3.14) for R̃+
0 on Ṽ +

0 . The figure illustrates in which domains R̃±
0/∞,j the petal

Ṽ +
0 is fully contained. To get R̃+

0 , we sum the corresponding functions F̃±
0/∞,j from (3.12).

Moreover, the functions R̃±
j realize the cocycle (G̃

j

0, G̃
j∞)j∈Z:

R̃+
j−1(ζ ) − R̃−

j (ζ ) = G̃
j

0(ζ ), ζ ∈ Ṽ
j

0 ,

R̃−
j (ζ ) − R̃+

j (ζ ) = G̃
j∞(ζ ), ζ ∈ Ṽ

j∞, j ∈ Z.
(3.15)

As shown in Figure 8, to get functions R̃±
j defined by (3.14) on Ṽ ±

j , on corresponding

petal (strip) Ṽ ±
j we sum all functions F̃±

0,k , F̃±
∞,k , k ∈ Z, from (3.12) which are well defined

on Ṽ ±
j .

The proof of Lemma 3.4 is given in the Appendix. We prove that, for every j ∈ Z, the
series in (3.14) converges uniformly on compacts in Ṽ ±

j , thus defining analytic functions

R̃±
j on Ṽ ±

j by the Weierstrass theorem.

We prove in Lemma 3.5 the asymptotics for R̃±
j constructed on Ṽ ±

j in Lemma 3.4.

We have that R̃±
j (ζ ) = o(1), as Re(ζ ) → ∞ in Ṽ ±

j , moreover uniformly in j ∈ Z. Also,
for standard linear domains we show additionally the complete log-Gevrey asymptotic
expansion of R̃±

j (ζ ) in C[[ζ−1]], as Re(ζ ) → ∞ on Ṽ ±
j .

LEMMA 3.5. (log-Gevrey asymptotic expansion of R̃±
j (ζ ), j ∈ Z) Let R̃±

j , j ∈ Z, be

constructed as in Lemma 3.4 on petals Ṽ ±
j on a standard quadratic or a standard linear

domain.
(1) On both domains (standard linear and standard quadratic), there exist subdomains

(linear, quadratic) R̃C′ ⊂ R̃C such that, for substrips Ũj ⊂ Ṽ ±
j ∩ R̃C′ centered at

center lines of Ṽ ±
j and of width 0 < θ < 2π independent of j ∈ Z, there exists a

uniform in j ∈ Z constant Cθ > 0 such that

|R̃±
j (ζ )| ≤ Cθ |ζ |−1, ζ ∈ Ũj .
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(2) If R̃±
j are constructed on a standard linear domain, then there exists a formal series

R̂ ∈ C[[ζ−1]], such that any R̃±
j (ζ ), j ∈ Z, admits R̂ as its log-Gevrey asymptotic

expansion of order m, as Re(ζ ) → +∞ in Ṽ ±
j . Here, m > 0 is given in (3.4).

The proof is given in the Appendix. Also, in Remark A.3 in the Appendix we show a
technical obstacle for proving statement (2) on a standard quadratic domain.

Proof of Propositions 3.1 and 3.2. Let R̃±
j be as constructed in Lemma 3.4 on petals Ṽ ±

j in
the ζ -variable, j ∈ Z, on either a standard quadratic or a standard linear domain. Returning
to the variable z = e−ζ , we put

R±
j (z) := R̃±

j (ζ ), z ∈ V ±
j , j ∈ Z.

By Lemma 3.4, R±
j (z) are analytic on V ±

j and we have

R
j−1
+ (z) − R

j
−(z) = G

j

0(z), z ∈ V
j

0 ,

R
j
−(z) − R

j
+(z) = G

j∞(z), z ∈ V
j∞, j ∈ Z.

(3.16)

Moreover, putting � := ζ−1, from Lemma 3.5 we get that the functions R̆±
j (�) := R±

j (z)

constructed on a standard linear domain on �-cusps �(V ±
j ), j ∈ Z, admit a log-Gevrey

power asymptotic expansion of order m. By exponentially small differences (3.16) on
intersections of petals, we get that all R̆±

j (�) admit a common R̂(�) ∈ C[[�]] as their
log-Gevrey asymptotic expansion of order m. The uniform bound (3.6) for both domains
(linear and quadratic) follows by statement (1) of Lemma 3.5. Thus Propositions 3.1
and 3.2 are proven.

Remark 3.6. Observe that the functions R±
j (z) constructed in the proof of Proposition 3.2

by Cauchy–Heine integrals on petals along a standard linear domain are not petalwise
restrictions of R±

j (z) constructed along standard quadratic domain in the proof of
Proposition 3.1.

Indeed, the lines of integration Ck
0,∞ are changed (asymptotically shorter for standard

linear domains). Therefore, we cannot claim that R±
j defined on petals of a standard linear

domain can be analytically extended to petals of a standard quadratic domain. Therefore,
we do not claim in Proposition 3.1 that there exist R̆±

j (�) defined on �-images of petals
of a larger standard quadratic domain which admit a log-Gevrey asymptotic expansion, as
� → 0.

4. Proof of Theorem A
The proof is very involved, so we first give an outline. We then state necessary lemmas,
and prove Theorem A at the end of the section.

4.1. Outline of the proof of Theorem A. Let (h
j

0, h
j∞; σj )j∈Z be a symmetric sequence

(1.10) of analytic germs of diffeomorphisms from Diff(C, 0), satisfying the uniform bound
(2.4). Let ρ ∈ R and m ∈ Z. Here we construct a parabolic germ f , defined on a standard
quadratic domain, of the prenormalized form

f (z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1), z ∈ RC ,
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whose sectorial Fatou coordinates realize the given sequence as its horn maps. Let V +
j

(respectively, V −
j ), j ∈ Z, be petals covering a standard quadratic domain of opening 2π ,

centered at 2jπ (respectively, (2j − 1)π ), and let V
j

0 := V +
j−1 ∩ V −

j , V j∞ := V +
j ∩ V −

j be
their intersecting petals of opening π , as shown in Figure 4. We construct f by constructing
its sectorial Fatou coordinates �

j
± on V ±

j , j ∈ Z, in an iterative construction described
below, which satisfy

�+
j−1(z) − �−

j (z) = g
j

0 (e
−2πi�+

j−1(z)), z ∈ V
j

0 ,

�−
j (z) − �+

j (z) = g
j∞(e

2πi�+
j (z)

), z ∈ V
j∞, j ∈ Z.

(4.1)

Here, g
j

0 , g
j∞, j ∈ Z, are analytic germs at t ≈ 0, related to given h

j

0, h
j∞, j ∈ Z, by:

(h
j

0)
−1(t) = te2πig

j
0 (t), h

j∞(t) = te2πig
j∞(t), t ≈ 0. (4.2)

Then, due to (4.1) and (4.2), f realizes the sequence of pairs of diffeomorphisms
(h

j

0, h
j∞)j∈Z as its horn maps. Indeed, (4.1) is an equivalent formulation of this statement;

see §2.1 for more details.
The idea of successive approximations is taken from [11] for realizing the moduli of

analytic classification for saddle-node vector fields. We will use the cocycle realization
Proposition 3.1 and, by Lemma 4.1(1), iteratively realize the cocycles (nG

j

0, nG
j∞)j∈Z,

n ∈ N0, where

nG
j

0(z) := g
j

0 (e
−2πi�n

j−1,+(z)
), z ∈ V

j

0 ,
nG

j∞(z) := g
j∞(e

2πi�n
j ,+(z)

), z ∈ V
j∞.

Here, (�n
j ,±)n∈N0 on V

j
± are successive approximations of the final Fatou coordinate �±

j ,
j ∈ Z, starting with the Fatou coordinate of the (2, m, ρ)-formal normal form �0

j ,± := �nf

on V
j
±. More precisely, we construct them as follows:

�n
j ,±(z) := �nf(z) + Rn

j ,±(z), z ∈ V
j
±, n ∈ N,

where

R0
j ,±(z) := 0, z ∈ V

j
±,

Rn
j−1,+(z) − Rn

j ,−(z) = g
j

0 (e
−2πi�n−1

j−1,+(z)
) := n−1G

j

0(z), z ∈ V
j

0 ,

Rn
j ,−(z) − Rn

j ,+(z) = g
j∞(e

2πi�n−1
j ,+ (z)

) := n−1G
j∞(z), z ∈ V

j∞, n ∈ N.

(4.3)

At each step n, the functions Rn
j ,±(z) = o(1), z → 0, are obtained using Proposition 3.1 for

the realization of the previous cocycle (n−1G
j

0, n−1G
j∞)j∈Z. The cocycle itself is obtained

by applying g
j

0 , g
j∞ to the exponentials of the Fatou coordinates from the previous step.

In this manner, we make corrections of the Fatou coordinate at each step, starting from the
natural initial choice �nf, the Fatou coordinate of the formal normal form.

We then prove, in Lemma 4.1(2), the uniform convergence of the Fatou coordinates
�n

j ,± (i.e. of Rn
j ,±), as n → ∞, on compact subsectors of petals V

j
±. Thus, as limits,
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we get analytic Fatou coordinates, which we denote by �±
j := �nf + R±

j , on petals V ±
j .

By taking the pointwise limit, as n → ∞, to (4.3), we get that �±
j satisfy (4.1) and thus

realize the given sequence of pairs of horn maps (h
j

0, h
j∞)j∈Z.

Finally, we recover the germ f from its sectorial Fatou coordinates, using the Abel
equation. On each petal, f (z) := (�±

j )−1(1 + �±
j (z)), z ∈ V ±

j . We show that f glues
to an analytic function on a standard quadratic domain. It is of the prenormalized
form (2.7) due to the form of �±

j := �nf + R±
j , R±

j = o(1), as z → 0 on V ±
j , and

Proposition A.1 in the Appendix. The uniform bound (2.3) is proven by Lemma 4.1(3).
To prove Lemma 4.1(3), we prove that the uniform bound (3.6) from Proposition 3.1 holds
with the same constant for Rn

j ,± in each iterative step n ∈ N.
We prove in Lemma 4.5 that symmetry of horn maps (1.10) implies that R+ is invariant

by f .

4.2. The main lemmas.

LEMMA 4.1. Let (h
j

0, h
j∞; σj )j∈Z, where

σj ≥ K1e
−KeC

√|j |
, |j | → ∞, for some C, K , K1 > 0,

be a symmetric sequence (1.10) of pairs of analytic germs from Diff(C, 0), satisfying the
uniform bound (2.4). Let the sequence of pairs of analytic germs of diffeomorphisms
(g

j

0 , g
j∞; σj )j∈Z be defined from (h

j

0, h
j∞; σj )j∈Z by (4.2). Let ρ ∈ R and m ∈ Z, and

let �nf be the Fatou coordinate of the (2, ρ, m)-model f0 from (2.1). Let {V ±
j }j∈Z be a

collection of petals of opening 2π , centered at jπ , along a standard quadratic domain.
(1) The following sequence of analytic maps �n

j ,±, n ∈ N0, on petals V ±
j , is well defined

by the following iterative procedure:

�n
j ,±(z) := �nf(z) + Rn

j ,±(z), z ∈ V
j
±, n ∈ N0,

where

R0
j ,±(z) := 0, z ∈ V ±

j ,

Rn
j−1,+(z) − Rn

j ,−(z) = g
j

0 (e
−2πi�n−1

j−1,+(z)
) =: n−1G

j

0(z), z ∈ V
j

0 ,

Rn
j ,−(z) − Rn

j ,+(z) = g
j∞(e

2πi�n−1
j ,+ (z)

) =: n−1G
j∞(z), z ∈ V

j∞, n ∈ N.

(4.4)

Here, for every n ∈ N, (n−1G
j

0(z),
n−1 G

j∞(z))j∈Z is an infinite cocycle satisfying all
assumptions of Proposition 3.1, and Rn

j ,±, n ∈ N, are analytic germs on petals V ±
j ,

j ∈ Z, that realize this cocycle, given by Proposition 3.1.
(2) For every j ∈ Z, the sequence (�n

j ,±)n∈N converges uniformly on compact subsec-
tors of V ±

j , thus defining analytic functions �±
j on petals V ±

j at the limit. Moreover,
�±

j , j ∈ Z, satisfy

�+
j−1(z) − �−

j (z) = g
j

0 (e
−2πi�+

j−1(z)), z ∈ V
j

0 ,

�−
j (z) − �+

j (z) = g
j∞(e

2πi�+
j (z)

), z ∈ V
j∞, j ∈ Z.

(4.5)
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218 P. Mardešić and M. Resman

(3) For the petalwise limits R±
j , j ∈ Z, the following uniform bound holds. For every

collection of subsectors Sj ⊂ V ±
j centered at jπ and of opening strictly less than

2π independent of j ∈ Z, there exists a uniform constant C > 0 (independent of j),
such that

|R±
j (z)| ≤ C|�|, z ∈ Sj , j ∈ Z. (4.6)

For simplicity, in the proof of Lemma 4.1, we pass to the logarithmic chart. We denote
by Ṽ ±

j the petals V ±
j in the logarithmic chart. Let

�̃n
j ,±(ζ ) := �n

j ,±(e−ζ ), R̃n
j ,±(ζ ) := Rn

j ,±(e−ζ ), ζ ∈ Ṽ ±
j , j ∈ Z, n ∈ N. (4.7)

In the proof of statement (2) in Lemma 4.1, we use the following auxiliary lemma,
whose proof is in §A.4. Due to a technical detail in the Cauchy–Heine construction (the
presence of a logarithmic singularity at the border of the standard quadratic domain),
we are unable to prove uniform convergence of (R̃n

j ,±)n on Ṽ ±
j , as n → ∞. Instead, we

prove uniform convergence of their exponentials on petals, which then implies uniform
convergence on compact subsets for the initial sequence.

LEMMA 4.2. Let the assumptions of Lemma 4.1 hold. Let R̃n
j ,±, n ∈ N, be as defined in

statement (1) of Lemma 4.1 (in the logarithmic chart; see (4.7)). The sequence

(e
2πiR̃n

j ,±)n∈N

is a Cauchy sequence in the sup-norm on petal Ṽ ±
j , for every j ∈ Z.

Proof of Lemma 4.1. Proof of statement (1). We check that, in every step of the
construction, all assumptions of Proposition 3.1 are satisfied. The basis of the induction
is obvious by putting R̃0

j ,± ≡ 0, �̃0
j ,± := �̃nf on Ṽ

j
±. Suppose that �̃k

j ,± are constructed

and analytic for 0 ≤ k < n. By Remark A.5 and the uniform bound (2.5) on g
j

0 , we get that
there exist constants c > 0 and C1 > 0 independent of j ∈ Z, such that:

|n−1G̃
j

0(ζ )| = |gj

0 (e
−2πi�̃n−1

j−1,+(e−ζ )
)| ≤ c|e−2πi�n−1

j−1,+(e−ζ )| ≤ C1|e−πi�̃nf(ζ )|
= C1e

πIm(�̃nf(ζ )), ζ ∈ Ṽ
j

0 . (4.8)

Now, for every collection of central substrips Ũj ⊂ Ṽ
j

0 of width independent of j ∈ Z and
for every δ > 0, there exist constants C, D > 0 independent of j ∈ Z such that

|Im(�̃nf(ζ ))| = −Im(�̃nf(ζ )) ≥ C|�̃nf(ζ )| ≥ De(1−δ)Re(ζ ), ζ ∈ Ũj . (4.9)

Independence of j ∈ Z is important for the bound (4.9) above, since, for every collection of
substrips Ũj ⊂ Ṽ

j

0 of width 0 < θ < 2π independent of j , there exists a constant cθ > 0
such that −Im(e−ζ ) > cθ · |Re(e−ζ )|, ζ ∈ Ũj .

The last inequality is obtained using the exact form of �nf(z) given in (A.1) and the fact
that, for a standard quadratic domain R̃C , there exists d > 0 such that Im(ζ ) ≤ d · Re2(ζ ),
ζ ∈ R̃C .

Therefore, combining (4.8) and (4.9), for a collection of substrips Ũj ⊂ Ṽ
j

0 of a given
width 0 < θ < 2π independent of j ∈ Z, there exist constants C, M > 0 independent of
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j ∈ Z and of the step n ∈ N, such that

|n−1G̃
j

0(ζ )| ≤ Ce−Me(1−δ)Re(ζ )

, ζ ∈ Ũj , j ∈ Z, n ∈ N. (4.10)

A similar analysis is done for n−1G̃
j∞(ζ ) on Ṽ

j∞, j ∈ Z. Therefore, assumption (3.4) of
Proposition 3.1 is satisfied in every step with m = 1 − δ, for every δ > 0. The existence
and analyticity of R̃n

j ,± on Ṽ ±
j then follow directly by Proposition 3.1. Also, (4.4) follows

directly from (3.5) in Proposition 3.1.
To be precise, for later use, by Lemma 3.4 in the proof of Proposition 3.1, R̃n

j ,± on petals

Ṽ ±
j , j ∈ Z, n ∈ N, are given as the sum of the Cauchy–Heine integrals as follows:

R̃n
j ,+ :=

(( j∑
k=−∞

nF̃+
0,k +

j∑
k=−∞

nF̃+
∞,k

)
+

( +∞∑
k=j+1

nF̃−
0,k +

+∞∑
k=j+1

nF̃−
∞,k

))∣∣∣∣
Ṽ +

j

,

R̃n
j ,− :=

(( j∑
k=−∞

nF̃+
0,k +

j−1∑
k=−∞

nF̃+
∞,k

)
+

( +∞∑
k=j+1

nF̃−
0,k +

+∞∑
k=j

nF̃−
∞,k

))∣∣∣∣
Ṽ −

j

, j ∈ Z,

(4.11)
where

+∞∑
k=j+1

nF̃−
0,k(ζ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2πi

∫
Cj+1

0

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n−1
j ,+ (w))

)

w − ζ
dw + 1

2πi

+∞∑
k=j+2

∫
Ck

0

gk
0(e

−2πi(�̃nf(w)+R̃n−1
k−1,+(w))

)

w − ζ
dw,

ζ ∈ Ṽ +
j , Im(ζ ) ≤ (4j + 1)

π

2
− ε (region (1)),

1
2πi

∫
Cj+1

0

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n−1
j ,+ (w))

)

w − ζ
dw + g

j+1
0 (e

−2πi(�̃nf(ζ )+R̃n−1
j ,+ (ζ ))

)

+ 1
2πi

+∞∑
k=j+2

∫
Ck

0

gk
0(e

−2πi(�̃nf(w)+R̃n−1
k−1,+(w))

)

w − ζ
dw,

ζ ∈ Ṽ +
j , Im(ζ ) ≥ (4j + 1)

π

2
+ ε (region (2)),

1
2πi

∫
Cj+1

0,+2ε

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n−1
j ,+ (w))

)

w − ζ
dw + 1

2πi

∫
Sj+1

0,+2ε

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n−1
j ,+ (w))

)

w − ζ
dw

+ 1
2πi

+∞∑
k=j+2

∫
Ck

0

gk
0(e

−2πi(�̃nf(w)+R̃n−1
k−1,+(w))

)

w − ζ
dw,

ζ ∈ Ṽ +
j , (4j + 1)

π

2
− ε < Im(ζ ) < (4j + 1)

π

2
+ ε (region (3)).

(4.12)

The other three sums in R̃n
j ,+ and the sums in R̃n

j ,− in (4.11) can be written analogously.

Here, ε > 0 is sufficiently small. Recall that Cj+1
0 = {ζ ∈ R̃C : Im(ζ ) = (4j + 1)π/2}
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region (2)

region (3)

region (1)

FIGURE 9. The three regions of Ṽ +
j with respect to the critical line Cj+1

0 of integration, and the critical points

s
j+1
0 , s

j∞ ∈ Ṽ +
j generating logarithmic singularities in the proof of Lemma A.4.

is the central line of the petal Ṽ
j+1
0 . The line Cj+1

0,+2ε is the line Cj+1
0 shifted upwards by

+2ε in Ṽ
j+1
0 , and Sj+1

0,+2ε is the boundary arc of Ṽ
j+1
0 between the lines Cj+1

0 and Cj+1
0,+2ε,

independent of n ∈ N. Note that∫
Sj+1

0,+2ε

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n−1
j ,+ (w))

)

w − ζ
dw

is, as in the proof of Lemma 3.3, an analytic function at ζ = ∞. It depends on j ∈ Z and
on n ∈ N.

Regions (1)–(3) in (4.12) are regions where Cauchy–Heine formulas differ due to the
critical line of integration Cj+1

0 lying inside the petal V +
j . To simplify calculations, we

assume that there is only one critical line of integration inside V +
j , while in reality there

is another, Cj∞, the central line of Ṽ
j∞. No new phenomena are generated if we add another

line, just more regions and longer expressions in (4.12), so we simplify without real loss
of generality. The regions are shown in Figure 9. More details are given in the following
remark.

Remark 4.3. (Regions (1)–(3) introduced in (4.12)) The functions R̃n
j ,+, n ∈ N, in our

iterative process are defined as infinite sums of Cauchy–Heine integrals on corresponding
petals V ±

j , similarly to (3.12) and (3.14). In every step we use another exponentially small

cocycle defined from functions obtained in the previous step. Note that functions R̃±
j in

(3.14) cannot be expressed by the same formula throughout the whole petal Ṽ ±
j , since

integrals are not well defined along two critical lines of integration that fall inside each
petal. Recall that, standardly, in the Cauchy–Heine construction, to extend the function
analytically beyond the line of integration, we change the paths of integration, as in the
proof of Lemma 3.3.

Each petal Ṽ ±
j in ζ -chart is divided into horizontal strip-like regions (sectors in the

z-variable). In each region, we have an explicit, but different integral formula.
We take ε > 0 small. Take petal V +

j . Region (3) is the open ε-neighborhood of two

critical lines Cj+1
0 and Cj∞. These two lines are among the lines of integration in (3.14) for
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V +
j , and analogously later in the iterative construction given by (4.11). At the same time,

they lie inside Ṽ +
j . The problem in this region is that, although we may exchange the line

of integration with a line outside the region and a part of the boundary (here, Cj+1
0,+2ε and

Sj+1
0,+2ε), we cannot bound the variable ζ ∈ Ṽ +

j away from the part of the boundary, and

logarithmic singularities appear in iterations at s
j+1
0 and s

j∞; see Figure 9. This prevents an
easy proof of convergence in our iterative process. The other strips of Ṽ +

j constitute regions
(1) and (2), which are simpler to analyze, as there are no logarithmic singularities. In region
(3), the bounds that we need for convergence of iterates in the proof of Lemma A.4 will be
significantly more complicated.

Proof of statement (2). At each step of the iterative Cauchy–Heine construction, two
logarithmic singularities appear at points s

j+1
0 and s

j∞ at the boundary of each petal V +
j

in region (3), j ∈ Z. To be precise, they appear at endpoints of Cj+1
0 and Cj∞ at the

boundary of the domain. Therefore, we will not be able to prove that the sequence of
iterates (R̃n−1

j ,+ (ζ ))n is uniformly Cauchy on the whole petal Ṽ
j
+. More details on the nature

of the singularities can be found in §A.4. However, by Lemma 4.2, the sequence

(e
2πiR̃n

j ,+(ζ )
)n (4.13)

is uniformly Cauchy on petals Ṽ
j
+, j ∈ Z. By taking the exponential, we have eliminated

the logarithmic singularities. It follows from (4.13) that (R̃n
j ,+(ζ ))n is uniformly Cauchy

on all compact subsets of the petal Ṽ
j
+, away from singular points s

j+1
0 and s

j∞ with
logarithmic singularities, which lie at the boundary of the petal V +

j . Indeed, note that

e
2πiR̃n

j ,+(ζ ) does not vanish in any point ζ ∈ V
j
+. By the mean value theorem, writing

R̃n
j ,+ = (1/2πi) log(e

2πiR̃n
j ,+), we have

|R̃n
j ,+(ζ ) − R̃n+1

j ,+ (ζ )|
≤ 1

2π
sup

t∈[0,1]

1

|te2πiR̃n
j ,+(ζ ) + (1 − t)e

2πiR̃n+1
j ,+ (ζ )|

·|e2πiR̃n
j ,+(ζ ) − e

2πiR̃n+1
j ,+ (ζ )|, ζ ∈ Ṽ +

j .

By Lemma A.4 (1), we get that ζ �→ supt∈[0,1] 1/(|te2πiR̃n
j ,+(ζ ) + (1 − t)e

2πiR̃n+1
j ,+ (ζ )|) is

uniformly bounded on every compact in the petal Ṽ +
j away from singular points s

j+1
0 and

s
j∞. We conclude that the sequence (R̃n

j ,+)n is uniformly Cauchy on every compact in the

petal Ṽ +
j . Therefore, by the Weierstrass theorem, it converges to an analytic function R̃+

j

on the petal Ṽ +
j , j ∈ Z. The same can be concluded for R̃−

j on petals Ṽ −
j , j ∈ Z.

Let us now denote the pointwise limits by R̃±
j :

R̃±
j (ζ ) := lim

n→∞ R̃n
j ,±(ζ ), �̃±

j (ζ ) := �̃nf(ζ ) + R̃j ,±(ζ ), ζ ∈ Ṽ
j
±.

That is, returning from the ζ -variable to the original variable z, we put

R̆±
j (�) := R̃±

j (�−1), �±
j (z) := �nf(z) + R̆±

j (�), z ∈ V
j
±, j ∈ Z.
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Here, �nf(z) (i.e. �̃nf(ζ )) are the Fatou coordinates of the (2, m, ρ)-model, analytic on the
whole of RC , and given explicitly in (A.1). All functions defined above are analytic on
their respective petals. Now, passing to the limit in (4.4), we see that R±

j (z) and thus also
�±

j (z) (since �nf(z) is analytic on the standard quadratic domain) realize the requested

sequence of pairs (g
j

0 , g
j∞)j∈Z at intersections of petals, as in (4.5).

Proof of statement (3). We use the uniform estimate (4.10) for nG̃
j

0,∞(ζ ) by n ∈ N,
deduced in the proof of statement (1), and repeat the proof of (3.6) in Proposition 3.1 (see
the proof of Lemma 3.5 in the Appendix), but with this uniform estimate. We get that there
exists a uniform (in j ) constant C > 0 such that, for substrips S̃j ⊂ Ṽ ±

j centered at the line
{Im(ζ ) = jπ} and of the same opening for all j ∈ Z, the following estimate holds:

|R̃n
j ,±(ζ )| ≤ C|ζ |−1, ζ ∈ S̃j , j ∈ Z, n ∈ N. (4.14)

Passing to the limit as n → ∞ in (4.14), and returning to the original variable z = e−ζ ,
statement (3) is proven. �

4.3. The symmetry of the horn maps and R+-invariance. We have proven in [7,
Proposition 9.2] that, for a parabolic generalized Dulac germ f , the fact that f (R+ ∩
RC) ⊂ R+ ∩ RC implies the symmetry (1.10) of its analytic moduli. Here, in an abuse
of notation, R+ := {z ∈ R : Arg(z) = 0}. In general, the converse of [7, Proposition 9.2]
does not hold. That is, the symmetry of horn maps of f does not imply R+-invariance of f

in general, as Example 1 below shows. Instead, Lemma 4.4 provides a characterization of
analytic germs on standard quadratic domains having symmetric sequences of horn maps.

Example 1. Take f (z) = z − z2 on RC . Obviously, f is a simple parabolic generalized
Dulac germ and f (R+) ⊆ R+. By [7, Proposition 9.2], since f is R+-invariant, its moduli
are symmetric. Now take ϕ(z) = z + iz3, and define an analytic germ f1 := ϕ−1 ◦ f ◦ ϕ

on RC . Since f̂1(z) = z − z2 + o(z2), f1 admits the same petals as f . By [7, Theorem B],
since ϕ(z) is analytic on RC , f1 has the same horn maps as f . Therefore, the horn maps
of f1 are symmetric, but R+ is not f1-invariant.

We can easily generate more complicated examples by taking an R+-invariant parabolic
generalized Dulac germ and by conjugating it by ϕ(z) = z + o(z) which is analytic on a
standard quadratic domain, and whose asymptotic expansion ϕ̂ belongs to L̂(C), but not to
L̂(R). Thus the invariance of R+ is not preserved in general.

Indeed, analytic modulus is an invariant of analytically conjugated parabolic germs.
On the other hand, having the real axis invariant is obviously not an invariant property
under complex changes of coordinates. If one of the germs has the real axis invariant,
all analytically conjugated germs also have an invariant real analytic curve through the
singularity, but it is not in general the real axis.

LEMMA 4.4. (Symmetry of the horn maps) Let f be an analytic germ on a standard
quadratic domain RC with a sequence of horn maps (h

j

0, h
j∞; σj )j∈Z, with σj as in (1.8)

(note that, by saying that f has horn maps (h
j

0, h
j∞; σj )j∈Z, we have implicitly assumed

the dynamics and the existence of invariant petals V ±
j ⊂ RC , j ∈ Z). The sequence of
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horn maps is symmetric, that is,

(h
−j+1
0 )−1(t) ≡ h

j∞(t), t ∈ (C, 0), j ∈ Z, (4.15)

if and only if there exists an analytic germ ϕ(z) = z + o(z) on RC such that

f (z) = ϕ−1 ◦ f ◦ ϕ(z), z ∈ RC . (4.16)

Note that (4.16) is trivially satisfied for germs f such that f (R+) ⊆ R+, taking ϕ = id,
by the Schwarz reflection principle.

Proof. Let f be analytic on a standard quadratic domain RC . Let f1(z) := f (z), z ∈ RC .
It is an analytic function on RC by the Cauchy–Riemann conditions. Let (k

j

0 , k
j∞; σj )j∈Z

be its sequence of horn maps (σj remains the same, due to symmetry of standard quadratic
domains). Then, by the proof of [7, Proposition 9.2], we have that

(k
−j+1
0 )−1(t) ≡ h

j∞(t), (k
j∞)−1(t) = h

−j+1
0 (t), t ∈ (C, 0), j ∈ Z. (4.17)

By (4.17) and symmetry (4.15) of the horn maps of f , we conclude that f1 and f have
the same sequence of horn maps. By [7, Theorem B], there exists an analytic function
ϕ(z) = z + o(z) on RC such that

f (z) = ϕ−1 ◦ f ◦ ϕ(z), z ∈ RC .

The other direction is proven similarly.

However, in Lemma 4.5 we show that, if we take a symmetric sequence of pairs of
analytic germs from Diff(C, 0), by the Cauchy–Heine construction from Lemma 4.1 we
realize the sequence by a representative that is indeed R+-invariant, as its horn maps. The
reason lies in the symmetry of the Cauchy–Heine construction.

LEMMA 4.5. Let (h
j

0, h
j∞; σj )j∈Z, with σj as in (1.8), be a symmetric sequence of pairs

of analytic germs from Diff(C, 0), such that

(h
−j+1
0 )−1(t) ≡ h

j∞(t), t ∈ (C, 0), j ∈ Z. (4.18)

Let �±
j (z) := �nf + R̆±

j (�), R̆±
j (�) := R±

j (z), z ∈ V ±
j , be as constructed by the iterative

Cauchy–Heine construction in Lemma 4.1, realizing the sequence of pairs (h
j

0, h
j∞; σj )j∈Z

on intersections of petals V
j

0 , V
j∞, j ∈ Z, either on a standard linear or a standard

quadratic domain. Then:
(a) �+

0 on V +
0 is R+-invariant. That is,

�+
0 (R+ ∩ RC) ⊆ R+ ∩ RC (respectively, Ra,b).

(b) in the case of construction on a standard linear domain, the asymptotic expansion
R̂(�) of R̆±

j (�), as � → 0 on �-cusps �(V ±
j ), belongs to R[[�]]. That is, the

coefficients of the expansion are real.

The proof is given in the Appendix.
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4.4. Proof of Theorem A. Let (h
j

0, h
j∞; σj )j∈Z be a sequence of pairs of analytic germs

of diffeomorphisms, as in the statement of Theorem A. Let V ±
j be the petals of opening 2π ,

centered at jπ , j ∈ Z, along a standard quadratic domain, as in Figure 4. By Lemma 4.1,
we construct analytic functions �±

j on V ±
j that satisfy (4.5). This is equivalent to the

relation (1.9) for the realization of horn maps. We now define f such that �±
j are its

petalwise Fatou coordinates. We define f by petals, using Abel equation, as

f ±
j (z) := (�±

j )−1(1 + �±
j (z)), z ∈ V ±

j , j ∈ Z. (4.19)

Now we prove that the f ±
j , defined and analytic on petals V ±

j , glue to an analytic function
f on the whole standard quadratic domain RC . That is, we prove that

f +
j (z) = f −

j (z), z ∈ V
j∞ = V

j
+ ∩ V

j
−,

f +
j−1(z) = f −

j (z), z ∈ V
j

0 = V +
j−1 ∩ V −

j , j ∈ Z.
(4.20)

Indeed, for Fatou coordinates �±
j of two consecutive petals by (4.5) of Lemma 4.1 we have

that

�
j
− ◦ (�

j−1
+ )−1(w) = w − g

j

0 (e−2πiw), w ∈ �
j−1
+ (V

j

0 ),

�
j
− ◦ (�

j
+)−1(w) = w + g

j∞(e2πiw), w ∈ �
j
+(V

j∞), j ∈ Z.

This implies

�
j
− ◦ (�

j−1
+ )−1(w + 1) = �

j
− ◦ (�

j−1
+ )−1(w) + 1, w ∈ �

j−1
+ (V

j

0 ),

�
j
− ◦ (�

j
+)−1(w + 1) = �

j
− ◦ (�

j
+)−1(w) + 1, w ∈ �

j
+(V

j∞), j ∈ Z.

Composing the first equation by �
j−1
+ from the right and by (�

j
−)−1 from the left, and the

second by �
j
+ from the right and (�

j
−)−1 from the left, by (4.19) we get (4.20).

The prenormalized form (2.7) of f follows from Proposition A.1 and the prenormalized
form of the Fatou coordinates �±

j = �nf + R±
j constructed in Lemma 4.1. Here, R±

j (z) =
o(1), as z → 0 on V ±

j , and �nf is the Fatou coordinate of (2, m, ρ)-formal model.
The uniform bound |f (z) − z + z2�m − ρz3�2m+1| ≤ C|z3�2m+2|, C > 0, z ∈ Rc,

follows by Lemma 4.1(3). Indeed, the uniform bound (4.6) gives that there exists d > 0,
independent of j ∈ Z, such that |�±

j (z) − �nf(z)| ≤ d|�|, z ∈ Sj ⊂ V ±
j , where S±

j are
subsectors of V ±

j of the same opening strictly larger than π for all j ∈ Z. The same
reasoning as in the proof of Proposition A.1 now gives the bound |f (z) − f0(z)| ≤
e|z3�2m+2|, z ∈ Rc, e > 0. Then, using the uniform bound for the model derived from
f0 = �−1

nf (1 + �nf) on Rc, where �nf is given explicitly by (A.1), |f0(z) − z + z2�m −
ρz3�2m+1| ≤ c1|z3�2m+2|, z ∈ Rc, c1 > 0, we get the required bound for f .

Finally, on V +
0 the germ f is given by

f |V +
0

= (�+
0 )−1(1 + �+

0 ), (4.21)

and glues analytically along other petals. By Lemma 4.5, �+
0 is R+-invariant. It is also

injective on R+ ∩ V +
0 , so the inverse (�+

0 )−1 is R+-invariant on �+
0 (V +

0 ). We conclude
by (4.21) that f is R+-invariant.
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5. Proof of Theorem B
The analogue of Lemma 4.1 holds (with the same proof) also on standard linear domains.
Given a sequence of pairs of analytic germs of diffeomorphisms (h

j

0, h
j∞; σj )j∈Z, with

radii of convergence satisfying bounds (1.11), we construct analytic functions �±
j (z) on

petals V ±
j centered respectively at directions 2jπ if the exponent is +, corresponding to

attracting petals, or at (2j − 1)π if the exponent is −, corresponding to repelling petals,
but along a standard linear domain, that realize this sequence of diffeomorphisms on
intersections of petals V

j

0,∞, as in (4.5). We construct them as the uniform limits R±
j

on compact subsets of V ±
j of iterates Rn

j ,±(z), as n → ∞, defined inductively as in
Lemma 4.1. In each inductive step, we use Proposition 3.2 for realization of cocycles
on standard linear domains, instead of Proposition 3.1 for standard quadratic domains.
Proposition 3.2 additionally gives us information on asymptotic expansion of Rn

j ,±, n ∈ N.

Let R̆n
j ,±(�) := Rn

j ,±(z), z ∈ V ±
j , where � := −(1/log z). Then, by Proposition 3.2, each

Rn
j ,±(�), j ∈ Z, admits log-Gevrey expansion in C[[�]] of every order 1 − δ, δ > 0, as

� → 0 in �(V ±
j ).

We now prove that there exists R̂(�) ∈ C[[�]] such that the limits

R̆±
j (�) := lim

n→∞ R̆n
j ,±(�), � ∈ �(V ±

j ), j ∈ Z,

admit R̂(�) as their log-Gevrey asymptotic expansion of order 1 − δ, for every δ > 0, as
� → 0 on �(V ±

j ). Moreover, we prove that R̂(�) ∈ R[[�]].
We work again in the logarithmic chart ζ = −log z. As in the proof of Lemma 3.5 in

the Appendix, on standard linear domains it follows that∣∣∣∣ +∞∑
k=j+1

nF̃−
0,k(ζ ) −

N∑
j=0

an
j ζ−j

∣∣∣∣
≤ |ζ |−N 1

2π

+∞∑
k=j+1

∣∣∣∣ ∫
Ck

0

gk
0(e

−2πi(�̃nf(w)+R̃n−1
k−1,+(w))

)wN

w − ζ
dw

∣∣∣∣,
ζ ∈ Ṽ +

j in region (1), N ∈ N.

Here we again consider, instead of the whole of R̃n
j ,+(ζ ) given by (4.11), only one part of

the sum
∑+∞

k=j+1
nF̃−

0,k(ζ ), ζ ∈ Ṽ +
j ; see (4.12). For the other three parts of the sum the

conclusions follow similarly. To get the bound for R̃n
j ,+(ζ ), we sum the bounds afterwards.

For ζ ∈ Ṽ +
j in regions (2) and (3), the conclusion follows similarly. Finally, the same can

be done for R̃n
j ,− on Ṽ −

j . Let δ > 0. Due to uniform bounds of gk
0 from (2.5) and of R̃n

k,+
(see Remark A.5) with respect to n ∈ N and k ∈ Z, we conclude that there exist uniform
constants c > 0 and d > 0 such that

|gk
0(e

−2πi(�̃nf(w)+R̃n−1
k−1,+(w))

)| < c|e−2πi(�̃nf(w)+R̃n−1
k−1,+(w))| < d|e−2πi(�̃nf(w)/2)|, w ∈ V k

0 ,
(5.1)

for every n ∈ N and k ∈ Z.
Now, following the proof of Lemma 3.5 in the Appendix and using (5.1), we obtain

Gevrey bounds which are uniform with respect to n ∈ N. That is, on every substrip
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W̃ ⊂ Ṽ +
j , for every N ∈ N, there exists a constant CW̃

N > 0 such that, for every n ∈ N,
we have that∣∣∣∣R̃n

j ,+(ζ ) −
N∑

i=0

A
j ,n
i ζ−i

∣∣∣∣ ≤ CW̃
N (1 − δ)−Ne−(N/log N) logN N · |ζ |−N , ζ ∈ W̃ ⊂ Ṽ +

j .

(5.2)
Here, CW̃

N is uniform in the iterate n ∈ N. Also, A
j ,n
i ∈ C is given by

A
j ,n
i :=

∞∑
k=j+1

∫
Ck

0

gk
0(e

−2πi(�̃nfw)+R̃n−1
k−1,+(w))

)wi dw.

As discussed before in the proof of Lemma 3.5, the above sum converges for every
n ∈ N, j ∈ Z, so the coefficients A

j ,n
i ∈ C are well defined. To prove that, for every j ∈ Z,

i ∈ N0, (Aj ,n
i )n converges as n → ∞, we use the dominated convergence theorem. Indeed,

by a change of variable of integration, the above integrals
∫
Ck

0
can be considered as line

integrals. Now (5.1) and the convergence of the integrals∫
Ck

0

|e−2πi(�̃nf(w)/2)|wi dw, k ∈ Z,

due to the exponential flatness of e−2πi(�̃nf(w)/2) on Ck
0 , k ∈ Z, ensure all the assumptions

of the dominated convergence theorem. We put

A
j
i := lim

n→∞ A
j ,n
i ∈ C, j ∈ Z, i ∈ N0.

Now passing to the limit limn→∞ in (5.2), we get that R̃+
j (ζ ) := limn→∞ R̃n

j ,+(ζ ),

ζ ∈ Ṽ +
j , admits a log-Gevrey asymptotic expansion of order 1 − δ in C[[ζ−1]], as

Re(ζ ) → ∞.
In addition, the asymptotic expansions of R̃±

j (ζ ) are the same for every j ∈ Z, because
of exponentially small differences on intersections of petals (4.5). Recall that �̃±

j := �̃nf +
R̃±

j on Ṽ ±
j , where �̃nf is globally analytic on a standard quadratic domain. We denote this

expansion by R̂(ζ−1) ∈ C[[ζ−1]]. That is, putting � := ζ−1 = −(1/log z), all R̆±
j (�) :=

R̃±
j (ζ ) admit R̂(�), as their log-Gevrey asymptotic expansion of order 1 − δ, as � → 0 on

�(V ±
j ), j ∈ Z.

Finally, we prove that f , expressed as in (4.19) from �̃±
j , and which, by the proof of

Theorem A, glues to an analytic function on a standard linear domain R̃a,b, is a parabolic
generalized Dulac germ. The uniform bound (2.3) and the prenormalized form of f follow
from Lemma 4.1(3) and by Proposition A.1, exactly as in the proof of Theorem A. Also,
the invariance of R+ follows by Lemma 4.5, as in the proof of Theorem A.

We prove only the existence of the generalized Dulac expansion f̂ of f . It follows by
(4.19) and by the log-Gevrey asymptotic expansions of R̆±

j (�) on �(V ±
j ), j ∈ Z, proven

above. We return to the original variable z. On each petal V ±
j , we expand (4.19) as a
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Taylor series:

f ±
j (z) = z + 1

(�±
j )′(z)

+ 1
2!

(
1

(�±
j )′(z)

)′
· 1
(�±

j )′(z)

+ 1
3!

(previous term)′ · 1
(�±

j )′(z)
+ · · · . (5.3)

In the following, we put R̆±
j (�) := R±

j (z), z ∈ V ±
j . Let R̂(�) denote its log-Gevrey

asymptotic expansion of order 1 − δ, δ > 0, in C[[�]], the same for all j ∈ Z. We have
that

(�±
j )′(z) = − 1

z2�m
+ 1

z
+

(
m

2
+ ρ

)
�

z
+ �2

z
(R̆±

j )′(�), ρ ∈ R, m ∈ Z, z ∈ V ±
j .

Here, the germs (R̆±
j )′(�) are analytic on �-cusps �(V ±

j ), j ∈ Z. By [7, Proposition 4.7],
they expand log-Gevrey of order 1 − δ, for every δ > 0, in their formal counterpart R̂′(�),
as � → 0 on �-cusp �(V ±

j ). By [7, Proposition 4.7], R̂′(�) is obtained by termwise (formal)

derivation of R̂(�). The same conclusion can be drawn for all finite derivatives (R̆±
j )(k)(�),

k ∈ N, by [7, Proposition 4.7]. Furthermore, we define analytic functions H±
j (�) on

�-cusps �(V ±
j ), j ∈ Z, via the equation

1
(�±

j )′(z)
= −z2�m

1 − z�m − (m/2 + ρ)z�m+1 + z�m+2(R̆±
j )′(�)

=:
−z2�m

1 + zH±
j (�)

.

By [7, Propositions 4.5–4.7] about closedness of log-Gevrey classes to algebraic operations
and to differentiation, they expand log-Gevrey of order 1 − δ, for every δ > 0, in the
common formal counterpart Ĥ (�), as � → 0 on respective �-cusps �(V ±

j ), j ∈ Z. Note
that

z2�m

1 + zH±
j (�)

= z2�m

∞∑
k=0

(−1)kzk(H±
j (�))k . (5.4)

Putting (5.4) in (5.3), and regrouping the terms with the same powers of z, we get

f (z) = z − z2�m + ρz3�2m+1 +
∞∑

k=3

zkQ±
j ,k(�), z ∈ V ±

j , j ∈ Z. (5.5)

Here, Q±
j ,k(�), k ∈ N, k ≥ 3, are realized as finite sums of finite products of � and H±

j (�)

and their finite derivatives (of order at most k − 2), the same for all petals j ∈ Z. Therefore,
by [7, Propositions 4.5–4.7] about closedness of log-Gevrey classes to algebraic operations
and differentiation, they expand log-Gevrey of order 1 − δ, for every δ > 0, in their formal
counterpart, denoted Q̂k(�). Note that �-cusps �(V ±

j ) are �-images of sectors of opening
2π > π .

Finally, by Lemma 4.5(b), R̂(�) ∈ R[[�]]. Therefore, all Q̂k(�), as algebraic combina-
tions of R̂(�), its derivatives and powers of � with real coefficients, belong to R[[�]]. This
proves the generalized Dulac expansion of f from Definition 1.4. �
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In Remark A.3 we explain why the arguments giving the asymptotic expansion in
Theorem B do not work for quadratic domains in Theorem A.

Remark 5.1. Note that, although f is analytic on the whole standard linear domain Ra,b,
the coefficient functions Q±

j ,k(�), k ∈ N, k ≥ 3, in its expansion (5.5) are analytic in
general only on �-cusps �(V ±

j ) and do not glue (in j ) to an analytic function on the whole
of �(Ra,b). Indeed, this is obviously not true already for Q±

j ,3(�) := 1 − H±
j (�), by (5.4).

On overlapping cusps �(V ±
j ), the �-images of petals V ±

j , they have exponentially small
differences.

Remark 5.2. Let the germs f (respectively, g) be the germs obtained by Cauchy–Heine
construction on a linear (respectively, quadratic domain realizing the same sequence of
moduli. It is important to note that, in general, f is not the restriction of the germ g, since
we apply Cauchy–Heine integrals along different lines; see Remark 3.6.

Nevertheless, f and the restriction of g to a linear domain by construction have the same
moduli on the linear domain, and are thus analytically conjugated on the linear domain.
However, we are not sure if the analytic conjugacy between the two germs on the linear
domain can be analytically extended to a quadratic domain, or if there is some singularity
outside the smaller domain preventing the extension. If the former was the case, we would
have a representative of the analytic class of g on a quadratic domain whose restriction
to the linear domain is f ; that is, a representative with the generalized Dulac asymptotic
expansion. This would positively resolve the question of extending the realization result
to parabolic Dulac germs on a standard quadratic domain, which for the moment remains
open.

6. Prospects
The realization Theorem B for uniformly bounded sequences of pairs of germs of analytic
diffeomorphisms fixing the origin as horn maps is proven in the larger class of parabolic
generalized Dulac germs on standard linear domains, which contains parabolic Dulac
germs. The question whether the construction can be extended to standard quadratic
domains remains open. Another important problem is to characterize uniformly bounded
sequences of pairs of analytic diffeomorphisms which can be realized as horn maps of
parabolic Dulac germs.
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A. Appendix
PROPOSITION A.1. Let f be a parabolic generalized Dulac germ on a standard quadratic
(or standard linear) domain. It is prenormalized, that is, of the form

f (z) = z − z2�m + ρz3�2m+1 + o(z2�m), m ∈ Z, ρ ∈ R,

if and only if its sectorial Fatou coordinate is of the form

�±
j = �nf + R±

j on V ±
j ,

where Rj = o(1), as z → 0, z ∈ V ±
j , and �nf is the global Fatou coordinate of the formal

normal form f0 given by

�nf(z) := −
∫ z

z0

dz

z2�m
+ log z −

(
m

2
+ ρ

)
log(−log z). (A.1)

Here, z0 is a freely chosen initial point in the standard quadratic (or linear) domain (the
choice of additive constant in �nf).

Proof. One direction is proven by Taylor expansion of the Abel equation. For the other,
putting f = f0 + h and �±

j = �nf + R±
j in f = (�±

j )−1(1 + �±
j ) and comparing initial

terms, we estimate h(z) = O(z3�2m+2), as z → 0. The estimate is not necessarily uniform
for all petals.

A.1. Proof of Proposition 2.1. In the proof of Proposition 2.1, we use Lemma A.2.

LEMMA A.2. (Uniform bound on the Fatou coordinate of a uniformly bounded germ)
Let f (z) = z − z2�m + ρz3�2m+1 + o(z3�2m+1), m ∈ Z, ρ ∈ R, be a prenormalized
analytic germ on a standard quadratic or standard linear domain Rc. Let f satisfy
the uniform bound (2.3). Let �nf(z), z ∈ Rc, be the Fatou coordinate of the formal
(2, m, ρ)-normal form f0 defined in (A.1). Then, for every 0 < θ < 2π , there exists a
constant Cθ > 0, such that, for all subsectors W

j
θ ⊂ V ±

j of opening 0 < θ < 2π , j ∈ Z,
we have

|�±
j (z) − �nf(z)| ≤ Cθ�(|z|), z ∈ W

j
θ ⊂ V ±

j . (A.2)

Proof. The proof is divided into two steps. In step 1, we show a uniform bound on |�nf(z)|
on a standard quadratic (linear) domain. In step 2, using this bound, we prove (A.2).

Step 1. Using the explicit form (A.1) of �nf, we prove that there exists C > 0 such that

|�nf(z)| ≤ C|z−1�−m|, z ∈ Rc. (A.3)

In the course of the proof, we will pass to a smaller standard quadratic subdomain whenever
needed, because we work with germs. Note that, for every (α, m) ≺ (β, k), there exist
a constant C and a sufficiently small standard quadratic domain Rc such that |zβ�k| ≤
C|zα�m|, z ∈ Rc. Note also that this is not the case for the whole Riemann surface of the
logarithm of sufficiently small radius.
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By two partial integrations, we get, up to a constant term,

|�nf(z) − z−1�−m + mz−1�−m+1|
=

∣∣∣∣−m(m − 1)

∫ z

z0

z−2�−m+2 + log z −
(

m

2
+ ρ

)
log(−log z)

∣∣∣∣
≤ |m| |m − 1| · |G(z) − G(z0)| + |�−1| +

∣∣∣∣m2 + ρ

∣∣∣∣ · |log(−log z)|
≤ C(|G(z)| + |�−1| + |�−1

2 |), z ∈ Rc. (A.4)

Here, z0 ∈ Rc is fixed, and G(z) denotes the primitive function such that G′(z) =
z−2�−m+2. We now prove that there exists a constant d > 0 such that

|G(z)| ≤ d |z−1�−m+2|, z ∈ Rc.

We pass to the logarithmic chart ζ = −log z and put H(ζ) := G(e−ζ ). Then we have
H ′(ζ ) = −eζ ζm−2. Let ζ0 := −log z0 be fixed. We may take, for example, ζ0 ∈ R+.
Let γζ be the rectangular path from ζ0 to ζ , ζ ∈ R̃c, consisting of horizontal segment
[ζ0, ζ1] and vertical segment [ζ1, ζ ]. Then

H(ζ) − H(ζ0) =
∫

γζ

H ′(η)dη, ζ ∈ R̃c.

Evidently, the integral depends only on ζ0 and ζ , and not on the integration path, since R̃c

is simply connected. We integrate partially r − 2 times, where r is such that m − r < 0,
and get

|G(z) − G(z0)| = |H(ζ) − H(ζ0)|

=
∣∣∣∣ ∫ ζ1

ζ0

eηηm−rdη +
∫ ζ

ζ1

eηηm−rdη

+ cm−2e
ζ ζm−2 + · · · + cm−r+1e

ζ ζm−r+1 − H(ζ0)

∣∣∣∣
≤ |H(ζ0)| + |cm−2‖eζ ‖ζ |m−2 + · · · + |cm−r+1‖eζ ‖ζ |m−r+1

+ (supη∈[ζ0,ζ1]|eη‖η|m−r )|ζ1 − ζ0| + (supη∈[ζ1,ζ ]|eη‖η|m−r )|ζ1 − ζ |.
(A.5)

We now bound the remainder, using m − r < 0:

(supη∈[ζ0,ζ1]|eη‖η|m−r )|ζ1 − ζ0| + (supη∈[ζ1,ζ ]|eη‖η|m−r )|ζ1 − ζ |
≤ (supη∈γζ

eRe(η)Re(η)m−r ) · |ζ − ζ0|
≤ CeRe(ζ )Re(ζ )m−r |ζ | ≤ C|z|−1�(|z|)−(m−r)| − log z|
≤ D|z|−1|�|−(m−r/2)−1, ζ ∈ R̃c′ , z ∈ Rc′ . (A.6)

Here, Rc′ is a standard quadratic subdomain such that Re(ζ ) > Re(ζ0), c > 0, D > 0,
and cm−2, . . . , cm−r+1 ∈ C. Indeed, note that |ζ1 − ζ0| ≤ |ζ − ζ0| and |ζ1 − ζ | ≤
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|ζ − ζ0|, that x �→ exxm−r is an increasing function for x ∈ R+ sufficiently big and
Re(ζ ) ≥ Re(η), η ∈ γζ , ζ ∈ Rc′ .

The last inequality follows from the fact that Rc′ is a standard quadratic domain.
Therefore, for z ∈ Rc′ , we have that |log z|2 = log2 |z| + Arg(z)2. Moreover, there exists
d > 0 such that |Arg(z)| ≤ d log2 |z|, z ∈ Rc′ . Therefore we get that there exists d1 > 0
such that

�(|z|) ≤ d1|�|1/2, |�| ≤ �(|z|), z ∈ Rc′ , (A.7)

for some d1 > 0. For a standard linear domain, there exists d > 0 such that |Arg(z)| ≤
d(−log |z|), z ∈ Ra,b, and we get similar bounds to (A.7) and proceed similarly.

By (A.5) and (A.6), for r ∈ N sufficiently big, such that −(m − r)/2 − 1 > −m + 1,
there exist constants C1, D > 0 such that

|G(z) − cm−2z
−1�−m+2 − · · · − cm+r−1z

−1�−m+r−1| ≤ D|z|−1|�|−((m−r)/2)−1,

|G(z)| ≤ C1|z−1�−m+2|, z ∈ Rc′ .
(A.8)

Here, the last inequality in (A.8), and then (A.3) from (A.4) and (A.8), follow by the
comment on the lexicographic order of power-logarithmic monomials on the standard
quadratic or standard linear domain at the beginning of step 1.

Step 2. We prove (A.2) using (A.3) proven in step 1. We repeat the construction of the
Fatou coordinates for f on petals, described in detail in [9] and in [7, §8], but deducing
the uniform bounds. Consider the Abel equation for f :

�±
j (f (z)) − �±

j (z) = 1, z ∈ V ±
j .

Denote R±
j = �±

j − �nf on V ±
j . The Abel equation becomes

R±
j (f (z)) − R±

j (z) = 1 − (�nf(f (z)) − �nf(z)), z ∈ V ±
j .

Denote δ(z) := 1 − (�nf(f (z)) − �nf(z)). This is an analytic function on Rc. Let h(z) =
f (z) − f0(z). Then, by uniform bound (2.3), |h(z)| = O(z3�2m+2), uniformly as z → 0
on Rc. We compute

|δ(z)| = |1 − (�nf(f0(z) + h(z))) + �nf(z)|
= |1 − �nf(f0(z)) − R1(z) + �nf(z)| = |R1(z)|.

Here, by Taylor’s theorem (e.g. [1]), �nf(f0(z) + h(z)) = �nf(f0(z)) + R1(z), where

|R1(z)| ≤ M(z)|h(z)|
ρ − |h(z)| for z ∈ Rc such that |h(z)| <

ρ

2
,

in which M(z) := maxξ∈∂B(f0(z),ρ) |�nf(ξ)|. For z ∈ Rc, put ρ(z) := (|f0(z)|/4) > 0.
We now take r0 > 0 such that |z| < r0 implies |h(z)| < (ρ(z)/2). Indeed, by the
uniform bound (2.3), there exists r > 0 such that |h(z)| ≤ C|z3�2m+2| ≤ D|z|, z ∈
Rc, |z| < r . As in step 1, |�nf(z)| ≤ E|z−1�−m|, E > 0, z ∈ Rc. By uniform bound
(2.3) on f0, it follows (write, for example, ξθ = |f0(z)|eiArg(f0(z)) + (|f0(z)|/4) ·
(cos θ + i sin θ), θ ∈ [0, 2π), z ∈ Rc, and f0(z) = |z|eiArg(z) + O(z1+ε) · (cos θ1 +
i sin θ1), θ1 ∈ [0, 2π), ε > 0, with O(z1+ε) uniform on Rc) that there exist constants
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Ci > 0, Di > 0, i = 1, . . . , 4, such that, for z ∈ Rc, ξ ∈ ∂B(f0(z), |f0(z)|/4), we have

C1|ξ | ≤ C2|z| ≤ C3|f0(z)| ≤ C4|ξ |,
D1Arg(ξ) ≤ D2Arg(z) ≤ D3Arg(f0(z)) ≤ D4Arg(ξ).

Therefore, there exists a constant K > 0 such that |ξ−1�(ξ)−m|≤K|z−1�−m|, z∈Rc,
ξ ∈ ∂B(f0(z), |f0(z)|/4). Hence, M(z) ≤ d|z−1�−m|, z ∈ Rc, for some constant d > 0.
Finally,

|δ(z)| = |R1(z)| ≤ C|z�m+2|, z ∈ Rc, C > 0.

Now, iterating the equation R+
j (f (z)) − R+

j (z) = δ(z) on each petal V +
j (on repelling

petals V −
j we consider the inverse f −1), we get the series

R+
j (z) = −

∑
k

δ(f ◦k(z)), z ∈ V +
j ,

uniformly convergent on compact subsets of the petal (see [9]). Note that here
|δ(f ◦k(z))| ≤ c|f ◦k(z)�(f ◦k(z))m+2|, z ∈ Rc, holds uniformly on petals. On the other
hand, directly as in [7, §8], due to the bound (2.3) of f , the bound on |f ◦k(z)| is deduced
uniformly in j ∈ Z on subsectors W

j
θ ⊂ V +

j of the same opening θ ∈ (0, 2π). Finally,
applying [7, Proposition 8.3], and using the existence of uniform bounds for |f ◦k(z)| and
for |δ(z)| by levels, we get that there exists Kθ > 0, independent of j ∈ Z, such that, for
every subsector W

j
θ ⊂ V +

j of opening 0 < θ < 2π ,

|R+
j (z)| ≤ Kθ · �(|z|), z ∈ W

j
θ ⊂ V +

j .

We repeat the procedure similarly for repelling petals V −
j , j ∈ Z, and take the maximum

of the two constants.

Proof of Proposition 2.1.
Let f be prenormalized and let the uniform bound (2.3) hold. Let �nf(z), z ∈ Rc, be the

Fatou coordinate of the formal (2, m, ρ)-normal form f0, defined in (A.1). By Lemma A.2,
for the Fatou coordinate of f , the following uniform bound holds:

|�±
j (z) − �nf(z)| ≤ Cθ�(|z|), z ∈ Wθ ⊂ V ±

j ,

where Wθ ⊂ V ±
j are subsectors of opening 0 < θ < 2π , and Cθ > 0 is uniform for all

j ∈ Z. On standard quadratic domains, there exists a > 0 such that |�| ≤ �(|z|) ≤ a
√|�|

(on a standard quadratic domain, the following bound holds:

|zε(log z)m| ≤ |z|ε
(√

log2 |z| + ϕ2
)m

≤ C|z|ε log2m |z|,

ϕ = Arg(z), ε > 0, m ∈ Z, since |ϕ| < log2 |z| and |ϕ| cannot increase to +∞ uncon-
trolled by |z|). On standard linear domains, there exists a > 0 such that |�| ≤ �(|z|) ≤ a|�|.
Therefore,

|�±
j (z) − �nf(z)| ≤ Cθ

√|�|, z ∈ Wθ ⊂ V ±
j , j ∈ Z.
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Let us estimate the horn maps of f from (1.9):

h
j

0(t) := e−2πi�
j−1
+ ◦(�

j
−)−1(−(log t)/2πi), t ≈ 0,

h
j∞(t) := e2πi�

j
−◦(�

j
+)−1((log t)/2πi), t ≈ 0, j ∈ Z.

By uniform bound (A.2) on �±
j (i.e. by its prenormalized form �±

j (z) = �nf(z) + R±
j (z),

R±
j = o(1), z → 0, z ∈ Wθ ⊂ V ±

j uniformly in j ), we compute

�
j−1
+ ◦ (�

j
−)−1(w) = w + o(1), (A.9)

where o(1) is uniform in j as Im(w) → ±∞ in �
j
∓(Wθ). Since the spaces of orbits of

both positive and negative petals V
j−1
+ and V

j
− are contained in every sector around the

centerline of V
j

0 , (A.9) implies

h
j

0(t) = t (1 + o(1)), t → 0,

uniformly in j ∈ Z. Since h
j

0 are parabolic analytic diffeomorphisms, for δ > 0 and for
every j ∈ Z, there exist constants cj > 0, j ∈ Z, such that

|hj

0(t) − t | ≤ cj |t |2, |t | < δ. (A.10)

Let us take here cj := sup|t |<δ(|hj

0(t) − t |)/|t |2 = sup|t |<δ(|o(t)|/|t |)(1/|t |). Since o(t) is
uniform in j , (cj )j is bounded from above, and from (A.10) it follows that

|hj

0(t) − t | = O(t2), |t | → 0,

where O(·) is uniform in j ∈ Z. The same analysis is repeated for h
j∞(t), j ∈ Z.

A.2. Proof of Lemma 3.4. We prove the uniform convergence of the series (3.14) in
the definition of R̃±

j on compacts in Ṽ ±
j , hence analyticity of R̃±

j on Ṽ ±
j follows by the

Weierstrass theorem.
Let us fix j ∈ Z. Take, for example, R̃+

j on Ṽ +
j . It suffices to show the uniform

convergence on compact subsets of Ṽ +
j of

∑+∞
k=j+1 F̃−

0,k . The convergence of the other

three terms in the sum for R̃+
j follows analogously. Let K̃ ⊂ Ṽ +

j be a compact substrip of

Ṽ +
j (i.e. the image in the logarithmic chart of the closed subsector K ⊂ V +

j in the original

z-chart). Let (Cj+1
0 )′ be the line at height θ ′ in Ṽ

j+1
0 such that K̃ is completely contained

in part of Ṽ +
j up to the line (Cj+1

0 )′. Let us analyze the series (3.14) for ζ ∈ K̃ , using (3.12)

and the fact that two Cauchy–Heine integrals along different lines Cj+1
0 and (Cj+1

0 )′ in
Ṽ

j+1
0 differ by an analytic germ at ζ = ∞:

+∞∑
k=j+1

F̃−
0,k(ζ ) = 1

2πi

∫
(Cj+1

0 )′

G̃
j+1
0 (w)

w − ζ
dw + χ̃

j+1
0 (ζ ) + 1

2πi

+∞∑
k=j+2

( ∫
Ck

0

G̃k
0(w)

w − ζ
dw

)
,

ζ ∈ K̃
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(see Figure 5). Here,

χ̃
j+1
0 (ζ ) :=

∫
Sj+1

0

G̃
j+1
0 (w)

w − ζ
dw, ζ ∈ K̃ ,

is an analytic function for ζ ∈ K̃ and at ζ = ∞, as explained before, which depends on
the chosen height θ ′, that is, on K̃ . Indeed, the integration is done along the boundary arc
Sj+1

0 of Ṽ
j+1
0 between heights corresponding to lines Cj+1

0 and (Cj+1
0 )′, where subintegral

function has no singularities for w ∈ K̃ . Indeed, we can always restrict to a smaller
standard quadratic domain.

It suffices to show the uniform convergence on K̃ of
∑+∞

k=j+2(
∫
Ck

0
(G̃k

0(w))/(w−ζ ) dw).

In the following computation, we assume the lines of integration Ck
0 along a standard

quadratic domain; thus the Ṽ ±
j are covering a standard quadratic domain. Even sharper

estimates for convergence can be repeated for a standard linear domain. By (3.11), we have
the following bounds:∣∣∣∣ ∫

Ck
0

G̃k
0(w)

w − ζ
dw

∣∣∣∣ =
∣∣∣∣ ∫ +∞+i(4k−3)π/2

−log rk+i(4k−3)π/2

G̃k
0(w)

w − ζ
dw

∣∣∣∣ =
∣∣∣∣t = w − i(4k − 3)

π

2

∣∣∣∣
≤

∫ +∞
√

k

|G̃k
0(t + i(4k − 3)π/2)|

|w − ζ | dt

≤ 1
b

∫ +∞
√

k

∣∣∣∣G̃k
0

(
t + i(4k − 3)

π

2

)∣∣∣∣ dt

≤ 1
b

∫ +∞
√

k

Ce−Mem|t+i(4k−3)π/2|
dt

≤ C

b

∫ +∞
√

k

e−Memt

dt = C

b

∫ +∞
√

k

e−Memt · emt

emt
dt

≤ C

bem
√

k

∫ +∞
√

k

e−Memt · emtdt = C1e
−m

√
ke−Mem

√
k

. (A.11)

Indeed, for every k > j + 1, Ck
0 is on some (uniformly) bounded distance from K̃ in the

logarithmic chart. That is, for every ζ ∈ K̃ and every Ck
0 , k > j + 1, |ζ − w| > b, where

b > 0 is independent of k. Also note that, by (3.9), we have at least −log rk ∼ √
k, k → ∞.

Since t > 0, |t + i(4k − 3)(π/2)| ≥ t .
Now the convergence of the series

∑
k e−m

√
ke−Mem

√
k
, for m > 0, M > 0, proves the

uniform convergence of the above series on K̃ .
Once we have proven that R̃±

j are analytic on Ṽ ±
j , by (3.13) and (3.14) we get (3.15).

A.3. Proof of Lemma 3.5. The proof is an adaptation of the proof in [5] for the simpler
case of holomorphic germs. Let us fix j ∈ Z and Ṽ +

j (Ṽ −
j is treated analogously), and

let us choose a fixed horizontal substrip Ũ ⊂ Ṽ +
j . By (3.14), R̃+

j on Ũ is a sum of

countably many Cauchy–Heine integrals. If lines Cj∞ and Cj+1
0 that lie in the petal Ṽ +

j
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intersect the strip Ũ , the integration is done along the shifted lines (Cj∞)′, (Cj+1
0 )′ at some

bounded distance from Ũ , whereas error terms χ̃
j∞(ζ ), χ̃

j+1
0 (ζ ) (integrals along parts of

the boundary Sj∞, Sj+1
0 , as in the proof of Lemma 3.3, for example) are added. They

depend on Ũ , that is, on the choice of lines (Cj∞)′, (Cj+1
0 )′. They are analytic at infinity,

so they expand in Taylor series χ̂
j∞, χ̂

j+1
0 ∈ C[[ζ−1]]. In particular, germs analytic at 0

admit log-Gevrey asymptotic expansion of every order; see Definition 1.3.
We divide the proof into three steps. Note that steps 1 and 2 are independent of the type

of the domain (standard quadratic or standard linear).
Step 1. We prove that each integral

∫
Ck

0,∞
(G̃k

0,∞(w))/(w − ζ ) dw, k ∈ Z, from the

series (3.14), on its domain of analyticity admits an asymptotic expansion in C[[ζ−1]],
as Re(ζ ) → +∞.

Step 2. It is sufficient to treat any of the eight sums in (3.14), since others are treated
analogously. Therefore, we choose one of the sums:∑

k≥j+1

F̃−
0,k(ζ ) =

∑
k≥j+1

∫
Ck

0

G̃k
0(w)

w − ζ
dw. (A.12)

By step 1, for every k ≥ j + 1,
∫
Ck

0
(G̃k

0(w))/(w − ζ ) dw admits an asymptotic expansion

in C[[ζ−1]], as Re(ζ ) → +∞. By appropriate bounds on partial sums of (A.12), we prove
the convergence of coefficients in front of each monomial ζ−n, n ∈ N, in (A.12), and thus
prove the existence of the asymptotic expansion of (A.12) in C[[ζ−1]]. We also prove
statement (1) of the lemma.

Step 3. In the case of construction on a standard linear domain, we prove statement
(2) of the lemma: that the asymptotics of R̆±

j (�) := R̃±
j (�−1) is in addition log-Gevrey of

order m, as � → 0 in �-cusp �(V ±
j ). In the final Remark A.3 we state the technical problem

in deducing log-Gevrey bounds on a standard quadratic domain.

Proof. Step 1. For every k ∈ Z and for every n ∈ N, we have

G̃k
0,∞(w)

w − ζ
=

n−1∑
p=0

(−G̃k
0,∞(w)wp)ζ−p−1 + G̃k

0,∞(w)wn

w − ζ
ζ−n.

Therefore we get, for every k ∈ Z,∫
Ck

0,∞

G̃k
0,∞(w)

w − ζ
dw −

n−1∑
p=0

ak
pζ−p−1 = ζ−n

∫
Ck

0,∞

G̃k
0,∞(w)wn

w − ζ
dw, n ∈ N, (A.13)

where coefficients ak
p are given by

ak
p = −

∫
Ck

0,∞
G̃k

0,∞(w)wp dw. (A.14)

Due to (even superexponential) flatness of G̃k
0,∞(w) as Re(w) → ∞ given in (3.11), the

integrals in (A.14) converge. The same holds for integrals
∫
Ck

0,∞
(G̃k

0,∞(w)wn)/(w − ζ ) dw

for ζ on some bounded distance from the integration line.
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Step 2. To prove convergence of partial sums of (A.12), let us take formula (A.13)
for k ∈ {j + 1, . . . , N}, N ∈ N, N ≥ j + 1, and make the sum of these. For ζ ∈ Ũ ,
where Ũ is a fixed horizontal substrip of Ṽ +

j , there exists b > 0 such that |ζ − w| > b,
ζ ∈ Ck

0 , uniformly for every k > j + 1. Now, very similar bounds to (A.11) in the proof
of Lemma 3.4 performed on the right-hand side of (A.13) and on (A.14) give us the
convergence of

∑N
k≥j+1 ak

p, as N → ∞, and a uniform bound on Ũ on the remainder∑N
k≥j+1

∫
Ck

0
(G̃k

0(w)wn)/(w − ζ ) dw, as N → ∞. Let us now denote by ap ∈ R, p ∈ N,

the limit ap := ∑
k≥j+1 ak

p. We get the asymptotic expansion

∑
k≥j+1

∫
Ck

0

G̃k
0(w)

w − ζ
dw ∼

+∞∑
p=0

apζ−p−1, Re(ζ ) → ∞, ζ ∈ Ũ ⊆ Ṽ +
j . (A.15)

Let us now prove statement (1) of the lemma about the uniform bound. Note that all
bounds on the remainders∑

k≥j+1

∫
Ck

0,∞

G̃k
0,∞(w)wn

w − ζ
dw +

∑
k≤j

∫
Ck

0,∞

G̃k
0,∞(w)wn

w − ζ
dw (A.16)

from (A.13) can be made uniform in j ∈ Z and ζ ∈ Ũj ⊂ Ṽ +
j , where Ũj are strips of

the same width for all j ∈ Z, due to the uniform estimate (3.11) of G̃
j

0,∞, j ∈ Z—in
particular, for n = 1. We conclude here similarly to the proof of convergence (A.11) in
the proof of Lemma 3.4. In fact, in (A.16), for every j ∈ Z and Ũ ⊂ Ṽ +

j , exactly two lines

of integration, Cj+1
0 and Cj∞, are changed to shifted lines, (Cj+1

0 )′ and (Cj∞)′, connected
to previous ones by the boundary arcs Sj+1

0 and Sj∞, and at uniform (in j ) distance from
them. But (A.13) with n = 1 and applied to border lines Sj+1

0 , Sj∞ gives similarly∫
Sj+1

0

G̃
j+1
0 (w)

w − ζ
dw − b

j+1
0 ζ−1 = ζ−1

∫
Sj+1

0

G̃
j+1
0 (w)w

w − ζ
dw, b

j+1
0 ∈ C.

Take ε > 0 small. We find a quadratic (respectively, linear) subdomain R̃C′ ⊂ R̃C such
that

R̃C′ ⊆ {ζ ∈ R̃C : d(ζ , ∂R̃C) > ε}. (A.17)

For ζ ∈ R̃C′ we therefore have that |ζ − w| > ε, w ∈ Sj

0,∞, uniformly in j ∈ Z. Since

Sj

0,∞ are bounded arcs connecting at most w = √
j + ij and w = √

j + 1 + i(j + 1),

and the G̃
j

0,∞ are uniformly (in j ) superexponentially small, the bound on the remainder∣∣∣∣ ∫
Sj∞

G̃
j∞(w)w

w − ζ
dw +

∫
Sj+1

0

G̃
j+1
0 (w)w

w − ζ
dw

∣∣∣∣
can be made uniform in j ∈ Z, for ζ ∈ Ũj ⊂ Ṽ +

j ∩ R̃C′ . This proves statement (1).
Step 3. We prove, on standard linear domains, the log-Gevrey bounds of order m for the

expansion (A.15).
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The lines of integration Ck
0,∞ in Cauchy–Heine integrals on a standard linear domain in

the logarithmic chart are, by (3.8) and (3.10), the half-lines

Ck
0 · · ·

[
∼ k + i(4k − 3)

π

2
, +∞ + i(4k − 3)

π

2

)
,

Ck∞ · · ·
[

∼ k + i(4k − 1)
π

2
, +∞ + i(4k − 1)

π

2

)
, k ∈ Z.

Let j ∈ Z. On every substrip Ũ ⊂ Ṽ +
j (the same analysis can be repeated for Ṽ −

j ), by
(A.13), we have∣∣∣∣ ∞∑

k=j+2

∫
Ck

0

G̃k
0(w)

w − ζ
dw −

n−1∑
p=0

apζ−p−1
∣∣∣∣ =

∣∣∣∣ζ−n

∞∑
k=j+2

∫
Ck

0

G̃k
0(w)wn

w − ζ
dw

∣∣∣∣
≤ |ζ |−n

∣∣∣∣ ∞∑
k=j+2

∫
Ck

0

G̃k
0(w)1/2 · G̃k

0(w)1/2 · wn

w − ζ
dw

∣∣∣∣
=

∣∣∣∣ξ = Re(w) ⇒ ξ = w − i(4k − 3)
π

2

∣∣∣∣
≤ |ζ |−n

∞∑
k=j+2

∫ +∞

−log rk∼k

|G̃k
0(w)|1/2

|ζ − w| · |G̃k
0(w)|1/2

∣∣∣∣ξ + i(4k − 3)
π

2

∣∣∣∣n dξ , ζ ∈ Ũ .

(A.18)

By (3.11), the G̃k
0,∞(w) are superexponentially small on lines Ck

0,∞, and moreover
uniformly in k ∈ Z. That is, there exist constants C, M > 0, independent of k ∈ Z, such
that

|G̃k
0,∞(w)1/2| ≤ Ce−MemRe(w)

, w ∈ Ck
0,∞.

Thus, in (A.18), by direct integration, we get that

∞∑
k=j+2

∫ +∞

−log rk∼k

|G̃k
0(w)1/2|

|w − ζ | dw ≤ Dj . (A.19)

Let us now bound

|G̃k
0(w)|1/2

∣∣∣∣ξ + i(4k − 3)
π

2

∣∣∣∣n ≤ Ce−Memξ
(√

ξ2 + k2
)n ≤ De−Memξ

ξn, D > 0,

(A.20)
for ξ = Re(w) ∈ (−log rk , +∞) ∼ (k, +∞). We sometimes omit constants for simplicity
(where they do not influence the type of the final result). The last inequality is the
consequence of the fact that lines Ck

0 lie in a standard linear domain. Therefore, for w ∈ Ck
0 ,

we have that ξ = Re(w) > Im(w) ∼ k.
Similarly, we estimate the term

|ζ |n ·
∣∣∣∣ ∫

Sj+1
0

G̃
j+1
0 (w)

w − ζ
dw −

∞∑
p=0

bpζ−p−1
∣∣∣∣.
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We get similar bounds to (A.19) and (A.20), but on a subdomain R̃a′,b′ ⊂ R̃a,b, defined as
in (A.17).

Now, maximizing the function ξ �→ De−Memξ
ξn by ξ , we easily get that the point of

maximum is ξ0 such that emξ0 ∼ (1/M)(n/log n) and mξ0 ∼ log n, as n → ∞. Therefore,
there exists D1 > 0 such that

De−Memξ

ξn ≤ D1m
−ne−(n/log n) logn n, ξ > 0, n ∈ N. (A.21)

By (A.19)–(A.21), from (A.18) we get that there exists c > 0 such that∣∣∣∣ ∫
(Cj+1

0 )′

G̃
j+1
0 (w)

w − ζ
dw +

∞∑
k=j+2

∫
Ck

0

G̃k
0(w)

w − ζ
dw −

n−1∑
p=0

cpζ−p−1
∣∣∣∣

≤ cm−ne−(n/log n) logn n · |ζ |−n, ζ ∈ Ũ ∩ R̃C′ . (A.22)

Here, cp = ap + bp, p ∈ N. The same can be concluded for the other three terms of the
sum for R̃+

j given in (3.14). By Definition 1.3 of log-Gevrey asymptotic expansions, we

conclude that R̃+
j (ζ ) admits a log-Gevrey power-asymptotic expansion of order m > 0 in

ζ−1, as Re(ζ ) → +∞ in Ṽ +
j . Thus statement (2) is proven.

Remark A.3. (Bounds for asymptotic expansion of R̃±
j on standard quadratic domains) On

a standard quadratic domain, the lines of integration Ck
0,∞, k ∈ Z, in the logarithmic chart

are the half-lines

Ck
0 · · ·

[
∼ √

k + i(4k − 3)
π

2
, +∞ + i(4k − 3)

π

2

)
,

Ck∞ · · ·
[

∼ √
k + i(4k − 1)

π

2
, +∞ + i(4k − 1)

π

2

)
, k ∈ Z.

The other difference with respect to standard linear domains is the bound (A.20). On
a standard quadratic domain we have ξ2 = Re(w)2 ≥ k ∼ Im(w) = (2k + 1)(π/2), so
(A.20) becomes

|G̃k
0(w)|1/2

∣∣∣∣ξ + i(4k − 3)
π

2

∣∣∣∣n ≤ Ce−Memξ
(√

ξ2 + k2
)n ≤ De−Memξ

ξ2n.

In the same way as in the proof of Lemma 3.5 for standard linear domains, for a standard
quadratic domain we get

De−Memξ

ξ2n ≤ D1m
−2ne−(2n/log(2n)) log2n(2n), ξ > 0.

The final bound (A.22) on a standard quadratic domain is∣∣∣∣ ∫
(Cj+1

0 )′

G̃
j+1
0 (w)

w − ζ
dw +

∞∑
k=j+2

∫
Ck

0

G̃k
0(w)

w − ζ
dw −

n−1∑
p=0

cpζ−p−1
∣∣∣∣

≤ cm−2ne−(2n/log 2n) log2n(2n) · |ζ |−n, ζ ∈ Ũ ∩ R̃C′ , (A.23)

where R̃C′ ⊂ R̃C is a quadratic subdomain, as in (A.17), and Ũ ⊂ Ṽ +
j a horizontal

substrip.
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The bounds (A.23) obtained on standard quadratic domain are weaker than log-Gevrey
of order m, for any m > 0. Therefore, they are too weak to attribute a unique log-Gevrey
sum to R̂(�) on �-cusps �(V ±

j ), j ∈ Z.

A.4. Proof of Lemma 4.2. Lemma A.4 for uniform bounds on iterates R̃n
j ,±, n ∈ N, is

used in the proof. Lemma A.4 and Remark A.5 are also used in the proof of statement (1)

of Lemma 4.1. In fact, in the proof of Lemma A.4, we conclude inductively the bounds
for every n ∈ N, in the course of iterative construction of the sequence R̃n

j ,± described
in Lemma 4.1. Therefore, the bounds in Lemma A.4 and Remark A.5 can be deduced
simultaneously with the inductive construction in Lemma 4.1, without a priori assuming
the existence of the whole sequence.

Let us first introduce some notation. Let ε > 0. As in the proof of statement (1) of
Lemma 4.1, we denote by Cj

0,±2ε the horizontal half-lines in the standard quadratic domain

at distance ±2ε from Cj

0 , and by Cj

∞,±2ε the horizontal half-lines in the standard quadratic

domain at distance ±2ε from Cj∞, j ∈ Z. By Sj

0,±2ε (respectively, Sj

∞,±2ε) we denote the

portions of the boundary between Cj

0,±2ε and Cj

0 (respectively, between Cj

∞,±2ε and Cj∞),

j ∈ Z. By s
j

0 we denote the endpoint of the half-line Cj

0 and by s
j∞ the endpoint of the

half-line Cj∞, at the boundary of the standard quadratic domain; see Figure 9. Then:

s
j

0 := Sj

0,±2ε ∩ Cj

0 , s
j∞ := Sj

∞,±2ε ∩ Cj∞, j ∈ Z.

LEMMA A.4. Let ε > 0 (arbitrarily small) and let the iterates R̃n
j ,± on petals Ṽ ±

j of a
standard quadratic domain be defined as in Lemma 4.1. The shape of the petals may be
changed in the course of this proof, and the original standard quadratic domain may be
changed to a smaller one, but the petals remain petals of opening 2π (i.e. of width 2π in
the ζ -variable), centered at directions jπ , j ∈ Z, of a standard quadratic domain. Let s

j

0
and s

j∞, j ∈ Z, be the endpoints of the half-lines Cj

0 and Cj∞. Then the following bounds
hold.
(1) There exists K > 0 such that:

• for ζ ∈ Ṽ +
j such that d(ζ , Cj+1

0 ) < ε or d(ζ , Cj∞) < ε (region (3)),

|R̃n
j ,+(ζ )| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K log

|ζ − s
j+1
0 |

|ζ | , d(ζ , Cj+1
0 ) < ε,

K log
|ζ − s

j∞|
|ζ | , d(ζ , Cj∞) < ε, j ∈ Z, n ∈ N0;

for ζ ∈ Ṽ −
j such that d(ζ , Cj∞) < ε or d(ζ , Cj

0 ) < ε (region (3)),

|R̃n
j ,−(ζ )| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K log

|ζ − s
j∞|

|ζ | , d(ζ , Cj∞) < ε,

K log
|ζ − s

j

0 |
|ζ | , d(ζ , Cj

0 ) < ε, j ∈ Z, n ∈ N0.
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• for ζ ∈ Ṽ +
j such that d(ζ , Cj+1

0 ) ≥ ε and d(ζ , Cj∞) ≥ ε, and for ζ ∈ Ṽ −
j such

that d(ζ , Cj∞) ≥ ε and d(ζ , Cj

0 ) ≥ ε (regions (1) and (2)),

|R̃n
j ,±(ζ )| ≤ K , j ∈ Z, n ∈ N0.

(2) There exists D > 0 such that:

|e−2πi((�̃nf(ζ )/2)+R̃n
j−1,+(ζ ))| ≤ D, ζ ∈ Ṽ

j

0 ,

|e2πi((�̃nf(ζ )/2)+R̃n
j ,+(ζ ))| ≤ D, ζ ∈ Ṽ

j∞, j ∈ Z, n ∈ N0.

The constants D, K are independent of the choice of the petal Ṽ ±
j , j ∈ Z, and of the

iterate n ∈ N0. Moreover, by choosing a standard quadratic domain RC of a sufficiently
small radius (that is, with sufficiently big real parts Re(ζ ) > D0, for all ζ ∈ R̃C) as the
domain of definition, the bounding constants D and K can be made arbitrarily small.

In Lemma A.4(1), note that |ζ | > D0 > 0 on a standard quadratic domain, so
|ζ − s

j+1
0 |/|ζ | and |ζ − s

j∞|/|ζ | are bounded as Re(ζ ) → +∞ on Ṽ +
j . Therefore,

ζ = s
j+1
0 and ζ = s

j∞ are the only singularities on Ṽ +
j .

Remark A.5. From (2) in Lemma A.4, it immediately follows that (on a standard quadratic
or a standard linear domain)

|e−2πi(�̃nf(ζ )+R̃n
j−1,+(ζ ))| ≤ D|e−2πi(�̃nf(ζ )/2)|, ζ ∈ Ṽ

j

0 ,

|e2πi(�̃nf(ζ )+R̃n
j ,+(ζ ))| ≤ D|e2πi(�̃nf(ζ )/2)|, ζ ∈ Ṽ

j∞, j ∈ Z, n ∈ N0.
(A.24)

Given the sequence of pairs of analytic germs (g
j

0 , g
j∞; σj )j∈Z as in Lemma 4.1, with

radii of convergence σj bounded from below as in (1.8) (respectively, (1.11)), there exists a
standard quadratic (respectively, linear) domain such that |e−2πi(�̃nf(ζ )/2)| < σj/D, ζ ∈
Ṽ

j

0 , and |e2πi(�̃nf(ζ )/2)| < σj/D, ζ ∈ Ṽ
j∞, j ∈ Z. Now, we conclude by (A.24) that

e
−2πi(�̃nf(ζ )+R̃n

j−1,+(ζ )), ζ ∈ Ṽ
j

0 , remains in the domain of the definition of g
j

0 , and that

e
2πi(�̃nf(ζ )+R̃n

j ,+(ζ )), ζ ∈ Ṽ
j∞, remains in the domain of the definition of g

j∞, j ∈ Z, for all
n ∈ N0. This is important to be able to define the iterative algorithm in Lemma 4.1 (1).

Proof of Lemma A.4. We prove (1) and (2) simultaneously by induction.
Step 1. The induction basis for n = 0. Note that R̃0

j ,± ≡ 0 and that the functions

ζ �→ e−2πi(�̃nf(ζ )/2), ζ ∈ Ṽ
j

0 , and ζ �→ e2πi(�̃nf(ζ )/2), ζ ∈ Ṽ
j∞, j ∈ Z,

are uniformly exponentially flat of order 1 − δ, for every δ > 0 (see definition (3.1) of
exponential flatness of some order at the beginning of §3). That is, for substrips Ũ

j

0,∞ ⊂
Ṽ

j

0,∞ bisected by Cj

0,∞ and of uniform opening in j , there exist M , C > 0 such that

|e−2πi(�̃nf(ζ )/2)| ≤ Ce−Me(1−δ)Re(ζ )

, ζ ∈ Ũ
j

0 ,

|e2πi(�̃nf(ζ )/2)| ≤ Ce−Me(1−δ)Re(ζ )

, ζ ∈ Ũ
j∞, j ∈ Z.

(A.25)
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Relation (A.25) follows from the exact form of �̃nf , in the z-chart given by (A.1), as in
the proof of (4.10).

From the above bounds, for every D > 0, we can find a quadratic domain of sufficiently
small radius (sufficiently shifted to the right in the logarithmic chart), such that

|e−2πi(�̃nf(ζ )/2)| ≤ D, ζ ∈ Ṽ
j

0 , |e2πi(�̃nf(ζ )/2)| ≤ D, ζ ∈ Ṽ
j∞, (A.26)

uniformly in j ∈ Z. Note that in (A.26) the petals Ṽ
j

0,∞, j ∈ Z, may have changed shape
compared to those in (A.25). Due to uniform exponential flatness (A.25), to ensure
boundedness by the same D in all substrips Ũ

j

0,∞ of openings approaching π , we may

have to diminish their radii, resulting in new open petals Ṽ
j

0,∞ of opening π , as unions of
such retailored substrips. Thus (2) is satisfied for n = 0. Note that (1) holds trivially for
n = 0 and for any K > 0.

Step 2. The induction step. Suppose that (1) and (2) hold uniformly in j ∈ Z for the
nth iterate R̃n

j ,±. We prove (1) and (2) for the following iterate R̃n+1
j ,± on petals Ṽ ±

j , with
the same constants D and K , independent of the induction step n ∈ N and of the petal
j ∈ Z. We proceed by regions in petals Ṽ ±

j . We prove here the induction step for R̃n+1
j ,+

on Ṽ +
j . For the repelling petal and R̃n+1

j ,− the same can be repeated. We will consider, as

in (4.12), only one term of the sum (4.11) in R̃n+1
j ,+ . For the other three terms the bounds

follow analogously. We bound separately in each of the three regions (horizontal strips)
introduced in (4.12) and in Remark 4.3.

(1) Region (3): ζ ∈ Ṽ +
j , (4j + 1)π/2 − ε < Im(ζ ) < (4j + 1)π/2 + ε. We have

∣∣∣∣ +∞∑
k=j+1

n+1F̃−
0,k(ζ )

∣∣∣∣ ≤ 1
2π

∣∣∣∣ ∫
Cj+1

0,+2ε

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n
j ,+(w))

)

w − ζ
dw

∣∣∣∣
+ 1

2π

∣∣∣∣ ∫
Sj+1

0

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n
j ,+(w))

)

w − ζ
dw

∣∣∣∣
+ 1

2π

+∞∑
k=j+2

∣∣∣∣ ∫
Ck

0

gk
0(e

−2πi(�̃nf(w)+R̃n
k−1,+(w))

)

w − ζ
dw

∣∣∣∣. (A.27)

All denominators except for the one in the integral
∫
Sj+1

0
∗ dw can, by absolute value,

be bounded away from ζ by ε > 0, that is, |w − ζ | ≥ ε, since the lines of integration are
more than ε away from ζ . In each of these integrals, we make a change of variables that
transforms these integrals to integrals along real half-line, as before in (A.11). Using the
uniform bound (2.5) on gk

0,∞(t), k ∈ Z, we get that there exists C > 0 such that

|gk
0(e

−2πi(�̃nf(ζ )+R̃n
k−1,+(ζ )

)| ≤ C|e−2πi(�̃nf(ζ )+R̃n
k−1,+(ζ ))|

≤ C|e−2πi(�̃nf(ζ )/2+R̃n
k−1,+(ζ ))| · |e−2πi(�̃nf(ζ )/2)| ≤ CD|e−πi�̃nf(ζ )|, ζ ∈ Ṽ k

0 ,

|gk∞(e
2πi(�̃nf(ζ )+R̃n

k,+(ζ )
)| ≤ CD|eπi�̃nf(ζ )|, ζ ∈ Ṽ k∞, k ∈ Z. (A.28)
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In the last equality we use the induction hypothesis. As in (A.26), we conclude that
|e∓πi(�̃nf(ζ ))/2| on respective domains Ṽ

j

0,∞ can be made smaller than any constant E > 0
on a standard quadratic domain shifted sufficiently to the right, such that Re(ζ ) > D0 for
some D0 > 0 (and, as before, with shapes of Ṽ

j

0,∞ possibly changed).
Now a similar reasoning to the proof of convergence of (A.11) leads us to conclude that

we can choose a standard quadratic domain of sufficiently small radius such that the sum of
all integrals in (A.27), except for the integral

∫
Sj+1

0
∗ dζ , is smaller in absolute value than

any fixed number, so we take K > 0. We note that the bounds made here do not depend on
a specific petal j ∈ Z, or on the step of iteration n ∈ N.

To conclude the induction step (1), it is left to bound the integral

∣∣∣∣ ∫
Sj+1

0

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n
j ,+(w))

)

w − ζ
dw

∣∣∣∣, ζ ∈ Ṽ +
j , d(ζ , Cj+1

0 ) ≤ ε. (A.29)

The problem in this region is the following: (1) at the point s
j+1
0 at the end of the line

Sj+1
0 of integration (i.e. at the endpoint of Cj+1

0 on the boundary of the domain), R̃n
j ,+(ζ )

from the previous step has a logarithmic singularity, thus possibly preventing the mere
well-definedness of this integral; and (2) |w − ζ | is unbounded as ζ approaches s

j+1
0 , thus

generating a new logarithmic singularity at the point s
j+1
0 in the next iterate R̃n+1

j ,+ . First,
the fact that the integral at each step is well defined is verified by the induction hypothesis
(2) or estimate (A.28). We note that a logarithmic singularity at s

j+1
0 is generated in each

iterate, but they are not accumulating in iteration, due to the fact that R̃n
j ,+ enters the next

step of integration only as the argument of an exponential that is bounded and does not
possess a logarithmic singularity any more. To solve problem (2), let γ (t) : [0, 1] → Sj+1

0

be a (smooth) parametrization of Sj+1
0 , and denote the endpoints by s

j+1
0 := γ (0) and

v
j+1
0 := γ (1). Recall that

s
j+1
0 = Sj+1

0 ∩ Cj+1
0 , v

j+1
0 = Sj+1

0 ∩ Cj+1
0,+2ε.

We now bound, using the complex mean value theorem for integrals (treating the real and
the imaginary part separately, and applying the integral mean value theorem), (A.28) and
the fact that |γ ′(t)| is bounded (say, by 1) since γ is smooth (the boundary of a standard
quadratic domain):

∣∣∣∣ ∫
Sj+1

0

g
j+1
0 (e

−2πi(�̃nf(w)+R̃n
j ,+(w))

)

w − ζ
dw

∣∣∣∣=∣∣∣∣ ∫ 1

0

g
j+1
0 (e

−2πi(�̃nf(γ (t))+R̃n
j ,+(γ (t)))

)

γ (t) − ζ
γ ′(t) dt

∣∣∣∣
≤ 8‖gj+1

0 (e
−2πi(�̃nf(γ (t))+R̃n

j ,+(γ (t)))
)‖L∞[0,1] ·

∣∣∣∣ ∫ 1

0

γ ′(t)
γ (t) − ζ

dt

∣∣∣∣
≤ 8CD‖e−πi(�̃nf(γ (t)))‖L∞[0,1] ·

∣∣∣∣ ∫ 1

0

γ ′(t)
γ (t) − ζ

dt

∣∣∣∣.
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Indeed, for f , g : [0, 1] → C bounded, by the integral mean value theorem for real
functions of a real variable there exist s1, s2, s3, s4 ∈ [0, 1] such that∣∣∣∣∫ 1

0
f (t)g(t) dt

∣∣∣∣ ≤
∣∣∣∣∫ 1

0
Re(f (t))Re(g(t)) dt

∣∣∣∣ +
∣∣∣∣∫ 1

0
Re(f (t))Im(g(t)) dt

∣∣∣∣
+

∣∣∣∣∫ 1

0
Im(f (t))Re(g(t)) dt

∣∣∣∣ +
∣∣∣∣∫ 1

0
Im(f (t))Im(g(t)) dt

∣∣∣∣
= |Re(f (s1))| ·

∣∣∣∣∫ 1

0
Re(g(t)) dt

∣∣∣∣ + |Re(f (s2))| ·
∣∣∣∣∫ 1

0
Im(g(t)) · dt

∣∣∣∣
+|Im(f (s3))| ·

∣∣∣∣ ∫ 1

0
Re(g(t)) dt

∣∣∣∣ + |Im(f (s4))| ·
∣∣∣∣ ∫ 1

0
Im(g(t)) dt

∣∣∣∣
≤ 4‖f ‖L∞[0,1] ·

(∣∣∣∣Re
(∫ 1

0
g(t) dt

)∣∣∣∣ +
∣∣∣∣Im(∫ 1

0
g(t) dt

)∣∣∣∣)≤ 8‖f ‖L∞[0,1]

∣∣∣∣∫ 1

0
g(t) dt

∣∣∣∣.
The norm of exponentially small |e−πi(�̃nf(γ (t))| can, by shifting a standard quadratic
domain to the right (γ (t) lies in its boundary), be made arbitrarily small (independently
of the step n ∈ N). Furthermore, there exists a uniform constant c > 0 (independent of
j ∈ Z) such that∣∣∣∣∫ 1

0

γ ′(t)
γ (t) − ζ

dt

∣∣∣∣ = |log(v
j+1
0 − ζ ) − log(s

j+1
0 − ζ )|

≤ c log
|sj+1

0 − ζ |
|ζ | , ζ in region (3).

Indeed, note that v
j+1
0 lies at some bounded distance from region (3), uniformly in j , and

at Re(ζ ) = +∞ there is no singularity, so the only singularity is ζ = s
j+1
0 . Consequently,

we may bound the whole integral (A.29) in region (3) above by any positive constant
multiplied by log(|ζ − s

j+1
0 |)/|ζ |. Again take K > 0.

(2) Regions (1) and (2): ζ ∈ Ṽ +
j , Im(ζ )≤ (4j + 1)π/2 − ε or Im(ζ )≥ (4j + 1)π/2 + ε.

The induction step is proven analogously, but more easily, since the denominators in all
integrals are now bounded from below by ε (ζ in these regions is at distance greater than
ε from all lines of integration), so the logarithm does not appear in bounds. Only one
comment is needed. The line Cj+1

0 indeed contains the point s
j+1
0 as its endpoint, but,

as discussed before, the integral
∫
Cj+1

0
(g

j+1
0 (e

−2πi(�̃nf(w)+R̃n
j ,+(w))

))/(w − ζ ) dw is well

defined since the previous iterate R̃n
j ,+(w) with logarithmic singularity at s

j+1
0 appears

in the integral only as an argument of the exponential, which is bounded. To bound the
integrals by any constant (take K > 0), we use (A.28).

Finally, once we have proven the induction step for (1) in Lemma A.4, the induction
step for (2) in Lemma A.4 follows easily. We have

|e−2πi((�̃nf(ζ )/2)+R̃n+1
j−1,+(ζ ))| ≤ |e−2πi(�̃nf(ζ )/2)| · e

2π |R̃n+1
j ,+ (ζ )|

≤
{

|e−πi�̃nf(ζ )|D−2πK
0 |ζ − s

j+1
0 |2πK , ζ ∈ Ṽ

j

0 in region (3),

|e−πi�̃nf(ζ )|e2πK , ζ ∈ Ṽ
j

0 in regions (1) and (2).
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By shifting a standard quadratic domain sufficiently to the right (Re(ζ ) > D0), and
by changing the shape of Ṽ

j

0 , j ∈ Z, if necessary, both can be made arbitrarily small
(uniformly in j ∈ Z and independently of n ∈ N), so we make them smaller than D > 0.
The same follows for V

j∞, j ∈ Z. The induction step for (2) in Lemma A.4 is thus
proven.

Proof of Lemma 4.2. We prove that there exist 0 < q < 1 and c > 0 such that

sup
ζ∈Ṽ

j
+

|e2πiR̃n+1
j ,+ (ζ ) − e

2πiR̃n
j ,+(ζ )| ≤ cqn,

for every n ∈ N0 and every j ∈ Z. The proof is by induction, considering separately the
three regions of Ṽ +

j , as in (4.12).
Suppose that there exist 0 < q < 1 and c > 0 (independent of j ∈ Z and n ∈ N0) such

that, for some n ∈ N,

sup
ζ∈Ṽ

j
+

|e2πiR̃n+1
j ,+ (ζ ) − e

2πiR̃n
j ,+(ζ )| ≤ cqn,

for every j ∈ Z. We now prove that this implies, for ζ in each of the three regions of Ṽ +
j ,

that

sup
ζ∈Ṽ

j
+

|e2πiR̃n+2
j ,+ (ζ ) − e

2πiR̃n+1
j ,+ (ζ )| ≤ cqn+1.

That is,

sup
ζ∈ region (i)

|e2πiR̃n+2
j ,+ (ζ ) − e

2πiR̃n+1
j ,+ (ζ )| ≤ cqn+1, i ∈ {1, 2, 3}, j ∈ Z.

We will now find 0 < q < 1 and c > 0, independent of j ∈ Z, such that the induction step
and the basis of the induction hold. Note that, as before, we work for the sake of simplicity
with only one term of the sum in (4.11) for R̃n

j ,+ on Ṽ +
j . For the other three terms of the

sum the conclusion follows analogously. The same can simultaneously be done for R̃n
j ,−

on Ṽ −
j , and we omit it.

(1) The basis of the induction, n = 0. By Lemma A.4(1), if we shift the standard
quadratic domain sufficiently to the right (e.g. Re(ζ ) > D0) and reshape if necessary.
Then there exists an arbitrarily small constant K > 0 such that (by Taylor expansion,
|ez − 1| ≤ e|z| − 1, z ∈ C)

|e2πiR̃1
j ,+(ζ ) − 1| ≤ e

2π |R1
j ,+(ζ )| − 1

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e2πK − 1, ζ ∈ Ṽ +
j , d(ζ , Cj+1

0 ) ≥ ε, d(ζ , Cj∞) ≥ ε,(
|ζ−s

j+1
0 |

|ζ |
)2πK

− 1, ζ ∈ Ṽ +
j , d(ζ , Cj+1

0 ) < ε,(
|ζ−s

j∞|
|ζ |

)2πK

− 1, ζ ∈ Ṽ +
j , d(ζ , Cj∞) < ε.

(A.30)
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To conclude that the |e2πiR̃1
j ,±(ζ ) − 1| are bounded from above on the petals Ṽ +

j by some
constant C > 0, independent of j ∈ Z, note that the second and the third term in (A.30)
are bounded at Re(ζ ) = +∞ due to the division by |ζ | and Re(ζ ) > D0 > 0. That is, there
exists a constant C and 0 < q < 1 such that

|e2πiR̃1
j ,+(ζ ) − e

2πiR̃0
j ,+(ζ )| ≤ Cq0, ζ ∈ Ṽ +

j , j ∈ Z.

In fact, we can take here any 0 < q < 1, and we will determine the good one in the
induction process. This is the basis of the induction.

(2) The induction step. Now suppose that there exist 0 < q < 1 and C > 0 such that,
for n ∈ N0,

|e2πiR̃n+1
j ,+ (ζ ) − e

2πiR̃n
j ,+(ζ )| ≤ Cqn, ζ ∈ Ṽ +

j , j ∈ Z.

We prove the induction step (n + 1). We have

|e2πiR̃n+2
j ,+ (ζ ) − e

2πiR̃n+1
j ,+ (ζ )| ≤ |e2πiR̃n+1

j ,+ (ζ )| · |e2πi(R̃n+2
j ,+ (ζ )−R̃n+1

j ,+ (ζ )) − 1|
≤ e

2π |R̃n+1
j ,+ (ζ )| · (e

2π |R̃n+2
j ,+ (ζ )−R̃n+1

j ,+ (ζ )| − 1), ζ ∈ Ṽ +
j .
(A.31)

We now estimate |R̃n+2
j ,+ (ζ ) − R̃n+1

j ,+ (ζ )| on Ṽ +
j , using the induction hypothesis, in regions

(1)–(3). Note that the expression for the difference R̃n+2
j ,+ (ζ ) − R̃n+1

j ,+ (ζ ) is similar to that

in (4.12), except that, instead of gk
0(e

−2πi(�̃nf(w)+R̃n
k−1,+(w))

), in every integral we have the
difference of exponentials:

gk
0(e

−2πi(�̃nf(w)+R̃n+1
k−1,+(w))

) − gk
0(e

−2πi(�̃nf(w)+R̃n
k−1,+(w))

), k ∈ Z.

As in the proof of Lemma A.4, we bound the difference |R̃n+2
j ,+ (ζ ) − R̃n+1

j ,+ (ζ )| in all
regions (1)–(3). By the complex mean-value theorem, we first estimate

|gk
0(e

−2πi(�̃nf(w)+R̃n+1
k−1,+(w))

) − gk
0(e

−2πi(�̃nf(w)+R̃n
k−1,+(w))

)|
≤ sup

t∈[0,1]
|(gk

0)′(e−2πi(�̃nf(w)+(tR̃n
k−1,+(w)+(1−t)R̃n+1

k−1,+(w)))
)| · |e−2πi�̃nf(w)|

· |e−2πi(R̃n
k−1,+(w)+R̃n+1

k−1,+(w))| · |e2πiR̃n+1
k−1,+(w) − e

2πiR̃n
k−1,+(w)|

≤ d|e−2πi�̃nf(w)| · e2π(|Rn
k−1,+(w)|+|Rn+1

k−1,+(w)|) · |e2πiR̃n+1
k−1,+(w) − e

2πiR̃n
k−1,+(w)|

≤ c|e−2πi�̃nf(w)| · |e2πiR̃n+1
k−1,+(w) − e

2πiR̃n
k−1,+(w)|, w ∈ Ṽ k

0 , k ∈ Z,

where constants c, d > 0 are uniform with respect to petal j ∈ Z and step n ∈ N. The last
two lines follow by Lemma A.4(1) and by uniform bounds (2.5) on (gk

0)′. By the induction
hypothesis, there exists c > 0 such that

|gk
0(e

−2πi(�̃nf(w)+R̃n+1
k−1,+(w))

) − gk
0(e

−2πi(�̃nf(w)+R̃n
k−1,+(w))

)| ≤ cCqn · |e−2πi�̃nf(w)|,
w ∈ Ṽ k

0 , k ∈ Z, n ∈ N.

The same can be repeated for Ṽ k∞, k ∈ Z.
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Now, estimating as in the proof of Lemma A.4(1), we get the following bounds by
regions:

|R̃n+2
j ,+ (ζ ) − R̃n+1

j ,+ (ζ )|

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖e−πi�̃nf(ζ )‖
Ṽ

j+1
0

·
(

A log |ζ−s
j+1
0 |

|ζ | + B

)
· Cqn, ζ ∈ V +

j , d(ζ , Cj+1
0 ) < ε,

‖eπi�̃nf(ζ )‖
Ṽ

j∞
·
(

A log |ζ−s
j∞|

|ζ | + B

)
· Cqn, ζ ∈ V +

j , d(ζ , Cj∞) < ε,

(‖e−πi�̃nf(ζ )‖
Ṽ

j+1
0

+ ‖eπi�̃nf(ζ )‖
Ṽ

j∞
) · B · Cqn, ζ ∈ V +

j , d(ζ , Cj∞ ∪ Cj+1
0 ) ≥ ε.

Here, A > 0 and B > 0 are some positive constants, uniform in n ∈ N and in j ∈ Z,
obtained as sums of integrals with exponentially small numerators and bounded denomina-
tors, similarly to the proof of Lemma A.4. Note that, by shifting a whole standard quadratic
domain to the right and possibly reshaping, we can make the first norm arbitrarily small
(less than any δ > 0), uniformly in n ∈ N and in j ∈ Z. Now, for every δ > 0, there exists
a standard quadratic domain R̃δ such that, for ζ ∈ R̃δ ,

e
2π |R̃n+2

j ,+ (ζ )−R̃n+1
j ,+ (ζ )|

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
|ζ−s

j+1
0 |

|ζ |
)2πAδCqn

e2πBδCqk ≤ N2πAδCqn
e2πBδCqk

, ζ ∈ Ṽ +
j , d(ζ , Cj+1

0 ) < ε,

(
|ζ−s

j∞|
|ζ |

)2πAδCqn

e2πBδCqk ≤ N2πAδCqn
e2πBδCqk

, ζ ∈ Ṽ +
j , d(ζ , Cj∞) < ε,

e2πBδCqn
, ζ ∈ Ṽ +

j , d(ζ , Cj∞ ∪ Cj+1
0 ) ≥ ε.

(A.32)

Here, N > 0 is some positive constant that bounds (|ζ − s
j+1
0 |)/|ζ | in region (3),

uniformly in j ∈ Z. Taking δ > 0 sufficiently small (diminishing the domain), putting
(A.32) in (A.31), we get

|e2πiR̃n+2
j ,+ (ζ ) − e

2πiR̃n+1
j ,+ (ζ )| ≤ Cqn+1, ζ ∈ Ṽ +

j , j ∈ Z.

All bounds are independent of the step n ∈ N and of the petal j ∈ Z. The induction step is
thus proven.

A.5. Proof of Lemma 4.5. (a) Let (g
j

0 , g
j∞)j∈Z be as in (4.4) and (4.5) from Lemma 4.1.

Since

(h
j

0)
−1(t) = te2πig

j
0 (t), h

j∞(t) = te2πig
j∞(t), t ≈ 0,

the symmetry (4.18) of (h
j

0, h
j∞)j implies

te2πig
−j+1
0 (t) = te2πig

j∞(t),
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te−2πig
−j+1
0 (t) = te2πig

j∞(t), t ∈ (C, 0), j ∈ Z.

Therefore,

g
−j+1
0 (t) = −g

j∞(t), t ∈ (C, 0), j ∈ Z. (A.33)

Here, we use that e−2πiz = e2πiz, z ∈ C.
The remainder of the proof is done by induction on the iterates of the Fatou coordinate

�̃n
j ,±(ζ ) (in the logarithmic chart). We prove, using symmetry (A.33), that, for every n ∈

N0, the following symmetry of the iterates holds:

�̃n
−j+1,−(ζ ) = �̃n

j ,−(ζ ), ζ ∈ Ṽ
−j+1
+ ,

�̃n
−j ,+(ζ ) = �̃n

j ,+(ζ ), ζ ∈ Ṽ
−j
+ , j ∈ Z. (A.34)

Note that this is an analogue of (9.6) in [7, Proposition 9.2] in the logarithmic chart (i.e. in
the ζ -variable). As a consequence, the same symmetry (A.34) holds for the limits �̃±

j on

Ṽ ±
j , j ∈ Z, as n → ∞, defined in Lemma 4.1(2). In particular, for j = 0 and for y ∈ R+,

we have that

�̃+
0 (y) = �̃+

0 (y) = �̃+
0 (y), y ∈ (0, +∞) ∩ Ṽ +

0 .

Finally, returning to the z-variable, this gives

�+
0 (x) = �+

0 (x), x ∈ R+ ∩ V +
0 .

That is, �+
0 (R+ ∩ V +

0 ) ⊆ R+ ∩ V +
0 , which completes the proof.

It is left to prove (A.34) by induction. For n = 0, (A.34) is trivially satisfied, since
�̃0

j ,±(ζ ) ≡ �̃nf(ζ ), ζ ∈ Ṽ ±
j . Here, �̃nf is the Fatou coordinate of the (2, m, ρ)-normal

form, ρ ∈ R. It is analytic globally on a standard quadratic domain and satisfies �̃nf(R+) ⊆
R+, due to ρ ∈ R. Therefore, the basis of induction follows by Schwarz’s reflection
principle.

We now suppose that (A.34) holds for all 0 ≤ m < n, n ∈ N. We prove that it implies
(A.34) for n. Take ζ ∈ Ṽ +

j , for some j ∈ Z. Then ζ ∈ Ṽ +
−j . We can show the same for pairs

ζ ∈ Ṽ −
j , ζ ∈ Ṽ −

−j+1, j ∈ Z. By the Cauchy–Heine construction from Lemma 4.1(1) (see

(4.12)), R̃n
j ,+(ζ ), ζ ∈ Ṽ +

j , is a sum of terms of the form

T (ζ ) := 1
2πi

∫
Ck

0

gk
0(e

−2πi(�̃n−1
+,k−1(w))

)

w − ζ
dw,

where each of them has, in the sum, its ‘pair’ by symmetry:

P(w) := 1
2πi

∫
C−k+1∞

g−k+1∞ (e
−2πi(�̃n−1

+,−k+1(w))
)

w − ζ
dw, k ∈ Z.

This ‘pair’ is obtained as the Cauchy–Heine integral along the line

C−k+1∞ =
{
ζ ∈ R̃C : Im(ζ ) = (−4k + 3)

π

2

}
,
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which is exactly complex-conjugate to the line

Ck
0 =

{
ζ ∈ R̃C : Im(ζ ) = (4k − 3)

π

2

}
,

due to the symmetry of standard quadratic domains with respect to R+. See Figure 5 for
indexing.

On the other hand, the same pair T (ζ ) and P(ζ ) appears also in the sum for
R̃n

−j ,+(ζ ), ζ ∈ Ṽ +
−j . Therefore, to show that R̃n

j ,+(ζ ) = R̃n
−j ,+(ζ ), ζ ∈ Ṽ +

j , we show
simply that, on symmetric petals with respect to R+, P and T exchange places by
conjugation. That is, we show that

T (ζ ) = P(ζ ), P(ζ ) = T (ζ ), ζ ∈ Ṽ +
j . (A.35)

Indeed, by the change of variables ξ = Re(w) in the integral, we get

T (ζ ) = 1
2πi

∫ +∞

xk

gk
0(e

−2πi�̃n−1
+,k−1(ξ+i(4k−3)π/2)

)

ξ + i(4k − 3)(π/2) − ζ
dξ

= 1
2πi

∫ +∞

xk

−g−k+1∞ (e
2πi·�̃n−1

+,k−1(ξ+i(4k−3)π/2)
)

ξ + i(4k − 3)(π/2) − ζ
dξ

= 1
2πi

∫ +∞

xk

−g−k+1∞ (e
2πi·�̃n−1

+,−k+1(ξ−i(4k−3)π/2)
)

ξ + i(4k − 3)(π/2) − ζ
dξ .

Here, xk > 0 is the real part of the initial point of half-lines Ck
0 or C−k+1∞ . It is the same for

both lines, due to symmetry of standard quadratic domains with respect to R+. The second
line is obtained directly using symmetry (A.33) of sequence of pairs (g

j

0 , g
j∞)j∈Z. In the

third line, we use the induction assumption (A.34) for the previous step n − 1.
Now, complex conjugation of the integral gives

T (ζ ) = − 1
2πi

∫ +∞

xk

−g−k+1∞ (e
2πi·�̃n−1

+,−k+1(ξ−i(4k−3)π/2)
)

ξ − i(4k − 3)(π/2) − ζ
dξ

= 1
2πi

∫
C−k+1∞

g−k+1∞ (e
−2πi(�̃n−1

+,−k+1(w))
)

w − ζ
dw = P(ζ ).

The same analysis is repeated for P(ζ ), and for all pairs of terms in the sum for
R̃n

j ,+(ζ ) (respectively, R̃n
−j ,+(ζ )). Thus (A.35) is proven and R̃n

j ,+(ζ ) = R̃n
−j ,+(ζ ), ζ ∈

Ṽ +
j . Consequently, since �̃nf(ζ ) = �̃nf(ζ ) on the whole standard quadratic domain (due

to real invariant ρ ∈ R), it follows that

�̃n
j ,+(ζ ) = �̃n

−j ,+(ζ ), ζ ∈ Ṽ +
j .

By induction, this holds for all n ∈ N.
(b) Let R+

0 (z) be such that �+
0 (z) = �nf(z) + R+

0 (z), z ∈ V +
0 , as constructed by

iterative procedure in Lemma 4.1. Let R̆+
0 (�) := R+

0 (z), � ∈ �(V +
0 ). By (1), since �nf
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is R+-invariant,

R̆+
0 (u) = R̆+

0 (u), u ∈ R+ ∩ �(V +
0 ). (A.36)

Let R̂ ∈ C[[�]], R̂ = ∑
k∈N ak�

k , ak ∈ C, k ∈ N, be the common asymptotic expan-
sion of R̆±

j (�), as � → 0 in �(V ±
j ) on the standard linear domain, which was proven to

exist in §5 in the proof of Theorem B. Then, for every N ∈ N, there exists CN ∈ R such
that ∣∣∣∣R̆+

0 (u) −
N∑

k=1

aku
k

∣∣∣∣ ≤ CN |uN+1|, u ∈ R+, u → 0. (A.37)

This implies, by (A.36), that∣∣∣∣R̆+
0 (u) −

N∑
k=1

akuk

∣∣∣∣ ≤ CN |uN+1|,
∣∣∣∣R̆+

0 (u) −
N∑

k=1

ak · uk

∣∣∣∣ ≤ CN |uN+1|, N ∈ N.

(A.38)

Now, ak = ak , k ∈ N, follows by (A.37) and (A.38) and by the uniqueness of the
asymptotic expansion of R̆+

0 (�) in C[[�]].
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