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We study the emergence of precessing vortex core (PVC) oscillations in a swirling
jet experiment. We vary the swirl intensity while keeping the net mass flow rate
fixed using a radial-entry swirler with movable blades upstream of the jet exit. The
swirl intensity is quantified in terms of a swirl number S. Time-resolved velocity
measurements in a radial–axial plane anchored at the jet exit for various S values are
obtained using stereoscopic particle image velocimetry. Spectral proper orthogonal
decomposition and spatial cross-spectral analysis reveal the simultaneous emergence
of a bubble-type vortex breakdown and a strong helical limit-cycle oscillation in the
flow for S > Sc where Sc = 0.61. The oscillation frequency, fPVC, and the square of
the flow oscillation amplitudes vary linearly with S− Sc. A solution for the coherent
unsteady field accurate up to O(ε3) (ε ∼ O((S − Sc)

1/2)) is determined from the
nonlinear Navier–Stokes equations, using the method of multiple scales. We show
that onset of bubble type vortex breakdown at Sc, results in a marginally stable, helical
linear global hydrodynamic mode. This results in the stable limit-cycle precession
of the breakdown bubble. The variation of fLC with S − Sc is determined from the
Stuart–Landau equation associated with the PVC. Reasonable agreement with the
corresponding experimental result is observed, despite the highly turbulent nature of
the flow in the present experiment. Further, amplitude saturation results from the
time-averaged distortion imposed on the flow by the PVC, suggesting that linear
stability analysis may predict PVC characteristics for S> Sc.

Key words: vortex breakdown, nonlinear instability

1. Introduction
Swirling flows are technologically significant flows that are generated by imparting

an azimuthal velocity component to a nominally streamwise flow. For a sufficiently
high ratio of axial fluxes of azimuthal and axial momentum, referred to as the swirl
number, various types of structures can appear within the flow due to the breakdown
of the axial vortex generated by the swirl. Several types of vortex breakdown have
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been observed and consequently multiple theories were proposed to explain the
phenomenon – see the reviews of Hall (1972), Leibovich (1978), Escudier (1988)
and Lucca-Negro & O’Doherty (2001). Vortex breakdown is characterized by the
appearance of a central recirculation zone in the flow, in addition to the appearance
of coherent unsteady flow oscillations in some cases (Escudier & Keller 1985; Billant,
Chomaz & Huerre 1998; Liang & Maxworthy 2004, 2005). Several prior experimental
studies of jets with variable levels of swirl show the appearance of a self-excited
helical vortical structure in the flow accompanied by precession of the recirculation
bubble. For this reason, this structure is referred to as precessing vortex core (PVC)
(Syred 2006) and is distinct from other types of unsteady vortex breakdown modes
such as the spiral or the bubble–spiral breakdown mode.

In the context of gas turbine combustors, where swirl is often used to stabilize
flames, PVCs can induce changes in the overall shape of the flame sheet (Moeck
et al. 2012; Taamallah, Shanbhogue & Ghoniem 2016). This is because the PVC
can potentially cause the formation of low velocity regions that, in turn, provide
a pathway for flame propagation and therefore flame shape change. These events
can potentially then result in the onset of thermoacoustic pressure oscillations
(Shanbhogue et al. 2016; Taamallah et al. 2016). In liquid-fuelled combustors,
the PVC can influence the spatio-temporal distribution of fuel droplets resulting
from fuel jet atomization, potentially resulting in spatio-temporal inhomogeneities
in unburnt mixture composition (see e.g. Renaud, Ducruix & Zimmer 2019). These
inhomogeneities, after combustion, can create pockets of relatively high temperature
in the combustor flow field and result in an increase in combustor nitrogen oxide
emissions. Interaction between high-temperature pockets and the combustor exit can
also generate thermoacoustic pressure oscillations in the combustor. These pressure
oscillations can potentially result in damage to engine hardware and result in poor
combustion efficiency (Lieuwen 2012). On the other hand, at other conditions, PVCs
can also promote liquid jet atomization and consequently rapid fuel air mixing,
thereby serving a beneficial role (Anacleto et al. 2003). For all the above reasons,
understanding the mechanism governing the onset and sustenance of the PVC
oscillation and more generally other hydrodynamic instabilities in swirling flows is
necessary. This insight can potentially enable the design of gas turbine combustor fuel
nozzles and fuel injection strategies that can appropriately harness flow instabilities
to meet low pollutant emission level targets across a range of operating conditions
while simultaneously circumventing operability constraints imposed by thermoacoustic
oscillations.

The dynamics of swirling jets can, to a large extent, be characterized by the swirl
number and the Reynolds number (Re). In this paper, the time-averaged flow field
of an unconfined swirling round jet transitions from a weakly swirled round jet state
to a fully developed bubble-type vortex breakdown state with increasing swirl. The
latter state shows the formation of a recirculation zone on the centreline of the flow,
located within a couple of nozzle diameters downstream of the nozzle exit. Previous
experiments have reported various kinds of vortex breakdown modes in swirling flows,
such as bubble-type vortex breakdown, conical vortex breakdown and spiral vortex
breakdown (Sarpkaya 1971a,b; Escudier & Keller 1985; Billant et al. 1998). In the
present study, a bubble-type vortex breakdown featuring a central recirculation zone
(CRZ) is observed (Billant et al. 1998; Liang & Maxworthy 2004, 2005). Due to the
presence of the CRZ, a strong inner shear layer (ISL) is formed between the CRZ and
the annular jet. Likewise, an outer shear layer (OSL) is formed between the annular
jet and the ambient fluid. Apart from these two shear layers, strong radial variations
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of azimuthal velocity develop between the central vortex core region and the ambient
fluid outside the core. The presence of multiple shear layers, swirl and the central
recirculation zone makes the flow field highly susceptible to various hydrodynamic
instability driven flow field oscillations (Olendraru et al. 1999; Loiseleux, Delbende
& Huerre 2000; Olendraru & Sellier 2002; Gallaire & Chomaz 2003b; Oberleithner
et al. 2011; Juniper 2012; Manoharan et al. 2015; Douglas et al. 2018; Muthiah &
Samanta 2018; Smith et al. 2018).

Several studies have focused on understanding coherent oscillations in swirl flows
using linear stability analysis. Asymptotic methods, based on Wentzel–Kramers–
Brillouin–Jeffreys (WKBJ) expansions, allow the use of results from local hydro-
dynamic stability analysis to characterize these oscillations for base states slowly
evolving in one direction, i.e. a weakly non-parallel base flow (Chomaz, Huerre &
Redekopp 1991; Monkewitz, Huerre & Chomaz 1993). Gallaire et al. (2006) used this
approach to study the appearance of vortex breakdown-induced flow oscillations seen
in the wake of the recirculation zone seen in the simulations of Ruith et al. (2003).
However, WKBJ theory-based methods are limited in their quantitative accuracy when
used to analyse the stability of base flows that vary very rapidly in the streamwise
direction, as in the case of swirl flows. For this reason, several recent studies have
used fully global stability analysis methods that do not rely on the weakly non-parallel
assumption. Meliga, Gallaire & Chomaz (2012) and Qadri, Mistry & Juniper (2013)
show that unsteady helical oscillations downstream of an axisymmetric breakdown
bubble are associated with a globally unstable hydrodynamic mode. Qadri et al.
(2013) show, from a linear structural sensitivity analysis, that the wavemaker driving
these oscillations is located at the upstream end of the breakdown bubble. All the
above studies have focused primarily on laminar flows.

Turbulent swirled jets at high swirl intensities feature coherent flow oscillations
in the flow field that induce helical precession of the central vortex core about the
flow axis and a helical rollup of the shear layers surrounding the breakdown bubble
(see for e.g. Escudier & Keller 1985; Huang & Yang 2009). Turbulent flows can
be analysed using the triple decomposition (Reynolds & Hussain 1972) wherein the
instantaneous quantities describing the turbulent flow field are decomposed into a time-
averaged, coherently oscillating, and incoherent turbulence fluctuations. Tammisola &
Juniper (2016) used this approach to predict the characteristics of PVC oscillations
in a turbulent swirling jet produced by a gas turbine injector. Their analysis suggests
that global linear stability analysis performed on the time-averaged flow field, with
Reynolds stress components modelled using the eddy viscosity hypothesis, predicts the
PVC oscillation as a marginally stable helical mode. Further, they demonstrated, from
a linear structural sensitivity analysis, that the instability of this mode is driven by
the unsteady flow in a region located inside the injector and upstream of the vortex
breakdown bubble. Oberleithner et al. (2011) studied the onset of PVC oscillations
in a variable swirl round jet at fixed mass flow rate. Their study showed that with
increasing levels of swirl, the variation of the amplitude and frequency characteristics
of the PVC with swirl intensity suggests the emergence of a stable helical limit cycle
in the jet beyond a critical value of swirl number. They also present evidence from
local spatial analysis that suggests that the helical shear layer rollup is due to forcing
of the shear layers imposed by the PVC oscillations. These studies have provided
valuable insight into various aspects of how PVCs may arise in flows with swirl from
a linear stability standpoint. However, key questions still remain as follows:

(i) Causality – does the formation of a breakdown bubble (vortex breakdown) cause
a PVC or does the PVC cause the former?
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(ii) Is the PVC due to the emergence of a stable limit cycle as prior experimental
studies suggest (Anacleto et al. 2003; Oberleithner et al. 2011)?

(iii) When can linear hydrodynamic stability predictions based on time-averaged flows
predict PVC frequencies and spatial oscillation amplitude distribution fields with
good quantitative accuracy (Tammisola & Juniper 2016)?

Prior studies have presented a variety of experimental observations in variable swirl
jets (Escudier & Keller 1985; Oberleithner et al. 2011) and in swirl nozzles with more
complicated geometry (Anacleto et al. 2003; Tammisola & Juniper 2016) that suggest
that all of the above points are indeed true. However, theoretical understanding that
directly addresses these questions, to the best of the authors’ knowledge, has still not
been presented hitherto.

The present paper makes progress towards improving the theoretical understanding
of the three points stated above as follows. We use the method of multiple scales to
derive an asymptotic solution for the onset of coherent flow oscillations from the fully
nonlinear Navier–Stokes equations. The analysis uses a small parameter, ε∼ (S−Sc)

1/2.
The parameter S is an appropriately defined swirl number that captures the intensity of
swirl. The value Sc is the swirl number at which coherent flow oscillations arise. These
types of weakly nonlinear analysis have been performed several times in the past in
the context of low Reynolds number laminar flows. Sipp & Lebedev (2007) apply
the method of multiple scales to the case of two-dimensional laminar flows that show
onset of coherent oscillations with increasing Re. They directly address the question of
usefulness of linear hydrodynamic stability analysis using time-averaged flows as base
flows to predict limit-cycle frequency and spatial amplitude distribution characteristics.
Meliga et al. (2012) perform weakly nonlinear analysis with two parameters, S and Re,
in order to explain instability mode selection in low Re swirling flows. Recently, Rigas,
Morgans & Morrison (2017) applied a weakly nonlinear analysis to understand the
response of a turbulent wake behind an axisymmetric bluff body to imposed forcing.
They show that the mathematical structure of equations governing flow oscillation
amplitudes in laminar studies carries over to the turbulent regime when appropriate
turbulence modelling assumptions are introduced.

We apply the weakly nonlinear theory derived in this paper to understand the
emergence of PVC oscillations in a constant mass flow rate, variable swirl jet
experiment at Re= 59 000 (based on the jet diameter and bulk flow velocity) (Clees
et al. 2018; Frederick et al. 2018). Time-resolved velocity field measurements are
obtained using stereoscopic particle image velocimetry (sPIV) over a range of swirl
numbers. The onset of PVC oscillations is observed at Sc=0.61. We model the impact
of turbulent transport using an eddy viscosity model and derive the Stuart–Landau
equation governing the oscillation amplitude of coherent flow oscillations. The analysis
yields closed-form analytical expressions for the coefficients in this equation that
control the strength of the linear growth term and the nonlinear saturation term.
These are expressed in terms of the helical linear eigenmode oscillating with the
PVC frequency at Sc, functions that describe the modification of the base flow for
S > Sc and the spatial amplitude distribution of the flow oscillations at the first
harmonic of the PVC.

We determine these coefficients for the present jet experiments using only the time-
averaged flow field at Sc as an input to these calculations. The numerical values of
the coefficients of our Stuart–Landau equation confirm that the PVC is indeed the
result of a supercritical Hopf bifurcation in the flow state at Sc. Prior studies presume
this fact based on characteristics observed in the experiment (Oberleithner et al. 2011;
Rigas et al. 2017).
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Further, we can identify individual contributions to the nonlinear saturation
coefficient in the Stuart–Landau equation from base flow distortion and harmonic
generation. Determining the numerical values for these two individual contributions
allows us to conclude, based on the analysis of Sipp & Lebedev (2007), that
linear hydrodynamic stability analysis using the time-averaged flow field for S > Sc
can indeed yield quantitatively accurate estimates of PVC frequencies and spatial
amplitude distributions in swirled jets.

Further, our analysis yields an equation for the base-flow modification function that
describes the impact that increasing S beyond Sc has on the time-averaged flow at Sc.
Our analysis shows that, in general, this quantity is independent of the characteristics
of the hydrodynamic instability modes of the flow. For the present jet experiment, the
base-flow modification shows that increasing S beyond Sc induces the formation of a
recirculation zone on the flow centreline, i.e. a steady bubble-type breakdown of the
axial vortex in the flow. Thus, the dependence of the linear growth term coefficient
in the Stuart–Landau equation on the base-flow modification function shows that the
PVC is a hydrodynamic instability that is caused by the change in flow structure
due to vortex breakdown and that the converse is not the case, thereby clarifying the
causality question mentioned earlier. To the best of our knowledge, prior studies of
swirled jets do not provide the insights summarized above, which are the principal
contributions of this paper determined ab initio from the time-averaged based flow
at Sc.

The rest of this paper is organized as follows. Section 2 discusses the theoretical
formulation used for performing global stability and weakly nonlinear analysis.
Section 3 explains the experimental set-up used in the present study. Section 4
discusses the time-averaged and unsteady flow characteristics at various swirl
intensities. Section 5 describes the numerical methods and base flow used to compute
various results from § 2, for the present swirling jet experiment. Section 6 presents
the results obtained from global and weakly nonlinear analysis. Section 7 concludes
the paper with an overview of current findings and future work.

2. Theoretical formulation
We first derive the governing equations for the coherent unsteady component of

an unconfined, nominally axisymmetric constant-density swirling turbulent jet. The
equations are formulated in cylindrical coordinates (r, θ, z) with the z-axis aligned
along the streamwise flow direction. Radial (ur) and axial (uz) velocity components
are expressed in non-dimensional form using a suitably chosen reference velocity,
Uz,ref . Likewise, the azimuthal (uθ ) velocity component is non-dimensionalized using
a suitably chosen reference velocity Uθ,ref . A reference length scale lref is chosen
to non-dimensionalize all lengths. Thus, the Navier–Stokes equations for constant
density swirling flows in operator form can be written as follows:

Bs ∂q
∂t
+N {q}q+ SN s

{q}q+ S2N ss
{q}q=Lvq+ SLs

vq, (2.1)

where q=[ur, uθ , uz, p]T is the vector of flow variables comprised of the three velocity
components and pressure. The operators N {q}, N s

{q} and N ss
{q} are nonlinear

operators representing the convective terms in the governing equations. The vector
within ‘{}’ is used to denote the fact that the nonlinear operators are functions of
flow variables. The linear operators Lv and Ls

v contain the viscous and the pressure
gradient terms. The details of these operators in matrix form are given in appendix A.
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The quantity S = Uθ,ref /Uz,ref is the swirl number. The operator Bs is a diagonal
matrix: Bs

= diag(1, S, 1, 0).
We next introduce the triple decomposition where the instantaneous flow variables

are decomposed into an axisymmetric time-averaged component, Q̄= [Ūr, Ūθ , Ūz, P̄]T,
a coherent fluctuation component, q′c = [u′r, u′θ , u′z, p′]T, and an incoherent turbulent
fluctuation component, q′′ = [u′′r , u′′θ , u′′z , p′′]T, as follows (Reynolds & Hussain 1972):

q(r, θ, z, t)= Q̄(r, z)+ q′c(r, θ, z, t)+ q′′(r, θ, z, t). (2.2)

Using equation (2.2) in (2.1) and time averaging yields the governing equations for
Q̄ as follows:

N {Q̄}Q̄+N {q′c}q′c +N {q′′}q′′ + S
(
N s
{Q̄}Q̄+N s{q′c}q′c +N s{q′′}q′′

)
+ S2

(
N ss
{Q̄}Q̄+N ss{q′c}q′c +N ss{q′′}q′′

)
=LvQ̄+ SLs

vQ̄, (2.3)

where the terms in overbars represent the contribution to time-averaged momentum
transport from coherent and incoherent fluctuations. Following prior studies by
Oberleithner et al. (2015), Rukes, Paschereit & Oberleithner (2016) and Tammisola
& Juniper (2016), we use the eddy viscosity hypothesis, which relates these terms
linearly to the time-averaged rates of strain in a Newtonian fashion via a turbulent
viscosity coefficient (νT) (see appendix B). Thus, all of these terms in (2.3) can now
be written symbolically in terms of two new operators as follows:

N {Q̄}Q̄+ SN s
{Q̄}Q̄+ S2N ss

{Q̄}Q̄=LTQ̄+ SLs
TQ̄, (2.4)

where LT and Ls
T include contributions from both molecular transport and eddy

viscosity model terms (see (A 6)–(A 7)).
Next, substituting (2.2) into (2.1) and phase averaging yields the evolution equations

for the coherent flow component q̃= Q̄+ q′c as follows:

Bs ∂ q̃
∂t
+N {q̃}q̃+N {q′′}q′′

:
+ S

(
N s
{q̃}q̃+N s

{q′′}q′′
:)

+ S2
(
N ss
{q̃}q̃+N ss

{q′′}q′′
:)

=Lvq̃+ SLs
vq̃. (2.5)

Subtracting (2.3) from (2.5) yields the evolution equations for (q′c) as follows:

Bs ∂q′c
∂t
+N {Q̄}q′c +N {q′c}Q̄+N {q′c}q′c +N {q′′}q′′

:
−N {q′c}q′c

−N {q′′}q′′ + S
(
N s
{Q̄}q′c +N s

{q′c}Q̄+N s
{q′c}q

′

c +N s
{q′′}q′′
:

−N s{q′c}q′c

− N s{q′′}q′′
)
+ S2

(
N ss
{Q̄}q′c +N ss

{q′c}Q̄+N ss
{q′c}q

′

c +N ss
{q′′}q′′
:

− N ss{q′c}q′c −N ss{q′′}q′′
)
=Lvq′c + SLs

vq
′

c. (2.6)

The difference between phase-averaged and time-averaged nonlinear terms in (2.6)
represents the quantitative contribution of coherent fluctuating momentum transport
by turbulence fluctuations. Again, we model these terms in terms of the coherent
fluctuating rates of strain using the same νT that was used to model turbulent transport
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terms in (2.3). Therefore, these terms can now be replaced with LT and Ls
T operators

acting on coherent fluctuating quantities as follows:

Bs ∂q′c
∂t
+N {Q̄}q′c +N {q′c}Q̄+N {q′c}q′c + S

(
N s
{Q̄}q′c +N s

{q′c}Q̄+N s
{q′c}q

′

c

)
+ S2

(
N ss
{Q̄}q′c +N ss

{q′c}Q̄+N ss
{q′c}q

′

c

)
=LTq′c + SLs

Tq′c. (2.7)

We add (2.7) and (2.4) to obtain the evolution equation for the total coherent
component q̃= Q̄+ q′c as follows:

Bs ∂ q̃
∂t
+N {q̃}q̃+ SN s

{q̃}q̃+ S2N ss
{q̃}q̃=LT q̃+ SLs

T q̃. (2.8)

2.1. Weakly nonlinear analysis
The parameter S in (2.8) is chosen as the control parameter that is varied to change
the characteristics of the flow. We presume that there exists a critical swirl number,
Sc, beyond which the flow transitions from a stable steady state for S < Sc to an
unsteady state for S> Sc. We determine the characteristics of this unsteady state for
small deviations of S from Sc when compared to the flow oscillation amplitude, as
follows:

S= Sc +∆sε
2, (2.9)

where ε is the normalized amplitude of the unsteady state for S> Sc and ∆s ∼O(1).
Thus, the matrix Bs in (2.8) can be written as

Bs
=B+∆sε

2B1, (2.10)

where B= diag(1, Sc, 1, 0) and B1 = diag(0, 1, 0, 0).
We also presume that the unsteady solution can be characterized by a combination

of variations over a ‘fast’ time scale t1 = t and a ‘slow’ time scale t2 = ε
2t. Thus, q̃

is now expressed as an asymptotic series in terms of ε as follows:

q̃(r, θ, z, t1, t2) = qo(r, z)+ εq1(r, θ, z, t1, t2)+ ε
2q2(r, θ, z, t1, t2)

+ ε3q3(r, θ, z, t1, t2)+ · · · , (2.11)

where we have assumed that the contributions to q̃ at each order depend on both time
scales. Each of the nonlinear operators in (2.8) can be expanded in powers of ε as
follows:

N {q} =N {qo} + εN {q1} + ε
2N {q2} + · · · , (2.12)

N s
{q} =N s

{qo} + εN s
{q1} + ε

2N s
{q2} + · · · , (2.13)

N ss
{q} =N ss

{qo} + εN ss
{q1} + ε

2N ss
{q2} + · · · . (2.14)

Substituting (2.9) and (2.11)–(2.14) into (2.8), yields the following equation at O(1):

N {qo}qo + ScN s
{qo}qo + S2

cN ss
{qo}qo =LTqo + ScLs

Tqo. (2.15)

Comparing the above with (2.4) shows that qo is just the time-averaged state, Q̄, at
S= Sc.
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The O(ε) terms yield the linearized evolution equation for q1,

B
∂q1

∂t1
+N {qo}q1 +N {q1}qo + Sc

(
N s
{qo}q1 +N s

{q1}qo

)
+ S2

c

(
N ss
{qo}q1 +N ss

{q1}qo

)
=LTq1 + ScLs

Tq1. (2.16)

Equation (2.16) is the linearized evolution equation for flow unsteadiness from the
time-averaged state at S= Sc. For convenience of discussion in this paper, we rewrite
(2.16) using a single operator to represent all terms with spatial derivatives as follows:(

B
∂

∂t1
+L

)
q1 = 0, (2.17)

where L is the linear spatial operator acting on q1 (see (A 8) in appendix A). Note that
(2.17) does not have any term that depends on t2. Therefore, the general solution to
(2.17) can be written as a superposition of harmonically oscillating azimuthal Fourier
modes. However, in this paper, we assume that the flow unsteadiness is characterized
by a single neutrally stable Fourier mode as follows:

q1(r, z, θ, t1, t2)= A1(t2)q̂1m(r, z)eimθ−iωg,mt1 + (A1(t2)q̂1m(r, z))∗e−imθ+iωg,mt1, (2.18)

where ωg,m is a real number and the superscript, ‘*’, here and in the rest of this
paper, denotes the complex conjugate. The mode shape, q̂m(r, z)= [ûr, ûθ , ûz, p̂]T, is
the spatial mode shape of the mth Fourier mode that is determined by the following:

(−iωg,mB+Lm)q̂1m = 0, (2.19)

where Lm is the linearized spatial operator corresponding to the mth azimuthal mode.
The solutions to (2.19) satisfy the following boundary conditions. At the centreline
(r= 0), q̂1m(r, z) must satisfy kinematic compatibility conditions as follows (Batchelor
& Gill (1962)):

ûr = ûθ = 0
dûz

dr
=

dp̂
dr
= 0

 if m= 0, (2.20)

ûz = p̂= 0
ûr + imûθ = 0

dûr

dr
= 0

 if |m| = 1, (2.21)

ûr = ûθ = 0
ûz = p̂= 0

}
if |m|> 1. (2.22)

Since the flow is unconfined, the following boundary conditions must be satisfied at
the far-field boundary:

q̂m→ 0, r→∞. (2.23a,b)

Thus, equations (2.19)–(2.23) represent a global temporal eigenvalue problem where
ωg,m is the temporal eigenvalue and q̂1m(r, z) is the associated global hydrodynamic
mode.
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The solution for A1(t2) in (2.18) must be derived from higher-order asymptotic
relations as follows. At O(ε2), we have the following equation for q2(r, z, θ, t1, t2):(

B
∂

∂t1
+L

)
q2 = −N {q1}q1 − ScN s

{q1}q1 − S2
cN ss
{q1}q1

−∆s(N s
{qo}qo + 2ScN ss

{qo}qo −Ls
Tqo). (2.24)

The general solution to (2.24) is given by,

q2(r, z, θ, t1, t2) = ∆sq̂∆(r, z)+ |A1|
2(t2)q̂A∗A(r, z)

+
(
A2

1(t2)q̂AA(r, z)ei2mθ−i2ωg,mt1 + A∗1
2
(t2)q̂

∗

AA(r, z)e−i2mθ+i2ωg,mt1
)

+
(
A2(t2)q̂1m(r, z)eimθ−iωg,mt1 + A∗2(t2)q̂

∗

1m(r, z)e−imθ+iωg,mt1
)
. (2.25)

The first two terms and the third term, written as a pair of complex conjugate
terms, are a particular solution to (2.24). The fourth term, also written as a pair of
complex conjugate terms, is the solution to the homogeneous equivalent of (2.24).
The functions q̂∆(r, z), q̂AA∗(r, z) and q̂AA(r, z) all satisfy the same boundary conditions
given in (2.20)–(2.23) and are given by solutions to the following three equations.

The function q̂∆(r, z) is given by the following:

L0q̂∆ =−N s
0 {qo}qo − 2ScN ss

0 {qo}qo +Ls
T,0qo. (2.26)

Note that the source terms in (2.26) are a function of qo, i.e. the base flow at Sc,
alone. Therefore, q̂∆ quantifies to leading order in S− Sc, the modification of qo with
increasing S. Therefore, we will refer to q̂∆ as the intrinsic base-flow modification
function. It is important to note that, in general, equation (2.26) shows that q̂∆ does
not depend on any characteristics of the linear instability mode.

The function q̂A∗A(r, z) is given by the following:

L0q̂A∗A = −N {q̂1m}q̂
∗

1m −N {q̂∗1m}q̂1m − Sc(N s
−m{q̂1m}q̂

∗

1m +N s
m{q̂
∗

1m}q̂1m)

− S2
c(N ss

−m{q̂1m}q̂
∗

1m +N ss
m {q̂

∗

1m}q̂1m). (2.27)

Note that the source terms on the right of (2.27) are independent of qo, showing
that the function q̂A∗A quantifies to leading order in S− Sc, the non-oscillatory, time-
averaged distortion that the linear instability imposes on the base flow at Sc. Therefore,
we will refer to q̂A∗A as the base-flow distortion function.

The function q̂AA(r, z) quantifies the spatial distribution of the amplitude associated
with the first harmonic of the linear instability and is given by the following:

(−i2ωg,mB+L2m)q̂AA =−N {q̂1m}q̂1m − ScN s
m{q̂1m}q̂1m − S2

cN ss
m {q̂1m}q̂1m. (2.28)

At O(ε3) we obtain,(
B
∂

∂t1
+L

)
q3 = −B

∂q1

∂t2
−∆sB1

∂q1

∂t1
−N {q1}q2 −N {q2}q1

− Sc
(
N s
{q1}q2 +N s

{q2}q1

)
− S2

c

(
N ss
{q1}q2 +N ss

{q2}q1

)
−∆s[N s

{q1}qo +N s
{qo}q1 + 2Sc(N ss

{q1}qo +N ss
{qo}q1)−Ls

Tq1].

(2.29)
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884 A29-10 K. Manoharan and others

Physically relevant, non-trivial solutions to (2.29) must be bounded in time and space.
As is common, the norm that is used to quantify the magnitude of q3 is generated by
the following definition of the inner product between two functions:

〈q1, q2〉 =

∫ Z

0

∫ R

0

∫ 2π

0
(qH

1 )
Tq2r dθ dr dz, (2.30)

where the superscript ‘H’ denotes the transpose complex conjugate operation.
Thus, the boundedness condition on q3 requires that the oscillatory contributions

with frequency, ωg,m, to the source term in (2.29) must be orthogonal to the
corresponding adjoint eigenfunction of the operator on the left, associated with
the inner product defined in (2.30). These adjoint eigenfunctions can be written as
q†

1m(r, z, θ, t1)= q̂†
1m(r, z)ei(mθ+ω†

g,mt1), where ω†
g,m and q̂†

1m(r, z) are given by solving the
following equation:

(iω†
g,mB+L†

m)q̂
†
1m = 0, (2.31)

where L†
m is the adjoint linear operator that satisfies the following relation, 〈q̂†

1m,Lmq̂1m〉

= 〈L†
mq̂†

1m, q̂1m〉. This relation, along with (2.19) and (2.31), gives ω†
g,m = ω

∗

g,m (see
Schmid & Henningson 2001).

Thus, substituting (2.18) and (2.25) into (2.29) and invoking the boundedness
condition, yields the evolution equation for A1(t2) as follows (Landau & Lifshitz
1959):

dA1

dt2
=∆sBAA1 −NAA1|A1|

2. (2.32)

Equation (2.32) is referred to as the Stuart–Landau amplitude evolution equation. The
coefficient in the linear term on the right in (2.32), BA, is given by the following inner
product:

BA =
1

〈q̂†
1m,Bq̂1m〉

〈q̂†
1m, [iωg,mB1q̂1m −N {q̂1m}q̂∆ −N {q∆}q̂1m

−N s
0 {q̂1m}qo −N s

m{qo}q̂1m

− Sc (N s
0 {q̂1m}q̂∆ +N s

m{q̂∆}q̂1m

− 2N ss
0 {q̂1m}qo − 2N ss

m {qo}q̂1m )

− S2
c(N ss

0 {q̂1m}q̂∆ +N ss
m {q̂∆}q̂1m)

+Ls
T,mq̂1m]〉. (2.33)

Thus, it is clear that the growth of flow oscillations, determined by BA in linear term in
(2.32), is in turn determined by q̂∆, i.e. the intrinsic base-flow modification for S> Sc,
which therefore, is the cause of the onset of flow oscillations.

The coefficient of the nonlinear term in (2.32), NA, is given by the following inner
product:

NA =
1

〈q̂†
1m,Bq̂1m〉

〈q̂†
1m, [N {q̂1m}q̂A∗A +N {q̂∗1m}q̂AA

+N {q̂A∗A}q̂1m +N {q̂AA}q̂
∗

1m

+ Sc (N s
0 {q̂1m}q̂A∗A +N s

2m{q̂
∗

1m}q̂AA
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Precessing vortex core: weakly nonlinear analysis 884 A29-11

+N s
m{q̂A∗A}q̂1m +N s

−m{q̂AA}q̂
∗

1m )

+ S2
c (N ss

0 {q̂1m}q̂A∗A +N ss
2m{q̂

∗

1m}q̂AA

+N ss
m {q̂A∗A}q̂1m +N ss

−m{q̂AA}q̂
∗

1m )]〉. (2.34)

The expression for NA in (2.37) can be decomposed into two individual components
such that NA =NA1 +NA2. The component, NA1, is determined by base-flow distortion
as follows:

NA1 =
1

〈q̂†
1m,Bq̂1m〉

〈q̂†
1m, [N {q̂1m}q̂A∗A +N {q̂A∗A}q̂1m

+ Sc(N s
0 {q̂1m}q̂A∗A +N s

m{q̂A∗A}q̂1m)

+ S2
c(N ss

0 {q̂1m}q̂A∗A +N ss
m {q̂A∗A}q̂1m)]〉. (2.35)

The component, NA2, is the component due to harmonic generation as follows:

NA2 =
1

〈q̂†
1m,Bq̂1m〉

〈q̂†
1m, [N {q̂

∗

1m}q̂AA +N {q̂AA}q̂
∗

1m

+ Sc(N s
2m{q̂

∗

1m}q̂AA +N s
−m{q̂AA}q̂

∗

1m)

+ S2
c(N ss

2m{q̂
∗

1m}q̂AA +N ss
−m{q̂AA}q̂

∗

1m)]〉. (2.36)

Next, we rewrite (2.32) in terms of a single time variable, t, by introducing A(t)=
εA1(ε

2t)+ ε2A2(ε
2t) into (2.32), which then yields the following equation at leading

order:

dA
dt
= (S− Sc)BAA−NAA|A|2. (2.37)

Thus, the asymptotic solution to (2.8), accurate to O(ε3), is given by

q̃(r, z, θ, t) = qo(r, z)+ (S− Sc)q̂∆(r, z)+ |A(t)|2q̂A∗A(r, z)
+A(t)q̂1m(r, z)eimθ−iωg,mt

+ A∗(t)q̂1m(r, z)∗e−imθ+iωg,mt

+ (A(t))2q̂AA(r, z)ei2mθ−i2ωg,mt
+ (A∗(t))2q̂A∗A∗(r, z)e−i2mθ+i2ωg,mt

+O((S− Sc)
3/2). (2.38)

Except for the first two terms, the remaining terms in (2.38) are contributions that
become relevant when coherent unsteadiness is established in the flow for S> Sc. Note
that this first happens when the linear hydrodynamic mode, q̂1m, becomes neutrally
stable, i.e. ωg,m is purely real. In this case, the nature of flow unsteadiness for S >
Sc depends on the characteristics of A(t). These can be determined by setting A(t)=
D(t)eiφ(t) in (2.37), where D(t) and φ(t) are real-valued functions that represent the
time evolution of the amplitude and argument of A(t). Thus, equating real parts on
both sides of (2.37) yields an evolution equation for D(t) as follows:

dD
dt
= (S− Sc)BArD−NArD3, (2.39)

where BAr and NAr are the real parts of the coefficients NA and BA, respectively. Thus,
the unsteady characteristics of the flow are determined by establishing the behaviour
of D(t) as t→∞ for a given non-zero initial perturbation, Di =D(0).
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884 A29-12 K. Manoharan and others

Assuming that the flow is nominally stable for S < Sc, the following types of
unsteady flow behaviour can be identified for S > Sc based on the signs of BAr and
NAr as follows.

(i) Stable limit cycle (BAr > 0, NAr > 0). For any value of Di > 0, equation (2.39)
shows that for S > Sc the first term causes D(t) to increase exponentially, while
the second term limits this growth. Eventually, D(t)→ DLC as t→∞ where DLC,
determined by letting dD/dt→ 0 in (2.39), is given by

DLC =

√
(S− Sc)BAr

NAr
. (2.40)

The change in oscillation frequency of the flow from ωg,m baseline at S = Sc
with increasing S can be determined using (2.39) by choosing A(t) = DLCeiωct and
comparing imaginary parts on both sides to yield:

ωc = (S− Sc)

[
BAi − BAr

(
NAi

NAr

)]
. (2.41)

Thus, equation (2.38) shows that the angular frequency, ωLC, of the limit-cycle
oscillation is given by

ωLC =ωg,m − (S− Sc)BAi + (S− Sc)BAr

(
NAi

NAr

)
. (2.42)

Note also that for S< Sc, both terms on the right of (2.39) cause D(t)→ 0 as t→∞
for any value of Di. This type of flow behaviour corresponds to a supercritical Hopf
bifurcation in the flow state at S = Sc, i.e. the emergence of a stable limit cycle
for S > Sc due to a linear hydrodynamic mode of the system becoming neutrally
stable. Thus, the spatial region where the integrand in (2.33) is non-zero can
now be identified as the nonlinear wavemaker region, i.e. the region of the flow
that contributes to the growth of coherent oscillations. Note that we use the term
‘nonlinear’ to emphasise that this definition of the wavemaker is different from
that defined from linear, structural sensitivity considerations (Hill 1992; Giannetti &
Luchini 2007; Juniper & Pier 2015; Tammisola & Juniper 2016). Further, we refer
to the spatial regions where the integrand in (2.34) is non-zero as the nonlinear
wavelimiter region because NA determines the impact that the nonlinear terms have
in determining the final saturated oscillation amplitude of the limit cycle. Note that
(2.34) shows that amplitude saturation is caused by the modification induced on the
time-averaged flow for S > Sc as well as interaction between the linear eigenmode
and its first harmonic.

(ii) Subcritical flow (BAr > 0, NAr < 0). In this case, equation (2.39) suggests that for
S> Sc, D(t)→∞ as t→∞ for any value of Di. This suggests that S= Sc represents
a catastrophic loss of stability. As such, the flow dynamics cannot be quantitatively
described by the present leading-order nonlinear analysis. On the other hand, for S<
Sc, an unstable limit cycle with an amplitude DLC=

√
(S− Sc)BAr/NAr exists. Note that

for Di<DLC, dD/dt<0 and therefore, D(t)→0 as t→∞. For Di>DLC dD/dt>0 and
therefore, D(t)→∞ as t→∞. Thus, coherent flow unsteadiness is triggered when
D>DLC for S< Sc.

(iii) Stable flow (BAr 6 0, NAr > 0). For this case, equation (2.39) shows that D(t)→
0 as t→∞ for any value of Di.

Note that other possibilities for NAr and BAr are not considered as they do not
result in steady flow behaviour for S < Sc. We next use these results to gain insight
into the emergence of globally self-excited helical oscillations in a variable swirl jet
experiment that will be described in the next section.
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FIGURE 1. Schematic of experimental set-up. The blue box downstream of the dump
plane shows the field of view of the sPIV measurements. The red box shows schematically
the computational domain. The streamlines are shown for purpose of illustration alone.
The nominal Reynolds number based on jet nozzle diameter, Re= 59 000.

3. Experimental study
Experiments were conducted in a swirling flow facility with the ability to

continually vary the swirl number of the jet. The main components of the set-up,
shown in figure 1, relevant to the analysis performed in this work are: the injector
nozzle, the swirler chamber with a variable-angle, radial-entry swirler and the settling
chamber. Room temperature air enters the settling chamber via the air inlet port at
the bottom of the rig. Upstream of this inlet, the air passes through a flow meter
(Teledyne Hastings) with a 0.5 % flow rate uncertainty. In all cases tested, the flow
rate remained with 0.12 % of the 19.0 g s−1 set point that corresponds to a bulk flow
velocity (Uo) of 36 m s−1.

Air enters the settling chamber through a flow-conditioning section comprised
of perforated plates at each end to breakup large turbulent structures. A smooth
contraction downstream reduces the diameter of the duct from 15 to 6.5 cm in order
to create a radially uniform velocity distribution upstream of the radial-entry swirler
block. The flow enters the variable-angle swirler radially and exits to the atmosphere
through a 2.54 cm diameter nozzle. The nozzle is fitted with two pressure transducers,
as shown in figure 1. The pressure transducers (PT) are located 6.92 cm and 1.7 cm
from the nozzle exit. PCB Piezotronics model 113B28 pressure transducers are used.
The pressure transducer signal is amplified using PCB Piezotronics four channel,
ICP sensor signal conditioner, model 482C26. The pressure signal is recorded using
LabView through a National Instruments DAQ at 20 kHz for a duration of three
seconds.
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884 A29-14 K. Manoharan and others

The variable-angle, radial-entry swirler allows for the swirl number to be changed
continuously without changing the net mass flow rate of air entering the set-up. The
swirler consists of eight evenly spaced movable vanes with a NACA 0025 airfoil
cross-section. The span and chordwise dimensions of each vane are both 2.54 cm. The
angle of the blades relative to the radius of the duct can be changed using an encoded
stepper motor within the range of −70◦ to 70◦.

A Hawk/Darwin Duo Nd-YAG, 532 nm wavelength, 60 W laser is used for
measuring three components of velocity using stereoscopic particle image velocimetry
in the r–z plane. The blue rectangle in figure 1 shows schematically the laser sheet and
the field of view used to acquire raw images using two Photron SA5 complementary
metal oxide semiconductor high-speed cameras. The sampling rate of the PIV system
is 5 kHz, with an interframe time ranging from 22 to 24 µs depending on swirl
number. Images are recorded for a one-second duration, yielding 5000 frames of
velocity field data per test case.

Aluminium oxide particles with a nominal diameter of 0.5–2 µm are used as
tracer particles and can accurately follow flow perturbations up to a frequency of
4000 Hz. Velocity vectors are calculated in DaVis 8.3.1 without any preprocessing
or masking and stereoscopic cross-correlation with multi-pass iterations and with
decreasing window sizes. The first pass is a 32× 32 pixel interrogation window with
a 50 % overlap followed by two passes with a 16× 16 pixel interrogation with a 50 %
overlap. During vector post processing, there are two methods used to reject vectors.
First, if the vector is more than three times the root mean square of the surrounding
vectors, the vector is removed and replaced. Additionally, universal outlier detection
removes and replaces spurious vector results. The uncertainty was calculated on the
mean vector field for each test case and did not exceeded 2 m s−1.

4. Flow field characterization

This section discusses the evolution of the flow field characteristics of the swirling
jet as determined from sPIV measurements. We define a geometric swirl number, S,
in this paper to quantify the intensity of swirl as follows:

S=
2
3

tan α
[

1− (Rc/Rb)
3

1− (Rc/Rb)2

]
, (4.1)

where α is the swirler vane angle, Rc is the centrebody radius and Rb is the swirler
tube radius (see figure 1). The expression in (4.1) can be derived from the momentum
flux based definition of swirl number (Beér & Chigier 1972) by assuming an axial
inflow into an annulus with inner and outer radii, Rc and Rb, respectively, undergoing
a deflection through and angle α as it passes through the swirl vanes. At each swirl
number, the flow is defined by a certain state; pre-vortex breakdown, near-vortex
breakdown, steady vortex breakdown, weak PVC and strong PVC (Clees et al.
2018). Pre-vortex breakdown swirling jets correspond to 0 6 S 6 0.38, before a
central recirculation zone forms. The near-vortex breakdown state occurs when
0.38< S 6 0.67 and is characterized by highly intermittent recirculation along the jet
centreline. The steady vortex breakdown state occurs beyond this range of S wherein
a stable central recirculation zone is established around the centreline of the jet. We
begin our discussion of these flow characteristics by first examining the time-averaged
characteristics of the flow field with increasing S.
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FIGURE 2. Variation of the time-averaged axial velocity field with S (Re= 59 000) with
streamlines. The solid black curve shows the time-averaged recirculation zone. The broken
curves show the nominal location of the inner (black) and outer (magenta) shear layers
in the time-averaged flow.

4.1. Time-averaged characteristics
The evolution of the time-averaged flow field for S= 0.67–1.83 is shown in figure 2.
In each of the figures, the colour field shows Ūz. Streamlines in white are overlaid
to visualize the direction of the flow. The broken black and magenta lines denote the
time-averaged location of the shear layers in the flow. These curves are determined
from the radial position of the inflection points in the Ūz profile at each z location.
The thick black contours correspond to Ūz = 0 and denote the boundaries of the
recirculation zones. The same scheme is used to label these time-averaged flow field
features in all field plots in the rest of this paper.

Figure 2 shows that increasing S leads to increased jet spreading due to the
formation of the breakdown bubble, whose boundaries are captured by the thick
black Ūz = 0 contour. Note that the absence of a bubble for the S= 0.67 case is due
to the fact that for this case, the bubble is still intermittent and hence does not appear
in the time-averaged result presented in figure 2(a). This change in the time-averaged
flow field structure is accompanied by the emergence of a coherent flow oscillation
in the jet. We next present results that characterize the nature of the flow oscillation
in the next subsection.

4.2. Unsteady dynamics
We characterize the global spatial structure of flow oscillations using the spectral
proper orthogonal decomposition (SPOD) on the time-resolved flow field measure-
ments from sPIV. The SPOD calculates the optimal energy-ordered but spectrally
resolved basis modes that can be used to reconstruct the unsteady flow field (Towne,
Schmidt & Colonius 2018). Thus, SPOD is a superior method for identifying
narrowband oscillations when compared to the traditional proper orthogonal decompo-
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FIGURE 3. Variation of the energy spectra with S from spectral proper orthogonal
decomposition of the time-resolved flow fields determined from sPIV measurements (Re=
59 000). The red curve shows the spectrum for the most energetic mode. The spectra for
the remaining modes are shown in grey scale from high (dark) to low (light) total energy.
The values of S associated with each result are shown within each plot.

sition (POD), which does not discern modes based on frequency. As such, highly
tonal but low-energy oscillations that are not necessarily separated from other unsteady
motions by the POD are unambiguously identified by the SPOD. All results from
SPOD in this paper have been determined by dividing the time record of sPIV
measurements into 18 ensembles with 256 points per ensemble and 50 % overlap
between successive ensembles for the spectral estimation step.

Figure 3(a–e) shows the mode energy spectra from SPOD for S= 0.67–1.83. The
mode energy spectra show the energy spectra for each mode, where mode 1, the
most energetic mode, is highlighted in red and the remainder of the modes fade
from black to grey in descending order of total mode energy. As S is increased, the
peak frequency, which appears in mode 1 between 800 and 1100 Hz for each case,
increases as well. Additionally, the energy of the mode increases in amplitude and
decreases in spectral width as the coherence of the PVC increases. At the highest
two swirl numbers shown, S = 1.43 and 1.83, some of the PVC energy appears in
the second mode (mode 2) as well, where a smaller, more broadband peak is present
beneath the mode 1 spectrum. Additionally, the first harmonic of the PVC appears
in mode 1 at the higher swirl number cases, a result of the very high amplitude
coherent oscillation.

Another feature that appears in mode 1 of the SPOD for swirl numbers in the range
S= 0.95–1.15 (see figure 3c,d) is two additional peaks near 500 Hz and 300 Hz. A
continuous wavelet transform analysis of the velocity fluctuations at several points in
the annular jet near the nozzle exit for these two values of S showed that these peaks
are due to an intermittent turbulent burst that occurred at frequencies of 300 Hz and
500 Hz. Further, the pressure transducer signals show no evidence of these oscillations
(Manoharan 2019). Note, however, that the energy associated with these fluctuations
is an order of magnitude less than that associated with the coherent oscillation. As
such, they are not the focus of the discussion in this paper.
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FIGURE 4. Variation of the horizontal in plane velocity component modes determined
from spectral proper orthogonal decomposition at the PVC frequency, fPVC, with S
(Re= 59 000). The value of S associated with each result is shown on the title of each of
the plots. The solid black curve shows the time-averaged recirculation zone boundary. The
broken curves show the nominal location of the inner (black) and outer (magenta) shear
layers in the time-averaged flow.

Figure 4(a–f ) shows the normalized mode shapes corresponding to the mode 1
peak frequency at each value of S. Each figure shows the real part of the horizontal
velocity component in the plane of light sheet, Re(ûx), associated with each SPOD
mode. These mode shapes show the evolution of the spatial dynamics of the coherent
oscillation as a function of S. Note first that the mode at S = 0.67 shows a mode
shape with strong oscillations on the centreline, which suggests that the coherent
oscillation induces a precession of the axial vortex. Therefore, we identify the coherent
oscillation associated with the frequency corresponding to the peak in figure 3(a–e)
as the precessing vortex core (Syred 2006). We will show in a forthcoming section of
this paper that the PVC is a consequence of the formation of the breakdown bubble
in the flow, using the results from the theoretical analysis presented in § 2. It is
useful at this point to emphasize the distinction between the PVC oscillations shown
in figure 4 and helical spiral breakdown studied by Meliga et al. (2012) and Qadri
et al. (2013). In these two studies, the helical rollup of the shear layers is due to the
instability of helical modes that have significant oscillation amplitudes downstream
of the breakdown bubble. The PVC oscillation on the other hand is associated with
the precession of the vortex breakdown bubble and results in shear layer rollup that
originates at the upstream end of the breakdown bubble as figure 4 and other prior
experimental studies show (Escudier & Keller 1985; Oberleithner et al. 2011).

With increasing S, figure 4(a–e) shows that the centreline oscillation moves
upstream into the nozzle. This is consistent with the prior observation of Escudier
& Keller (1985) in a very similar experimental set-up. Also, the region where
the centreline oscillations are concentrated lies at the upstream end of the bubble,
consistent with observations in prior studies with experimental set-ups similar to ours
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FIGURE 5. Variation of (a) u′zu′z in r–z plane. (b) Coherence (|C12|) as a function of
frequency for S= 1.83. The broken curves show the nominal location of the inner (black)
and outer (magenta) shear layers in the time-averaged flow for this case.

(Escudier & Keller 1985; Escudier 1988; Oberleithner et al. 2011). Note also that
the oscillations along the OSL become progressively stronger relative to those on
the centreline with increasing S due to the development of helical oscillations of the
shear layers in the flow downstream of the bubble.

We next estimate the azimuthal mode number associated with the PVC oscillation
and the critical swirl number, Sc, at which it emerges from a spatial cross-spectral
analysis of the sPIV results as follows. Figure 5(a) shows the spatial variation of u′zu′z
determined from the sPIV measurements at S= 1.83. The broken black and magenta
curves show the nominal position of the ISL and the OSL respectively. Points 1 and
2, positioned at (r/D = ±0.4, z/D = 0.25) (see figure 5a), are chosen as reference
points for cross-spectral analysis (Bendat & Piersol 2011). All cross-spectrum values
are computed by dividing the time record of signals at points 1 and 2 into 19
ensembles with 500 samples each and with 50 % overlap between successive
ensembles. Figure 5(b) shows a typical result for the variation of the magnitude
of the cross-spectrum, |C12|, between u′z signals at these two points (S= 1.83). Note
that |C12| shows a strong peak (∼0.9) at 1090 Hz, which is close to the value of
the peak frequency in the corresponding SPOD spectra for mode 1 – see figure 3(e)
– as may be expected. In the rest of this paper, we define the characteristic PVC
oscillation frequency ( fPVC) as the frequency at which the maximum value of |C12|

occurs.
Figure 5(b) also shows a second peak at the first harmonic, f1h= 2fPVC, consistently

with the corresponding spectrum from the SPOD (figure 4e). The lower value
of |C12| ∼ 0.6 at f1h (see figure 5b) is because of smaller amplitudes of velocity
oscillation at f1h and therefore, lower signal-to-noise ratio when compared with fPVC.
These results are typical and similar results are observed at other spatial locations for
this case and for other cases with S > 0.67. The Fourier mode number, m, associated
with the oscillations at fPVC and f1h, can be determined from the phase, φ12, of C12 at
these frequencies for each S. Figure 6(a) shows the variation φ12 with S, determined
at fPVC and f1h. The data in figure 6 correspond to values of S at which |C12| > 0.7
at fPVC and |C12| > 0.5 at f1h. Note that φ12 ∼ π for all S, suggesting that the PVC
oscillation shown in figure 4 corresponds to m = 1 helical oscillations, as may be
expected. The corresponding result for f1h shows that φ12 ∼ 0, which suggests that
the first harmonic corresponds to an m= 2 oscillation. These results are typical and,
although not shown here, similar variations for φ12 with S are observed at other
downstream locations as well. Also, note that this difference in m values associated
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linear fits through the experimental values. Panel (c) shows the SPOD spectrum for the
S= 0.61 case. The broken vertical line corresponds to f = 723 Hz, determined from the
fit in (a).

with the PVC and its first harmonic is consistent with the general asymptotic solution
for stable limit-cycle oscillations determined from the theoretical analysis, equation
(2.38).

We next determine the critical swirl number, Sc, at which the coherent PVC
oscillation emerges as follows. Figures 7(a) and 7(b) show the variation of fPVC

and |u′z|
2 at fPVC, respectively, with S. The data in figure 7(b) have been determined

from the component at fPVC, of the continuous wavelet transform, ũz, of the velocity
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time series at point 1 (see figure 5a). All non-zero data shown in figure 7(a,b)
correspond to values of S for which |C12|> 0.7 at their respective fPVC values. Linear
least-squares fits through the data, determined using non-zero values for fPVC and |u′z|

2,
have been superposed in each case. The upstream movement of the breakdown bubble
can induce changes to |u′z|

2 at point 1 because its distance from the region where
the PVC oscillation amplitude is maximum, varies as the bubble moves upstream
with increasing S. However, figure 7(a,b) qualitatively show a nearly linear variation
of fPVC and |u′z|

2 with S. This is consistent with the results in (2.40) and (2.42)
and hence suggest that the jet undergoes a supercritical Hopf bifurcation. Requiring
|ũz|

2
= 0 at S = Sc yields, from the linear fits shown in figure 7(a,b), Sc ∼ 0.61

and fPVC = 723 Hz at Sc. Figure 7 shows the spectrum determined from SPOD of
the sPIV measured velocity fields at S = 0.61. The broken vertical line in figure 7
corresponds to f = 723 Hz. Note that this result shows no evidence of a coherent
oscillation when compared with the results in figure 3. This result, together with
those in figure 3, additionally confirms that the bifurcation in the flow state does
indeed occur at S= 0.61.

It is interesting to note here that Oberleithner et al. (2011) report additional
evidence for the occurrence of supercritical Hopf bifurcation from experiments
wherein the PVC is axially forced near the jet exit using an arrangement of
loudspeakers. Their results show that the forcing amplitude needed to synchronize
the oscillation frequency of the PVC with that of the forcing scales linearly with
| f − fPVC|, where f is the forcing frequency. These results suggest that the underlying
PVC oscillation is a stable limit cycle and is therefore produced by a supercritical
Hopf bifurcation process, at least in the present class of variable swirl jet experiments.

We confirm the above facts in this paper by determining a series of results from
the weakly nonlinear theory presented in § 2. The time-averaged base-flow field, qo,
at S = Sc, needed to compute these results is determined from sPIV measurements
at S = 0.61. Further, we adopt a numerical approach to solve the various equations
presented in § 2. All of these details are discussed in the next section.

5. Numerical methods
For all computations performed in this paper, the reference length, lref , and reference

axial velocity, Ūz,ref , are chosen as the jet exit diameter (2.54 cm) and the bulk flow
velocity (Uo= 36 m s−1). The reference azimuthal velocity component, Ūθ,ref , is then
chosen as 0.61Uo at the critical swirl number of S= 0.61. The physical extents of the
flow domain captured in the present computations correspond to the rectangular region
lying between 0< r < rmax, as shown in figure 1. The physical r–z space is mapped
into the computational space, (ξ , η)∈ [−1, 1] × [−1, 1], using a modified form of the
mapping functions given by Bayliss, Class & Matkowsky (1995) (see appendix C).
The parameter rmax represents the maximum radial extent of the solution domain at
which far-field boundary conditions, equation (2.23), are imposed. Our numerical tests
revealed that choosing values of rmax between 10 and 50 was adequate to ensure the
convergence of solutions for all cases computed in this paper. Accordingly, we set
rmax = 50 for all computational results presented in this paper. The extents of the
domain in the axial direction and are chosen to be zmin=0.15 and zmax=2.8, i.e. 0.15D
from the jet exit plane to the downstream extent of the flow region over which flow
field measurements from sPIV are available. At the upstream boundary we assume
that velocity perturbations vanish, i.e.

ûr = ûθ = ûz = 0. (5.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.903


Precessing vortex core: weakly nonlinear analysis 884 A29-21

At the downstream boundary (z= zmax) we impose the following Neumann boundary
condition:

∂ ûr

∂z
=
∂ ûθ
∂z
=
∂ ûz

∂z
= 0. (5.2)

Note that the boundary conditions in (5.1) and (5.2) are artificial and are needed
because of having to choose a finite axial extent for the computational domain
imposed by the field of view of the sPIV measurements in this direction. Consequently,
their use in this paper is justified only for those cases for which the spatial extent of
the region where q̂1m,d is non-zero is sufficiently far away from these boundaries.

5.1. Linear and leading-order nonlinear solutions
The global linear stability problem given by (2.19), along with (2.20)–(2.22) and
(5.1)–(5.2), are solved using the pseudospectral collocation method (Boyd 2000).
Accordingly, all dependent variables are written in terms of Chebyshev polynomials
of the second kind using function values defined on a two-dimensional mesh of
Gauss–Lobatto points in computational space. The parameters in (C 1) and (C 2) are
tuned to ensure sufficient collocation point density in physical space in the regions
where shear layers of the time-averaged flow field are located and at the domain
centreline. The radial and the axial derivatives in (2.19) are replaced by equivalent
discrete differentiation matrices (Boyd 2000), which yields a generalized matrix
eigenvalue problem as follows:

Aq̂1m,d = iωg,mBq̂1m,d, (5.3)

where B and A are matrices representing the discrete equivalent of continuous
operators B and Lm, respectively. Also, ωg,m is the complex eigenvalue and q̂1m,d
the discrete equivalent of the eigenfunction q̂1m in (2.19). The boundary conditions
are written in discrete form and are imposed by replacing the rows corresponding to
points on the boundaries in B and A. The eigenvalue problem given in (5.3) is solved
using the Arnoldi iterative solver ‘eigs’ available in MATLAB.

The solutions for the adjoint mode are obtained using the discrete adjoint approach
outlined in Juniper & Pier (2015) as follows. First, the inner product, equation
(2.30), is discretized using Gauss–Chebyshev quadrature in computational space
as 〈q̂1,d, q̂2,d〉 = q̂H

1,dMq̂2,d, where M is the matrix generated by the weights of
the quadrature rule and the superscript ‘H’ denotes the transpose conjugate. The
matrices of the discrete adjoint problem corresponding to (5.3) are now given by
A†
=M−1AHM and B†

=M−1BHM. Thus, the adjoint mode, q̂†
1m,d, is computed using

the ‘eigs’ iterative solver as well.
We validate our linear stability analysis solver against the results reported by

Meliga et al. (2012) for the most unstable m = −1 mode of an unconfined swirling
jet undergoing a spiral-type vortex breakdown at S = 1.0 and Re = 200. The base
flow for the validation case is obtained from flow simulations performed by Pradeep
(2018). These simulations are performed on a on a cuboidal computational domain
that extends 15 jet inflow diameters in the streamwise direction and 20 jet inflow
diameters in the transverse direction. The domain was discretized using 481 and 241
points in the streamwise and transverse directions respectively. These solutions were
obtained using the INCOMPACT3D solver (Laizet & Li 2011). The solution captures
unsteady flow features described by Meliga et al. (2012) for this case (see Pradeep
(2018) for details).
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FIGURE 8. Variation of E= |ωk+1
g,−1−ω

k
g,−1| as a function of number of collocation points

using the swirling base flow from computations reported in Pradeep (2018) of the Re=200
and S= 1 case discussed in Meliga et al. (2012). The superscript k indexes computations
in increasing order of NI .

NDOF ωg,−1

Meliga et al. (2012) 2 776 758 1.16+ 0.0387i
Present solver 43 200 1.16+ 0.0378i

TABLE 1. Most unstable m=−1 mode eigenvalues for the Re= 200, S= 1.0 case reported
in Meliga et al. (2012). Present results are determined using the swirling base flow from
computations reported in Pradeep (2018). The value of NDOF refers to the total number of
degrees of freedom for three-dimensional state vector.

Linear stability computations are performed on a computational mesh comprising N
points each in the radial and axial directions in the computational domain. The quasi-
steady flow solutions are interpolated onto the linear stability computational mesh at
each axial location using cubic spline interpolation along the radial direction. Figure 8
shows the variation of E = |ωk+1

g,−1 − ω
k
g,−1| with the number of collocation points in

the streamwise direction (NI). Note that the vertical axis uses a logarithmic scale.
The superscript k indexes the computation in the order of increasing NI . The value
ωg,−1 is the prediction from our numerical solutions. Note that E ∼ 1 × 10−4 for
NI=120. The curve fit through the data, shown in figure 8, shows that ωk

g,−1 converges
exponentially with grid refinement, as can be expected for the present pseudospectral
method. Table 1 shows the values of ωg,−1 for NI = 120 and the final converged value
reported by Meliga et al. (2012). The value of NDOF in table 1 refers to the total
number of degrees of freedom for three-dimensional state vector in each study. The
small difference between these results (∼2.5 %) validates the implementation of the
linear global stability solver used in the present study.

Once the linear stability solutions have been determined, the leading-order nonlinear
solutions are determined from (2.28)–(2.26). These are solved by replacing spatial
derivatives occurring in the operators on the left with the discrete differentiation
matrices and solving the resulting linear system using LU decomposition. The
Stuart–Landau coefficients are then determined using (2.34) and (2.33), using the
discretized inner product.
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FIGURE 9. Time-averaged velocity fields (a) Ūz (b) Ūθ (c) Ūr (S = 0.61, Re = 59 000).
The broken curves show the nominal location of the inner (black) and outer (magenta)
shear layers in the time-averaged flow.

We apply the numerical methods described in this section to the time-averaged
base-flow state at S = 0.61 as determined from sPIV measurements in order to gain
insight into the fundamental physical mechanism that results in the emergence of
PVC oscillations. Note that the fact that the optimal locations for collocation points
do not correspond to the centres of the interrogation windows used while processing
the sPIV measurements. Accordingly, the base-flow state on the computational mesh
is determined using a combination of interpolation and extrapolation procedures as
will be described next.

5.2. Base flow
Figure 9(a–c) shows the spatial variation of the time-averaged velocity components,
Ūz, Ūθ and Ūr determined using sPIV at S = 0.61. Three-point moving-average
filtering of these time-averaged fields is used to remove small length scale oscillations
due to uncertainties in the experimental data. The spatial variations of Ūz and Ūθ

(figure 9a,b) show expected symmetry characteristics across the flow centreline.
However, the spatial variation of Ūr (figure 9c) is not perfectly anti-symmetric about
r = 0, as one may expect. This is because the presence of turbulence in the flow
along with intermittent vortex breakdown observed for this case, both of which
cause the rotational axis of the flow to ‘wobble’ incoherently about the geometric
jet centreline; details of this process are described in Clees et al. (2018). Ideally,
given a long enough time record, one can expect that the impact of these incoherent
flow centreline oscillations would average out, yielding an axisymmetric Ūr field
(Syred, O’Doherty & Froud 1994). However, the fact that figure 9(c) shows that this
is not the case suggests that the intensity of turbulence fluctuations in the present
experiment is comparable to Ūr and that additional flow field samples are necessary
to achieve good statistical confidence in the data. We next describe how base-flow
velocity fields for stability analysis computations are determined from these sPIV
measurements.

Note that the collocation points used for computations do not necessarily lie at the
same locations in physical space as the interrogation window centres used in sPIV
processing. Also, the field of view of the cameras used in the experiments limits
the availability of sPIV data to a region corresponding to 0 6 r < 1.5 around the
geometric centreline of the flow. Therefore, we use a combination of interpolation and
extrapolation using sPIV data to determine base flow Ūθ and Ūz fields for 1.5< r6 50
as follows. First, least-squares fits to the time-averaged Ūθ and Ūz sPIV data of model
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FIGURE 10. Extrapolated time-averaged velocity fields at z/D= 1 (a) Ūz (b) Ūθ

(S= 0.61, Re= 59 000).

flow profiles for a swirling jet are determined using the model flow profiles for a
swirling jet suggested by Oberleithner et al. (2011). Next, individual cubic spline fits
to the radial profiles of Ūθ and Ūz at each z are determined. A uniform interpolation
is then constructed by smoothly merging the cubic spline fits with the fits to model
flow profiles at each z in a small region centred at r= 1.5 using a hyperbolic tangent
function. Figure 10(a,b) shows typical radial profiles of Ūθ and Ūz at z= 1 determined
from the fitting procedure. The time-averaged sPIV data are overlaid on these profiles
for comparison. These results are typical and a similar quality of agreement with sPIV
data is seen at other z locations as well. The values of Ūθ and Ūz at the collocation
points on the computational mesh are determined using these fits.

We determine the Ūr field from the measured Ūz field using the fact that the time-
averaged flow must be divergence free rather than use the experimentally measured
result shown in figure 9(c). This ensures that our stability analysis is anchored around
a base flow that satisfies the time-averaged mass balance condition. This constraint on
the time-averaged flow field yields,(

∂

∂r
+

1
r

)
Ūr =−

∂Ūz

∂z
, (5.4)

along with Ūr = 0 at r= 0 (centreline). The spatial derivatives in (5.4) are discretized
using the same Chebyshev pseudospectral scheme described in the previous subsection.
The resulting linear system of equations for Ūr = 0 at the collocation points in the
domain is solved using an LU decomposition. Figure 11 shows the Ūr field computed
thus. For all computations involving Ūr, the field shown in figure 11 is used instead
of the corresponding time-averaged sPIV field (see figure 9c).

Next, the turbulent viscosity, νT , field is determined as follows. Reynolds stress
components in the region 0< r6 1.5 are determined on the sPIV mesh from the sPIV
measurements. These values are then interpolated onto the computational mesh using
the same interpolation procedure as was used for the time-averaged velocity. The value
of each of the Reynolds stresses is allowed to smoothly vanish for r > 1.5 using a
hyperbolic tangent function. The νT field is then determined using (B 3) at each point.
Figure 12 shows the spatial variation of νT normalized by the value of the molecular
viscosity, ν. As may be expected, νT is concentrated between the two shear layers and
increases with axial distance downstream. Note that (B 3) represents the solution to an
unconstrained least-squares minimization problem. Also, the experimental uncertainty
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FIGURE 11. Base-flow field for Ūr determined from time-averaged sPIV profiles for Ūθ

and Ūz using the divergence free constraint (S = 0.61, Re = 59 000). The broken curves
show the nominal location of the inner (black) and outer (magenta) shear layers in the
time-averaged flow.
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FIGURE 12. Turbulent viscosity, νT , field determined from sPIV data at Sc = 0.61 (Re=
59 000). The broken curves show the nominal location of the inner (black) and outer
(magenta) shear layers in the time-averaged flow.

in the measured velocity values, translate into uncertainty in the Reynolds stresses and
mean strain-rate fields. Both of these reasons cause νT to become negative in some
regions of the flow. We find that these values appear predominantly in regions where
turbulence intensities are small. Accordingly, we set to νT = 0 at all points where
νT < 0 in order to avoid the generation of spurious eigenvalues in the linear stability
analysis (Rukes et al. 2016).

All curve fitting and linear equation solutions discussed in this subsection is
performed using functions available as part of MATLAB. The results presented in
this paper use meshes that have between 60 and 65 points in the axial direction and
80 and 100 points in the radial direction. These limits represent the finest meshes
possible such that there are no more than two collocation points per cell of the sPIV
data. For all cases, the number and location of collocation points in physical space
were refined until the change in the magnitude of all physically relevant eigenvalues
was less than 1× 10−5 between successive grid refinements.

6. Results
We present results from the analysis described in § 2, which show that the

flow undergoes vortex breakdown at Sc = 0.61, resulting in the formation of an

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.903


884 A29-26 K. Manoharan and others

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

2

1

2

1

2

1

2

1

z/D

r/D r/D r/D r/D

0

-0.2

-0.4

-0.6

0.06

0.04

0.02

0

0

-0.2

-0.4

-0.05

-0.10

-0.15

-0.20

-0.25

(a) (b) (c) (d)
û z,Î û r,Î
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FIGURE 13. Spatial variation of velocity components of q̂∆ (a) ûz,∆ (b) ûr,∆ (c) ûθ,∆ and
(d) p̂∆ (S= 0.61, Re= 59 000). The broken curves show the nominal location of the inner
(black) and outer (magenta) shear layers in the time-averaged flow.

axisymmetric breakdown bubble. The PVC oscillation shown in figures 3 and 4 is
due to the emergence of a linearly marginally stable hydrodynamic mode that results
in the formation of a stable limit cycle. We first discuss the the formation of a
recirculation zone on the jet centreline with increasing S.

6.1. Vortex breakdown
Figure 13(a–d) shows the spatial variation of the four components that comprise the
intrinsic base-flow modification, q̂∆, given by (2.26). The broken black and magenta
curves in each of the plots in figure 13(a–c) show the nominal locations of the time-
averaged inner and outer shear layers. It is clear that ûz,∆ (figure 13a) imposes an
axial reverse flow near the jet centreline on the baseline time-averaged flow field at
S= 0.61 (see figure 9), resulting in an outward radial deflection of the oncoming flow
as ûr,∆ (figure 13b) shows.

The reason for this reverse flow in the axial direction is due to the development of
a streamwise adverse hydrodynamic pressure gradient within the jet, as figure 13(d)
shows. This adverse pressure gradient develops due to pressure recovery along the
axial direction resulting from a decrease in Ūθ caused by the loss of confinement
as the jet exits the nozzle (see figure 9b). As such, the present results suggest that
the inception of vortex breakdown for swirling jets exiting a nozzle into, generally
speaking, a ‘less-confined’ region is simply due to the formation of an adverse axial
pressure gradient. Mathematically, the present analysis supports this conclusion as
(2.26) shows that the intrinsic base flow changes, quantified by q̂∆, depend only on
the details of the base flow at S= Sc. Also, equation (2.38) shows that the quantitative
impact of the fields shown in figure 13 increases with increasing S. Thus, the axial
pressure gradient induced by p̂∆ (see figure 13d) increases with increasing S causing
the flow stagnation point to move upstream.

Several theories have been proposed in the past for explaining the onset of vortex
breakdown in swirling flows based on the analogy with boundary layer separation,
hydrodynamic instability and the existence of long wavelength spatially oscillatory
standing wave disturbances (see Benjamin 1962; Hall 1972; Leibovich 1978). For
cases where the solutions to (2.26) have similar characteristics as shown in figure 13,
the theory of Benjamin (1962) appears to be the most plausible explanation for the
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FIGURE 14. Global eigenvalue spectrum for S= 0.61 (m= 1, Re= 59 000). (a) Spectrum
computed for nominal νT , (b) sensitivity of spectrum to the value of νT . The vertical
broken lines in both figures mark the value of ωPVC as determined from the linear fit
to the experimental data shown in figure 7(a).

onset of axisymmetric breakdown. A recent analysis evaluating the outcomes of this
theory in the context of laminar swirling flows can be found in Moise & Mathew
(2019).

Note that (2.33) shows that the coefficient BA, which, from (2.32), can potentially
result in the growth of flow oscillations for S > Sc, depends only on q̂∆ and q̂1m.
This means that the PVC flow oscillations in the present experiment are caused by
the formation of the axisymmetric breakdown bubble. Thus, in general, the analysis
presented in § 2 suggests that the various types of unsteady breakdown states observed
in swirling flows (Sarpkaya 1971a,b; Liang & Maxworthy 2005) correspond to the
emergence of hydrodynamic instabilities associated with the mean flow state after
axisymmetric vortex breakdown has occurred. The nature of the final unsteady state
depends on the specific hydrodynamic modes whose instability causes the bifurcation
in the flow state.

6.2. Stability analysis
Prior local parallel flow linear stability analyses on time-averaged base-flow profiles
performed by the present author and others show that for sufficiently high values
of S, reverse flow on the centreline can cause the emergence of locally absolutely
unstable helical (i.e. m = 1) modes (Olendraru & Sellier 2002; Gallaire & Chomaz
2003a,b; Oberleithner et al. 2011, 2015; Manoharan et al. 2015, 2017; Frederick
et al. 2018; Manoharan 2019). Local absolute instability can result in global linear
hydrodynamic modes that are marginally stable (Chomaz et al. 1991; Monkewitz
et al. 1993). We show that this is indeed the case for the present experiment from
the global hydrodynamic stability analysis at Sc = 0.61.

Figure 14(a) shows the global eigenvalue spectrum for m= 1 (helical) oscillations at
S= 0.61 that the global linear stability analysis yields. The vertical line at ωg,r ∼ 3.2
corresponds to the angular frequency associated with fPVC = 723 Hz at Sc = 0.61,
as determined from the linear fit to experimentally determined values of fPVC – see
figure 7(a) and accompanying discussion. As may be expected, figure 14 shows that
there is an isolated marginally stable eigenmode with ωg = 3.2 + i(−0.25), which
we designate as ‘GM1’ in this paper. Stability analysis for other m values did not
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FIGURE 15. Spatial variation eigenvector components of the mode GM1 (real part only
shown) (a) ûr (b) ûθ (c) ûz (S= 0.61, Re= 59 000). The broken curves show the nominal
location of the inner (black) and outer (magenta) shear layers in the time-averaged flow.

yield eigenmodes with similar oscillation frequencies for the Sc = 0.61 case. Also,
SPOD spectra at S = 0.61, determined from experiments, did not show the presence
of coherent oscillations. Therefore, we conclude that GM1 is the helical (m = 1)
eigenmode that determines the characteristics of the bifurcation in the flow state
at Sc = 0.61 and the resulting unsteady coherent flow oscillation characteristics for
S> Sc.

We now discuss possible reasons for the global stability of GM1 (ωg,i ∼ −0.25).
This may be attributed primarily to quantitative uncertainty in the νT field. We assess
the sensitivity of ωg to νT by re-computing linear eigenvalue spectra by applying a
spatially uniform scale factor on the baseline νT field shown in figure 12. Figure 14(b)
shows spectra for the baseline case (crosses), 0.5νT (circles) and 0.25νT (filled boxes).
The arrows in figure 14(b) label the eigenvalue corresponding to GM1. It is clear that
the sensitivity of ωg,i to νT is much more significant than that of ωg,r and that the
mode tends towards neutral stability as νT is reduced. This suggests that the baseline
νT determined from the sPIV measurements (see figure 12) is possibly larger than
what it should be for the present jet. Also, Sc= 0.61 is the last experimental condition
in the present sPIV measurements for which no coherent flow oscillations are observed
in the SPOD spectra. This suggests that the exact value of Sc may be slightly greater
than 0.61, which, in addition to the uncertainty in νT , results in the linear stability
analysis predicting a stable GM1 mode.

Figure 15(a–c) shows the spatial variation of the oscillation amplitude (real part)
of the various velocity components comprising the eigenvector, q̂1m, associated with
GM1. Figure 15(a–c) shows that this mode induces strong oscillations at the geometric
centreline of the flow. Further, equation (2.38) shows that, to leading order in (S− Sc),
the spatial amplitude distribution of this mode determines the spatial amplitude
distribution of the flow oscillation at the PVC frequency. Thus, it is reasonable
to compare the linear mode amplitude distribution with the result from the SPOD
analysis at S = 0.67, i.e. for the first experimental condition after the bifurcation in
the flow state. Comparing figure 4(a) with the result in figure 15(a), shows that the
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FIGURE 16. Spatial distribution of magnitudes of the integrands that determine the linear
growth and saturation of the flow oscillation amplitude (a) IBA (b) INA1 (c) INA2 (S= 0.61,
Re= 59 000).

centreline oscillations occur over the same axial extent in both the linear stability
result in figure 15(a–c) and the experimentally determined SPOD mode for S= 0.67
(figure 4a). The wavelength of these oscillations is similar in both results as well.
These results further confirm that the emergence of PVC oscillations is due to the
emergence of a linearly marginally stable mode at Sc = 0.61 in the present swirling
jet experiment.

However, the eigenvector solutions shown in figure 15 do not show finite amplitude
oscillations in the outer shear layer as observed in the SPOD modes (figure 4). This
may be attributed to the large values of νT in this region, as figure 12 shows. Further,
with increasing S, the increase in centreline backflow velocity results in an increase
in the strength of the shear layer between the breakdown bubble and the surrounding
flow. This then results in a spatially growing response to flow perturbations imposed
on the time-averaged flow by GM1, thereby, causing shear layer rollup. Note from
figure 4 that the shear layer oscillations appear to originate from the leading end of the
breakdown bubble where the centreline oscillations generated by GM1 are strongest.
Also, the amplitude of shear layer oscillations increases with increasing S. These
trends suggest that shear layer oscillations are a response to perturbations imposed
by the PVC. We note here that a similar hypothesis for shear layer oscillations
has been suggested by Oberleithner et al. (2011), based on the similarity between
the spatial structure of flow oscillations determined from weakly non-parallel linear
hydrodynamic stability analysis at the PVC frequency and POD modes determined
from PIV measurements, in their variable swirl jet experiment.

We next compute the Stuart–Landau constants NA and BA using (2.34) and (2.33),
respectively, in order to determine the nature of the bifurcation in the flow state at S=
Sc due to GM1. It is interesting to examine the spatial distribution of the integrands
that comprise the inner products in (2.33), (2.35) and (2.36), denoted as IBA, INA1 and
INA2, respectively. Figure 16 show the spatial variation of the magnitude of each of
these quantities in the flow domain. Note also, that figure 16(a) shows that the primary
contribution to BA is from the region just upstream of where the amplitudes associated
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FIGURE 17. Variation of fLC as a function of S obtained from weakly nonlinear analysis.
The ‘×’ markers show the corresponding variation of fPVC determined from sPIV data. A
linear fit through the data is shown for reference (thin line). The vertical dotted line is at
the critical swirl number, Sc = 0.61.

with GM1 are significant. This is easily seen by comparing the results in figure 15
with those in figure 16(a). As discussed in § 2 – see discussion below (2.42) – the
region where |IBA| is large (see figure 16a) is the nonlinear wavemaker region for the
PVC at S = Sc. Interestingly, the location of the wavemaker is at the upstream end
of the breakdown region for the PVC, which is consistent with the prediction from
linear structural sensitivity considerations (Tammisola & Juniper 2016).

Thus, the values of BA and NA determined from (2.33) and (2.34) are as follows:

BA = 1.5+ i(1.6) NA = 0.56+ i(0.9). (6.1a,b)

Note that the results in figure 16(a–c) confirm that the present computational domain
captures all non-zero contributions to the integrands in the inner products of (2.33),
(2.35) and (2.36), and that the axial domain length limitation imposed by the axial
extents of the field of view in the sPIV measurements does not quantitatively affect
the value of NA and BA. Thus, the values of in (6.1) (BAr> 0 and NAr> 0) confirm that
a supercritical Hopf bifurcation in the flow state occurs at Sc= 0.61 and that the PVC
oscillation in the flow is due to the emergence of a stable limit cycle as discussed in
§ 2 – see (2.40).

Figure 17 compares predictions for the limit-cycle frequency, fLC, determined from
(2.42) using the values of NA and BA given in (6.1). Note that the present stability
analysis (solid line) predicts an increasing fLC with S with a slightly different slope
that of the experiment. The difference in the slopes between the two results can be
attributed to two reasons. The first and primary reason is the quantitative uncertainty
in the νT field discussed earlier. These directly influence BA and NA through the last
term in (2.33) and q̂AA – see (2.28) and (2.34). The second reason is that the value
of Sc = 0.61 used in the present analysis is the largest value of S in the current
experimental dataset for which no coherent mode was observed in the SPOD spectra.
Thus, it is possible that in reality 0.61< Sc< 0.67 where S= 0.67 is the first condition
for S> 0.61 at which sPIV measurements are available. Thus, it is possible that using
linear stability results at S= 0.61 introduces errors in the value of BA and NA, leading
to a difference in the predicted slop from the experiment. Nevertheless, the result in
figure 17 represents the best possible match between experiment and analysis that is
possible with the present sPIV dataset and together with the fact that the harmonic
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p̂A*A

(a) (b) (c) (d)

FIGURE 18. Spatial variation of the components of q̂A∗A, (a) ûz,A∗A (b) ûr,A∗A (c) ûθ,A∗A
and (d) p̂A∗A (S= 0.61, Re= 59 000). The broken curves show the nominal location of the
inner (black) and outer (magenta) shear layers in the time-averaged flow.

of fPVC corresponds to an oscillation with m= 2, (see figure 6), as the present theory
suggests, confirm that the PVC is indeed a stable limit-cycle oscillation caused by the
emergence of an axisymmetric vortex breakdown bubble in the jet.

We next examine the impact that the PVC oscillation induced by GM1 has on the
time-averaged base-flow field. Note that this impact is quantified by q̂A∗A – see (2.38).
Further, from (2.38), it is clear that the influence of q̂A∗A scales linearly with S −
Sc to leading order. Figure 18(a–d) shows the spatial variation of ûz,A∗A, ûr,A∗A, ûθ,A∗A
and p̂z,A∗A components of q̂A∗A. The broken black and magenta lines show the nominal
location of the inner and outer axial shear layers in the time-averaged flow for the
Sc = 0.61 case for reference.

Figure 18(d) shows that the axial vortex core precession induced by GM1 creates
a pocket of low hydrodynamic pressure near the flow centreline over the axial extent
where the flow oscillations due to GM1 are significant – compare figures 18(d) and
15(b). This pocket of low pressure induces a radially inward deflection of the flow
as figure 18(b) shows. Eventually, the flow must turn at the centreline resulting in a
strong axial velocity being induced in the direction of the overall flow as figure 18(a)
shows. The helical nature of the flow oscillations also has an impact on Ūθ as shown
by the spatial variation of ûθ,A∗A in figure 18(c). Thus, with increasing S > Sc it is
clear from (2.38) that q̂A∗A counteracts the impact of q̂∆, resulting in a shortening of
the length of the breakdown bubble and an overall reduction in the centreline reverse
flow velocity magnitude. Figure 16(b,c) shows that the nonlinear wavelimiter region,
i.e. the flow region contributing to nonlinear amplitude saturation of the PVC (see
discussion below (2.42)), is located downstream of the nonlinear wavemaker. This may
be expected as the impact of q̂A∗A becomes more significant with increasing distance
downstream of the nonlinear wavemaker as figure 18(a–d) suggests.

We next discuss insights that can be gained from the asymptotic solution in (2.38)
on the general question of the usefulness of linear stability analysis in understanding
the coherent unsteady behaviour of turbulent flow fields, given an estimate of their
time-averaged flow state. In a practical engineering design scenario, it is not always
easy to determine the value of Sc for a given nozzle geometry. Therefore, it is
interesting to know whether linear stability analysis can be used to predict coherent
unsteady behaviour of turbulent swirled flows, in general for S > Sc, using only the
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time-averaged flow field as an input. For this discussion, it is useful to view (2.38) as
the leading-order estimate of the exact solution for the unsteady coherent component
of the flow at any general value of S. Thus, the mathematical structure of (2.38)
suggests the following points:

(i) The first three terms in (2.38) represent the time-averaged flow field at a general
value of S.

(ii) For unsteady coherent flow oscillations resulting from the emergence of a stable
limit-cycle flow state (i.e. a supercritical Hopf bifurcation), the mathematical form
of the first oscillatory term in (2.38) suggests that a linear stability analysis using
the time-averaged flow at any S > Sc should yield a nearly neutral mode at the
limit-cycle frequency given by ωLC.

Sipp & Lebedev (2007) discuss the validity of the second point above in their study
of flow state bifurcations in two-dimensional laminar flows using a weakly nonlinear
analysis with the bifurcation parameter as Re−1. A comparison between the theoretical
formulation in § 2 of this paper and that presented in Sipp & Lebedev (2007) shows
that both formulations are analogous. This means that their conclusions concerning the
validity of point (ii) above apply analogously to our study as well. They show that
for quantitatively accurate predictions of limit-cycle characteristics from linear stability
analysis using the time-averaged flow as the base flow, NA2r/NA1r� 1 and NA2i/NA1i�

1, where the subscripts ‘r’ and ‘i’ denote the real and imaginary parts of NA1 and NA2

given by (2.35) and (2.36), respectively. The values of NA1 and NA2 for the present
swirling jet experiment using (2.35) and (2.36) are as follows:

NA1 = 0.52+ i(0.62) NA2 = 0.036+ i(0.11). (6.2a,b)

Thus, we have NA2r/NA1r = 0.07 and NA2i/NA1i = 0.13, thereby, suggesting that linear
stability analysis using the time-averaged flow for S> Sc should yield nearly neutrally
stable eigenmodes, whose oscillation frequency and spatial amplitude distributions that
match those of the PVC for the present experiment.

It is common engineering practice to use fully nonlinear, time-accurate computa-
tional fluid dynamics (CFD) methods such as large eddy simulations (LES) in the
design of practical swirl nozzles. In principle, these methods can directly yield
accurate predictions of unsteady flow characteristics. In practice, however, it is more
economical from the standpoint of computational time and effort to determine the
time-averaged mean flow alone using CFD. This time-averaged flow can then be used
within the framework of linear stability analysis to determine unsteady flow field
characteristics that the PVC generates. The result in (6.2) suggests that this approach
can be adopted for nozzles with a single swirled air stream. We believe that the
same conclusions should extend to more complicated configurations with multiple
co-annular air streams with varying levels of swirl as well.

In addition, access to hydrodynamic instability modes and their corresponding
adjoint modes allows for the generation of linear structural sensitivity maps (see
e.g. Tammisola & Juniper 2016) that provide deeper insight into flow regions that
are responsible for the generation of coherent oscillations. This type of insight,
which LES does not directly provide, can then be used to guide nozzle geometry
modifications that can either eliminate or strengthen the PVC depending on what the
higher level engineering design objectives are. Solving the steady Reynolds-averaged
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Navier–Stokes (RANS) equations is an alternative route to determining estimates of
time-averaged mean flows. However, it is unlikely that these methods can capture
the impact of base-flow distortion due to coherent flow oscillations correctly due
to the fact that they do not formally include the possibility of coherent unsteady
oscillations within their framework. The analysis in Sipp & Lebedev (2007) suggests
that the accuracy of coherent flow oscillation characteristics from linear hydrodynamic
stability analysis predictions using steady RANS solutions as a base flow would in
general be poor.

A last point we consider is the case of flows that experience a subcritical bifurcation
at S= Sc. For these types of flows, equation (2.39) shows that A(t) in (2.38) grows in
an unbounded fashion for S>Sc. Therefore, the analysis presented in this paper cannot
predict the characteristics of the final state of the flow for S > Sc. However, if the
final state of the flow happens to be a stable limit cycle, the results for time-averaged
mean flow stability analysis presented in Sipp & Lebedev (2007) suggest that it may
be possible to determine the unsteady characteristics of the flow from a linear stability
analysis for S> Sc.

7. Conclusions

The present paper derives a solution in the weakly nonlinear limit for the coherent
unsteady state of a statistically axisymmetric swirled turbulent jet. It is assumed that
increasing the swirl number, S, beyond a critical value, Sc, results in the onset of
coherent unsteady flow oscillations. The analysis develops an asymptotic solution to
leading order in S − Sc using the time-averaged flow at S = Sc as a base state. We
show that the flow can exhibit stable coherent limit-cycle oscillations for S>Sc, whose
characteristic frequency scales linearly with S− Sc. The analysis also yields formulae
that can be used to determine when this scaling applies. Another important result from
this analysis shows that with increasing S− Sc, an intrinsically steady modification to
the time-averaged base flow occurs at S = Sc. The analysis shows that the unsteady
behaviour in the flow for S> Sc is caused by the intrinsic change in the time-averaged
state.

These results are used to understand the unsteady flow dynamics in an experimental
study of a variable swirl, Re = 59 000, round jet. The swirl intensity is changed
with the mass flow rate entering the set-up held constant. Time-resolved flow field
measurements are obtained using stereoscopic particle image velocimetry. The results
show that for S> 0.61, coherent helical PVC oscillations occur in the jet, coinciding
with the onset of bubble-type vortex breakdown. The frequency and the square of
the amplitude of these flow oscillations are found to scale linearly with S− Sc. This
suggests that the PVC is a stable limit-cycle state of the flow that emerges from the
steady flow state at Sc = 0.61 as S is increased.

We confirm the above conclusion using results from the weakly nonlinear analysis
derived in this paper. The results show that intrinsic base flow modification, i.e. the
solution component that does not depend on the characteristics of the unsteady flow
oscillations, shows that a reverse axial flow accompanied by an adverse streamwise
pressure gradient is induced on the centreline for S > Sc. This suggests that vortex
breakdown occurs due to the presence of long wavelength, standing waves downstream
of the stagnation point as suggested by the theory of Benjamin (1962). A linear
stability analysis using the time-averaged flow at Sc = 0.61 shows the presence of
a marginally stable eigenmode with the same oscillation frequency as the PVC
oscillation as determined from the experiments. Thus, these results clarify the fact
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that the PVC occurs because of a self-excited hydrodynamic instability induced by
vortex breakdown, as was hypothesized by Escudier & Keller (1985), whose variable
swirl experimental set-up is similar to ours.

The present analysis also yields insight into the regions of the flow that are
responsible for the growth of the PVC amplitude, i.e. the wavemaker region, and
those that are responsible for its saturation, i.e. the wavelimiter region. Our analysis
shows that for the present flow, the former lies on the centreline at the upstream end
of the breakdown bubble while the latter lies further downstream on the centreline.
The nonlinear wavemaker location is consistent with prior linear wavemaker location
predictions using linear structural sensitivity analysis in swirling flows (Tammisola &
Juniper 2016).

A key question of engineering relevance is modelling the coherent unsteady
characteristics of turbulent swirled jets using only time-averaged flow information
at any general Sc. Note that typically, the value of Sc for a given swirl nozzle
depends on the nature of the flow it generates and is an unknown in most cases.
Sipp & Lebedev (2007) explore this question in the context of two-dimensional
laminar flows. They show for flows in which coherent unsteadiness emerges due to a
supercritical Hopf bifurcations in the flow state, the saturation amplitude of the limit
cycle is governed by contributions from the time-averaged distortion that the limit
cycle imposes on the base flow, as well as, generation of flow oscillations at the first
harmonic of the limit cycle. Thus, when the contribution from base-flow distortion
dominates amplitude saturation, linear stability analysis using the time-averaged flow
would yield eigenmodes that accurately approximate the limit-cycle frequency and
amplitude distribution. The analysis in our paper is mathematically analogous with
that presented by Sipp & Lebedev (2007), the key difference being that we have
added terms that account for turbulence transport. Thus, we find for the present
jet experiments that the contribution to PVC oscillations amplitude saturation is
dominated by the contribution from base-flow distortion. Accordingly, the results
suggest that for this class of flows, linear stability analysis using time-averaged
base flows may present a viable way to predict PVC occurrence and oscillation
frequency by the appearance of a neutrally stable helical mode in a linear stability
analysis.

However, for flows in which coherent flow unsteadiness results from a subcritical
Hopf bifurcation, the present analysis cannot give insight into the quantitative accuracy
with which linear stability analysis describes the final state of the flow. How this can
be assessed using only time-averaged flow data alone remains as yet unclear.

Appendix A. Governing equations in the operator form

In the present study the governing equations are represented in the operator form
as given in (2.1). Each of the operator acting on the vector field, q, are defined as
follows:

N {q} =



(
ur
∂

∂r
+ uz

∂

∂z

)
0 0 0

0 0 0 0

0 0
(

ur
∂

∂r
+ uz

∂

∂z

)
0

0 0 0 0


, (A 1)
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N s
{q} =



uθ
r
∂

∂θ
0 0 0

0
(

ur
∂

∂r
+ uz

∂

∂z
+

ur

r

)
0 0

0 0
uθ
r
∂

∂θ
0

0 0 0 0


, (A 2)

N ss
{q} =


0 −

uθ
r

0 0

0
uθ
r
∂

∂θ
0 0

0 0 0 0
0 0 0 0

 , (A 3)

Lv =



1
Re

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2 −
1
r2

)
0 0 −

1
γ

∂

∂r

1
Re

(
2
r2

∂

∂θ

)
0 0 −

1
rγ

∂

∂θ

0 0
1

Re

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2

)
−

1
γ

∂

∂z(
∂

∂r
+

1
r

)
0

∂

∂z
0


, (A 4)

Ls
v =



0 −
1

Re
2
r2

∂

∂θ
0 0

0
1

Re

(
∂2

∂r2
+

1
r
∂

∂r
+

1
r2

∂2

∂θ 2
+
∂2

∂z2
−

1
r2

)
0 0

0 0 0 0

0
1
r
∂

∂θ
0 0


. (A 5)

The operators LT and Ls
T used for modelling nonlinear products of coherent and

incoherent fluctuations using eddy viscosity hypothesis in (2.4), (2.7) and (2.8) are
given as follows:

LT =



1
Reeff

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2 −
1
r2

)
0 0 −

1
γ

∂

∂r

1
Reeff

(
2
r2

∂

∂θ

)
0 0 −

1
rγ

∂

∂θ

0 0
1

Reeff

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2

)
−

1
γ

∂

∂z(
∂

∂r
+

1
r

)
0

∂

∂z
0



+



2
∂νT
∂r

∂

∂r
+
∂νT
∂z

∂

∂z
0

∂νT
∂z

∂

∂r
0

1
r
∂νT
∂r

∂

∂θ
0

1
r
∂νT
∂z

∂

∂θ
0

∂νT
∂r

∂

∂z
0

∂νT
∂r

∂

∂r
+ 2

∂νT
∂z

∂

∂z
0

0 0 0 0


, (A 6)
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Ls
T =



0 −
1

Reeff

2
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∂
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0 0

0
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∂z2
−

1
r2
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0 0
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r
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∂θ
0 0
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0 0 0 0
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−
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 , (A 7)

where Reeff = 1/Re+ νT . The linearized Navier–Stokes operator can now be written as
follows:

Lq1 = N {qo}q1 +N {q1}qo + Sc(N s
{qo}q1 +N s

{q1}qo)

+ S2
c(N ss

{qo}q1 +N ss
{q1}qo)− (LTq1 + ScLs

Tq1). (A 8)

The operator matrices N s
m{q}, N ss

m {q}, Lm and Ls
T,m are obtained by making the

substitution ∂/∂θ→ im in (A 1)–(A 8).

Appendix B. Turbulent viscosity model
The time-averaged Reynolds stresses are related to the time averaged rates of strain

using the turbulent viscosity coefficient, νT , as follows:

−

u′′r u′′r u′′r u′′θ u′′r u′′z
u′′θu′′r u′′θu′′θ u′′θu′′z
u′′z u′′r u′′z u′′θ u′′z u′′z


︸ ︷︷ ︸

τRe

=−
2
3

k 0 0
0 k 0
0 0 k


︸ ︷︷ ︸

SKE

+ 2νT

S̄rr S̄rθ S̄rz

S̄θr S̄θθ S̄θz

S̄zr S̄zθ S̄zz


︸ ︷︷ ︸

S̄

, (B 1)

where the quantity k in SKE is the turbulent kinetic energy defined as follows:

k= 1
2

(
u′′r u′′r + u′′θu′′θ + u′′z u′′z

)
. (B 2)

The components of τRe and SKE are determined from time averaging each of
these quantities from time-resolved sPIV measurements. Thus, equation (B 1) is
an overdetermined linear problem for νT . Following Tammisola & Juniper (2016),
we determine νT as the value that minimizes the least-squares residual of the linear
system (B 1) as follows:

νT =
S̄ :
(
−τRe +

2
3 SKE

)
2S̄ : S̄

, (B 3)

where ‘:’ represents the Frobenius product defined in general for any two matrices P
and Q as P : Q=P ijQij – assuming tensor index notation. The value of νT determined
by (B 3) is assumed to relate the coherent fluctuating Reynolds stresses in (2.6) to the
coherent fluctuating rates of strain. This is an additional modelling assumption that is
made in this paper to close (2.6).
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Appendix C. Mapping function

The mapping function used in the present study to map collocation points in the
ξ − η computational space to points in physical space r–z is based on a modified
form of the formulation given by Bayliss & Turkel (1992),

r= sξo + (tan−1(β
ξ
1 (ξ − β

ξ
2 )))/λ

ξ , (C 1)
z= sηo + (tan−1(β

η

1 (η− β
η

1 )))/λ
η, (C 2)

where

sξo =
κ
ξ
1 − κ

ξ
2

κ
ξ
1 + κ

ξ
2

, (C 3)

sηo =
κ
η

1 − κ
η

2

κ
η

1 + κ
η

2
, (C 4)

λξ =
κ
ξ
1 + κ

ξ
2

2
, (C 5)

λη =
κ
η

1 + κ
η

2

2
, (C 6)

κ
ξ
1 = tan−1(β

ξ
1β

ξ
2 ), (C 7)

κ
ξ
2 = tan−1(β

ξ
1 (rmax − β

ξ
2 )), (C 8)

κ
η

1 = tan−1(β
η

1 (β
η

2 − zmax)), (C 9)
κ
η

2 = tan−1(β
η

1 (rmax − β
η

2 )). (C 10)

Equations (C 1) and (C 2) are used to the refine mesh in the flow domain. The
parameter β1 controls the density of points in physical space. The parameter β2

represents the location where mesh refinement is applied. In the present study,
parameters β1 and β2 are so chosen to concentrate points along the shear layers and
along the domain centreline.

REFERENCES

ANACLETO, P. M., FERNANDES, E. C., HEITOR, M. V. & SHTORK, S. I. 2003 Swirl flow structure
and flame characteristics in a model lean premixed combustor. Combust. Sci. Technol. 175
(8), 1369–1388.

BATCHELOR, G. K. & GILL, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid
Mech. 14 (04), 529–551.

BAYLISS, A., CLASS, A. & MATKOWSKY, B. J. 1995 Adaptive approximation of solutions to
problems with multiple layers by Chebyshev pseudo-spectral methods. J. Comput. Phys. 116
(1), 160–172.

BAYLISS, A. & TURKEL, E. 1992 Mappings and accuracy for Chebyshev pseudo-spectral
approximations. J. Comput. Phys. 101 (2), 349–359.

BEÉR, J. M. & CHIGIER, N. A. 1972 Combustion Aerodynamics. Academic.
BENDAT, J. S. & PIERSOL, A. G. 2011 Random Data: Analysis and Measurement Procedures. Wiley.
BENJAMIN, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593–629.
BILLANT, P., CHOMAZ, J. & HUERRE, P. 1998 Experimental study of vortex breakdown in swirling

jets. J. Fluid Mech. 376, 183–219.
BOYD, J. P. 2000 Chebyshev and Fourier Spectral Methods. Dover.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.903


884 A29-38 K. Manoharan and others

CHOMAZ, J.-M., HUERRE, P. & REDEKOPP, L. G. 1991 A frequency selection criterion in spatially
developing flows. Stud. Appl. Maths 84 (2), 119–144.

CLEES, S., LEWALLE, J., FREDERICK, M. & O’CONNOR, J. 2018 Vortex core dynamics in a swirling
jet near vortex breakdown. AIAA Paper 2018-0052.

DOUGLAS, C. M., SMITH, T., EMERSON, B. L., MANOHARAN, K., HEMCHANDRA, S. & LIEUWEN,
T. C. 2018 Hydrodynamic receptivity predictions and measurements of an acoustically forced
multi-nozzle swirl combustor. AIAA Paper 2018-0587.

ESCUDIER, M. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25 (2),
189–229.

ESCUDIER, M. P. & KELLER, J. 1985 Recirculation in swirling flow – a manifestation of vortex
breakdown. AIAA J. 23 (1), 111–116.

FREDERICK, M., MANOHARAN, K., DUDASH, J., BRUBAKER, B., HEMCHANDRA, S. & O’CONNOR,
J. 2018 Impact of precessing vortex core dynamics on shear layer response in a swirling jet.
J. Engng Gas Turbin. Power 140 (6), 061503.

GALLAIRE, F. & CHOMAZ, J. 2003a Mode selection in swirling jet experiments: a linear stability
analysis. J. Fluid Mech. 494, 223–253.

GALLAIRE, F. & CHOMAZ, J.-M. 2003b Instability mechanisms in swirling flows. Phy. Fluids 15
(9), 2622–2639.

GALLAIRE, F., RUITH, M., MEIBURG, E., CHOMAZ, J. & HUERRE, P. 2006 Spiral vortex breakdown
as a global mode. J. Fluid Mech. 549, 71–80.

GIANNETTI, F. & LUCHINI, P. 2007 Structural sensitivity of the first instability of the cylinder wake.
J. Fluid Mech. 581, 167–197.

HALL, M. G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4 (1), 195–218.
HILL, D. 1992 A theoretical approach for analyzing the restabilization of wakes. In 30th Aerospace

Sciences Meeting and Exhibit, p. 67.
HUANG, Y. & YANG, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion.

Prog. Energy Combust. Sci. 35 (4), 293–364.
JUNIPER, M. P. 2012 Absolute and convective instability in gas turbine fuel injectors. In ASME Turbo

Expo 2012: Turbine Technical Conference and Exposition, pp. 189–198. American Society of
Mechanical Engineers.

JUNIPER, M. P. & PIER, B. 2015 The structural sensitivity of open shear flows calculated with a
local stability analysis. Eur. J. Mech. (B/Fluids) 49, 426–437.

LAIZET, S. & LI, N. 2011 Incompact3d: a powerful tool to tackle turbulence problems with up to
O(105) computational cores. Intl J. Numer. Meth. Fluids 67 (11), 1735–1757.

LANDAU, L. D. & LIFSHITZ, E. M. 1959 Fluid Mechanics: Course of Theoretical Physics, vol. 6.
Butterworth, Heinemann.

LEIBOVICH, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10 (1), 221–246.
LIANG, H. & MAXWORTHY, T. 2004 Vortex breakdown and mode selection of a swirling jet in

stationary or rotating surroundings. In APS Division of Fluid Dynamics Meeting Abstracts,
vol. 1.

LIANG, H. & MAXWORTHY, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech.
525, 115–159.

LIEUWEN, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.
LOISELEUX, T., DELBENDE, I. & HUERRE, P. 2000 Absolute and convective instabilities of a swirling

jet/wake shear layer. Phys. Fluids 12 (2), 375–380.
LUCCA-NEGRO, O. & O’DOHERTY, T. 2001 Vortex breakdown: a review. Prog. Energy Combust.

Sci. 27 (4), 431–481.
MANOHARAN, K. 2019 Local and global hydrodynamic instability mechanisms of swirled jets. PhD

thesis, Indian Institute of Science.
MANOHARAN, K., HANSFORD, S., OCONNOR, J. & HEMCHANDRA, S. 2015 Instability mechanism in

a swirl flow combustor: precession of vortex core and influence of density gradient. In ASME
Turbo Expo 2015: Turbine Technical Conference and Exposition, ASME Paper GT2015-42985.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.903


Precessing vortex core: weakly nonlinear analysis 884 A29-39

MANOHARAN, K., SMITH, T., EMERSON, B., DOUGLAS, C. M., LIEUWEN, T. & HEMCHANDRA, S.
2017 Velocity field response of a forced swirl stabilized premixed flame. In ASME Turbo Expo
2017: Turbomachinery Technical Conference and Exposition, ASME Paper GT2017-63936.

MELIGA, P., GALLAIRE, F. & CHOMAZ, J.-M. 2012 A weakly nonlinear mechanism for mode
selection in swirling jets. J. Fluid Mech. 699, 216–262.

MOECK, J. P., BOURGOUIN, J.-F., DUROX, D., SCHULLER, T. & CANDEL, S. 2012 Nonlinear
interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling
flame. Combust. Flame 159 (8), 2650–2668.

MOISE, P. & MATHEW, J. 2019 Bubble and conical forms of vortex breakdown in swirling jets.
J. Fluid Mech. 873, 322–357.

MONKEWITZ, P. A., HUERRE, P. & CHOMAZ, J.-M. 1993 Global linear stability analysis of weakly
non-parallel shear flows. J. Fluid Mech. 251, 1–20.

MUTHIAH, G. & SAMANTA, A. 2018 Transient energy growth of a swirling jet with vortex breakdown.
J. Fluid Mech. 856, 288–322.

OBERLEITHNER, K., SIEBER, M., NAYERI, C. N., PASCHEREIT, C. O., PETZ, C., HEGE, H.-C.,
NOACK, B. R. & WYGNANSKI, I. 2011 Three-dimensional coherent structures in a swirling
jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid
Mech. 679, 383–414.

OBERLEITHNER, K., STÖHR, M., IM, S. H., ARNDT, C. M. & STEINBERG, A. M. 2015 Formation
and flame-induced suppression of the precessing vortex core in a swirl combustor: experiments
and linear stability analysis. Combust. Flame 162 (8), 3100–3114.

OLENDRARU, C. & SELLIER, A. 2002 Viscous effects in the absolute-convective instability of the
batchelor vortex. J. Fluid Mech. 459, 371–396.

OLENDRARU, C., SELLIER, A., ROSSI, M. & HUERRE, P. 1999 Inviscid instability of the batchelor
vortex: absolute-convective transition and spatial branches. Phys. Fluids 11 (7), 1805–1820.

PRADEEP, M. 2018 Simulations of bubble and conical forms of vortex breakdown in swirling jets.
PhD thesis, Indian Institute of Science.

QADRI, U. A., MISTRY, D. & JUNIPER, M. P. 2013 Structural sensitivity of spiral vortex breakdown.
J. Fluid Mech. 720, 558–581.

RENAUD, A., DUCRUIX, S. & ZIMMER, L. 2019 Experimental study of precessing vortex core impact
on liquid fuel spray in a gas turbine combustor. In GT2019-91619: ASME Turbo Expo Turbine
Technical Conference and Exposition, pp. 1–16. American Society of Mechanical Engineers.

REYNOLDS, W. C. & HUSSAIN, AKMF. 1972 The mechanics of an organized wave in turbulent
shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54
(2), 263–288.

RIGAS, G., MORGANS, A. S. & MORRISON, J. F. 2017 Weakly nonlinear modelling of a forced
turbulent axisymmetric wake. J. Fluid Mech. 814, 570–591.

RUITH, M. R., CHEN, P., MEIBURG, E. & MAXWORTHY, T. 2003 Three-dimensional vortex
breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486,
331–378.

RUKES, L., PASCHEREIT, C. O. & OBERLEITHNER, K. 2016 An assessment of turbulence models
for linear hydrodynamic stability analysis of strongly swirling jets. Eur. J. Mech. (B/Fluids)
59, 205–218.

SARPKAYA, T. 1971a On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (3), 545–559.
SARPKAYA, T. 1971b Vortex breakdown in swirling conical flows. AIAA J. 9 (9), 1792–1799.
SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and Transition in Shear Flows, vol. 142.

Springer.
SHANBHOGUE, S. J., SANUSI, Y. S., TAAMALLAH, S., HABIB, M. A., MOKHEIMER, E. M. A. &

GHONIEM, A. F. 2016 Flame macrostructures, combustion instability and extinction strain
scaling in swirl-stabilized premixed CH4/H2 combustion. Combust. Flame 163, 494–507.

SIPP, D. & LEBEDEV, A. 2007 Global stability of base and mean flows: a general approach and its
applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358.

SMITH, T. E., DOUGLAS, C. M., EMERSON, B. L. & LIEUWEN, T. C. 2018 Axial evolution of
forced helical flame and flow disturbances. J. Fluid Mech. 844, 323–356.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.903


884 A29-40 K. Manoharan and others

SYRED, N. 2006 A review of oscillation mechanisms and the role of the precessing vortex core
(PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32 (2), 93–161.

SYRED, N., O’DOHERTY, T. & FROUD, D. 1994 The interaction of the precessing vortex core and
reverse flow zone in the exhaust of a swirl burner. Proc. Inst. Mech. Engng 208 (1), 27–36.

TAAMALLAH, S., SHANBHOGUE, S. J. & GHONIEM, A. F. 2016 Turbulent flame stabilization modes
in premixed swirl combustion: physical mechanism and Karlovitz number-based criterion.
Combust. Flame 166, 19–33.

TAMMISOLA, O. & JUNIPER, M. P. 2016 Coherent structures in a swirl injector at Re= 4800 by
nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620–657.

TOWNE, A., SCHMIDT, O. T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and
its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847,
821–867.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.903

	A weakly nonlinear analysis of the precessing vortex core oscillation in a variable swirl turbulent round jet
	Introduction
	Theoretical formulation
	Weakly nonlinear analysis

	Experimental study
	Flow field characterization
	Time-averaged characteristics
	Unsteady dynamics

	Numerical methods
	Linear and leading-order nonlinear solutions
	Base flow

	Results
	Vortex breakdown
	Stability analysis

	Conclusions
	Appendix A. Governing equations in the operator form
	Appendix B. Turbulent viscosity model
	Appendix C. Mapping function
	References


