
TLP 3 (6): 671–715, November 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068403001716 Printed in the United Kingdom

671

An abductive framework for computing
knowledge base updates�

CHIAKI SAKAMA

Department of Computer and Communication Sciences,

Wakayama University, Wakayama 640 8510, Japan

(e-mail: sakama@sys.wakayama-u.ac.jp)

KATSUMI INOUE

Department of Electrical and Electronics Engineering,

Kobe University, Kobe 657 8501, Japan

(e-mail: inoue@eedept.kobe-u.ac.jp)

Abstract

This paper introduces an abductive framework for updating knowledge bases represented

by extended disjunctive programs. We first provide a simple transformation from abductive

programs to update programs which are logic programs specifying changes on abductive

hypotheses. Then, extended abduction, which was introduced by the same authors as a

generalization of traditional abduction, is computed by the answer sets of update programs.

Next, different types of updates, view updates and theory updates are characterized by

abductive programs and computed by update programs. The task of consistency restoration is

also realized as special cases of these updates. Each update problem is comparatively assessed

from the computational complexity viewpoint. The result of this paper provides a uniform

framework for different types of knowledge base updates, and each update is computed using

existing procedures of logic programming.

KEYWORDS: extended disjunctive program, extended abduction, view update, theory update,

consistency restoration

1 Introduction

1.1 Knowledge base updates

When new information arrives at a knowledge base, an intelligent agent adjusts its

current knowledge or belief to conform to the new circumstances. The problem of

knowledge base updates is then how to specify the desired change in a knowledge

base and to compute it automatically. The issue has been extensively studied in

the context of databases and Artificial Intelligence (AI) and several different types

of updates are studied in the literature. Among others, the following three cases

are typical problem settings in database and knowledge base updating. The first

� This paper is a revised and extended version of (Sakama and Inoue, 1999).

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


672 C. Sakama and K. Inoue

case considers a knowledge base which contains two different kinds of knowledge,

variable knowledge and invariable knowledge. In this case, updates are permitted

only on the variable knowledge. Updates on the invariable part are then translated

into updates on the variable part. An example of this type of updates is a view update

in deductive databases (Decker, 1990; Kakas and Mancarella, 1990a; Guessoum and

Lloyd, 1990; Teniente and Olive, 1995). A deductive database consists of invariable

derivation rules (called an intensional database) and variable base facts (called an

extensional database). Then, the view update problem in deductive databases is

concerned with the problem of translating an update request on the derived facts

into updates on the base facts. (For updating deductive databases, an excellent

survey is in Decker (1998).)

In the second case, on the other hand, there is no distinction between variable

and invariable knowledge, and the whole knowledge base is subject to change.

In this case, an update is done by directly introducing new information to a

knowledge base. When there are conflicts between the current knowledge and the

new knowledge, a higher priority is put on the new one to produce a consistent

theory as a whole. This type of updates frequently appears in AI in the context

of theory updates or belief updates (Fagin et al., 1983; Winslett, 1990; Katsuno and

Mendelzon, 1991). On the other hand, a knowledge base happens to be inconsistent

in the face of contradictory knowledge. The third case handles consistency restoration

in such knowledge bases. There are different sources which may cause inconsistency,

e.g. conflicting information, violation of integrity constraints, etc. In this case, a

knowledge base must be updated to restore consistency by detecting the source of

inconsistency and repairing it. The problems of integrity maintenance in databases

(Teniente and Olive, 1995; Decker, 1996), and inconsistency removal in knowledge

bases (Pereira et al., 1991; Inoue, 1994), are of this kind.

These three types of updates are not necessarily independent and orthogonal.

In fact, integrity maintenance is often done as a subtask of a view update to

remove contradiction derived by integrity constraints, and inconsistency removal

is characterized as a special case of theory update which changes an inconsistent

program to a consistent one. On the other hand, view updates and theory updates

have been relatively independently studied so far and little connection exists between

them. When a knowledge base is represented by a logic program, view updates are

the problem of updating derived facts from a program, while theory updates

are the problem of updating rules/facts included in a program. Thus, view updates

and theory updates have seemingly different problem settings and goals. In fact,

there are many studies which deal with updates in logic programming and deductive

databases, while many of them are individual techniques to realize either view

updates or theory updates. As far as the authors know, no study formalizes these

two update problems in a single uniform framework.

1.2 Extended abduction

Abduction is a form of hypothetical reasoning in AI. A traditional logical framework

of abduction (Poole, 1988; Kakas et al., 1998) defines an explanation of a given

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 673

observation as a set of hypotheses which, together with the background theory,

logically entails the observation. More precisely, given a first-order theory K and an

observation G, traditional abduction computes a set E of hypotheses satisfying

K ∪ E |= G

where K ∪ E is consistent.

When a background knowledge base K is nonmonotonic, however, the above

framework of abduction is not sufficiently expressive. For example, consider the

knowledge base written in a normal logic program:

K : flies(x)← bird(x), not ab(x),

ab(x)← broken-wing(x),

bird(tweety)← ,

bird(opus)← ,

broken-wing(tweety)← ,

where not represents negation as failure. If we observe that tweety flies, there is a

good reason to assume that the wound has already healed. Then, removing the fact

broken-wing(tweety) from the program explains the observation flies(tweety). On the

other hand, suppose that we later notice that opus does not fly any more. Since

flies(opus) is entailed by K , we now have to revise the knowledge base to block the

derivation of flies(opus) by assuming, for instance, broken-wing(opus).

Traditional abduction has difficulty to cope with these situations. First, abduction

computes facts which are to be introduced to a program to explain an observation.

However, abduction cannot compute facts which are to be removed from a program

to explain an observation. Secondly, abduction computes explanations accounting

for an observation, while it cannot compute hypotheses to unexplain a phenomenon

that does not hold anymore. To cope with the first problem, Inoue & Sakama (1995)

introduce the notion of “negative explanations”. Given a background knowledge

base K and an observation G, a set F of hypotheses is called a negative explanation

of G if

K \ F |= G

where K \ F is consistent. An explanation E satisfying K ∪ E |= G is then called

a positive explanation. On the other hand, the notion of “anti-explanations” is

introduced to characterize the second situation. Given a background knowledge

base K and an observation G, a set E of hypotheses is called a (positive) anti-

explanation of G if

K ∪ E �|= G,

and a set F of hypotheses is called a negative anti-explanation of G if

K \ F �|= G.

These extensions of traditional abduction are called extended abduction (Inoue

and Sakama, 1995). Extended abduction is particularly useful when a knowledge

base is nonmonotonic. In nonmonotonic theories, deletion of formulas may introduce

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


674 C. Sakama and K. Inoue

new formulas. Thus, positive and negative explanations play a complementary role

in accounting for an observation in nonmonotonic theories. On the other hand, anti-

explanations are useful to account for negative observations which do not hold. In

this respect, traditional abduction is concerned with explaining positive observations

only. Negative observations are often perceived in real-life situations, and are

analogous to the concept of negative examples in inductive concept-learning. Thus,

anti-explanations play a dual role to explanations. Moreover, extended abduction not

only enhances reasoning ability of traditional abduction, but has useful applications

for nonmonotonic theory change (Inoue and Sakama, 1995), system repair problems

(Buccafurri et al., 1997), and incremental evolution of (inconsistent) requirement

specifications (Nuseibeh and Russo, 1999).

1.3 The purpose of this paper

The purposes of this paper are twofold. Our first goal is to provide a method of

computing extended abduction. Many procedures exist for (traditional) abduction,

while few is known for extended abduction with the exception of Inoue & Sakama

(1999). Inoue & Sakama (1999) provide a computational method for extended

abduction in a restricted class of normal logic program. By contrast, this paper

considers extended abduction in Extended Disjunctive Programs (EDPs) which

are a fairly general class of logic programming. To compute extended abduction,

this paper introduces an update program which is a logic program obtained by a

simple program transformation. An update program specifies changes on abductive

hypotheses, and (minimal) (anti-)explanations are computed by the (U-minimal)

answer sets of an update program.

Our second goal is to characterize various types of knowledge base updates

through extended abduction. It is well known that knowledge base updates are

related to abduction problems, and there are several studies which realize updates

through abduction. However, due to the nature of traditional abduction, existing

studies often adopt somewhat indirect formulations for representing hypotheses

removal or view deletion (see section 7.2 for detailed discussion). In this paper

we use extended abduction and formalize different types of update problems such

as view updates, theory updates, and consistency restoration. These updates are

then computed using update programs. We assess computational complexities and

compare the difficulty of each update problem.

This paper is a revised and extended version of Sakama & Inoue (1999). In the

previous paper we considered knowledge base updates in extended logic programs.

In the present paper, we extend the techniques to Extended Disjunctive Programs

(EDPs) which possibly contain disjunction in a program. EDPs are strictly more ex-

pressive than extended (or normal) logic programs without disjunction, and are useful

to express many practical problems in the complexity class ΣP
2 (Eiter et al., 1997).

In the context of updating data/knowledge bases, there are few studies which handle

updating disjunctive (deductive) databases. The present paper is thus intended to

provide a framework for (extended) abduction and update, which is applicable to a

broader class of logic programming and deductive databases.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 675

The rest of this paper is organized as follows. Section 2 introduces a theoretical

framework used in this paper. Section 3 introduces the notion of update programs

and a method of computing extended abduction. Sections 4 and 5 respectively

characterize view updates and theory updates through extended abduction, and

provide their computational methods by update programs. Consistency restoration is

also characterized as a special case of each update. Section 6 analyzes computational

complexities of various update problems. Section 7 presents detailed comparisons

with related work, and section 8 concludes the paper.

2 Preliminaries

2.1 Extended disjunctive programs

In this paper we consider knowledge bases represented as Extended Disjunctive

Programs (EDPs).

An EDP is a set of rules of the form:

L1; · · · ;Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n � m � l � 0) (†)

where each Li is a literal, ‘;’ represents ‘or’, and not represents negation as failure

(NAF). not L is also called an NAF-literal. The part left of ← is the head and the

part right of ← is the body of the rule. We often use the Greek letter Σ (resp. Γ)

to represent the disjunction (resp. conjunction) in the head (resp. body). Σ or Γ is

identified with the set of (NAF-)literals included in it. A rule is disjunctive if its

head contains more than one literal. The head is possibly empty and a rule with

the empty head is called an integrity constraint. A disjunctive rule with the empty

body is called a disjunctive fact. A disjunctive fact L1; · · · ;Ll ← is simply written as

L1; · · · ;Ll . In particular, the non-disjunctive fact L ← is identified with the literal

L and is simply called a fact. An EDP is called an extended logic program (ELP) if

l � 1 for each rule (†); and a normal disjunctive program (NDP) if every Li is an

atom. An NDP is called a normal logic program (NLP) if l � 1 for each rule (†).
In this paper, a program means an EDP unless stated otherwise. A program (rule,

(NAF-)literal) is ground if it contains no variable. A program P is semantically

identified with its ground instantiation, i.e. the set of all ground rules obtained from

P by substituting variables in P by elements of its Herbrand universe in every

possible way. Thus, a program containing variables is considered as a shorthand of

its ground instantiation.

The semantics of EDPs is given by the answer set semantics (Gelfond and Lifschitz,

1991). Let LP be the set of all ground literals in the language of a program P .

A set S(⊆ LP ) satisfies the ground rule of the form (†) if {Ll+1, . . . , Lm} ⊆ S and

{Lm+1, . . . , Ln } ∩ S = � imply Li ∈ S for some i (1 � i � l). In particular, S satisfies

the ground integrity constraint← L1, . . . , Lm, not Lm+1, . . . , not Ln if {L1, . . . , Lm} �⊆ S

or {Lm+1, . . . , Ln }∩S �= �. Let P be a not-free EDP (i.e., m = n for each rule of (†)).
Then, a set S(⊆ LP ) is an answer set of P if S is a minimal set such that

1. S satisfies every ground rule from the ground instantiation of P ,

2. If S contains a pair of complementary literals L and ¬L, then S =LP .

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


676 C. Sakama and K. Inoue

Next, let P be any EDP and S ⊆ LP . Then, the not-free EDP PS is defined as

follows: for every ground rule (†) from the ground instantiation of P , the rule

L1; · · · ;Ll ← Ll+1, . . . , Lm is in PS if {Lm+1, . . . , Ln} ∩ S = �. Then, S is an answer

set of P if S is an answer set of PS . An EDP has none, one, or multiple answer sets

in general. Answer sets coincide with stable models (Gelfond and Lifschitz, 1988)

when P is an NDP or an NLP.

An answer set is consistent if it is not LP . A program P is consistent if it has

a consistent answer set; otherwise P is inconsistent. If a rule R is satisfied in every

answer set of P , it is written as P |= R. In particular, P |= L if a literal L is included

in every answer set of P . When P is inconsistent, we write P |= ⊥ where ⊥ is the

reserved proposition in LP .

2.2 Abductive programs

The abductive framework considered in this paper is based on extended abduction

introduced by Inoue & Sakama (1995).

An abductive program is a pair 〈P ,A〉 where P and A are EDPs. Every element

in A is called an abducible. An abducible A ∈ A is also called an abducible rule

(resp. abducible fact) if A is a rule (resp. a fact). An abducible containing variables

is considered as a shorthand of its ground instantiation. So any instance A of

an element from A is also an abducible and is written as A ∈ A. Abducibles

are hypothetical rules which are used to account for an observation together with

the background knowledge P . Similar frameworks are also introduced in (Inoue,

1994; Inoue and Sakama, 1998). An abductive program 〈P ,A〉 is consistent if P

is consistent. Without loss of generality, we assume that for any rule Σ ← Γ from

P , Σ ∩ A �= � implies both Σ ⊆ A and Γ = �.1 If there is a rule Σ ← Γ with

Σ∩A �= � such that Σ �⊆ A or Γ �= �, then any A ∈ Σ∩A is made a non-abducible

by introducing a rule A ← A′ with a new abducible A′ and replacing A with A′ in

every (disjunctive) fact consisting abducibles only.

We also assume that for any disjunctive fact Σ← from P , Σ ⊆ A implies Σ ∈ A.

That is, if a program contains a disjunctive fact Σ which consists of abducibles, Σ

itself is included inA as an abducible. This condition is natural, since any disjunctive

fact in P which consists of abducibles is considered a hypothesis. On the other hand,

any disjunctive fact which is not included in P is freely specified in A as a possible

hypothesis.

Let 〈P ,A〉 be an abductive program and G a ground literal representing a positive

observation. A pair (E, F) is a skeptical explanation of G with respect to 〈P ,A〉 if

1. (P \ F) ∪ E |= G,

2. (P \ F) ∪ E is consistent,

3. E ⊆ A \ P and F ⊆ A∩ P .

If the first condition is replaced by ‘G is true in some answer set of (P \ F) ∪ E’,

(E, F) is called a credulous explanation. Any skeptical explanation is a credulous

1 We pose this assumption just by technical reasons. A similar assumption is assumed, for instance, in
(Kakas et al., 1998).

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 677

explanation. On the other hand, given a ground literal G representing a negative

observation, a pair (E, F) is a credulous anti-explanation of G with respect to 〈P ,A〉
if

1. (P \ F) ∪ E �|= G,

2. (P \ F) ∪ E is consistent,

3. E ⊆ A \ P and F ⊆ A∩ P .

If the first condition is replaced by ‘G is true in no answer set of (P \ F)∪E’, (E, F)

is called a skeptical anti-explanation. Any skeptical anti-explanation is a credulous

anti-explanation. In particular, when G = ⊥, the first and the second conditions are

identical. In this case, the credulous anti-explanation (E, F) of ⊥ is a hypothesis

which turns a (possibly inconsistent) P to a consistent program (P \ F) ∪ E.

Throughout the paper, a skeptical/credulous (anti-)explanation is simply called an

(anti-)explanation when such a distinction is not important. A positive or negative

observation is also simply called an observation when no confusion arises. Without

loss of generality, an observation is assumed to be a (non-abducible) ground literal

(Inoue and Sakama, 1996). By the third condition, the introduced hypotheses E are

abducibles which are not included in the program P , while the removed hypotheses F

are abducibles which are included in P . Thus, it holds that E ∩F = � for any (anti-)

explanation (E, F). Among (anti-)explanations, minimal (anti-)explanations are of

particular interest. An (anti-)explanation (E, F) of an observation G is called minimal

if for any (anti-)explanation (E ′, F ′) of G, E ′ ⊆ E and F ′ ⊆ F imply E ′ = E and

F ′ = F .

Note that the abduction problem considered here is different from the usual

one based on traditional normal abduction (Kakas et al., 1998).2 That is, given

an abductive program 〈P ,A〉, normal abduction computes a skeptical explanation

(resp. credulous explanation) E of a positive observation G satisfying

1. P ∪ E |= G (resp. G is true in some answer set of P ∪ E),

2. P ∪ E is consistent,

3. E ⊆ A \ P .

Compared with normal abduction, extended abduction abduces hypotheses which

are not only introduced to a program but also removed from a program to

explain observations. Moreover, anti-explanations are used to unexplain a negative

observation which is not true. With this respect, normal abduction is considered as a

special case of extended abduction where only hypotheses introduction is considered

for explaining positive observations.

In an abductive program 〈P ,A〉, P and A are semantically identified with their

ground instantiations, so that set operations over them are defined on the ground

instances. Thus, when (E, F) contains variables, (P \F)∪E means that deleting every

instance of F from P and adding any instance of E to P . Also, when E contains

variables, the set inclusion E ′ ⊆ E is defined for any instance E ′ of E. Generally, given

2 To distinguish extended abduction from traditional one, we call traditional abduction normal abduction,
hereafter.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


678 C. Sakama and K. Inoue

sets S and T of literals/rules containing variables, any set operation ◦ is defined as

S ◦T = inst(S) ◦ inst(T ) where inst(S) is the ground instantiation of S (Inoue, 2000).

For example, when p(x) ∈ T , for any constant ‘a’ in the language of T , it holds that

{p(a)} ⊆ T , {p(a)} \ T = �, and T \ {p(a)} = (T \ {p(x)}) ∪ { p(y) | y �= a}, and

so on. Also, any literal/rule in a set is identified with its variant modulo variable

renaming.

Example 2.1

Let 〈P ,A〉 be the abductive program such that

P : g ← p(x), not r

r ← q(a),

q(a)←, q(b)← .

A : p(x), q(x).

Then, ({p(x)}, {q(x)}) is a skeptical explanation of g, while ({p(a)}, {q(a)}) and

({p(b)}, {q(a)}) are the minimal skeptical explanations of g.

Suppose an abductive program 〈P ,A〉 where A contains rules or disjunctive

facts. In this case, 〈P ,A〉 is transformed to a semantically equivalent abductive

program in which abducibles contain only (non-disjunctive) facts as follows. Given

an abductive program 〈P ,A〉, let

R = {Σ← Γ | (Σ← Γ) ∈ A and Σ← Γ is not a non-disjunctive fact } .

Then, we define

P n = (P \ R) ∪ {Σ← Γ, γR | R = (Σ← Γ) ∈ R}
∪ { γR ←| R ∈ R ∩ P },

An = (A\R) ∪ { γR | R ∈ R},

where γR is a newly introduced atom (called the name of R) uniquely associated

with each rule R in R. For any rule R ∈ R, we refer to its name using the function

n(R) = γR . In particular, we define that any abducible fact L ← has the name

L, i.e. n(L) = L. We call 〈P n,An 〉 the normal form of 〈P ,A〉. With this setting,

for any observation G there is a 1-1 correspondence between (anti-)explanations

with respect to 〈P ,A〉 and those with respect to 〈P n,An 〉. In what follows,

n(E) = { n(R) | R ∈ E }.

Proposition 2.1 (normal form transformation)

Let 〈P ,A〉 be an abductive program and 〈P n,An 〉 its normal form. Then, an

observation G has a (minimal) credulous/skeptical (anti-)explanation (E, F) with

respect to 〈P ,A〉 iff G has a (minimal) credulous/skeptical (anti-)explanation

(n(E), n(F)) with respect to 〈P n,An 〉.

Proof

By the definition of 〈P n,An 〉, G is included in a consistent answer set of (P \F) ∪ E

iff G is included in a consistent answer set of (P n \n(F)) ∪ n(E) with n(E) ⊆ An \P n

and n(F) ⊆ An ∩ P n. Hence, the result holds. �

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 679

Example 2.2

Let 〈P ,A〉 be the abductive program such that

P : flies(x)← bird(x),

bird(x)← penguin(x),

bird(polly)←,

penguin(tweety)← .

A : flies(x)← bird(x),

¬flies(x)← penguin(x).

Then, the positive observation G = ¬flies(tweety) has the minimal skeptical explana-

tion (E, F) = ({¬flies(tweety)← penguin(tweety) }, { flies(tweety)← bird(tweety) }).
On the other hand, the abductive program 〈P ,A〉 is transformed to the normal

form 〈P n,An 〉 where

P n : flies(x)← bird(x), γ1(x),

bird(x)← penguin(x),

¬flies(x)← penguin(x), γ2(x),

γ1(x)←, bird(polly)←,

penguin(tweety)←,

An : γ1(x), γ2(x).

Here, γ1(x) and γ2(x) are the names of the rules flies(x)← bird(x) and ¬flies(x)←
penguin(x), respectively. In this program, G = ¬flies(tweety) has the minimal

skeptical explanation ({ γ2(tweety) }, { γ1(tweety) }), which corresponds to the minimal

explanation (E, F) presented above.

Note that (E ′, F ′) = ({¬flies(x) ← penguin(x) }, { flies(x) ← bird(x) }) is also an

explanation of G with respect to 〈P ,A〉, but it is not minimal (cf. Example 2.1). In

fact, E ⊆ E ′ and F ⊆ F ′.

By the definition of abductive programs, a program includes no disjunctive rule

which contains both abducibles and non-abducibles in its head. Thus, if there is

a disjunctive fact Σ ← in P , every disjunct in Σ is an abducible. This justifies the

replacement of the disjunction Σ with a new abducible γ in the normal form.

Example 2.3

Let 〈P ,A〉 be the abductive program such that

P : p← a ,

p← b ,

a ; b← .

A : a, b, (a ; b).

Transform 〈P ,A〉 to 〈P n,An 〉 with

P n : p← a ,

p← b ,

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


680 C. Sakama and K. Inoue

a ; b← γ ,

γ ← .

An : a, b, γ.

Then, the negative observation p has the skeptical anti-explanation (�, {γ}) with

respect to 〈P n,An 〉, which corresponds to the anti-explanation (�, {a; b}) with

respect to 〈P ,A〉.

Using the transformation, any abductive program having abducible rules is

reduced to an abductive program having only (non-disjunctive) abducible facts.

Thus, in the next section we consider an abductive program 〈P ,A〉 where A
contains only (non-disjunctive) facts, unless specified otherwise.3

3 Extended abduction through update programs

In this section we introduce the notion of update programs and characterize extended

abduction through them.

3.1 Update programs

Suppose an abductive program 〈P ,A〉 where A consists of abducible facts. Then,

update rules/programs are defined as follows.

Definition 3.1 (update rules)

Given an abductive program 〈P ,A〉, the set UR of update rules is defined as

follows.

1. For any literal a ∈ A, the following rules are in UR:

a← not a,

a← not a,

where a is a newly introduced atom uniquely associated with a. For notational

convenience, the above pair of rules is expressed as abd(a), hereafter.

2. For any literal a ∈ A \ P , the following rule is in UR:

+a← a .

3. For any literal a ∈ A∩ P , the following rule is in UR:

−a← not a .

Here, +a and −a are atoms which are uniquely associated with any a ∈ A. These

are called update atoms.

3 By contrast, Inoue & Sakama (2002) introduce a method of directly computing (anti-)explanations
which are disjunctions of abducibles.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 681

By the definition, the atom a becomes true iff a is not true. The pair of rules

in abd(a) then specify the situation that an abducible a is true or not. Similar

transformations are introduced in Satoh & Iwayama (1991) and Inoue (1994) in the

context of transforming abductive programs to normal logic programs. The pair of

rules in abd(a) is also represented by the semantically equivalent disjunctive fact

a; a← .

This replacement is useful to avoid introducing unstratified negation in abd(a) when

the original program P is stratified.

In the second condition, when p(x) ∈ A, p(a) ∈ P and p(t) �∈ P for t �= a, the rule

precisely becomes +p(t)← p(t) for any t �= a. In such a case, the rule is shortly written

as +p(x)← p(x), x �= a. Generally, the rule becomes +p(x)← p(x), x �= t1, . . . , x �= tn
for n such instances. The rule +a← a derives the atom +a if an abducible a which

is not in P is to be true. In contrast, the rule −a ← not a derives the atom −a if

an abducible a which is in P is not to be true. Thus, update atoms represent the

change of truth values of abducibles in a program, i.e. +a means the introduction

of a, while −a means the deletion of a. When an abducible a contains variables, the

associated update atom +a or −a is supposed to have exactly the same variables.

In this case, an update atom is semantically identified with its ground instances.

The set of all update atoms associated with the abducibles in A is denoted by UA.

We define that UA = UA+ ∪ UA−, where UA+ (resp. UA−) is the set of update

atoms of the form +a (resp. −a).

Definition 3.2 (update programs)

Given an abductive program 〈P ,A〉, its update program UP is defined as an EDP

such that

UP = (P \A) ∪ UR .

UP becomes an ELP when P is an ELP.

Definition 3.3 (U-minimal answer sets)

An answer set S of UP is called U-minimal if there is no answer set T of UP such

that T ∩UA ⊂ S ∩UA.

By the definition, U-minimal answer sets exist whenever UP has answer sets. A

U-minimal answer set is used for characterizing a minimal change in P . In particular,

when there is no observation, there is a 1-1 correspondence between the U-minimal

answer sets of UP and the consistent answer sets of P .

Proposition 3.1 (U-minimal answer sets vs. answer sets)

Let 〈P ,A〉 be an abductive program and UP its update program. Then, P has a

consistent answer set T iff UP has a U-minimal answer set S such that S ∩UA = �
and S ∩LP = T .

Proof

Let T be a consistent answer set of P . Put S = T ∪ { a | a ∈ A \ P }, then

S ∩LP = T . By the definition of abductive programs, any abducible a ∈ A \ P
does not appear in the head of any rule which is not a fact in P . So T contains

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


682 C. Sakama and K. Inoue

no abducible a such that a ∈ A \ P , then a ∈ S implies a �∈ S . Next, consider

UPS = (P \ A)S ∪ URS . It holds that (P \ A)S = (P \ A)T = PT \ A. For

any abd(a) ∈ UR, (a ←) ∈ URS iff a �∈ S iff a ∈ A ∩ P ; and (a ←) ∈ URS

iff a �∈ S iff a ∈ A \ P . Also, any +a ← a in UR is also in URS . Since T is

an answer set of P , by the construction of S it contains every abducible a such

that a ∈ A ∩ P . Thus, any −a ← not a in UR is not included in URS . Hence,

UPS = (P \ A)S ∪ URS = (PT \ A) ∪ { a ←| a ∈ A ∩ P } ∪ { a ←| a ∈
A\P } ∪ {+a← a | a ∈ A\P } = PT ∪ { a←| a ∈ S } ∪ {+a← a | a ∈ A\P }.
As T is an answer set of PT and a �∈ S , S becomes an answer set of UPS . Thus, S

is an answer set of UP . Since S ∩UA = �, S is also U-minimal.

Conversely, let S be a U-minimal answer set of UP such that S ∩ UA = �. By

S ∩ UA = �, S contains no literal in A \ P . Hence, S is a consistent answer set.

Also, it implies a ∈ S ∩A iff a ∈ A ∩ P iff a ∈ A ∩UPS . Put T = S ∩LP . Then,

PT = {Σ← Γ | (Σ← Γ) ∈ UPS and Σ ⊆ LP }. Since S is a consistent answer set

of UPS , T becomes a consistent answer set of PT . Hence, T is a consistent answer

set of P . �

Example 3.1

Let 〈P ,A〉 be the abductive program such that

P : p← b ,

q ← a, not b ,

a← .

A : a, b .

Then, UP becomes

UP : p← b ,

q ← a, not b ,

abd(a), abd(b) ,

−a← not a ,

+b← b .

Here, UP has four answer sets: S1 = { a, b,+b, p }, S2 = { a, b,−a,+b, p }, S3 =

{ a, b, q }, and S4 = { a, b,−a }. Of these, S3 is the U-minimal answer set and S3 ∩LP

coincides with the answer set of P .

3.2 Computing (anti-)explanations through UP

Next, we provide a method of computing (anti-)explanations through update

programs. A positive observation G represents an evidence which is to be true

in a program. The situation is specified by the integrity constraint

← notG ,

which represents that ‘G should be true’. By contrast, a negative observation G

represents an evidence which is not to be true in a program. The situation is

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 683

specified by the integrity constraint

← G ,

which represents that ‘G must not be true’.

For instance, to explain the positive observation p in the program P of Ex-

ample 3.1, consider the program UP ∪ {← not p }. It has two answer sets: S1 and

S2, of which S1 is the U-minimal answer set. Observe that the positive observation p

has the unique minimal (skeptical) explanation ({b},�) with respect to 〈P ,A〉. The

situation is expressed by the update atom +b in S1. On the other hand, to unexplain

the negative observation q in P , consider the program UP ∪ {← q }. It has three

answer sets: S1, S2, and S4, of which S1 and S4 are the U-minimal answer sets. Here,

the negative observation q has two minimal (skeptical) anti-explanations ({b},�)

and (�, {a}) with respect to 〈P ,A〉. The situations are respectively expressed by

the update atom +b in S1 and −a in S4. Note that when the positive observation p

and the negative observation q are given at the same time, S1 becomes the unique

U-minimal answer set of UP ∪ {← not p } ∪ {← q }.4
These examples illustrate that the U-minimal answer sets are used to compute

minimal (anti-)explanations of extended abduction. Note that the constraint← notG

extracts answer sets in which G is true, but this does not imply that G is true in

every answer set of (P \ F)∪E. To know that (E, F) is a skeptical explanation of G,

we need an additional test for checking the entailment of G from (P \ F) ∪ E.

Proposition 3.2 (credulous vs. skeptical explanations)

Let 〈P ,A〉 be an abductive program and G a positive observation. Suppose that

(E, F) is a credulous explanation of G with respect to 〈P ,A〉. Then, (E, F) is a

skeptical explanation of G with respect to 〈P ,A〉 iff (P \ F) ∪ E ∪ {← G } is

inconsistent.

Proof

When (E, F) is a credulous explanation of G with respect to 〈P ,A〉, (P \F)∪E has

a consistent answer set in which G is true. Then, (E, F) is a skeptical explanation of

G with respect to 〈P ,A〉
iff (P \ F) ∪ E has no consistent answer set in which G is not true

iff (P \ F) ∪ E ∪ {← G } is inconsistent. �

Example 3.2

Let 〈P ,A〉 be the abductive program such that

P : p ; q ← a ,

¬q ← not b ,

b← .

A : a, b .

4 When there are positive observations p1, . . . , pm and negative observations q1, . . . , qn, instead of
considering the (m + n)-goals ← not pi and ← qj , the same effect is achieved by introducing the
rule g ← p1, . . . , pm, not q1, . . . , not qn to UP and considering the single goal ← not g.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


684 C. Sakama and K. Inoue

Given the positive observation G = p, (E, F) = ({a}, {b}), ({a},�) are two credulous

explanations. Among them, ({a}, {b}) is also the skeptical explanation of G where

(P \ {b}) ∪ {a} ∪ {← p } is inconsistent.

In what follows, given sets E ⊆ A and F ⊆ A, we define E+ = {+a | a ∈ E } and

F− = {−a | a ∈ F }. Conversely, given sets E+ ⊆ UA+ and F− ⊆ UA−, we define

E = { a | +a ∈ E+ } and F = { a | −a ∈ F− }. Then, (minimal) credulous/skeptical

explanations are computed by update programs as follows.

Theorem 3.3 (computing credulous explanations through UP )

Let 〈P ,A〉 be an abductive program, UP its update program, and G a positive

observation.

1. The pair (E, F) is a credulous explanation of G iff UP ∪ {← notG } has a

consistent answer set S such that E+ = S ∩UA+ and F− = S ∩UA−.

2. The pair (E, F) is a minimal credulous explanation of G iff UP ∪ {← notG }
has a consistent U-minimal answer set S such that E+ = S ∩ UA+ and

F− = S ∩UA−.

Proof

1. Let S be a consistent answer set of UP ∪{← notG } such that E+ = S ∩UA+

and F− = S ∩ UA−. For each +a ∈ E+ and −b ∈ F−, a ∈ S and b �∈ S hold

respectively. Then, a ← and b ← are, respectively, produced by abd(a) and

abd(b) in UPS , so that (a ←) ∈ UPS and (b ←) �∈ UPS . By the definition,

+a ∈ E+ implies a ∈ E and −b ∈ F− implies b ∈ F , so UPS contains a rule

Σ← Γ with Σ ⊆ LP iff ((P \ F)∪E)S has the same rule. Put T = S ∩LP . As

G ∈ S , T is a consistent answer set of (P \ F) ∪ E in which G is true. Since

E ⊆ A\P and F ⊆ A∩P , (E, F) is a credulous explanation of G. Conversely,

suppose that (E, F) is a credulous explanation of G. Then, there is a consistent

answer set T of (P \ F) ∪ E in which G is true. By the definition of abductive

programs, abducibles are assumed to appear in the head of no (non-factual)

rule in P . Thus, a ∈ E and b ∈ F imply a ∈ T and b �∈ T , respectively. In this

case, UPT contains facts a ← and b ← which are respectively produced by

abd(a) and abd(b). This implies that UPT contains a rule Σ← Γ with Σ ⊆ LP

iff ((P \F)∪E)T has the same rule. Put S = T ∪{+a | a ∈ E }∪{−b, b | b ∈ F }.
Then, S is a consistent answer set of UP ∪ {← notG }, and E+ = S ∩ UA+

and F− = S ∩UA−.

2. Suppose that S is a consistent U-minimal answer set of UP ∪ {← notG } such

that E+ = S ∩ UA+ and F− = S ∩ UA−. If the credulous explanation (E, F)

of G is not minimal, there is a pair (E ′, F ′) such that (E ′ ⊂ E and F ′ ⊆ F)

or (E ′ ⊆ E and F ′ ⊂ F), and (P \ F ′) ∪ E ′ has a consistent answer set T ′ in

which G is true. Then, there is an answer set S ′ of UP ∪ {← notG } such that

T ′ = S ′ ∩ LP and E ′+ = S ′ ∩ UA+ and F ′− = S ′ ∩ UA− by the only-if part

of 1. By E ′ ∪F ′ ⊂ E∪F , E ′+∪F ′− ⊂ E+∪F− holds. Thus, S ′ ∩UA ⊂ S ∩UA.

This contradicts the assumption that S is U-minimal. Conversely, when (E, F)

is a minimal credulous explanation of G, UP ∪ {← notG } has a consistent

answer set S such that E+ = S∩UA+ and F− = S∩UA− (by 1). Suppose that

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 685

S is not U-minimal. Then, UP ∪{← notG } has a consistent U-minimal answer

set S ′ such that S ′ ∩ UA ⊂ S ∩ UA, E ′+ = S ′ ∩ UA+, and F ′− = S ′ ∩ UA−.

In this case, there is a minimal credulous explanation (E ′, F ′) of G such that

E ′ ∪ F ′ ⊂ E ∪ F by the if-part of 2. This contradicts the fact that (E, F) is

minimal. Hence, the result holds.

�

Theorem 3.4 (computing skeptical explanations by UP )

Let 〈P ,A〉 be an abductive program, UP its update program, and G a positive

observation. Then, G has a skeptical explanation (E, F) iff UP ∪ {← notG } has a

consistent answer set S such that E+ = S ∩UA+, F− = S ∩UA−, and (P \F)∪E ∪
{← G } is inconsistent. In particular, (E, F) is a minimal skeptical explanation iff S

is U-minimal among those satisfying the above condition.

Proof

Suppose that S is a consistent answer set of UP ∪ {← notG } satisfying the

condition that E+ = S ∩ UA+, F− = S ∩ UA−, and (P \ F) ∪ E ∪ {← G } is

inconsistent. Then, (E, F) is a credulous explanation of G (Theorem 3.3), and also a

skeptical explanation of G (Proposition 3.2). In particular, if S is U-minimal among

those satisfying the condition, (E, F) becomes a minimal skeptical explanation by

Theorem 3.3.

Conversely, suppose that (E, F) is a skeptical explanation of G. By Proposition 3.2

and Theorem 3.3, there is a consistent answer set S of UP ∪ {← notG } such

that E+ = S ∩ UA+, F− = S ∩ UA−, and (P \ F) ∪ E ∪ {← G } is inconsistent.

Suppose that (E, F) is a minimal skeptical explanation of G. To see that S is U-

minimal among those satisfying the condition, suppose that there is an answer set

S ′ which satisfies the condition and S ′ ∩ UA ⊂ S ∩ UA. Put E ′+ = S ′ ∩ UA+ and

F ′− = S ′ ∩ UA−. Then, E ′+ ∪ F ′− ⊂ E+ ∪ F−, thereby E ′ ∪ F ′ ⊂ E ∪ F . As (E ′, F ′)

is a skeptical explanation of G by Proposition 3.2 and Theorem 3.3, this contradicts

the assumption that (E, F) is minimal. �

Example 3.3

For the abductive program of Example 3.2, UP becomes

UP : p ; q ← a ,

¬q ← not b ,

abd(a), abd(b),

+a← a ,

−b← not b .

For the positive observation p, the program UP ∪ {← not p } has the answer set

S = { p, a, b,+a,−b } such that E+ = {+a}, F− = {−b}, and (P \ F) ∪ E ∪ {← p }
is inconsistent with (E, F) = ({a}, {b}). Since S is also U-minimal satisfying this

condition, ({a}, {b}) is the minimal skeptical explanation of p. On the other hand,

UP ∪{← not p } has another answer set S ′ = { p, a, b,+a } such that E+ = {+a} and

F− = �. However, (P \ F)∪E ∪ {← p } is consistent with (E, F) = ({a}, {}), so that

({a}, {}) is not a skeptical explanation (but a credulous one).

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


686 C. Sakama and K. Inoue

The above results present that (minimal) explanations of extended abduction

are computed by means of answer sets of an update program which is an EDP.

In particular, when a program P is an ELP (resp. NDP, NLP), explanations are

computed by means of answer sets (resp. stable models) of the corresponding update

program which is also an ELP (resp. NDP, NLP).

For computing anti-explanations, we have the following results.

Lemma 3.5 (converting anti-explanations to explanations)

Let 〈P ,A〉 be an abductive program and G a negative observation. Then, (E, F)

is a (minimal) credulous/skeptical anti-explanation of G with respect to 〈P ,A〉 iff

(E, F) is a (minimal) credulous/skeptical explanation of a positive observation G′

with respect to the abductive program 〈P ∪{G′ ← notG },A〉, where G′ is a ground

atom appearing nowhere in P ∪A.

In particular, (E, F) is a (minimal) credulous anti-explanation of G = ⊥ with

respect to 〈P ,A〉 iff (E, F) is a (minimal) credulous explanation of a positive

observation G′ with respect to the abductive program 〈P ∪ {G′ ← not⊥},A〉.

Proof

Put P ′ = P ∪ {G′ ← notG }. Then, G is not included in an answer set S of a

consistent program (P \ F) ∪ E iff G′ is included in an answer set S ∪ {G′} of a

consistent program (P ′ \ F) ∪ E. Hence, the result follows. In particular, when G =

⊥, (P \ F) ∪ E is consistent iff G′ is included in a consistent answer set of

(P ′ \ F) ∪ E. �

Theorem 3.6 (computing anti-explanations through UP )

Let 〈P ,A〉 be an abductive program, UP its update program, and G a negative

observation. Also, let G′ be a ground atom appearing nowhere in P ∪ A, and

P ′ = P ∪ {G′ ← notG }. Then,

1. (E, F) is a (minimal) credulous anti-explanation of G iff UP ∪ {← G } has

a consistent (U-minimal) answer set S such that E+ = S ∩ UA+ and F− =

S ∩UA−.

2. (E, F) is a skeptical anti-explanation of G iff UP ∪ {G′ ← notG } ∪ {← notG′ }
has a consistent answer set S such that E+ = S ∩ UA+, F− = S ∩ UA−, and

(P ′ \F)∪E ∪ {← G′ } is inconsistent. In particular, (E, F) is a minimal skeptical

anti-explanation iff S is U-minimal among those satisfying the above condition.

Proof

1. Put UP ′ = UP ∪ {G′ ← notG }. Then, (E, F) is a (minimal) credulous anti-

explanation of G with respect to 〈P ,A〉
iff (E, F) is a (minimal) credulous explanation of a positive observation G′ with

respect to 〈P ′,A〉 (Lemma 3.5)

iff UP ′ ∪ {← notG′ } has a consistent (U-minimal) answer set S ∪ {G′ }
such that E+ = S ∩ UA+ and F− = S ∩ UA− (by Theorem 3.3). When

UP ′ ∪ {← notG′ } has a consistent (U-minimal) answer set S ∪ {G′ }, G is

not included in S . So UP ′ ∪ {← notG′ } has a consistent (U-minimal) answer

set S ∪ {G′ } such that E+ = S ∩ UA+ and F− = S ∩ UA− iff UP ∪ {← G }

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 687

has a consistent (U-minimal) answer set S such that E+ = S ∩ UA+ and

F− = S ∩UA−.

2. (E, F) is a skeptical anti-explanation of G with respect to 〈P ,A〉
iff (E, F) is a skeptical explanation of a positive observation G′ with respect to

〈P ′,A〉 (Lemma 3.5)

iff UP ′ ∪ {← notG′ } has a consistent answer set S such that E+ = S ∩UA+,

F− = S ∩ UA−, and (P ′ \ F) ∪ E ∪ {← G′ } is inconsistent. In particular,

(E, F) is a minimal skeptical anti-explanation iff S is U-minimal among those

satisfying the above condition (Theorem 3.4).

�

Suppose an abductive program 〈P ,A〉 such that P is a normal logic program

and A is a set of atoms. When P is locally stratified in the sense of (Przymusinski,

1988), P has at most one answer set (called a perfect model ). In this case, the above

results are simplified as follows.5

Corollary 3.7 (computing (anti-)explanations in locally stratified NLPs)

Let 〈P ,A〉 be an abductive program in which P is a locally stratified NLP and A
is the set of abducible atoms. Also, let UP be the update program of 〈P ,A〉 and

G a ground atom. Then,

1. A positive observation G has a (minimal) explanation (E, F) iff the program

UP ∪ {← notG } has a consistent (U-minimal) answer set S such that E+ =

S ∩UA+ and F− = S ∩UA−.

2. A negative observation G has a (minimal) anti-explanation (E, F) iff the

program UP ∪ {← G } has a consistent (U-minimal) answer set S such

that E+ = S ∩UA+ and F− = S ∩UA−.

Proof

When P is a locally stratified NLP, so is (P \ F) ∪ E because introducing/deleting

facts to/from P does not break the stratification structure. Then (P \ F) ∪ E has

at most one answer set. In this case, credulous (anti-)explanations and skeptical

(anti-)explanations coincide. Hence, the results hold by Theorems 3.3 and 3.6. �

The results of Theorems 3.3, 3.4 and 3.6 imply that any proof procedure for

computing answer sets in EDPs is used for computing (anti-)explanations of extended

abduction in EDPs. In particular, minimal (anti-)explanations are found by an

additional mechanism of filtering U-minimal ones out of answer sets.

4 View updates through extended abduction

In this section, we characterize the problem of view updates through extended

abduction. We compute view updates by means of update programs in section 4.1,

and realize the task of integrity maintenance as a special case in section 4.2.

5 The result is generalized to the class of programs having at most one stable model.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


688 C. Sakama and K. Inoue

4.1 View updates

Suppose a knowledge base which contains variable rules and invariable rules. When

there is a request for inserting/deleting a fact to/from the program, the update on

the fact which is derived by invariable rules is translated into updates on variable

rules/facts. This type of updates is called view updates.

Definition 4.1 (view updates)

Let P be a program, V the set of variable rules in the language of P , and G a

ground fact. Then, a program P ′ accomplishes a view update for the insertion (resp.

deletion) of G to/from P if

1. P ′ is consistent,

2. P ′ |= G (resp. P ′ �|= G),

3. P ′ \ V = P \ V ,

4. there is no consistent program P ′′ such that P ′′ |= G (resp. P ′′ �|= G),

P ′′ \ V = P \ V , and [(P ∩ V ) ∼ (P ′′ ∩ V )] ⊂ [(P ∩ V ) ∼ (P ′ ∩ V )],

where Q ∼ R = (Q \ R) ∪ (R \ Q).

By the definition, the updated program P ′ is a consistent program which minimally

changes the variable part V of P to (un)imply G. Such a program P ′ is obtained

from P by deleting some rules in V ∩ P and introducing some rules in V \ P .

In particular, when G ∈ V \ P (resp. G ∈ V ∩ P ), the insertion (resp. deletion)

is done by directly introducing (resp. deleting) G to/from P . We do not consider

introducing rules in V ∩P and deleting rules in V \P , because introducing any rule

which already exists in P is redundant and deleting any rule which does not exist

in P is meaningless. With this assumption, the third condition P ′ \ V = P \ V of

Definition 4.1 is equivalent to

P ′ = (P \ F) ∪ E for E ⊆ V \ P and F ⊆ V ∩ P .

The view update problem is then naturally expressed by an abductive program

〈P , V 〉, where the program P represents a knowledge base and the abducibles V

represent variable rules.

Theorem 4.1 (view updates by extended abduction)

Let P be a program and V the set of variable rules in the language of P . Given

a ground literal G, (P \ F) ∪ E accomplishes a view update for inserting (resp.

deleting) G iff (E, F) is a minimal skeptical explanation (resp. minimal credulous

anti-explanation) of the positive observation (resp. negative observation) G with

respect to the abductive program 〈P , V 〉.

Proof

Suppose that P ′ = (P \F)∪E accomplishes the insertion (resp. deletion) of G. Then,

P ′ is consistent and P ′ |= G (resp. P ′ �|= G). As E ⊆ V \P and F ⊆ V ∩P , (E, F) is a

skeptical explanation (resp. credulous anti-explanation) of G with respect to 〈P , V 〉.
On the other hand, it holds that (P ′ ∩V ) \ (P ∩V ) = E and (P ∩V ) \ (P ′ ∩V ) = F .

Then, by the fourth condition of view updates, there is no E ′ ⊆ V \P nor F ′ ⊆ V ∩P
such that (P \ F ′) ∪ E ′ |= G (resp. (P \ F ′) ∪ E ′ �|= G) with a consistent (P \ F ′) ∪ E ′,

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 689

and E ′ ∪ F ′ ⊂ E ∪ F . If (P \ F ′) ∪ E ′ is consistent and (P \ F ′) ∪ E ′ |= G (resp.

(P \ F ′) ∪ E ′ �|= G), then E ′ ⊆ E and F ′ ⊆ F imply E ′ = E and F ′ = F , because

otherwise E ′ ∪ F ′ ⊂ E ∪ F . Thus, (E, F) is a minimal skeptical explanation (resp.

minimal credulous anti-explanation) of G with respect to 〈P , V 〉. The converse is

obvious by the definition of minimal (anti-)explanations. �

To realize view updates through update programs, we first transform the abductive

program 〈P , V 〉 to its normal form 〈P n, V n 〉 with abducible facts V n as presented

in section 2.2. For E ⊆ V and F ⊆ V , we define n(E)+ = {+a | a ∈ n(E) } and

n(F)− = {−a | a ∈ n(F) }, where n(·) is the naming function introduced in section 2.2.

Then, the following results hold.

Theorem 4.2 (view insertion through UP )

Let P be a program, V the set of variable rules in the language of P , and G a

ground literal. Also, let 〈P n, V n 〉 be the normal form of the abductive program

〈P , V 〉, and UP the update program of 〈P n, V n 〉. Then, (P \ F) ∪ E accomplishes

the insertion of G iff

1. S is a consistent answer set of UP ∪ {← notG } such that n(E)+ = S ∩UA+,

n(F)− = S ∩UA−, and (P \ F) ∪ E ∪ {← G } is inconsistent, and

2. S is U-minimal among those satisfying the condition 1.

Proof

(P \ F) ∪ E accomplishes the insertion of G

iff (E, F) is a minimal skeptical explanation of G with respect to 〈P , V 〉 (Theorem 4.1)

iff (n(E), n(F)) is a minimal skeptical explanation of G with respect to 〈P n, V n 〉
(Proposition 2.1)

iff there exists a consistent U-minimal answer set S of UP ∪ {← notG } satisfying

the conditions 1 and 2 (Theorem 3.4). �

Theorem 4.3 (view deletion through UP )

Let P be a program, V the set of variable rules in the language of P , and G a ground

literal. Also, let 〈P n, V n 〉 be the normal form of the abductive program 〈P , V 〉,
and let UP be the update program of 〈P n, V n 〉. Then, (P \F)∪E accomplishes the

deletion of G iff UP ∪ {← G } has a consistent U-minimal answer set S such that

n(E)+ = S ∩UA+ and n(F)− = S ∩UA−.

Proof

(P \ F) ∪ E accomplishes the deletion of G

iff (E, F) is a minimal credulous anti-explanation of G with respect to 〈P , V 〉
(Theorem 4.1)

iff (n(E), n(F)) is a minimal credulous anti-explanation of G with respect to 〈P n, V n 〉
(Proposition 2.1)

iff S is a consistent U-minimal answer set of UP ∪ {← G } such that n(E)+ =

S ∩UA+ and n(F)− = S ∩UA− (Theorem 3.6). �

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


690 C. Sakama and K. Inoue

Example 4.1

Let P be the program and V the set of variable rules such that

P : flies(x)← bird(x), not ab(x),

ab(x)← broken-wing(x),

bird(tweety)← ,

bird(opus)← ,

broken-wing(tweety)← .

V : broken-wing(x).

Then, UP becomes

UP : flies(x)← bird(x), not ab(x),

ab(x)← broken-wing(x),

bird(tweety)← ,

bird(opus)← ,

abd(broken-wing(tweety)), abd(broken-wing(opus)),

−broken-wing(tweety)← not broken-wing(tweety) ,

+broken-wing(opus)← broken-wing(opus) .

To insert flies(tweety), the U-minimal answer set of UP ∪ {← not flies(tweety) }
becomes { flies(tweety), flies(opus), bird(tweety), bird(opus), broken-wing(tweety),

broken-wing(opus), −broken-wing(tweety) }. Then, (P \ F) ∪ E accomplishes the in-

sertion of flies(tweety) with (E, F) = (�, { broken-wing(tweety) }).
On the other hand, to remove flies(opus), the U-minimal answer set of UP ∪

{← flies(opus) } becomes { bird(tweety), bird(opus), broken-wing(tweety),
broken-wing(opus), ab(tweety), ab(opus), +broken-wing(opus) }. Then, (P \ F)∪E ac-

complishes the deletion of flies(opus) with (E, F) = ({ broken-wing(opus) },�).

4.2 Integrity maintenance

Integrity constraints are conditions that a knowledge base should satisfy through

updates. When integrity constraints are violated, variable rules/facts are modified

to restore consistency. Such integrity maintenance is done as a special case of view

updating.

Let I be the set of integrity constraints in a program P . Then, we say that P

violates integrity constraints from I if P \ I has no consistent answer set satisfying

every rule in I . P satisfies integrity constraints from I if P does not violate them.6

Definition 4.2 (integrity maintenance)

Let P be a program and V the set of variable rules in the language of P . Also, let I

be the set of integrity constraints such that I ⊆ P \ V . Then, a program P ′ restores

6 This is the consistency view of integrity satisfaction (Sadri and Kowalski, 1988).

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 691

consistency with respect to I if

1. P ′ is consistent,

2. P ′ \ V = P \ V ,

3. there is no consistent program P ′′ such that P ′′ \ V = P \ V and

[(P ∩ V ) ∼ (P ′′ ∩ V )] ⊂ [(P ∩ V ) ∼ (P ′ ∩ V )].

In particular, P ′ = P if P satisfies every integrity constraint in I .

The first condition implies that P ′ satisfies every constraint in I . Note that by

I ⊆ P \V every constraint in I is invariable, so I ⊆ P ′ holds by the second condition.

The third condition requests the minimality of change. By the definition, integrity

maintenance is defined as a special case of view deletion of Definition 4.1 with

G = ⊥, i.e. P ′ �|= ⊥ is equivalent to the first condition. Then, the problem of integrity

maintenance is characterized by an abductive program 〈P , V 〉 and computed by

its update program. The following results directly follow from Theorem 4.1 and

Theorem 4.3.

Theorem 4.4 (integrity maintenance by extended abduction)

Let P be a program, I ⊆ P integrity constraints, and V the set of variable rules

in the language of P . Then, (P \ F) ∪ E restores consistency with respect to I iff

(E, F) is a minimal credulous anti-explanation of the negative observation G = ⊥
with respect to 〈P , V 〉.
Theorem 4.5 (integrity maintenance through UP )

Let P be a program, I ⊆ P integrity constraints, and V the set of variable rules

in the language of P . Also, let 〈P n, V n 〉 be the normal form of the abductive

program 〈P , V 〉, and UP the update program of 〈P n, V n 〉. Then, (P \ F) ∪ E

restores consistency with respect to I iff UP has a consistent U-minimal answer set

S such that n(E)+ = S ∩UA+ and n(F)− = S ∩UA−.

Example 4.2

Let 〈P , V 〉 be the abductive program such that

P : employee(john, 35)←,

manager(john)←,

← employee(x, y), manager(x), not talented(x), y < 40 .

V : manager(x), talented(x).

The integrity constraint enforces the condition that any employee does not become

a manager under the age 40 unless he/she is talented. The UP of this program

becomes

UP : employee(john, 35)←,

← employee(x, y), manager(x), not talented(x), y < 40 .

abd(manager(x)), abd(talented(x)),

−manager(john)← notmanager(john),

+talented(x)← talented(x),

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


692 C. Sakama and K. Inoue

which has two U-minimal answer sets:

{ employee(john, 35), manager(john), −manager(john), talented(john) },
{ employee(john, 35), manager(john), +talented(john), talented(john) }.

That is, removing manager(john) or inserting talented(john) restores consistency with

respect to the integrity constraint.

5 Theory updates

In this section, we characterize the problem of theory updates through extended

abduction. We first consider updating a knowledge base by a single rule in section 5.1,

then generalize the result to updating by a program in section 5.2. Inconsistency

removal is formalized as a special case of theory updates in section 5.3.

5.1 Updates with a rule

Suppose that an update request for inserting/deleting a rule is brought to a

knowledge base in which every rule is variable. In this case, an update is done

by directly inserting/deleting the rule to/from the program.

Definition 5.1 (updates with a rule)

Let P be a program and R a rule such that R �∈ P . Then, P ′ accomplishes the

insertion of R to P if

1. P ′ is consistent,

2. {R} ⊆ P ′ ⊆ P ∪ {R},
3. there is no consistent program P ′′ such that P ′ ⊂ P ′′ ⊆ P ∪ {R}.

On the other hand, for a program P and a rule R such that R ∈ P , P ′ accomplishes

the deletion of R from P if

1. P ′ is consistent,

2. P ′ ⊆ P \ {R},
3. there is no consistent program P ′′ such that P ′ ⊂ P ′′ ⊆ P \ {R}.

In the above definition, the second conditions present that the updated program

P ′ includes/excludes the rule R, and the third conditions present that P ′ minimally

changes the original program P by inserting/deleting R to/from P .

We first show that the problem of deleting a rule from a program in Definition 5.1

is converted to the problem of inserting a rule to a program.

Proposition 5.1 (converting deletion of a rule to insertion of a rule)

Let P be a program and R a rule in P . Then, there is a program P ′ which

accomplishes the deletion of R from P iff there is a program PR′ which accomplishes

the insertion of the rule ← γR to the program PR = (P \ {R})∪{Σ← Γ, γR, γR ←}
where R = (Σ← Γ).

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 693

Proof

Suppose that P ′ accomplishes the deletion of R from P . Put PR′ = P ′ ∪ {Σ ←
Γ, γR, ← γR }. Then, by P ′ ⊆ P \{R}, PR′ ⊆ (P \{R}) ∪ {Σ← Γ, γR, ← γR } holds,

thereby {← γR } ⊆ PR′ ⊆ PR ∪ {← γR }. As P ′ is consistent, PR′ is consistent.

Assume that there is a consistent program PR′′ such that PR′ ⊂ PR′′ ⊆ PR ∪ {←
γR }. Put P ′′ = PR′′ \ {Σ ← Γ, γR, ← γR }. Then, PR′′ ⊆ PR ∪ {← γR } implies

PR′′ ⊆ (P \ {R}) ∪ {Σ ← Γ, γR, γR ←} ∪ {← γR }, thereby P ′′ ⊆ P \ {R}. On

the other hand, PR′ ⊂ PR′′ implies P ′ ∪ {Σ ← Γ, γR, ← γR } ⊂ PR′′, thereby

P ′ ⊂ PR′′ \ {Σ ← Γ, γR, ← γR }. Then, P ′ ⊂ P ′′. Thus, P ′ ⊂ P ′′ ⊆ P \ {R} holds,

which contradicts the fact that there is no such P ′′. Hence, PR′ accomplishes the

insertion of ← γR to PR.

Conversely, suppose that PR′ accomplishes the insertion of ← γR to PR. Put

P ′ = PR′ \ {Σ← Γ, γR, ← γR }. Then, by PR′ ⊆ PR ∪ {← γR }, P ′ ⊆ P \ {R} holds.

As PR′ is consistent, P ′ is consistent. Assume that there is a consistent program

P ′′ such that P ′ ⊂ P ′′ ⊆ P \ {R}. Put PR′′ = P ′′ ∪ {Σ ← Γ, γR, ← γR }. Then, by

P ′ ∪ {Σ← Γ, γR, ← γR } = PR′ and P \ {R} ∪ {Σ← Γ, γR, ← γR } ⊆ PR ∪ {← γR },
it holds that PR′ ⊂ PR′′ ⊆ PR ∪ {← γR }, which contradicts the fact that there is

no such PR′′. Hence, P ′ accomplishes the deletion of R from P . �

By Proposition 5.1, for updating a program with a rule, it is enough to consider

the problem of inserting a rule to a program. We study the problem in a more

general setting in the next subsection.

5.2 Updates with programs

This section considers an update which updates a program with another program.

Given a program P which represents the current knowledge base and another

program Q which represents new information, a theory update is defined to satisfy

the following conditions.

Definition 5.2 (theory updates)

Given programs P and Q, P ′ accomplishes a theory update of P by Q if

1. P ′ is consistent,

2. Q ⊆ P ′ ⊆ P ∪ Q,

3. there is no consistent program P ′′ such that P ′ ⊂ P ′′ ⊆ P ∪ Q.

By the definition, the updated program P ′ is defined as the union of the new

information Q and a maximal subset of the original program P which is consistent

with Q. The first condition implies that new information Q should be consistent,

namely, updating with inconsistent information makes no sense. With this definition,

inserting a rule to a theory of Definition 5.1 is captured as a special case of a theory

update of Definition 5.2 in which a new program Q is given as a single rule. In

contrast to this, it is considered a theory update which is defined as the removal of

Q from P like P ′ ⊆ P \ Q. For such updates, the transformation of Proposition 5.1

is applied for each rule in Q. Then the problem of removing Q is converted to the

problem of introducing corresponding rules as in Definition 5.2.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


694 C. Sakama and K. Inoue

To realize theory updates, an abductive framework is used for specifying priorities

between the current knowledge and the new knowledge. Consider the abductive

program 〈P ∪ Q, P \ Q 〉, where a program is given as P ∪ Q and any rule in

the original program P other than the new information Q is specified as variable

abducible rules.

Theorem 5.2 (theory updates by extended abduction)

Let P and Q be programs. Then, P ′ accomplishes a theory update of P by Q iff

P ′ = (P ∪ Q) \ F where (�, F) is a minimal credulous anti-explanation of the

negative observation G = ⊥ with respect to the abductive program 〈P ∪ Q, P \ Q 〉.

Proof

P ′ accomplishes a theory update of P by Q

iff P ′ = (P ∪Q)\F where F is a minimal set such that F ⊆ P \Q and (P ∪Q)\F �|= ⊥
iff P ′ = (P ∪ Q) \ F where (�, F) is a minimal credulous anti-explanation of the

negative observation G = ⊥ with respect to 〈P ∪ Q, P \ Q 〉. �

The abductive program 〈P ∪ Q, P \ Q 〉 is transformed to the normal form 〈 (P ∪
Q)n, (P \Q)n 〉 where (P \Q)n consists of abducible facts (section 2.2). Then, a minimal

credulous anti-explanation of G = ⊥ is computed by a consistent U-minimal answer

set of the update program of 〈 (P ∪Q)n, (P \Q)n 〉. Note that in 〈 (P ∪Q)n, (P \Q)n 〉
it holds that (P \ Q)n \ (P ∪ Q)n = �, so UP contains no rule of the form +a ← a

of Definition 3.1(2).

Theorem 5.3 (theory updates through UP )

Let P and Q be programs, and UP the update program of the abductive program

〈 (P ∪ Q)n, (P \ Q)n 〉. Then, (P ∪ Q) \ F accomplishes a theory update of P by Q iff

UP has a consistent U-minimal answer set S such that n(F−) = S ∩UA−.

Proof

(P ∪ Q) \ F accomplishes a theory update of P by Q

iff (�, F) is a minimal credulous anti-explanation of the negative observation G = ⊥
with respect to 〈P ∪ Q, P \ Q 〉 (Theorem 5.2)

iff (�, n(F)) is a minimal credulous anti-explanation of G = ⊥ with respect to

〈 (P ∪ Q)n, (P \ Q)n 〉 (Proposition 2.1)

iff UP ∪ {← ⊥} has a consistent U-minimal answer set S such that n(F−) =

S ∩UA− (Theorem 3.6).

iff UP has a consistent U-minimal answer set S such that n(F−) = S ∩UA−. �

Example 5.1 (Alferes et al. (2000))

Given the current knowledge base

P1 : sleep← not tv on ,

watch tv ← tv on ,

tv on← ,

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 695

consider updating P1 with7

P2 : power failure← ,

← power failure, tv on .

The situation is expressed by the abductive program 〈P1 ∪ P2, P1 \ P2 〉. The update

program UP of 〈 (P1 ∪ P2)
n, (P1 \ P2)

n 〉 then becomes

UP : power failure← ,

← power failure, tv on ,

sleep← not tv on, γ1 ,

watch tv ← tv on, γ2 ,

abd(tv on), abd(γ1), abd(γ2),

−tv on← not tv on ,

−γ1 ← not γ1 ,

−γ2 ← not γ2 ,

where γ1 and γ2 are the names of the abducible rules in P1 \ P2. Then, UP has the

unique U-minimal answer set { power failure, sleep, tv on, −tv on, γ1, γ2 }, which

represents the deletion of the fact tv on from P1 ∪ P2. As a result, the theory update

of P1 by P2 becomes

P3 : sleep← not tv on ,

watch tv ← tv on ,

power failure← ,

← power failure, tv on .

Next, suppose that another update

P4 : ¬ power failure←

is given to P3 which states that power is back again. The situation is expressed by the

abductive program 〈P3∪P4, P3\P4 〉, and the update program of 〈 (P3∪P4)
n, (P3\P4)

n 〉
becomes

UP : ¬ power failure← ,

sleep← not tv on , γ1 ,

watch tv ← tv on , γ2 ,

← power failure, tv on , γ3 ,

abd(power failure), abd(γ1), abd(γ2), abd(γ3),

−power failure← not power failure ,

−γ1 ← not γ1, −γ2 ← not γ2, −γ3 ← not γ3 .

7 In (Alferes et al., 2000) the rule “← power failure, tv on” is given as “not tv on ← power failure”.
These two rules are semantically equivalent under the answer set semantics (Inoue and Sakama, 1998).

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


696 C. Sakama and K. Inoue

Then, UP has the unique U-minimal answer set {¬ power failure, sleep, γ1, γ2,

γ3, power failure, −power failure }, which implies that the result of the update is

(P3 ∪ P4) \ { power failure←}.

Generally, there are several solutions for updating a program P by Q. For example,

let P = { p← q, q ←} and Q = {¬p←}. Then, there are two solutions of updating

P by Q; removing either p← q or q ← from P . Every answer set which results from

multiple solutions is expressed by a single program as follows.

Suppose updating P by Q. Then, define the program

Π = Q ∪ {Σ← Γ, γR, abd(γR) | R = (Σ← Γ) ∈ P } .

Let ∆ = { γR | γR appears in Π }. A consistent answer set S of Π is called ∆-maximal

if S is an answer set of Π such that T ∩ ∆ ⊆ S ∩ ∆ for any answer set T of Π. Let

LP∪Q be the set of all ground literals in the language of the program P ∪ Q. Then

the following result holds.

Theorem 5.4 (representing multiple solutions in a single program)

Let P and Q be programs and P ′ a result of a theory update of P by Q. Also,

let Π be a program defined as above. Then, for any answer set S of P ′, there is

a ∆-maximal answer set T of Π such that S = T ∩ LP∪Q. Conversely, for any

∆-maximal answer set T of Π, there is a program P ′ which has an answer set S

such that S = T ∩LP∪Q.

Proof

When P ′ accomplishes a theory update of P by Q, P ′ = Q ∪ P ′′ where P ′′ is

a maximal subset of P such that Q ∪ P ′′ is consistent. Consider the program

Π′ = Q ∪ {Σ ← Γ, γR, γR ←| R = (Σ ← Γ) ∈ P ′′ }. Then, for any answer set S of

P ′, there is an answer set T ′ of Π′ such that S = T ′ ∩ LP∪Q. In this case, there is

an answer set T of Π such that T = T ′ ∪ { γR | γR ∈ ∆ \ T ′ }. Suppose that T is

not ∆-maximal. Then, there is an answer set T ′′ of Π such that T ′ ∩∆ ⊂ T ′′ ∩∆. In

this case, there is a consistent answer set S ′ of Q ∪ P ′′′ such that S ′ = T ′′ ∩ LP∪Q
and P ′′ ⊂ P ′′′ ⊆ P . This contradicts the assumption that P ′′ is a maximal subset of

P such that Q ∪ P ′′ is consistent. Hence, T is a ∆-maximal answer set of Π. The

converse is shown in a similar manner. �

Example 5.2

In the above example, the program Π becomes

Π : ¬p←,

p← q, γ1,

q ← γ2,

abd(γ1), abd(γ2).

Then, the ∆-maximal answer sets of Π are {¬p, γ1, γ2 } and {¬p, q, γ1, γ2 }, which

correspond to the answer sets of the updated programs { p ← q, ¬p ←} and

{ q ←, ¬p←}, respectively.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 697

5.3 Inconsistency removal

A knowledge base may become inconsistent by the presence of contradictory

information. In this situation, a knowledge base must be updated to restore

consistency by detecting the source of inconsistency in the program. Such an

inconsistency removal is defined as follows.

Definition 5.3 (inconsistency removal )

Let P be a program. Then, a program P ′ accomplishes an inconsistency removal of

P if

1. P ′ is consistent,

2. P ′ ⊆ P ,

3. there is no consistent program P ′′ such that P ′ ⊂ P ′′ ⊆ P .

In particular, P ′ = P if P is consistent.

By the definition, inconsistency removal is captured as a special case of theory

updates where P is possibly inconsistent and Q is empty in Definition 5.2. Then,

by putting Q = � in 〈P ∪ Q, P \ Q 〉, inconsistency removal is characterized by the

abductive program 〈P , P 〉. The next theorem directly follows from Theorem 5.2.

Theorem 5.5 (inconsistency removal by extended abduction)

Let P be a program. Then, P ′ accomplishes an inconsistency removal of P iff

P ′ = P \ F where (�, F) is a minimal credulous anti-explanation of the negative

observation G = ⊥ with respect to the abductive program 〈P , P 〉.

In an EDP, inconsistency arises when a program P has the contradictory answer

set LP or P has no answer set. An abductive program 〈P , P 〉 can remove these

different types of inconsistencies.

Example 5.3

Let P = { p ← not p, q ←} which has no answer set. Then, G = ⊥ has the

minimal credulous (and also skeptical) anti-explanation (E, F) = (�, { p ← not p })
with respect to 〈P , P 〉. As a result, P ′ = { q ←} accomplishes an inconsistency

removal of P .

The following result holds by Theorem 5.3.

Theorem 5.6 (inconsistency removal through UP )

Let P be a program and UP the update program of the abductive program 〈P n, P n 〉
which is a normal form of 〈P , P 〉. Then, P \F accomplishes an inconsistency removal

of P iff UP has a consistent U-minimal answer set S such that n(F−) = S ∩UA−.

Example 5.4

Let P be the program

pacifist← quaker ,

¬pacifist← republican ,

quaker ← , republican← ,

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


698 C. Sakama and K. Inoue

which has the answer set LP . Consider the update program UP of the abductive

program 〈P n, P n 〉:

UP : pacifist← quaker, γ1 ,

¬pacifist← republican, γ2 ,

abd(γ1), abd(γ2), abd(quaker), abd(republican),

−γ1 ← not γ1,

−γ2 ← not γ2,

−quaker ← not quaker ,

−republican← not republican .

Then, UP has four U-minimal answer sets:

{ quaker, republican, pacifist, γ1, γ2,−γ2 },
{ quaker, republican, ¬pacifist, γ1, γ2, −γ1 },
{ quaker, republican, γ1, γ2, ¬pacifist, −quaker },
{ quaker, republican, pacifist, γ1, γ2, −republican },

which represent that deletion of one of the rules (or facts) from P makes the program

consistent.

The multiplicity of possible solutions as in the above example is expressed by a

single program using the technique of Theorem 5.4. On the other hand, if one wants

to restrict the set of rules to be removed, it is done by considering an abductive

program 〈P , P ′ 〉 with P ′ ⊆ P . In this case, any rule in P ′ is subject to change to

recover consistency.

6 Computational complexity

In this section, we compare the computational complexity of different types of

updates. Throughout the section, we consider propositional abductive programs, i.e.,

an abductive program 〈P ,A〉 where P is a finite EDP containing no variable and

A is a finite set of ground literals. An observation G is a ground literal. We also

assume an abductive program 〈P ,A〉 where A consists of abducible facts. An

abductive program with abducible rules is transformed to an abductive program

with abducible facts by considering its normal form (see section 2.2).

We first investigate the complexity of extended abduction. The decision problems

considered here are analogous to those of Eiter et al. (1997), that is, given an

abductive program 〈P ,A〉 and a positive/negative observation G:

Existence: Does G have an (anti-)explanation with respect to 〈P ,A〉?
Relevance: Is a given abducible A ∈ A included in some (anti-)explanation (E, F)

of G (i.e. A ∈ E ∪ F)?

Necessity: Is a given abducible A ∈ A included in every (anti-)explanation of G?

Since the existence of (anti-)explanations implies the existence of minimal (anti-)

explanations, deciding the existence of a minimal (anti-)explanation is as hard

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 699

as deciding the existence of an arbitrary one. Similarly, considering minimal (anti-)

explanations instead of arbitrary ones brings the same result in the necessity problem.

By contrast, the relevance problem has different complexity results between arbitrary

and minimal (anti-)explanations in general.

To analyze the complexity of each problem, we first introduce a transformation

from extended abduction to normal abduction based on the one in Inoue (2000).8

This transformation enables us to use the complexity results of normal abduction.

Suppose an abductive program 〈P ,A〉 where A consists of abducible facts. We

define an abductive program 〈P ′,A′ 〉 such that

P ′ = (P \A) ∪ {A← not A′ | A ∈ A∩ P },
A′ = (A\ P ) ∪ {A′ | A ∈ A∩ P },

where A′’s are ground literals associated with each A and appear nowhere in P ∪A.

In the abductive program 〈P ′,A′ 〉, any abducible in A∩ P is made non-abducible

and a new abducible A′ is introduced for each A ∈ A ∩ P . With this setting, the

removal of A ∈ A ∩ P from P is achieved by the introduction of A′ ∈ A′ to P ′ by

the rule A← not A′. The next proposition is due to Inoue (2000).9

Proposition 6.1 (transformation from extended abduction to normal abduction)

Let 〈P ,A〉 be an abductive program and G a ground literal.

1. A positive observation G has a (minimal) credulous/skeptical explanation

(E, F) with respect to 〈P ,A〉 under extended abduction iff G has a (minimal)

credulous/skeptical explanation H = E ∪ {A′ | A ∈ F } with respect to

〈P ′,A′ 〉 under normal abduction.

2. A negative observation G has a (minimal) credulous/skeptical anti-explanation

(E, F) with respect to 〈P ,A〉 under extended abduction iff G′ has a (minimal)

credulous/skeptical explanation H = E ∪ {A′ | A ∈ F } with respect to

〈P ′ ∪ {G′ ← notG },A′ 〉 under normal abduction, where G′ is a ground atom

appearing nowhere in P ∪A.

Proof

1. By the definition, an abducible A ∈ A ∩ P is not in P \ F iff A′ ∈ A′ is

in P ′ ∪ {A′ | A ∈ F }. Then, (P \ F) ∪ E has an answer set S iff P ′ ∪ H

has an answer set S ∪ {A′ | A ∈ F }. Hence, G has a credulous/skeptical

explanation (E, F) with respect to 〈P ,A〉 under extended abduction iff G has

a credulous/skeptical explanation H = E ∪ {A′ | A ∈ F } with respect to

〈P ′,A′ 〉 under normal abduction. In particular, (E, F) is minimal iff E ∪ F is

minimal iff H is minimal.

2. By Lemma 3.5, G has a (minimal) credulous/skeptical anti-explanation (E, F)

with respect to 〈P ,A〉 under extended abduction iff a positive observation

G′ has a (minimal) credulous/skeptical explanation (E, F) with respect to

8 Recall that by normal abduction we mean abduction which explains a positive observation only by
introducing hypotheses.

9 The proposition is given in a more general setting in Inoue (2000), but the definition of (anti-)
explanations in Inoue (2000) is a bit different from the one in this paper.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


700 C. Sakama and K. Inoue

〈P ∪ {G′ ← notG },A〉 under extended abduction. Then, the result holds by

the part 1 of this proposition.

�

Thus, extended abduction is efficiently converted into normal abduction. On the

other hand, normal abduction is captured as a special case of extended abduction.

That is, given an abductive program 〈P ,A〉 and a positive observation G, G has a

(minimal) credulous/skeptical explanation E with respect to 〈P ,A〉 under normal

abduction iff G has a (minimal) credulous/skeptical explanation (E,�) with respect

to 〈P ,A〉 under extended abduction.

We use these results for assessing the complexity of extended abduction.

Proposition 6.2 (complexity results for normal abduction (Eiter et al., 1997))

Given a propositional abductive program 〈P ,A〉 and a ground positive observation

G:

(a) Deciding if G has a credulous/skeptical explanation is ΣP
2 -complete/ΣP

3 -

complete.

(b) Deciding if an abducible A ∈ A is relevant to some credulous/skeptical

explanation (resp. some minimal credulous/skeptical explanation) of G is

ΣP
2 -complete/ΣP

3 -complete (resp. ΣP
3 -complete/ΣP

4 -complete).

(c) Deciding if an abducible A ∈ A is necessary for every (minimal) credu-

lous/skeptical explanation of G is ΠP
2 -complete/ΠP

3 -complete.

In particular, when P contains no disjunctive rules (i.e. P is an ELP), the complexity

of each problem decreases by one level in the polynomial hierarchy.10

Theorem 6.3 (complexity results for extended abduction)

Let 〈P ,A〉 be a propositional abductive program.

1. Given a ground positive observation G:

(a) Deciding if G has a credulous/skeptical explanation is ΣP
2 -complete/ΣP

3 -

complete.

(b) Deciding if an abducible A ∈ A is relevant to some credulous/skeptical

explanation (resp. some minimal credulous/skeptical explanation) of G is

ΣP
2 -complete/ΣP

3 -complete (resp. ΣP
3 -complete/ΣP

4 -complete).

(c) Deciding if an abducible A ∈ A is necessary for every (minimal)

credulous/skeptical explanation of G is ΠP
2 -complete/ΠP

3 -complete.

2. Given a ground negative observation G:

(a) Deciding if G has a credulous/skeptical anti-explanation is ΣP
2 -complete/

ΣP
3 -complete.

(b) Deciding if an abducible A ∈ A is relevant to some credulous/skeptical

anti-explanation (resp. some minimal credulous/skeptical anti-explanation)

of G is ΣP
2 -complete/ΣP

3 -complete (resp. ΣP
3 -complete/ΣP

4 -complete).

10 In Eiter et al. (1997) the results are reported for normal logic/disjunctive programs, but the same
results hold for extended logic/disjunctive programs.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 701

(c) Deciding if an abducible A ∈ A is necessary for every (minimal)

credulous/skeptical anti-explanation of G is ΠP
2 -complete/ΠP

3 -complete.

In particular, when P contains no disjunctive rules (i.e. P is an ELP), the complexity

of each problem decreases by one level in the polynomial hierarchy.

Proof

1. For explaining positive observations, extended abduction includes normal

abduction as a special case. Then, the hardness results of (a)–(c) hold by the

corresponding decision problems of Proposition 6.2. Since extended abduction

is efficiently translated into normal abduction (Proposition 6.1), the membership

results hold.

2. Any credulous/skepcitcal anti-explanation of G with respect to 〈P ,A〉 is

equivalent to a credulous/skeptical explanation of G′ with respect to 〈P ∪
{G′ ← notG },A〉 (Lemma 3.5). Then, the results hold by the part 1 of this

theorem.

�

The complexity results of extended abduction imply the complexity of view

updates and theory updates. In what follows, we say that a view update or a theory

update has a solution if there is an updated program which fulfills an update request.

Theorem 6.4 (complexity results for view updates)

Let 〈P ,A〉 be a propositional abductive program which represents a view update

problem. Given a ground literal G:

(a) Deciding if a view update has a solution in an EDP (resp. ELP) P is ΣP
3 -

complete (resp. ΣP
2 -complete) for inserting G, and ΣP

2 -complete (resp. NP-

complete) for deleting G.

(b) Deciding if an abducible A ∈ A is relevant to a solution of a view update in

an EDP (resp. ELP) P is ΣP
4 -complete (resp. ΣP

3 -complete) for inserting G, and

ΣP
3 -complete (resp. Σ2-complete) for deleting G.

(c) Deciding if an abducible A ∈ A is necessary for every solution of a view update

in an EDP (resp. ELP) P is ΠP
3 -complete (resp. ΠP

2 -complete) for inserting G,

and ΠP
2 -complete (resp. co-NP-complete) for deleting G.

Proof

(a) Deciding the existence of a solution which accomplishes a view update for

inserting (resp. deleting) G is equivalent to the problem of deciding the existence

of a skeptical explanation (resp. a credulous anti-explanation) of G with respect to

〈P ,A〉 (Theorem 4.1). Hence, the result follows by Theorem 6.3-1,2(a). The results

of (b) and (c) also follow from the corresponding decision problems of extended

abduction of Theorem 6.3-1,2(b),(c). �

Theorem 6.5 (complexity results for theory updates)

Let 〈P ,A〉 be a propositional abductive program which represents a theory update

problem.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


702 C. Sakama and K. Inoue

Table 1. Complexity results for program updates

Update EDP/ELP existence relevance necessity

view insertion ΣP
3 /ΣP

2 ΣP
4 /ΣP

3 ΠP
3 /ΠP

2

view deletion ΣP
2 /NP ΣP

3 /ΣP
2 ΠP

2 /co-NP

theory update ΣP
2 /NP ΣP

3 /ΣP
2 ΠP

2 /co-NP

consistency restoration ΣP
2 /NP ΣP

3 /ΣP
2 ΠP

2 /co-NP

(a) Deciding if a theory update has a solution in an EDP (resp. ELP) P is

ΣP
2 -complete (resp. NP-complete).

(b) Deciding if an abducible A ∈ A is relevant to a solution of a theory update

in an EDP (resp. ELP) P is ΣP
3 -complete (resp. Σ2-complete).

(c) Deciding if an abducible A ∈ A is necessary for every solution of a theory

update in an EDP (resp. ELP) P is ΠP
2 -complete (resp. co-NP-complete).

Proof

(a) Deciding the existence of a solution of a theory update is equivalent to the

problem of deciding the existence of a credulous anti-explanation of G = ⊥ with

respect to 〈P ,A〉 (Theorem 5.2). Hence, the result holds by Theorem 6.3-2(a).

The results of (b) and (c) also follow from the corresponding decision problems of

extended abduction of Theorem 6.3-2(b),(c). �

Corollary 6.6 (complexity results for consistency restoration)

Let 〈P ,A〉 be a propositional abductive program which represents an integrity

maintenance (or inconsistency removal) problem.

(a) Deciding if an integrity maintenance (or inconsistency removal) has a solution

in an EDP (resp. ELP) is ΣP
2 -complete (resp. NP-complete).

(b) Deciding if an abducible a ∈ A is relevant to a solution of an integrity

maintenance (or inconsistency removal) in an EDP (resp. ELP) is ΣP
3 -complete

(resp. Σ2-complete).

(c) Deciding if an abducible a ∈ A is necessary for every solution of an integrity

maintenance (or inconsistency removal) in an EDP (resp. ELP) is ΠP
2 -complete

(resp. co-NP-complete).

Proof

Since integrity maintenance or inconsistency removal is characterized as a special

case of view deletion or theory update, the decision problems of these tasks have

the same complexities as the corresponding problems of view deletion or theory

update. �

The complexity results are summarized in Table 1. In the table, every entry

represents completeness for the respective class. Also, consistency restoration means

integrity maintenance or inconsistency removal.

These complexity results show that decision problems for view insertion are

generally harder than those of view deletion by one level of the polynomial hierarchy,

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 703

while problems for theory updates and consistency restoration are as hard as those

for view deletion.

7 Related work

There are a large number of studies which concern (normal) abduction and updates

in logic programs and deductive databases. In this section, we mainly discuss

comparison with studies which handle nonmonotonic logic programs or deductive

databases with negation.

7.1 Abduction

There are a number of procedures for computing normal abduction. Studies (Eshghi

and Kowalski, 1989; Kakas and Mancarella, 1990a; Decker, 1996; Denecker and

de Schreye, 1998) introduce top-down procedures for normal abduction. Top-down

procedures efficiently compute abduction in a goal-driven manner, and the above

procedures are correct for locally stratified NLPs. In unstratified programs, however,

top-down (abductive) procedures are generally incorrect under the stable model

semantics. By contrast, there exist correct top-down procedures in unstratified

programs under different semantics. For instance, Dung (1991) shows that Eshghi

and Kowalski’s abductive procedure is correct with respect to the preferred extensions.

Brogi et al. (1995) extend Kakas and Mancarella’s procedure to extended logic

programs, which works correctly under the three-valued stable model semantics.

Alferes et al. (1999) propose a tabled procedure for normal abduction under the

well-founded semantics. These procedures compute positive explanations for positive

observations in the context of normal abduction, while negative explanations or anti-

explanations in extended abduction are not directly computed by these procedures.

On the other hand, Console et al. (1991) and Fung & Kowalski (1997) provide

bottom-up procedures which compute normal abduction through Clark’s program

completion. Using program completion, one can compute anti-explanations by

treating the negative observation p as ¬p for the atom p in the completion formula.

However, these procedures are also restricted to programs where completion is

well-defined.

The approach taken in this paper is based on the computation of answer

sets, which is executed in a bottom-up manner. This is the so-called answer set

programming (ASP) which attracts much attention recently (Marek and Truszczyński,

1999; Niemelä, 1999; Lifschitz, 2002). Some researchers apply ASP to computing

normal abduction. Inoue & Sakama (1996) introduce a procedure for normal

abduction, which is based on the bottom-up fixpoint computation of extended

disjunctive programs. Eiter et al. (1999) develop the system called dlv which has a

front-end for abductive diagnoses in normal disjunctive programs. These two studies

use program transformations from abductive programs to disjunctive programs

and find credulous (minimal) explanations of normal abduction using bottom-up

computation of answer sets or stable models. This paper introduced a program

transformation from abductive programs to update programs, but it is different

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


704 C. Sakama and K. Inoue

from these studies in the following points. First, update programs are prepared for

extended abduction and can compute negative (anti-)explanations as well as positive

ones. Second, we provide methods of computing both credulous and skeptical

(minimal) explanations through update programs. Satoh & Iwayama (1991) provide

a transformation from abductive programs to normal logic programs under the

stable model semantics, and Toni & Kowalski (1995) provide another transformation

under the argumentation framework. These transformations are applied to normal

abduction and do not consider disjunctive programs.

Update programs are simple and applied to a broader class of abductive programs,

and extended abduction is realized by any procedure for computing answer sets of

EDPs.11 Moreover, since extended abduction includes normal abduction as a special

case, update programs are also used for computing normal abduction in EDPs.

To compute extended abduction, Inoue & Sakama (1999) introduced a transaction

program which is a set of production rules to compute (anti-)explanations by

fixpoint construction. The procedure works correctly in acyclic covered NLPs. Inoue

(2000) introduces a simple program transformation from extended abduction to

normal abduction in general EDPs. Using the transformation, extended abduction

is executed via normal abduction.

7.2 View update

In deductive databases, update requests on view definitions are considered observa-

tions and extensional facts are identified with abducible hypotheses. Then, abduction

is viewed as the process of identifying possible changes on extensional facts. Early

studies which realize view updating through abduction are based on this idea (Kakas

and Mancarella, 1990a; Bry, 1990; Console et al., 1995; Decker, 1996). However,

existing approaches characterize the view update problem using normal abduction,

which result in somewhat indirect formulations for representing fact removal or view

deletion. For instance, Kakas and Mancarella (1990a) realize the deletion of a fact

A by the introduction of a new atom A∗ which represents not A together with the

integrity constraints ← A,A∗ and A ∨ A∗. Bry (1990) specifies the deletion of a fact

A using the meta-predicate new(¬A). Console et al. (1995) realize the deletion of a

fact A by the insertion of ¬A under program completion. Bry and Console et al.

handle normal logic programs, so that this conversion causes no problem. However,

deleting A and inserting ¬A have different effects when the background program

contains negative facts explicitly as in extended logic programs.

Procedurally, Kakas & Mancarella (1990a) and Console et al. (1995) separate

the process of view updating into two-steps; computing abductive explanations in

the intensional database and updating base facts in the extensional database. Such

a separation is effective to reduce the cost of extensional database accesses, while

it does not reflect the current state of the extensional database and may lead to

11 In implementation, some restrictions on programs such as function-free and range-restricted conditions
would be necessary.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 705

redundant computation. For instance, consider the program:

p← a1, b,

· · ·
p← ak, b,

a1 ←, . . . , ak ← .

where ai (i = 1, . . . , k) and b are extensional facts. Given the update request to

insert p, Kakas & Mancarella (1990a) and Console et al. (1995) compute k minimal

explanations {a1, b}, . . . , {ak, b} in the intensional database, which are evaluated in

the extensional database. Such computation is unnecessary and ineffective, since

{b} is the unique minimal explanation of p. Decker (1996) introduces an improved

version of the abductive procedure which avoids such redundant computation by

including base facts in the input of refutation processes. However, Decker (1996)

does not take base facts into account during the consistency derivations. As a result,

it often fails to obtain correct solutions (Mayol and Teniente, 1999). Abductive

procedures of Kakas & Mancarella (1990a) and Decker (1996) are top-down and

the correctness is guaranteed for locally stratified NLPs. Similarly, view updating

based on SLDNF-like top-down procedures (Decker, 1990; Guessoum and Lloyd,

1990; Guessoum and Lloyd, 1991; Teniente and Olive, 1995) have restrictions on the

program syntax. By contrast, our method is based on the computation of answer

sets, which is executed in a bottom-up manner and is applicable to any EDP. Bry

(1990) and Console et al. (1995) also compute view updates in a bottom-up manner.

The former specifies update procedures in a meta-program and the latter uses Clark’s

completion. They realize view updates in normal logic programs and do not handle

disjunctions nor explicit negation in a program. For updating disjunctive programs,

Grant et al. (1993) and Fernandez et al. (1996) provide algorithms for view updates

in propositional NDPs. The former provides a top-down algorithm to compute view

updates in stratified disjunctive programs, while the latter achieves view updates in

NDPs by bottom-up computation. Fernandez et al. (1996) first compute all possible

models from the Herbrand base of extensional facts, then minimal models that

satisfy updates are constructed from those models. By contrast, we compute the

answer sets of an update program and select the U-minimal ones, which is usually

a much smaller set and is easier than Fernandez et al. (1996).

In deductive databases, integrity maintenance is often coupled with view updating

(Mayol and Teniente, 1999). Concerning studies which handle integrity maintenance

in nonmonotonic logic programs, Teniente & Olive (1995) and Decker (1996) merge

transactions of view updates and integrity maintenance in SLDNF-like top-down

procedures. These procedures are sound, and Teniente & Olive (1995) is also

complete for computing view updates satisfying integrity constraints in locally

stratified logic programs. Abductive procedures in Kakas & Mancarella (1990b),

Brogi et al. (1995) and Toni & Kowalski (1995) also check integrity constraints in

the process of computing candidate hypotheses. Compared with these studies, our

approach in section 4.2 is based on the computation of answer sets and is applicable

to non-stratified, disjunctive, and extended logic programs.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


706 C. Sakama and K. Inoue

7.3 Theory update

Fagin et al. (1983) formalize theory updates for inserting/deleting a single sentence

to/from a first-order theory. According to their definition, a theory T accomplishes

the insertion of the sentence σ if σ ∈ T , while T accomplishes the deletion of σ

if σ �∈ Th(T ) where Th(·) is the set of sentences proved by T . These definitions

of insertion and deletion are not symmetric, i.e. derived sentences are taken into

consideration in deletion, while they are not considered in insertion. In fact, if

deletion is defined by σ �∈ Th(T ), it seems natural to define insertion also by

σ ∈ Th(T ). In this paper, we achieve updates on derived facts by view updates, while

explicit insertion/deletion of a sentence itself is distinguished as theory updates in

section 5.1. Our Definition 5.1 is symmetric for insertion and deletion of sentences.

Fagin et al.’s update semantics is also characterized by extended abduction in

Inoue & Sakama (1995), hence it is computable via update programs. In Fagin et

al. (1986) they extended the framework to updating a theory by several sentences.

The definition of their batch insertion is close to the definition of our theory update

of Definition 5.2. A difference is that they handle first-order theories, while we

consider nonmonotonic logic programs. Moreover, they provide no computational

method to realize theory updates.

Alferes et al. (2000) introduce the framework of dynamic logic programming which

realizes theory updates in nonmonotonic logic programs. They represent updates

using meta-rules which specify changes between different states, and the result

of update is reflected by the stable models of the updated program. Compared

with our framework, Alferes et al. (2000) compute stable models of an updated

program but do not compute an updated program at the object level. Moreover,

the effect of updates is also different from ours. In Example 5.1, updating P1 with

a series of updates P2 and P4 results in the program which has the answer set

{¬power failure, sleep }. Interestingly, however, starting from the same knowledge

base and applying the same updates,12 Alferes et al. (2000) revive the original

program P1 and concludes { tv on, watch tv }. Thus, after power is back up again,

TV automatically works and a person watches TV in Alferes et al.’s approach, while

this is not the case in our semantics. This difference comes from the fact that Alferes

et al. (2000) consider that every rule/fact in the initial program P1 persistently

holds unless it is forced to be false by updates. Besides, persistent sentences once

rejected by an update revive when the update is later invalidated. However, such a

persistent assumption works too strong in many situations.13 For instance, consider

the following scenario. “A person planned to go to a concert on this Friday’s evening

and reserved a seat. After a while, however, a meeting was scheduled with his client

on that day, so he canceled the reservation. On Friday morning, there is a call from

the client that she will be absent from the meeting because of illness.” The situation

is described as follows. The initial situation is

Q1 : seat reserved← .

12 Alferes et al. (2000) use default negation not instead of explicit negation ¬ in the head of rules.
13 They call it the ‘principle of inertia’, but the assumption is stronger than the law of inertia in the usual

sense.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 707

Updating Q1 with

Q2 : ¬seat reserved← cancel reservation,

cancel reservation← meeting scheduled,

meeting scheduled←

amounts to the new program Q2. Next, updating Q2 with

Q3 : ¬meeting scheduled← meeting canceled,

meeting canceled← client absent,

client absent←,

results in the program (Q2 ∪ Q3) \ {meeting scheduled←}, which has the answer set

{client absent, meeting canceled, ¬meeting scheduled }. On the other hand, according

to Alferes et al. (2000), the fact in Q1 revives after updating Q2 with Q3. As a

result, it automatically recovers cancelled reservation after the client’s call, which

is unintuitive. In real life, once a state has changed by an update, the state is not

always recovered again just by cancelling the effect of an update. A knowledge

base generally contains persistent knowledge and temporary knowledge, and it is

important to distinguish them. Back to the TV example, if tv on holds by default

whenever the power is supplied, it is represented as a default rule

tv on← not power failure .

In this case, we have the same result as Alferes et al. (2000) after updates.

Alferes et al. (2002) propose a language called LUPS for specifying changes

to logic programs. It realizes a theory update by a series of update commands

which are translated into a normal logic program written in a meta-language

under the stable model semantics. Using LUPS, persistent/non-persistent rules are

distinguished by the commands always/assert, which are respectively cancelled by

cancel/retract. For instance, the situation in the above example is expressed as

assert seat reserved.

retract seat reserved when meeting scheduled.

Then, reservation is cancelled when meeting is scheduled, and the reservation is never

recovered just by cancelling the meeting. Compared with their approach, update

programs considered in this paper specify changes at the object level. Moreover,

our update programs are used for computing not only theory updates but also view

updates.

Eiter et al. (2000) reformulate the approach of Alferes et al. (2000) and introduce

update programs which have the same effect as dynamic logic programs. They also

introduce minimal and strict updates in an update sequence. For instance, consider

the program sequence:

P1 : a←,

P2 : ¬a← not c,

P3 : c← not d, d← not c.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


708 C. Sakama and K. Inoue

First, updating P1 by P2 has the single answer set {¬a} as the solution. Next,

updating P2 by P3 has two answer sets S1 = {c} and S2 = {¬a, d}. Among these two,

S1 is consistent with P1 ∪ P2, while S2 is inconsistent with P1 then P1 is rejected. In

this case, S1 is called minimal with respect to historical changes, and is preferred to

S2. A strict update further takes the temporal order of updates into consideration.

Our theory updates just consider the minimal change between the current knowledge

base and the new one, and do not take the history of updates into consideration. In

the above example, our theory updates produce the program P2 ∪ P3 and both S1

and S2 are the solutions. However, the selection of minimal updates with respect to

historical changes is not always intuitive. For instance, consider the scenario: First,

a person planned to join a party as she had no schedule on that day (P1). After a

while, she got a job which must be done by that day. If she is not free due to the job,

she cannot join the party (P2). Now, the party is tomorrow. But she does not know

whether she can finish the job before the party (P3). The scenario is represented by

the program sequence:

P1 : join party ←,

P2 : ¬join party ← not free,

P3 : free← not busy,

busy ← not free,

which have the same structure as the preceding example. In this case, there seems no

reason to prefer { join party, free } to {¬join party, busy }, since according to the

latest information P3 it is not known whether free or busy. Eiter et al.’s approach is

based on the causal rejection principle which states that an old rule r is discarded by

a more recent rule r′ only if r contradicts r′. The causal rejection principle resolves

contradiction between old and new programs, but does not resolve contradiction

which arises in a program. For instance, updating the program P1 = { q ←, ¬q ← a }
with P2 = { a ←} has no solution by the causal rejection principle, while we have

solutions by removing one of the two rules in P1.

Buccafurri et al. (1999) introduce an inheritance program which consists of a set

of EDPs ordered by a generality relation. It realizes default reasoning in inheritance

hierarchies and is also applied to updating logic programs. According to Eiter et

al. (2000), inheritance programs are equivalent to update programs of Eiter et al.’s,

hence the same arguments as the comparison with update programs are applied.

Zhang and Foo (1998) study theory updates between ELPs. When updating P1

with P2, they first update each answer set S of P1 with P2. The result of this update,

S ′, is a set of ground literals which has minimal difference from S and satisfies each

rule in P2. Next, a maximal subset P ′ ⊆ P1 is extracted such that S ′ is a subset

of an answer set of P ′ ∪ P2. When there is a conflict between rules in P ′ and P2,

a higher priority is put on rules in P2 and those rules are selected in the resulting

program. Our theory update is different from theirs in both the method and the

result. First, their update consists of a series of transactions: computation of the

answer sets of the original program, updates on these answer sets, extraction of rules

from the original program, merging two programs, and conflict resolution based on

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 709

preference. By contrast, we perform a theory update in a much simpler manner by

translating a program into an update program and computing the U-minimal answer

sets of the update program. Second, conflict resolution taken in their approach often

has an effect which seems too strong. As pointed out by Eiter et al. (2000), updating

P1 = { p ← not q } with P2 = { q ← not p } results in P2, even though P1 ∪ P2 is

consistent. In our framework, the result of update is P1 ∪ P2.

Decker (1997) provides an abductive procedure for computing both user updates

and schema updates in normal logic programs. User updates correspond to view

updates, while schema updates consider updating a theory with a rule. The procedure

is top-down and works correctly for locally stratified programs. Studies (Boutilier

and Becher, 1995; Boutilier, 1996; Lobo and Uzcátegui, 1996) characterize belief

update/revision based on normal abduction in monotonic propositional theories.

These approaches are the so-called ‘interpretation updates’ and compute updates in

terms of individual models of a theory. This is in contrast to our theory updates

which computes updates directly by a program.

To resolve inconsistency in a nonmonotonic logic program, Pereira et al. (1991)

introduce a method of contradiction removal in extended logic programs. When

conflicting conclusions are brought by a program, they prefer a conclusion that does

not depend on any default assumption. This method does not resolve inconsistency in

a program of Example 5.4, where contradiction is brought by no default assumption.

Damásio & Pereira (1995) use abduction to resolve inconsistency in ELPs. When

a program derives contradiction, it is resolved by changing the truth value of

abducible literals from true to false or undefined under the well-founded semantics.

Yuan & You (1998) formalize the same problem by a three-valued semantics and

resolve inconsistency in ELPs using a suitable program transformation. In their

approach, the revised programs contain newly introduced literals. These studies

use three-valued semantics and have different handling of inconsistency in general.

For instance, the rule p ← not p makes a program inconsistent under the answer

set semantics, while p is interpreted undefined under the well-founded semantics.

Syntactically, the above studies do not handle programs containing disjunctions.

Witteveen & van der Hoek (1997) consider a back-up semantics when the intended

semantics fails to provide a consistent meaning to a program. For instance, when a

program is inconsistent under the stable model semantics, they consider the minimal

model semantics as a back-up semantics. Then, the program is made consistent by

introducing some sentences which are supported by the back-up semantics. In this

approach two different semantics are considered on the same program and the result

of revision depends on the choice of a back-up semantics. Moreover, it does not

resolve contradiction in the type of program of Example 5.4.

Inoue (1994) characterizes inconsistency resolution in an ELP P by the abductive

program 〈�, P 〉. Then, he considers a maximal consistent subset of the hypotheses

P , which is computed using a program transformation from the abductive program

to an ELP. We characterized the same problem by the abductive program 〈P , P 〉
in section 5.3, but the result is the same as Inoue (1994) for ELPs. The problem is

also characterized by the abductive program 〈P ,LP 〉 in Inoue & Sakama (1995).

This formulation, however, produces different results in general. For instance, given

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


710 C. Sakama and K. Inoue

the inconsistent program P = {¬p ←, ← not p }, 〈P ,LP 〉 has the minimal

explanation ({p}, {¬p}) which produces the updated program { p ←, ← not p }. On

the other hand, 〈P , P 〉 has the minimal explanation ({}, {← not p}) and the result

of update is {¬p←}. Thus, 〈P ,LP 〉 permits the introduction of new facts as well

as the deletion of facts to resolve inconsistency. Generally, permitting introduction

of sentences increases the number of possible solutions. Nevertheless, this type of

inconsistency resolution is also realized by computing consistent U-minimal answer

sets of the update program of 〈P ,LP 〉.

7.4 Belief revision

Update is often distinguished from (belief) revision (Katsuno and Mendelzon, 1991).

That is, update targets the problem of changing one’s belief up to date when the

(external) world changes. By contrast, revision handles the problem of modifying

one’s belief when new information about the static world is obtained (while the

external world does not change). In this paper we handled the problem of view

updates and theory updates, both of which are caused by the change of the external

world in general. A question is then whether the present approach is also applicable

to revision. Our position on this point is as follows. It is true that the distinction

between update and revision is useful in some contexts, however, we do not consider

that such a distinction is always possible. For instance, recall the bird-fly example

in section 1.2:

flies(x)← bird(x), not ab(x),

ab(x)← broken-wing(x),

bird(tweety)←,

broken-wing(tweety)← .

When we observe that tweety flies, the program is updated by deleting the fact

broken-wing(tweety), for instance. Is this belief change is update or revision? On

one hand, it is considered that the external world has changed – tweety has healed;

on the other hand, it is considered that the external world never changes, but the

reasoner has a wrong (initial) belief – broken-wing(tweety).

As this example indicates, the same problem is captured from different viewpoints.

Only by observing new evidence, one cannot judge in general whether it comes from

the change of the (external) world or not. Moreover, some researchers argue that

revision is viewed as update of mental states (del Val and Shoham, 1994). In this

sense, we do not strictly distinguish update and revision in this paper.

Katsuno & Mendelzon (1991) distinguish update and revision in the context of

propositional theories, and introduce postulates to distinguish them. We do not

examine these postulates in our update framework, but those postulates are defined

for monotonic propositional theories and, as argued in Eiter et al. (2000), they are

not applicable to nonmonotonic updates in general. Katsuno and Mendelzon also

argue that inconsistency in a knowledge base is resolved by revision rather than

update. However, we often have inconsistent information in daily life, and resolve

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 711

inconsistency by acquiring more accurate information. This process is captured as

an update of one’s mental state. Inconsistency removal considered in this paper is

an example of this type of updates.

8 Conclusion

This paper introduced an abductive framework for computing various update

problems in nonmonotonic logic programs. The first contribution of this paper is

a computational method for extended abduction through update programs. Update

programs are extended disjunctive programs which are obtained by a simple pro-

gram transformation from abductive programs. Then, (minimal) credulous/skeptical

(anti-)explanations of positive/negative observations are computed by the (U-

minimal) answer sets of an update program. The second contribution of this paper is

characterizations of view updates and theory updates in terms of extended abduction.

Extended abduction is suitable for formalizing information changes in nonmonotonic

theories, and different types of updates are computed by the U-minimal answer sets

of update programs in a uniform manner. Using update programs, computation of

updates is realized on top of the existing procedures for answer set programming

with the additional mechanism of selecting U-minimal answer sets.

It has been widely recognized that abduction plays an important role in updating

data and knowledge bases. The advantage of the present paper lies in its capability

of uniform treatment of different types of theory changes as well as in its syntactic

generality of the language. Formalizing various update problems in a single frame-

work clarifies the difference of each update, and implies the possibility of integrating

them. For instance, integrity maintenance and inconsistency removal are captured

as special cases of view updates and theory updates, respectively. Then, consistency

restoration is done as a sub-task of the corresponding update procedure. Further,

it is possible to execute view updates and theory updates in a combined manner.

For instance, suppose a knowledge base K which consists of the invariable part K1

and the variable part K2. Then, an update on K1 is done by view updates and an

update on K2 is done by theory updates. View updates and theory updates have

been respectively studied in the field of databases and AI, but their combinations are

not exploited in the literature due to different formulations. Thanks to the uniform

treatment of this paper, we could provide a theoretical basis for such mixed types

of updates.

There is a trade-off between syntactic generality of the framework and the

efficiency of the computational mechanism. Our abductive/update framework is

general in the sense that it is applicable to any extended disjunctive program, while

its computation is inefficient as it requires computing every answer set of an update

program. As discussed in section 7.1, goal-driven abduction does not produce correct

answers in unstratified programs under the answer set semantics. On the other hand,

the framework of extended abduction is independent of a particular semantics, so

that abductive updates considered in this paper could be formulated under different

semantics which has a correct top-down procedure. From the complexity viewpoints,

general update problems have very high complexity and are intractable in general

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


712 C. Sakama and K. Inoue

(unless P = NP ). Further, the update program UP uses unstratified negation in

abd(·), so that it is not evaluated efficiently even when the objective program P

is a stratified (normal) program. (When a program P is a disjunctive program,

replacing abd(a) with the disjunctive fact a; a does not introduce unstratified

negation to UP as presented in section 3.1.) One solution to avoid using unstratified

negation is provided by Inoue (2000) which introduces a simple translation from

extended abduction to normal abduction. (The idea of this translation is presented

in section 6.) This translation keeps minimal (anti-)explanations, while it preserves

the stratified structure of programs. An alternative formalization of update problems

based on this transformation is left for future study.

Acknowledgments

The authors thank the anonymous referees for their valuable comments.

References

Alferes, J. J., Pereira, L. M. and Swift, T. (1999). Well-founded abduction via tabled dual

programs. Proceedings 16th International Conference on Logic Programming, pp. 426–440,

MIT Press.

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H. and Przymusinski, T. (2000).

Dynamic updates of nonmonotonic knowledge bases. Journal of Logic Programming, 45,

43–70.

Alferes, J. J., Pereira, L. M., Przymusinska, H. and Przymusinski, T. (2002). LUPS – a language

for updating logic programs. Artificial Intelligence, 138, 87–116.

Boutilier, C. and Becher, V. (1995). Abduction as belief revision. Artificial Intelligence, 77,

43–94.

Boutilier, C. (1996). Abduction to plausible causes: an event-based model of belief update.

Artificial Intelligence, 83, 143–166.

Brogi, A., Lamma, E., Mancarella, P. and Mello, P. (1995). An abductive framework

for extended logic programming. Proceedings 3rd International Conference on Logic

Programming and Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence 928,

pp. 330–343. Springer-Verlag.

Bry, F. (1990). Intensional updates: abduction via deduction. Proceedings of the 7th

International Conference on Logic Programming, pp. 561–575, MIT Press.

Buccafurri, F., Eiter, T., Gottlob, G. and Leone, L. (1997). Enhancing model checking in

verification by AI techniques. Artificial Intelligence, 112, 57–104.

Buccafurri, F., Faber, W. and Leone, L. (1999). Disjunctive logic programs with inheritance.

Proceedings 16th International Conference on Logic Programming, pp. 79–93. MIT Press.

Console, T., Dupré, D. T. and Torasso, P. (1991). On the relationship between abduction and

deduction. Journal of Logic and Computation, 1, 661–690.

Console, L., Sapino, M. L. and Dupré, D. T. (1995). The role of abduction in database view

updating. Journal of Intelligent Information Systems, 4, 261–280.

Damásio, C. V. and Pereira, L. M. (1995). Abduction over 3-valued extended

logic programs. Proceedings 3rd International Conference on Logic Programming and

Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence 928, pp. 29–42. Springer-

Verlag.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 713

Decker, H. (1990). Drawing updates from derivations. Proceedings of the 3rd International

Conference on Database Theory, Lecture Notes in Computer Science 470, pp. 437–451.

Springer-Verlag.

Decker, H. (1996). An extension of SLD by abduction and integrity maintenance for

view updating in deductive databases. Proceedings Joint International Conference on and

Symposium on Logic Programming, pp. 157–169. MIT Press.

Decker, H. (1997). One abductive logic programming procedure for two kinds of updates.

Research Report PMS-FB-1997-16, Institut für Informatik, Universität München. (Also in

Proc. ILPS ’97 Workshop on DYNAMICS ’97.)

Decker, H. (1998). Some notes on knowledge assimilation in deductive databases. Transactions

and Change in Logical Databases, Lecture Notes in Computer Science 1472, pp. 249–286.

Springer-Verlag.

del Val, A. and Shoham, Y. (1994). A unified view of belief revision and update. Journal of

Logic and Computation, 4(5), 797–810.

Denecker, M. and de Schreye, D. (1998). SLDNFA: an abductive procedure for abductive

logic programs. Journal of Logic Programming, 34(2), 111–167.

Dung, P. M. (1991). Negation as hypotheses: an abductive foundation for logic programming.

Proceedings 8th International Conference on Logic Programming, pp. 3–17. MIT Press.

Eiter, T., Gottlob, G. and Mannila, H. (1997). Disjunctive datalog. ACM Transactions on

Database Systems, 22, 364–418.

Eiter, T., Gottlob, G. and Leone, N. (1997). Abduction from logic programs: semantics and

complexity. Theoretical Computer Science, 189(1–2), 129–177.

Eiter, T., Faber, W., Leone, N. and Pfeifer, G. (1999). The diagnosis frontend of the dlv

system. AI Communications, 12, 99–111.

Eiter, T., Fink, M., Sabbatini, G. and Tompits, H. (2000). Considerations on updates of logic

programs. Proceedings European Workshop on Logics in Artificial Intelligence, Lecture Notes

in Artificial Intelligence, pp. 2–20. Springer-Verlag. (An extended version: On properties of

update sequences based on causal rejection, Theory and Practice of Logic Programming, 2,

711–767.)

Eshghi, K. and Kowalski, R. A. (1989). Abduction compared with negation by failure.

Proceedings 6th International Conference on Logic Programming, pp. 234–255. MIT Press.

Fagin, R., Ullman, J. D. and Vardi, M. Y. (1983). On the semantics of updates in databases

(preliminary report). Proceedings 2nd ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems, pp. 352–365.

Fagin, R., Kuper, G. M., Ullman, J. D. and Vardi, M. Y. (1986). Updating logical databases.

Advances in Computing Research, 3, 1–18.

Fernandez, J. A., Grant, J. and Minker, J. (1996). Model theoretic approach to view updates

in deductive databases. Journal of Automated Reasoning, 17(2), 171–197.

Fung, T. H. and Kowalski, R. (1997). The iff procedure for abductive logic programming.

Journal of Logic Programming, 33, 151–165.

Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming.

Proceedings of the 5th International Conference and Symposium on Logic Programming,

pp. 1070–1080. MIT Press.

Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and disjunctive

databases. New Generation Computing, 9, 365–385.

Grant, J., Horty, J., Lobo, J. and Minker, J. (1993). View updates in stratified disjunctive

databases. Journal of Automated Reasoning, 11, 249–267.

Guessoum, A. and Lloyd, J. W. (1990). Updating knowledge bases. New Generation Computing,

8, 71–89.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


714 C. Sakama and K. Inoue

Guessoum, A. and Lloyd, J. W. (1991). Updating knowledge bases II. New Generation

Computing, 10, 73–100.

Inoue, K. (1994). Hypothetical reasoning in logic programs. Journal of Logic Programming,

18, 191–227.

Inoue, K. and Sakama, C. (1995). Abductive framework for nonmonotonic theory

change. Proceedings 14th International Joint Conference on Artificial Intelligence, pp. 204–

210. Morgan Kaufmann.

Inoue, K. and Sakama, C. (1996). A fixpoint characterization of abductive logic programs.

Journal of Logic Programming, 27, 107–136.

Inoue, K. and Sakama, C. (1998). Negation as failure in the head. Journal of Logic

Programming, 35, 39–78.

Inoue, K. and Sakama, C. (1999). Computing extended abduction through transaction

programs. Annals of Mathematics and Artificial Intelligence, 25(3–4), 339–367.

Inoue, K. (2000). A simple characterization of extended abduction. Proceedings 1st

International Conference on Computational Logic, Lecture Notes in Artificial Intelligence

1861, pp. 718–732. Springer-Verlag.

Inoue, K. and Sakama, C. (2002). Disjunctive explanations. Proceedings 18th International

Conference on Logic Programming, Lecture Notes in Computer Science 2401, pp. 317–332.

Springer-Verlag.

Kakas, A. C. and Mancarella, P. (1990). Database updates through abduction. Proceedings

16th International Conference on Very Large Databases, pp. 650–661. Morgan Kaufmann.

Kakas, A. C. and Mancarella, P. (1990). Knowledge assimilation and abduction. Proceedings of

the ECAI-90 Workshop on Truth Maintenance Systems, Lecture Notes in Artificial Intelligence

515, pp. 54–70. Springer-Verlag.

Kakas, A. C., Kowalski, R. A. and Toni, F. (1998). The role of abduction in logic programming.

In: D. M. Gabbay, C. J. Hogger and J. A. Robinson (eds.), Handbook of Logic in Artificial

Intelligence and Logic Programming, vol. 5, pp. 235–324, Oxford University Press.

Katsuno, H. and Mendelzon, A. O. (1991). On the difference between updating a knowledge

base and revising it. Proceedings 2nd International Conference on Principles of Knowledge

Representation and Reasoning, pp. 387–394. Morgan Kaufmann.

Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelligence,

138, 39–54.

Lobo, J. and Uzcátegui, C. (1996). Abductive change operators. Fundamenta Informaticae, 27,

385–412.

Marek, V. W. and Truszczyński, M. (1999). Stable models and an alternative logic

programming paradigm. In: K. R. Apt et al. (eds.), The Logic Programming Paradigm

– A 25 Year Perspective, pp. 375–398. Springer-Verlag.

Mayol, E. and Teniente, E. (1999). A survey of current methods for integrity constraint

maintenance and view updating. Proceedings 1st International Workshop on Evolution and

Change in Data Management (associated with ER’99), pp. 62–73.

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence, 25, 241–273.

Nuseibeh, B. and Russo, A. (1999). Using abduction to evolve inconsistent requirements.

Australian Journal of Information Systems, 7(1).

Pereira, L. M., Alferes, J. J. and Aparicio, N. (1991). Contradiction removal within well-

founded semantics. Proceedings 1st International Workshop on Logic Programming and

Nonmonotonic Reasoning, pp. 105–119. MIT Press.

Poole, D. (1998). A logical framework for default reasoning. Artificial Intelligence, 36,

27–47.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716


An abductive framework for computing knowledge base updates 715

Przymusinski, T. C. (1988). On the declarative semantics of deductive databases and logic

programs. In: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming,

pp. 193–216. Morgan Kaufmann.

Sadri, F. and Kowalski, R. (1988). A theorem-proving approach to database integrity. In:

J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, pp. 313–362.

Morgan Kaufmann.

Sakama, C. and Inoue, K. (1999). Updating extended logic programs through abduction.

Proceedings 5th International Conference on Logic Programming and Nonmonotonic

Reasoning, Lecture Notes in Artificial Intelligence 1730, pp. 147–161. Springer-Verlag.

Satoh, K. and Iwayama, N. (1991). Computing abduction by using the TMS. Proceedings 8th

International Conference on Logic Programming, pp. 505–518. MIT Press.

Teniente, E. and Olive, A. (1995). Updating knowledge bases while maintaining their

consistency. VLDB Journal , 4(2), 193–241.

Toni, F. and Kowalski, R. A. (1995). Reduction of abductive logic programs to normal logic

programs. Proceedings 12th International Conference on Logic Programming , pp. 367–381.

MIT Press.

Winslett, M. (1990). Updating Logical Databases. Cambridge University Press.

Witteveen, C. and Van der Hoek, W. (1997). A general framework for revising nonmonotonic

theories. Proceedings of the 4th International Conference on Logic Programming and

Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence 1265, pp. 258–272.,

Springer-Verlag.

Yuan, L-Y. and You, J-H. (1998). Coherence approach to logic program revision. IEEE

Transactions on Knowledge and Data Engineering, 10(1), 108–119.

Zhang, Y. and Foo, N. Y. (1998). Updating logic programs. Proceedings of the 13th European

Conference on Artificial Intelligence, pp. 403–407. Wiley.

https://doi.org/10.1017/S1471068403001716 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001716

