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Abstract

This paper studies a composite problem involving decision-making about the optimal
entry time and dynamic consumption afterwards. In Stage 1, the investor has access
to full market information subject to some information costs and needs to choose an
optimal stopping time to initiate Stage 2; in Stage 2, the investor terminates the costly full
information acquisition and starts dynamic investment and consumption under partial
observation of free public stock prices. Habit formation preferences are employed, in
which past consumption affects the investor’s current decisions. Using the stochastic
Perron method, the value function of the composite problem is proved to be the unique
viscosity solution of some variational inequalities.
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1. Introduction

We consider a simple model to incorporate information costs in a continuous-time portfolio-
consumption problem. In particular, we study a two-stage composite problem under complete
and incomplete filtrations sequentially. The drift process of the stock price is assumed to be
of Ornstein–Uhlenbeck type. In the first stage from the initial time, the investor needs to pay
information costs to access the full market information generated by both drift and stock price
processes, in order to update their dynamic distributions and decide the optimal time to enter
the second stage. The information costs may include search costs, storage costs, communica-
tion costs, the cost of the investor’s attention, or other service costs. In the present paper we
consider a simple linear information cost, which is modeled by a constant cost rate and will be
subtracted directly from the amount of the investor’s wealth. That is, the longer the first stage
is, the higher the information costs the investor needs to be able to afford. Some previous works
have addressed the impact of information costs on optimal investment from different perspec-
tives; see [18], [29], [1], and [20]. In our first stage, the mathematical problem becomes an
optimal stopping problem under the complete market information filtration. The second stage
starts from the chosen entry time, when the investor terminates the full observation of the drift
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process. From this point on, the investor instead dynamically chooses his investment and con-
sumption levels based on the prior data inputs and free partial observation of the stock price,
which can be formulated as an optimal control problem under an incomplete information fil-
tration. As the value function of the interior control problem depends on the stopping time and
data inputs of the drift process, the exterior problem can be interpreted as that of waiting in an
optimal way so that the input values can achieve the maximum of the interior functional.

Portfolio optimization under partial observation has been extensively studied in past
decades; a few examples with different financial motivations can be seen in [22, 34, 8, 25,
6, 7]. As illustrated in these works, the value function under the incomplete information filtra-
tion is strictly lower than its counterpart under the full information filtration, and this gap is
usually regarded as the value of information. The present paper attempts to study partial obser-
vation from a different perspective, where the full market information is available but costly
because more data, services, and personal attention are involved. The information costs may
change the investor’s attitude towards the usage of full observation, because it is no longer true
that the more information he observes, the higher profit he can attain. Moreover, from previous
work on partial observation, we know that the value function eventually depends on the given
initial input of the random factor such as the drift process. As in [22, 8], it is conventionally
assumed that the initial data of the unobservable drift is a Gaussian random variable, so that the
Kalman–Bucy filtering can be applied. We take this input into account and consider a model
in which the investor can wait and dynamically update the distribution of inputs using the full
market information, subject to information costs. We show that starting sharp from the initial
time to invest and consume under incomplete information may not be optimal.

On the other hand, in recent years, habit formation has provided a new paradigm for mod-
eling consumption rate preferences, which better matches some empirical observations; see
[11, 24]. The literature suggests that past consumption patterns may have a continuing impact
on an individual’s current consumption decisions. In particular, the use of linear habit for-
mation preferences, in which there exists an index term that stands for the accumulated
consumption history, has been widely accepted. Habit formation preferences have been well
studied by [12, 14, 26] in complete market models and by [35, 36] in incomplete market mod-
els. It is noted that the utility function is decreasing in the habit level. In the present paper, we
assume that there is no consumption during Stage 1, and the investor starts to gain consump-
tion habits only in Stage 2. Therefore, an early entry time to Stage 2 may not be the optimal
decision, because the investor has a longer time to develop a much higher habit level. This is
our second motivation for investigating the exterior optimal entry time problem: to see whether
waiting longer can benefit the investor more, as the resulting habit level may be much lower
and may lead to a higher value function.

We show that the value function of the composite problem is the unique viscosity solu-
tion to some variational inequalities. To this end, we can choose to apply either the classical
Perron method or the stochastic version of the Perron method introduced in [2]. For the clas-
sical Perron method, to establish the equivalence between the value function and the viscosity
solution, we have to either prove the dynamic programming principle or upgrade the global
regularity of the solution and prove the verification theorem. The convexity (concavity) of the
value function with respect to the state variable is usually crucial in standard arguments to
conclude global regularity. However, this property is not clear in our composite problem; see
Remark 4.1 for details. The global regularity of the value function is not guaranteed, and so
the direct verification proof for our exterior problem becomes difficult. Therefore, we instead
choose the stochastic Perron method, which allows us to show the equivalence between the
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Optimal entry and consumption under habit formation 435

value function and the viscosity solution without global regularity. For some related works
on optimal stopping using viscosity solutions, we refer to [31] and [27]. Recent works on
stochastic control problems using the stochastic Perron method include [2, 3, 4, 5, 33, 23].
One important step in completing the argument for the stochastic Perron method is the com-
parison principle for the associated variational inequalities, which is established in the present
paper.

The rest of the paper is organized as follows: Section 2 introduces the market model and
the habit formation preferences and formulates the two-stage optimization problem. Section 3
gives the main result on the interior utility maximization problem with habit formation and
partial observation. Section 4 studies the exterior optimal entry problem with linear information
costs. Using the stochastic Perron method, we show that the value function of the composite
problem is the unique viscosity solution of some variational inequalities. Some auxiliary results
and proofs are reported in Appendices A and B.

2. Mathematical model and preliminaries

2.1. Market model

Given the probability space (�, F, P) with full information filtration F= (Ft)0≤t≤T that
satisfies the usual conditions, we consider the market with one risk-free bond and one risky
asset over a finite time horizon [0, T]. It is assumed that the bond process satisfies S0

t ≡ 1, for
t ∈ [0, T], which amounts to the standard change of numéraire.

The stock price St satisfies

dSt =μtStdt + σSStdWt, 0 ≤ t ≤ T, (2.1)

with S0 = s> 0. Some empirical studies, such as [9, 10, 15, 30], have observed that the drift
process of many risky assets follows the so-called mean-reverting diffusion. We also consider
here that the drift process μt in (2.1) satisfies the Ornstein–Uhlenbeck stochastic differential
equation (SDE) by

dμt = −λ(μt − μ̄)dt + σμdBt, 0 ≤ t ≤ T . (2.2)

Here, (Wt)0≤t≤T and (Bt)0≤t≤T are Ft-adapted Brownian motions with correlation coefficient
ρ ∈ [ − 1, 1]. For simplicity, the initial value μ0 of the drift is a given constant. We assume that
the market coefficients σS, λ, μ̄, and σμ are given nonnegative constants based on calibrations
from historical data.

It is assumed that the investor starts with initial wealth x(0) = x0 > 0 at time t = 0. Also,
starting from the initial time t = 0, access to the full market information Ft generated by W
and B incurs information costs κt, where κ > 0 is the constant cost rate per unit time. As stated
earlier, the information costs may include storage costs, search costs, communication costs, the
cost of the investor’s attention, or other service costs involved in fully observing the market
information Ft. Moreover, to simplify the mathematical problem, it is assumed that from t = 0
up to a chosen stopping time τ , the investor purely waits and updates the dynamic distributions
of the processes μt and St; he does not invest or consume at all. This assumption makes sense
as long as the value of the optimal entry time τ is short in the model. The dynamic wealth
process including the information costs at time t is simply given by a deterministic function
x(t) = x0 − κt for any t ≤ τ .
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As the full market information filtration is costly, the investor needs to choose optimally
an Ft-adapted stopping time τ to terminate full information acquisition and enter the sec-
ond stage. From the chosen stopping time τ , he switches to the partial observation filtration
FS

t =Fτ
∨
σ (Su : τ ≤ u ≤ t) for τ ≤ t ≤ T , which is the union of the sigma-algebra Fτ and the

natural filtration generated by the stock price S up to time t. Moreover, for any time τ ≤ t ≤ T ,
the investor chooses a dynamic consumption rate ct ≥ 0 and decides the amounts πt of his
wealth to invest in the risky asset (the rest is invested in the bond). Without paying informa-
tion costs, he can no longer observe the drift process μt and Brownian motions Wt and Bt for
t ≥ τ . Therefore, the investment–consumption pair (πt, ct) is only assumed to be adapted to the
partial observation filtration FS

t for τ ≤ t ≤ T . Recall that at the entry time τ , the investor only
has wealth x(τ ) = x0 − κτ left. Under the incomplete filtration FS

t , the investor’s total wealth
process X̂t can be written as

dX̂t = (πtμt − ct)dt + σSπtdWt, τ ≤ t ≤ T, (2.3)

with the initial value X̂τ = x(τ ) = x0 − κτ > 0. Note that Wt is no longer a Brownian motion
under the partial observation filtration FS

t ; we have to apply the Kalman–Bucy filtering and
consider the innovation process defined by

dŴt := 1

σS

[(
μt − μ̂t

)
dt + σSdWt

]= 1

σS

(
dSt

St
− μ̂tdt

)
, τ ≤ t ≤ T,

which is a Brownian motion under FS
t . The best estimate of the unobservable drift process μt

under FS
t is the conditional expectation process μ̂t =E

[
μt
∣∣FS

t

]
, for τ ≤ t ≤ T with the initial

input μ̂τ =μτ , P-almost surely (a.s.), at the stopping time τ where the distribution of μτ is
determined via (2.2) by paying information costs up to τ . By standard Kalman–Bucy filtering
(see Equation (18) of [8] or Equation (21) of [25]), μ̂t satisfies the SDE

dμ̂t = −λ(μ̂t − μ̄
)
dt +

(
	̂(t) + σSσμρ

σS

)
dŴt, τ ≤ t ≤ T, (2.4)

with μ̂τ =μτ , P-a.s. Moreover, the conditional variance 	̂(t) =E
[(
μt − μ̂t

)2∣∣FS
t

]
satisfies

the deterministic Riccati ordinary differential equation (ODE) (see Equation (19) of [8] or
Equation (23) of [25])

d	̂(t)

dt
= − 1

σ 2
S

	̂2(t) +
(

− 2σμρ

σS
− 2λ

)
	̂(t) + (1 − ρ2)σ 2

μ, τ ≤ t ≤ T, (2.5)

with the initial value 	̂(τ ) =E
[(
μτ − μ̂τ

)2∣∣FS
t

]= 0, given that μ̂τ =μτ , P-a.s. This can be
solved explicitly by

	̂(t) = √
kσS

k1 exp
(

2
(√

k
σS

)
t
)

+ k2

k1 exp
(

2
(√

k
σS

)
t
)

− k2

−
(
λ+ σμρ

σS

)
σ 2

S , τ ≤ t ≤ T,

where k = λ2σ 2
S + 2σSσμλρ + σ 2

μ, k1 = √
kσS +

(
λσ 2

S + σSσμρ
)

, and k2 = −√
kσS +

(
λσ 2

S +
σSσμρ

)
.
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For the second-stage dynamic control problem, we employ habit formation preferences.
In particular, we define Zt := Z(ct) as the habit formation process or the standard of living
process, which describes the level of the investor’s consumption habits. It is convention-
ally assumed that the cumulative preference Zt satisfies the recursive equation dZt = (δ(t)ct −
α(t)Zt)dt, τ ≤ t ≤ T (see [12]), where Zτ = z0 ≥ 0 is called the initial consumption habit of the
investor. Equivalently, we have

Zt = z0e− ∫ t
τ α(u)du +

∫ t

τ

δ(u)e− ∫ t
u α(s)dscudu, τ ≤ t ≤ T,

which is the exponentially weighted average of the initial habit and the past consumption. Here,
the deterministic discount factors α(t) ≥ 0 and δ(t) ≥ 0 measure, respectively, the persistence of
the past level and the intensity of the consumption history. In the present paper we are interested
in addictive habits; namely, we require that the investor’s current consumption strategies never
fall below the level of standard of living, i.e. ct ≥ Zt a.s., for τ ≤ t ≤ T .

Under the partial observation filtration (FS
t )τ≤t≤T , the stock price dynamics (2.1) can

be rewritten as dSt = μ̂tStdt + σSStdŴt, and the wealth dynamics (2.3) can be rewritten as
dX̂t = (πtμ̂t − ct)dt + σSπtdŴt, τ ≤ t ≤ T . To facilitate the formulation of the stochastic con-
trol problem and the derivation of the dynamic programming equation, for any t ∈ [0, T], we
denote by At(x) the time-modulated admissible set of the pair of investment and consumption
processes (πs, cs)t≤s≤T with the initial wealth X̂t = x, which is FS

s -progressively measurable
and satisfies the integrability conditions

∫ T
t π

2
s ds<+∞, P-a.s., and

∫ T
t csds<+∞, P-a.s.,

with the addictive habit formation constraint that cs ≥ Zs, P-a.s., t ≤ s ≤ T . Moreover, no
bankruptcy is allowed, i.e., the investor’s wealth remains nonnegative: X̂s ≥ 0, P-a.s., t ≤ s ≤ T .

2.2. Problem formulation

The two-stage optimal decision-making problem is formulated as a composite problem
involving the optimal stopping and the stochastic control afterwards, which is defined by

Ṽ(0, μ0; x0, z0) := sup
τ≥0

E

[
esssup

(π,c)∈Aτ (x0−κτ )
E

[∫ T

τ

(cs − Zs)p

p
ds

∣∣∣∣FS
τ

]]
. (2.6)

In particular, starting from the chosen stopping time τ , we are interested in utility maximiza-
tion on consumption with habit formation, in which the power utility function U(x) = xp/p is
defined on the difference ct − Zt. To simplify the presentation, in the present paper we only
consider the case of a risk aversion coefficient p< 0. The indirect utility process of the interior
control problem is denoted by

V̂
(
t, x0 − κt, z0, μt; 0

)
:= esssup

(π,c)∈At(x0−κt)
E

[∫ T

t

(cs − Zs)p

p
ds

∣∣∣∣FS
t

]
= esssup

(π,c)∈At(x0−κt)
E

[∫ T

t

(cs − Zs)p

p
ds

∣∣∣∣X̂t = x0 − κt, μ̂t =μt, Zt = z0; 	̂(t) = 0

]
.

To determine the exterior optimal stopping time, we need to maximize over the inputs of
the values τ , X̂τ , Zτ , and μ̂τ . Recall that the investor does not manage his investment and
consumption before τ ; it follows that X̂τ = x0 − κτ , Zτ = z0, and 	̂(τ ) = 0 can all be taken
as parameters instead of variables. That is, μτ = μ̂τ is the only random input, and we can
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regard μt as the only underlying state process. Therefore, the dynamic counterpart of (2.6) is
defined by

Ṽ(t, η; x0 − κt, z0) := esssup
τ≥t

E

[
esssup

(π,c)∈Aτ (x0−κτ )
E

[∫ T

τ

(cs − Zs)p

p
)ds

∣∣∣∣FS
τ

] ∣∣∣∣∣μt = η

]
. (2.7)

Remark 2.1. We focus on the case p< 0 in the present paper because then the functions A(t, s),
B(t, s), and C(t, s) introduced later, which are solutions to the ODEs (3.4), (3.5), and (3.6), are
all bounded, and the utility U(x) is also bounded from above, which significantly simplifies the
proof of the verification result in Theorem 3.1 and the comparison results in Proposition 4.1.
The other case, 0< p< 1, can essentially be handled in a similar way. However, in that case, as
the process μ̂t in (2.4) is unbounded and the functions A(t, s), B(t, s), and C(t, s) may explode
at some t ∈ [0, T], one needs some additional parameter assumptions to guarantee integrability
conditions and martingale properties in the proofs of some of the main results.

Assumption 2.1. In accordance with Remark 3.1 for the interior control problem, it is assumed
from this point onwards that x0 − κt> z0m(t) for any 0 ≤ t ≤ T; i.e. the initial wealth is suffi-
ciently large, after paying information costs, so that the interior control problem is well defined
for any 0 ≤ t ≤ T, where m(t) is defined by

m(t) =
∫ T

t
exp

(∫ s

t
(δ(v) − α(v))dv

)
ds, 0 ≤ t ≤ T . (2.8)

We note that m(t) in (2.8) represents the cost of subsistence consumption per unit of standard
of living at time t, because the interior control problem is solvable if and only if X̂∗

t ≥ m(t)Zt,
0 ≤ t ≤ T; see Lemma B.1.

The function V̂ can be solved in the explicit form given in (3.7) later. The process
Ṽ(t, μt; x0 − κt, z0) with the function Ṽ defined in (2.7) is the Snell envelope of the process
V̂(t, x0 − κt, z0, μt) above. The function Ṽ in (2.7) can therefore be written as

Ṽ(t, η; x0 − κt, z0) = esssup
τ≥t

E

[
V̂(τ, x0 − κτ, z0, μτ )

∣∣∣μt = η
]
.

The continuation region, interpreted as the region where the investor continues to use full
information observations to update the input value, is denoted by C = {(t, η) ∈ [0, T) ×
R : Ṽ(t, η; x0 − κt, z0)> V̂(t, x0 − κt, z0, η)}, and the free boundary is ∂C = {(t, η) ∈ [0, T) ×
R : Ṽ(t, η; x0 − κt, z0) = V̂(t, x0 − κt, z0, η)}. Let us denote Ṽ(t, η; x0 − κt, z0) by Ṽ(t, η) for
short when there is no possibility of confusion. By heuristic arguments, we can write
the Hamilton–Jacobi–Bellman (HJB) variational inequalities with the terminal condition
Ṽ(T, η) = 0, η ∈R, as

min

{
Ṽ(t, η) − V̂(t, x0 − κt, z0, η), −∂Ṽ(t, η)

∂t
−LṼ(t, η)

}
= 0, (2.9)

where

LṼ(t, η) = −λ(η− μ̄)
∂Ṽ

∂η
(t, η) + 1

2
σ 2
μ

∂2Ṽ

∂η2
(t, η).

To simplify notation in the following sections, we shall rewrite (2.9) as⎧⎨⎩F
(

t, η, Ṽ, ∂Ṽ
∂t ,

∂Ṽ
∂η
, ∂

2Ṽ
∂η2

)
= 0, on [0, T) ×R,

v(T, η) = 0, for η ∈R,

(2.10)

with the operator F(t, η, v, vt, vη, vηη) := min
{
v − V̂, − ∂v

∂t −Lv
}
.
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Remark 2.2. The part − ∂Ṽ
∂t −LṼ = 0 in (2.9) is a linear parabolic partial differential equation

(PDE) and does not depend on the interior control (π, c). The comparison part Ṽ − V̂ in (2.9)
depends on the optimal control (π, c) because the V̂ is the value function of the interior control
problem provided the input X̂t = x0 − κt, Zt = z0, and μ̂t =μt = η.

The next theorem is the main result of this paper.

Theorem 2.1. The quantity Ṽ(t, η) defined in (2.7) is the unique bounded and continuous vis-
cosity solution to the variational inequalities (2.9). In addition, the optimal entry time for the
composite problem (2.7) is given by the Ft-adapted stopping time

τ ∗ := T ∧ inf
{
t ≥ 0 : Ṽ(t, μt; x0 − κt, z0) = V̂(t, x0 − κt, z0, μt)

}
. (2.11)

We also have that the process Ṽ(t, μt; x0 − κt, z0) is a martingale with respect to the full
information filtration Ft for 0 ≤ t ≤ τ ∗.

The proof will be provided in Section 4.

3. Interior utility maximization under partial observation

We first solve the interior stochastic control problem under partial observation of stock
prices.

3.1. Optimal consumption with Kalman–Bucy filtering

For some fixed time 0 ≤ k ≤ T , the dynamic interior stochastic control problem under habit
formation is defined by

V̂(k, x, z, η; θ ) := sup
(π,c)∈Ak(x)

E

[∫ T

k

(cs − Zs)p

p
ds

∣∣∣∣FS
k

]

= sup
(π,c)∈Ak(x)

E

[∫ T

k

(cs − Zs)p

p
ds

∣∣∣∣X̂k = x, Zk = z, μ̂k = η; 	̂(k) = θ

]
,

(3.1)

where Ak(x) denotes the admissible control space starting from time k. Here, as the conditional
variance 	̂(t) is a deterministic function of time, we set θ as a parameter instead of a state
variable.

By using the optimality principle and Itô’s formula, we can heuristically obtain the HJB
equation as

Vt − α(t)zVz − λ(η− μ̄)Vη +
(
	̂(t) + σSσμρ

)2
2σ 2

S

Vηη + max
(π,c)∈A

[
−cVx + cδ(t)Vz + (c − z)p

p

]
+ max

(π,c)∈A

[
πηVx + 1

2
σ 2

S π
2Vxx + Vxη

(
	̂(t) + σSσμρ

)
π

]
= 0, k ≤ t ≤ T,

(3.2)

with the terminal condition V(T, x, z, η) = 0.
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3.2. The decoupled solution and main results

If V(t, x, z, η) is smooth enough, the first-order condition gives

π∗(t, x, z, η) = −ηVx − (	̂(t) + σSσμρ
)
Vxη

σ 2
S Vxx

,

c∗(t, x, z, η) = z + (Vx − δ(t)Vz
) 1

p−1 .

Thanks to the homogeneity property of the power utility, we conjecture the value function to
have the form

V(t, x, z, η) = [(x − m(t, η)z)]p

p
N1−p(t, η)

for some functions m(t, η) and N(t, η) to be determined. It also follows that the terminal condi-
tion that N(T, η) = 0 is required. In particular, we find that the simple ansatz of m(t, η) := m(t)
satisfies the equation (2.8). After substitution, the HJB equation reduces to the linear parabolic
PDE for N(t, η) as

Nt + pη2

2(1 − p)2σ 2
S

N(t, η) +
(
	̂(t) + σSσμρ

)2
2σ 2

S

Nηη + (1 + δ(t)m(t)
) p

p−1

+
[
−λ(η− μ̄) + η

(
	̂(t) + σSσμρ

)
p

(1 − p)σ 2
S

]
Nη(t, η) = 0,

with N(T, η) = 0. We can further solve the linear PDE explicitly by

N(t, η) =
∫ T

t

(
1 + δ(s)m(s)

) p
p−1 exp

(
A(t, s)η2 + B(t, s)η+ C(t, s)

)
ds, (3.3)

for k ≤ t ≤ s ≤ T . A(t, s), B(t, s) and C(t, s) satisfy the following ODEs:

At(t, s) + p

2(1 − p)2σ 2
S

+ 2

[
−λ+ p

(
	̂(t) + σSσμρ

)
σ 2

S (1 − p)

]
A(t, s)

+2
(
	̂(t) + σSσμρ

)2
σ 2

S

A2(t, s) = 0, (3.4)

Bt(t, s) +
[
−λ+ p

(
	̂(t) + σSσμρ

)
σ 2

S (1 − p)

]
B(t, s) + 2λμ̄A(t, s)

+2
(
	̂(t) + σSσμρ

)2
σ 2

S

A(t, s)B(t, s) = 0, (3.5)

Ct(t, s) + λμ̄B(t, s) +
(
	̂(t) + σSσμρ

)2
2σ 2

S

(
B2(t, s) + 2A(t, s)

)= 0, (3.6)

with terminal conditions A(s, s) = B(s, s) = C(s, s) = 0. The explicit solutions of the ODEs
(3.4), (3.5), and (3.6) are reported in Appendix A. For fixed t ∈ [k, T], we can define the
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effective domain of the pair (x, z) by Dt := {(x′, z′) ∈ (0,+∞) × [0,+∞); x′ ≥ m(t)z′}, where
k ≤ t ≤ T . The HJB equation (3.2) admits a classical solution on [k, T] ×Dt ×R, given by

V(t, x, z, η) =
[ ∫ T

t

(
1 + δ(s)m(s)

) p
p−1 exp

(
A(t, s)η2 + B(t, s)η+ C(t, s)

)
ds

]1−p

× [(x − m(t)z)]p

p
.

(3.7)

Remark 3.1. The effective domain of V(t, x, z, η) requires some constraints on the optimal
wealth process X̂∗

t and habit formation process Z∗
t such that X̂∗

t ≥ m(t)Z∗
t for t ∈ [k, T]. In

particular, we have to enforce the initial wealth-habit budget constraint that X̂k ≥ m(k)Zk at the
initial time k.

Theorem 3.1. (Verification theorem) If the initial budget constraint X̂k ≥ m(k)Zk holds at time
k, the unique solution (3.7) of the HJB equation equals the value function defined in (3.1), i.e.,
V(k, x, z, η) = V̂(k, x, z, η). Moreover, the optimal investment policy π∗

t and optimal consump-
tion policy c∗

t are given in feedback form by π∗
t = π∗(t, X̂∗

t , Z∗
t , μ̂t) and c∗

t = c∗(t, X̂∗
t , Z∗

t , μ̂t),
k ≤ t ≤ T. The function π∗(t, x, z, η) : [k, T] ×Dt ×R→R is given by

π∗(t, x, z, η) =
[

η

(1 − p)σ 2
S

+
(
	̂(t) + σSσμρ

)
σ 2

S

Nη(t, η)

N(t, η)

]
(x − m(t)z), (3.8)

and the function c∗(t, x, z, η) : [k, T] ×Dt ×R→R
+ is given by

c∗(t, x, z, η) = z + (x − m(t)z)(
1 + δ(t)m(t)

) 1
1−p N(t, η)

. (3.9)

The optimal wealth process X̂∗
t , k ≤ t ≤ T, is given by

X̂∗
t =(x − m(k)z)

N(t, μ̂t)

N(k, η)
exp

(∫ t

k

(μ̂u)2

2(1 − p)σ 2
S

du +
∫ t

k

μ̂u

(1 − p)σS
dŴu

)
+ m(t)Z∗

t . (3.10)

4. Exterior optimal stopping problem

4.1. Stochastic Perron method

We next study the exterior optimal entry problem. Recall that X̂τ = x0 − κτ , Zτ = z0, and
	̂(τ ) = 0 are all taken as parameters. Our aim is to solve an optimal stopping problem in which
μt is the only underlying state process.

Remark 4.1. Recall that the interior value function V̂ is of the form in (3.7). Moreover, by
Remark A.1, the functions A(t, s) and B(t, s) in (3.7) satisfy A(t, s) ≤ 0 and B(t, s) ≤ 0 since
p< 0. That is, if we take V̂(τ, μ̂τ ) as a functional of the input μ̂τ , it is not globally convex
or concave in μ̂τ ∈R, because the function exp

(
A(t, s)η2 + B(t, s)η+ C(t, s)

)
is not glob-

ally convex or concave in the variable η ∈R, which depends on values of A(t, s) and B(t, s).
Therefore, the composite value function Ṽ(t, η) in (2.7) is not globally convex or concave in
η ∈R, which actually depends on all model parameters.
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We choose to apply the stochastic Perron method in the present paper to verify that the
value function of the composite problem is the unique viscosity solution of some variational
inequalities. We first introduce sets of stochastic semi-solutions V+ and V− and prove that
v− ≤ Ṽ ≤ v+, where v− and v+ are defined later in (4.2) and (4.3). Using the stochastic Perron
method, we can show that v+ is a bounded and upper semi-continuous (u.s.c.) viscosity subso-
lution and v− is a bounded and lower semi-continuous (l.s.c.) viscosity supersolution. Finally,
we prove the comparison principle: that is, if we have any bounded and u.s.c. viscosity subso-
lution u and any bounded and l.s.c. viscosity supersolution v of (2.10), we must have the order
u ≤ v. It follows that v+ ≤ v−, which leads to the desired conclusion that v− = Ṽ = v+ and the
value function is the unique viscosity solution.

We next present the definitions of stochastic semi-solutions, which are mainly motivated
by [4].

Definition 4.1. The set of stochastic supersolutions for the PDE (2.10), denoted by V+, is the
set of functions v : [0, T] ×R−→R which have the following properties:

(i) The function v is u.s.c. and bounded on [0, T] ×R, and v(t, η) ≥ V̂(t, x0 − κt, z0, η) for
any (t, η) ∈ [0, T] ×R.

(ii) For each (t, η) ∈ [0, T] ×R and any stopping time t ≤ τ1 ∈ T , we have v(τ1, μτ1 ) ≥
E[v(τ2, μτ2 )|Fτ1 ], P-a.s., for any τ2 ∈ T and τ2 ≥ τ1. That is, the function v along
the solution of the SDE (2.2) is a supermartingale under the full information filtration
(Ft)t∈[0,T] between τ1 and T .

Definition 4.2. The set of stochastic subsolutions for the PDE (2.10), denoted by V−, is the set
of functions v : [0, T] ×R−→R which have the following properties:

(i) The function v is l.s.c. and bounded on [0, T] ×R, and v(T, η) ≤ 0 for any η ∈R.

(ii) For each (t, η) ∈ [0, T] ×R and any stopping time t ≤ τ1 ∈ T , we have v(τ1, μτ1 ) ≤
E[v(τ2 ∧ ζ, μτ2∧ζ )|Fτ1 ], P-a.s., for any τ2 ∈ T and τ2 ≥ τ1. That is, the function v along
the solution to (2.2) is a submartingale under the full information filtration (Ft)t∈[0,T]
between τ1 and ζ , where

ζ := inf
{
t ∈ [τ1, T] : v(t, μt; x0 − κt, z0) ≥ V̂(t, x0 − κt, z0, μt)

}
. (4.1)

Remark 4.1. We note that the definitions of stochastic supersolutions and stochastic subsolu-
tions for the optimal stopping problem are not symmetric, which is consistent with the similar
definitions in [4]. The main reason for these differences comes from the natural supermartin-
gale property of the Snell envelop process and its martingale property between the initial time
and the first hitting time ζ in (4.1). That is, we naturally need v(t, η) ≥ V̂(t, x0 − κt, z0, η) for
all (t, η) ∈ [0, T] ×R, including the terminal time T , in item (i) of Definition 4.1 (the defini-
tion of stochastic supersolutions), but we only require v(T, η) ≤ V̂(T, x0 − κt, z0, η) = 0 at the
terminal time T in item (i) of Definition 4.2 (the definition of stochastic subsolutions). These
comparison results and the supermartingale and submartingale properties will play important
roles in the establishment of the desired sandwich result v− ≤ Ṽ ≤ v+ in Lemma 4.4.

Lemma 4.1. V̂(t, x0 − κt, z0, η; 0) is bounded and continuous for (t, η) ∈ [0, T] ×R.

Proof. For fixed x0 and z0, it is clear that V̂(t, x0 − κt, z0, η) in (3.7) is continuous
and V̂(t, x0 − κt, z0, η) ≤ 0. Therefore we only need to show that V̂ is bounded below. By
Appendix A, we know that A(u) ≤ 0, B(u) ≤ 0, and C(u) ≤ K for some K ≥ 0, thanks to
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p< 0. We hence obtain that
(
A(u)η2 + B(u)η+ C(u)

)≤ K1 for some K1 > 0, and it follows
that V̂(t, x0 − κt, z0, η) is bounded below by some constant for (t, η) ∈ [0, T] ×R, again
by p< 0. �

As it is trivial to see that 0 ∈ V− and 0 ∈ V+, we have the following result.

Lemma 4.2. V+ and V− are nonempty.

Definition 4.3. We define

v− := sup
p∈V−

p, (4.2)

v+ := inf
q∈V+ q. (4.3)

The next result is similar to Lemma 2.2 of [2].

Lemma 4.3. We have v− ∈ V− and v+ ∈ V+.

We now have the first important sandwich result.

Lemma 4.4. We have v− ≤ Ṽ ≤ v+.

Proof. For each v ∈ V+, let us consider τ1 = t ≥ 0 in Definition 4.1. For any τ ≥ t, we have
v(t, η) ≥E[v(τ, μτ )|Ft] ≥E

[
V̂
(
τ, x0 − κτ, z0, μτ

)|Ft
]

thanks to the supermartingale property
in Definition 4.1. It follows that v(t, η) ≥ esssupt≤τ E

[
V̂(τ, x0 − κτ, z0, μτ )|Ft

]
. This implies

that v(t, η) ≥ Ṽ(t, η) in view of the definition of Ṽ(t, η), and hence Ṽ ≤ v+ by the defini-
tion in (4.3). On the other hand, for each v ∈ V−, by taking τ1 = t ≥ 0 in Definition 4.2, we
have v(t, η) ≤E[v(τ ∧ ζ, μτ∧ζ )|Ft] for any τ ≥ t because of the submartingale property in
Definition 4.2. In particular, using the definition of ζ , we further have

v(t, η) ≤E
[
v(τ ∧ ζ, μτ∧ζ )|Ft

]≤E
[
V̂(τ ∧ ζ, x0 − f (τ ∧ ζ ), z0, μτ∧ζ )|Ft

]
≤ esssupτ≥t E

[
V̂(τ, x0 − κτ, z0, μτ )|Ft

]= Ṽ(t, η).

It then follows that Ṽ ≥ v− because of (4.2). In conclusion, we have the inequality
v− ≤ Ṽ ≤ v+. �
Theorem 4.1. The function v− in Definition 4.3 is a bounded and l.s.c. viscosity supersolu-
tion of {

F(t, η, v, vt, vη, vηη) ≥ 0, on [0, T) ×R,

v(T, η) ≥ 0, for any η ∈R,
(4.4)

and the function v+ in Definition 4.3 is a bounded and u.s.c. viscosity subsolution of{
F(t, η, v, vt, vη, vηη) ≤ 0, on [0, T) ×R,

v(T, η) ≤ 0, for any η ∈R.
(4.5)
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Proof. We follow some arguments from [2, 4], modifying them to fit our setting.
(i) The subsolution property of v+. First, the definition in (4.3) and Lemma 4.3 imply that

v+ is bounded and u.s.c. Suppose v+ is not a viscosity subsolution; then there exists some
interior point (t̄, η̄) ∈ (0, T) ×R and a C1,2 test function ϕ : [0, T] ×R→R such that v+ − ϕ

attains a strict local maximum that is equal to zero and F(t̄, η̄, v, vt̄, vη̄, vη̄η̄)> 0. It follows that

⎧⎪⎨⎪⎩
v+(t̄, η̄)− V̂

(
t̄, x0 − f (t̄), z0, η̄

)
> 0,

−∂ϕ
∂t

(
t̄, η̄
)−Lϕ

(
t̄, η̄
)
> 0.

There exists a ball B(t̄, η̄, ε) small enough that⎧⎨⎩−∂ϕ
∂t

−Lϕ > 0 on B(t̄, η̄, ε),

ϕ > v+ on B
(
t̄, η̄, ε

)\(t̄, η̄).
In addition, as ϕ(t̄, η̄) = v+(t̄, η̄)> V̂(t̄, x0 − f (t̄), z0, η̄), ϕ is continuous, and V̂ is continu-
ous, we can derive that for some ε small enough, we have ϕ − ε≥ V̂ on B(t̄, η̄, ε). Because
v+ − ϕ is u.s.c. and B(t̄, η̄, ε)\B(t̄, η̄, ε2 ) is compact, it then follows that there exists a δ > 0

such that ϕ − δ ≥ v+ on B(t̄, η̄, ε)\B(t̄, η̄, ε2 ).
If we choose 0< ξ < δ ∧ ε, the function ϕξ = ϕ − ξ satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∂ϕ
ξ

∂t
−Lϕξ > 0 on B(t̄, η̄, ε),

ϕξ > v+ on B(t̄, η̄, ε)\B
(
t̄, η̄, ε2

)
,

ϕξ ≥ V̂ on B(t̄, η̄, ε),

and ϕξ (t̄, η̄) = v+(t̄, η̄) − ξ .
Let us define an auxiliary function by

vξ :=
⎧⎨⎩v+ ∧ ϕξ on B(t̄, η̄, ε),

v+ outside B(t̄, η̄, ε).

It is easy to check that vξ is u.s.c. and vξ (t̄, η̄) = ϕξ (t̄, η̄)< v+(t̄, η̄). We claim that vξ satisfies
the terminal condition. To this end, we pick some ε > 0 that satisfies T > t̄ + ε and recall
that v+ satisfies the terminal condition. We then continue to show that vξ ∈ V+ to obtain a
contradiction.

Let us fix (t, η) and recall that ((μs)t≤s≤T , (Ws, Bs)t≤s≤T , �,F , P, (Fs)t≤s≤T ) ∈ χ , where
χ is the nonempty set of all weak solutions. We need to show that the process (vξ (s, μs))t≤s≤T

is a supermartingale on (�, P) with respect to (Fs)t≤s≤T . We first assume that (v+(s, μs))t≤s≤T

has right-continuous paths. In this case, vξ is a supermartingale locally in the region [t, T] ×
R\B

(
t̄, η̄, ε2

)
because it equals the right-continuous supermartingale (v+(s, μs))t≤s≤T . As the

process (vξ (s, μs))t≤s≤T is the minimum between two local supermartingales in the region
B(t̄, η̄, ε), it is a local supermartingale. As the two regions [t, T] ×R\B

(
t̄, η̄, ε2

)
and B(t̄, η̄, ε)

overlap over an open region, (vξ (s, μs))t≤s≤T is actually a supermartingale.

https://doi.org/10.1017/apr.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.37


Optimal entry and consumption under habit formation 445

If the process (v+(s, μs))t≤s≤T is not right-continuous, we can consider its right-continuous
limit over rational times to transform it to the special case discussed above. In particular, for a
given rational number r and fixed 0 ≤ t ≤ r ≤ s ≤ T and η ∈R, it remains to show the process
(Yu)t≤u≤T := (vξ (u, μu))t≤u≤T between r and s is a supermartingale, which is equivalent to
showing that Yr ≥E[Ys|Fr].

Let us define Gu := v+(u, μu), r ≤ u ≤ s, and freeze the process G after time s, i.e. Gu :=
v+(s, μs), s ≤ u ≤ T . As (Gu)r≤u≤T may not be right-continuous, by Proposition 1.3.14 in [19],
we can consider its right-continuous modification

G+
u (ω) := lim

u′→u, u′>u, u′∈Q
Gu′ (ω), r ≤ u ≤ T .

Note that G+ is a right-continuous supermartingale with respect to F that satisfies the usual
conditions. Because v+ is u.s.c. and the process remains the same after s, we conclude that

Gr ≥ G+
r , Gs = G+

s . Recall that v+ <ϕ − δ in the open region B(t̄, η̄, ε)\B
(
t̄, η̄, ε2

)
; if we take

right limits inside this region and use the continuous function ϕ, we have

G+
u <ϕ

ξ (u, μu), if (u, μu) ∈ B(t̄, η̄, ε)\B

(
t̄, η̄,

ε

2

)
.

Thus, if we consider the process

Y+
u :=

⎧⎨⎩G+
u , (u, μu) �∈ B

(
t̄, η̄, ε2

)
,

G+
u ∧ ϕξ (u, μu), (u, μu) ∈ B(t̄, η̄, ε),

we also have Yr ≥ Y+
r , Ys = Y+

s .
Because G+ has right-continuous paths, we can conclude that Y is a supermartingale such

that

Yr ≥ Y+
r ≥E

[
Y+

s |Fr
]=E

[
Ys|Fr

]
.

(ii) The terminal condition for v+.
For some η0 ∈R, we assume that v+(T, η0)> 0 and will show a contradiction. As V̂ is

continuous on R, we can choose an ε > 0 such that 0 ≤ v+(T, η0) − ε and |η− η0| ≤ ε. On the
compact set (B(T, η0, ε)\B(T, η0,

ε
2 )) ∩ ([0, T] ×R), v+ is bounded above by the definition of

V+ and the fact that v+ ∈ V+. Moreover, as v+ is u.s.c. on this compact set, we can find δ > 0
small enough so that

v+(T, η0) + ε2

4δ
≥ ε+ sup

(t,η)∈(B(T,η0,ε)\B(T,η0,
ε
2 ))∩([0,T]×R)

v+(t, η). (4.6)

Next, for k> 0, we define the function

ϕδ,ε,k(t, η) := v+(T, η0) + |η− η0|2
δ

+ k(T − t).

For k large enough, we derive that −ϕδ,ε,kt −Lϕδ,ε,k > 0 on B(T, η0, ε). Moreover, in view of
(4.6), we have

ϕδ,ε,k ≥ ε+ v+ on
(

B(T, η0, ε)\B
(

T, η0,
ε

2

))
∩ ([0, T] ×R),

and ϕδ,ε,k(T, η) ≥ v+(T, η0) ≥ 0 + ε for |η− η0| ≤ ε.
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Now, we can find ξ < ε and define the following function:

vδ,ε,k,ξ :=
{

v+ ∧ (ϕδ,ε,k − ξ
)

on B(T, η0, ε),

v+ outside B(T, η0, ε).

By following a similar argument to that used in Step (i), one can obtain that vδ,ε,k,ξ ∈ V+, but
vδ,ε,k,ξ (T, η0) = v+(T, η0) − ξ , which leads to a contradiction.

(iii) The supersolution property of v−.
We provide only a sketch of the proof, as it is essentially similar to that of Step (i). Suppose

that v− is not a viscosity supersolution; then there exist some interior point (t̄, η̄) ∈ (0, T) ×R

and a C1,2 test function ψ : [0, T] ×R→R such that v− −ψ attains a strict local minimum
that is equal to zero. As F(t̄, η̄, v, vt̄, vη̄, vη̄η̄)< 0, there are two separate cases to check.

Case (i): v−(t̄, η̄) − V̂(t̄, x0 − f (t̄), z0, η̄)< 0. This already leads to a contradiction with
v−(t̄, η̄) ≥ V̂(t̄, x0 − f (t̄), z0, η̄) by the definition of v−.

Case (ii): − ∂ψ
∂t (t̄, η̄) −Lψ(t̄, η̄)< 0. In this case we can find a ball B(t̄, η̄, ε) small enough

so that − ∂ψ
∂t −Lψ < 0 on B(t̄, η̄, ε). Moreover, as v− −ψ is l.s.c. and B(t̄, η̄, ε)\B(t̄, η̄, ε2 ) is

compact, there exists a δ > 0 such thatψ + δ ≤ v− on B(t̄, η̄, ε)\B(t̄, η̄, ε2 ). We can then choose
ξ ∈ (0, δ2 ) small such that ψξ =ψ + ξ satisfies three properties:

(i) − ∂ψξ

∂t −Lψξ < 0 on B(t̄, η̄, ε);

(ii) we have v− ≥ψ + δ >ψ + ξ =ψξ on B(t̄, η̄, ε)\B
(
t̄, η̄, ε2

)
;

(iii) ψξ (t̄, η̄) =ψ(t̄, η̄) + ξ = v−(t̄, η̄) + ξ > v−(t̄, η̄).

Thus, we can define an auxiliary function by

vξ :=
⎧⎨⎩v− ∨ψξ on B(t̄, η̄, ε),

v− outside B(t̄, η̄, ε).

By repeating an argument similar to that of Step (i), we obtain that vξ ∈ V− by showing
that (vξ (s, μs))t≤s≤T is a submartingale. If v− has right-continuous paths, the proof is trivial.
In general, by Proposition 1.3.14 in [19], we can consider the right-continuous submartingale
G+

u (ω) := limu′→u, u′>u, u′∈Q Gu′ (ω), ω ∈�∗, r ≤ u ≤ T , where Gu := v−(u, μu), r ≤ u ≤ s
and we stop it at time t. Similarly to Step (i), we note that G+ is a right-continuous submartin-
gale and therefore Gr ≤ G+

r , Gs = G+
s . As G+

u >ψ
ξ (u, μu), if (u, μu) ∈ B(t̄, η̄, ε)\B(t̄, η̄, ε2 ),

we can define the process

Y+
u :=

⎧⎨⎩G+
u , (u, μu) �∈ B

(
t̄, η̄, ε2

)
,

G+
u ∨ψξ (u, μu), (u, μu) ∈ B

(
t̄, η̄, ε2

)
.

We can conclude that Yr ≤ Y+
r , Ys = Y+

s , and Y is a submartingale such that Yr ≤ Y+
r ≤

E[Y+
s |Fr] =E[Ys|Fr], which completes the proof.

(iv) The terminal condition for v−.
For some η0 ∈R, suppose that v−(T, η0)< 0; we will derive a contradiction. As V̂ is con-

tinuous on R, we can choose an ε > 0 such that 0 ≥ v−(T, η0) + ε and |η− η0| ≤ ε. Similarly
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to Step (ii), we can find δ > 0 small enough so that

v−(T, η0) − ε2

4δ
≤ inf

(t,η)∈
(

B
(

T,η0,ε
)
\B
(

T,η0,
ε
2

))
∩([0,T]×R)

v−(t, η) − ε. (4.7)

Then, for k> 0, we consider

ψδ,ε,k(t, η) := v−(T, η0) − |η− η0|2
δ

− k(T − t).

For k large enough, we have that −ψδ,ε,kt −Lψδ,ε,k < 0 on B(T, η0, ε). Furthermore, in view
of (4.7), we have

ψδ,ε,k ≤ v− − ε on
(

B(T, η0, ε)\B
(

T, η0,
ε

2

))
∩ ([0, T] ×R),

and ψδ,ε,k(T, η) ≤ v−(T, η0) ≤ −ε for |η− η0| ≤ ε.
Next, we can find ξ < ε and define the function

vδ,ε,k,ξ :=
⎧⎨⎩v− ∨ (ψδ,ε,k + ξ ) on B(T, η0, ε),

v− outside B(T, η0, ε).

Similarly to Step (iii), we obtain that vδ,ε,k,ξ ∈ V−, but vδ,ε,k,ξ (T, η0) = v−(T, η0) + ξ , which
gives a contradiction. �

We now reverse the time and consider s := T − t. However, for simplicity of presentation,
we continue to use t in place of s whenever there is no possibility of confusion. The variational
inequalities can be written as

min

{
Ṽ(t, η; x0 − f (T − t), z0) − V̂

(
t, x0 − f (T − t), z0, η

)
,
∂Ṽ(t, η)

∂t
−LṼ(t, η)

}
= 0,

(4.8)

where

LṼ(t, η) = −λ(η− μ̄)
∂Ṽ

∂η
(t, η) + 1

2
σ 2
μ

∂2Ṽ

∂η2
(t, η)

with the condition Ṽ(0, η) = 0.
Let us write this equivalently as{

F(t, η, v, vt, vη, vηη) = 0, on (0, T] ×R,

v(0, η) = V̂(0, x0 − f (0), z0, η), for any η ∈R,
(4.9)

where

F(t, η, v, vt, vη, vηη) := min

{
v − V̂,

∂v

∂t
−Lv

}
.

We also have the continuation region as C = {(t, η) ∈ (0, T] ×R : Ṽ(t, η; x0 − f (T − t), z0)>
V̂(t, x0 − f (T − t), z0, η)}.
Proposition 4.1. (Comparison principle) Let u,v respectively be a u.s.c. viscosity subsolution
and an l.s.c. viscosity supersolution of (4.9). If u(0, η) ≤ v(0, η) on R, then we have u ≤ v on
(0, T] ×R.
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Proof. We will follow some arguments from [5, 28], modifying them to fit our setting.
Suppose that u(0, η) ≤ v(0, η) on R; we will prove that u ≤ v on [0, T] ×R. We first con-
struct the strict supersolution to the system (4.9) with suitable perturbations of v. Let us recall
that A ≤ 0, B ≤ 0, and C is bounded above by some constant as in Remark A.1. Moreover, we
know that V̂(t, x0 − κt, z0, η) ≤ 0. Let us fix a constant C2 > 0 small enough so that λ>C2σ

2
μ

and set ψ(t, η) = C0et + eC2η
2

with some C0 > 1. We have that

∂ψ

∂t
−Lψ =C0et + C2

[
2
(
λ− C2σ

2
μ

)
η2 − 2λμ̄η− σ 2

μ

]
eC2η

2

≥C0et + C2
−2
(
λ− C2σ

2
μ

)
σ 2
μ − λ2μ̄2

2
(
λ− C2σ 2

μ

)
>C0 + C2

−2
(
λ− C2σ

2
μ

)
σ 2
μ − λ2μ̄2

2
(
λ− C2σ 2

μ

) .

We can then choose C0 > 1 large enough so that

C0 + C2
−2
(
λ− C2σ

2
μ

)
σ 2
μ − λ2μ̄2

2
(
λ− C2σ 2

μ

) > 1,

which guarantees that

∂ψ

∂t
−Lψ > 1. (4.10)

Let us define v� := (1 −�)v +�ψ on [0, T] ×R for any � ∈ (0, 1). It follows that

v� − V̂ = (1 −�)v +�ψ − V̂ = (1 −�)v +�
(

C0et + eC2η
2
)

− V̂

≥ (1 −�)v +�
(

C0et + eC2η
2
)

+�V̂ − V̂

> (1 −�)
(
v − V̂

)+�C0 >�,

(4.11)

where we used v − V̂ ≥ 0 in the last inequality. From (4.10) and (4.11), we can deduce that for
� ∈ (0, 1), v� is a supersolution to

min

{
v� − V̂,

∂v�

∂t
−Lv�

}
≥�. (4.12)

To prove the comparison principle, it suffices to prove the claim that sup (u − v�) ≤ 0 for
all � ∈ (0, 1), as the required result is then obtained by letting � go to 0. To this end, we
will suppose that there exists some � ∈ (0, 1) such that M := sup (u − v�)> 0, and derive a
contradiction.

It is clear that u, v, and V̂ have the same growth conditions: in view of the explicit forms
of A, B, C, and V̂ , it follows that V̂ has growth condition in t as eeK1t

for some K1 < 0 and has
growth condition in η as eK2η

2
for some K2 < 0; on the other hand, ψ has growth condition in t

as et and has growth condition in η as eC2η
2
. Thus, we have that u(t, η) − v�(t, η) = (u − (1 −

�)v −�ψ)(t, η) goes to −∞ as t → T, η→ ∞. Consequently, the u.s.c. function (u − v�)
attains its maximum M.
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Let us consider the u.s.c. function �ε(t, t′, η, η′) = u(t, η) − v�(t′, η′) − φε(t, t′, η, η′),
where φε(t, t′, η, η′) = 1

2ε ((t − t′)2 + (η− η′)2), ε > 0, and (tε, t′ε, ηε, η′
ε) attains the maximum

of �ε. We have

Mε = max�ε =�ε
(
tε, t′ε, ηε, η′

ε

)→ M and φε
(
tε, t′ε, ηε, η′

ε

)→ 0 when ε→ 0. (4.13)

Let us recall the equivalent definition of viscosity solutions in terms of superjets and
subjets. In particular, we define P̄2,+u(t̄, η̄) as the set of elements (q̄, k̄, M̄) ∈R×R×R sat-
isfying u(t, η) ≤ u(t̄, η̄) + q̄(t − t̄) + k̄(η− η̄) + 1

2 M̄(η− η̄)2 + o((t − t̄) + (η− η̄)2). We define
P̄2,−v�(t̄, η̄) similarly. Thanks to the Crandall–Ishii lemma, we can find Aε, Bε ∈R such
that (

tε − t′ε
ε

,
ηε − η′

ε

ε
, Aε

)
∈ P̄2,+u(tε, ηε),(

tε − t′ε
ε

,
ηε − η′

ε

ε
, Bε

)
∈ P̄2,−v�(t′ε, η′

ε),

σ 2(ηε)Aε − σ 2(η′
ε)Bε ≤ 3

ε

(
σ (ηε) − σ (η′

ε)
)2.

By combining the viscosity subsolution property (4.5) of u and the viscosity strict
supersolution property (4.12) of v�, we have that

min

{
u(tε, ηε) − V̂

(
tε, x0 − f (tε), z0, ηε

)
,

tε − t′ε
ε

− ηε − η′
ε

ε
b(tε, ηε) − 1

2
σ 2(ηε)Aε

}
≤ 0,

(4.14)

min

{
v�
(
t′ε, η′

ε

)− V̂
(
t′ε, x0 − f

(
t′ε
)
, z0, η

′
ε

)
,

tε − t′ε
ε

− ηε − η′
ε

ε
b
(
t′ε, η′

ε

)− 1

2
σ 2(η′

ε

)
Bε

}
≥�,
(4.15)

where b(tε, ηε) = −λ(ηε − μ̄), σ 2(ηε) = σ 2
μ, b(t′ε, η′

ε) = −λ(η′
ε − μ̄), and σ 2(η′

ε) = σ 2
μ.

If u − V̂ ≤ 0 in (4.14), then because v� − V̂ ≥� in (4.15), we obtain that u − v� ≤ −�< 0
by contradiction with sup (u − v�) = M> 0. On the other hand, if u − V̂ > 0 in (4.14), then we
have ⎧⎨⎩

tε−t′ε
ε

− ηε−η′
ε

ε
b(tε, ηε) − 1

2σ
2(ηε)Aε ≤ 0,

tε−t′ε
ε

− ηε−η′
ε

ε
b(t′ε, η′

ε) − 1
2σ

2(η′
ε)Bε ≥�.

Furthermore, combining two inequalities above, we derive that

ηε − η′
ε

ε

(
b(tε, ηε) − b

(
t′ε, η′

ε

))+ 3

2ε

(
σ (ηε) − σ

(
η′
ε

))2
≥ηε − η′

ε

ε

(
b(tε, ηε) − b

(
t′ε, η′

ε

))+ 1

2

(
σ 2(ηε)Aε − σ 2(η′

ε)Bε
)≥�.

The first inequality holds by the Crandall–Ishii lemma. In addition, by letting ε→ 0, we get

ηε − η′
ε

ε

(
b(tε, ηε) − b

(
t′ε, η′

ε

))+ 3

2ε

(
σ (ηε) − σ

(
η′
ε

))2 = 0
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thanks to (4.13). It follows that we have 0 ≥�> 0, which leads to a contradiction; therefore
our claim holds. �
Lemma 4.5. For all (t, η) ∈ C in the continuation region, Ṽ in (2.7) has Hölder continuous
derivatives.

Proof. The proof closely follows the argument in Section 6.3 of [16]. First, let us recall that

∂Ṽ

∂t
(t, η) + λ(η− μ̄)

∂Ṽ

∂η
(t, η) − 1

2
σ 2
μ

∂2Ṽ

∂η2
(t, η) = 0 on C. (4.16)

The fact that Ṽ is a viscosity solution to (4.8) gives that Ṽ is a supersolution to (4.16). On the
other hand, for any (t̄, η̄) ∈ C, let ϕ be a C2 test function such that (t̄, η̄) is a maximum of Ṽ − ϕ

with Ṽ(t̄, η̄) = ϕ(t̄, η̄). By definition of C, we have Ṽ(t̄, η̄)> V̂(t̄, x0 − f (t̄), z0, η̄), so that

∂ϕ

∂t
(t̄, η̄) + λ(η− μ̄)

∂ϕ

∂η
(t̄, η̄) − 1

2
σ 2
μ

∂2ϕ

∂η2
(t̄, η̄) ≤ 0,

owing to the property that Ṽ is a viscosity subsolution to (4.8). It follows that Ṽ is a viscosity
subsolution and therefore a viscosity solution to (4.16).

Let us consider an initial boundary value problem:

−∂w

∂t
(t, η) − λ(η− μ̄)

∂w

∂η
(t, η) + 1

2
σ 2
μ

∂2w

∂η2
(t, η) = 0 on Q ∪ BT ,

w(0, η) = 0 on B,

w(t, η) = V̂(t, x0 − κt, z0, η) on S.

(4.17)

Here, Q is an arbitrary bounded open region in C, Q lies in the strip 0< t< T , B̃ = Q̄ ∩ {t = 0},
B̃T = Q̄ ∩ {t = T}, BT denotes the interior of B̃T , B denotes the interior of B̃, S0 denotes the
boundary of Q lying in the strip 0 ≤ t ≤ T , and S = S0\BT . Theorem 3.6 in [16] gives the
existence and uniqueness of a solution w on Q ∪ BT to (4.17), and the solution w has Hölder
continuous derivatives wt, wη, and wηη. Because the solution w is a viscosity solution to (4.16)
on Q ∪ BT , from standard uniqueness results on viscosity solutions, we know that Ṽ = w on
Q ∪ BT . As Q ⊂ C is arbitrary, it follows that Ṽ has the same property in the continuation region
C. Therefore, Ṽ has Hölder continuous derivatives Ṽt, Ṽη, and Ṽηη. �

Finally, we can prove Theorem 2.1.

Proof. We have proved the inequality v− = supp∈V− p ≤ Ṽ ≤ v+ = infq∈V+ q in Lemma 4.4.
Using the comparison result in Proposition 4.1, we also have v+ ≤ v−. Putting all the pieces
together, we conclude that v+ = Ṽ(t, η) = v−, and therefore the value function Ṽ(t, η) is the
unique viscosity solution of the HJB variational inequality (2.9). Following an argument simi-
lar to that given for Theorem 1 in [13], we fix the Ft-adapted stopping time τ ∗ defined in (2.11);
the Itô–Tanaka formula (see Theorem IV.1.5 and Corollary IV.1.6 of [32]) can be applied to
Ṽ(t, μt) in view of the Hölder continuous derivatives of Ṽ(t, η), and we get that

V̂
(
τ ∗ ∧ τn, x0 − κτ ∗ ∧ τn, z0, μτ∗∧τn

)
=Ṽ(t, μt) +

[
V̂
(
τ ∗ ∧ τn, x0 − κτ ∗ ∧ τn, z0, μτ∗∧τn

)− Ṽ
(
τ ∗ ∧ τn, μτ∗∧τn

)]
+
∫ τ∗∧τn

t
σμ
∂Ṽ

∂η
(s, μs)dBs +

∫ τ∗∧τn

t

[∂Ṽ(s, μs)

∂t
+LṼ(s, μs)

]
ds,
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where τn ↑ T is the localizing sequence. As Ṽ(t, η) satisfies the HJB variational
inequality (2.9), by taking conditional expectations and using the definition of τ ∗ in (2.11),
we obtain that

Et
[
V̂(τ ∗ ∧ τn, x0 − κτ ∗ ∧ τn, z0, μτ∗∧τn )1{τ∗≤τn}

]+Et
[
Ṽ(τn, μτn )1{τ∗>τn}

]= Ṽ(t, μt).

By taking the limit of τn and using the dominated convergence theorem, we verify that

Et
[
V̂(τ ∗, x0 − κτ ∗, z0, μτ∗ )

]= Ṽ(t, μt),

and therefore τ ∗ is the optimal entry time.
Finally, the martingale property between t = 0 and τ ∗ follows from the definition of

stochastic subsolutions and stochastic supersolutions. �
Moreover, we can also easily verify the following sensitivity results for the composite value

function.

Lemma 4.6. The value function Ṽ(t, η) has the following sensitivity properties:

(i) Suppose that α > 0 and δ > 0 are both constants in the definition of a habit formation
process such that δ > α. We have that Ṽ(t, η; α, δ) is decreasing in δ and increasing
in α.

(ii) If the initial habit z0 increases, the value function Ṽ(t, η) decreases.

(iii) If the information cost rate κ increases, the value function Ṽ(t, η) decreases for any
t< T.

Proof. By the definition of Ṽ(t, η) and the explicit form of V̂(t, x0 − κt, z0, η) in (3.7) and
m(t) in (2.8), for given δ > α, it is clear that V̂(t, x0 − κt, z0, η) is decreasing in δ and increasing
in α, which implies that Ṽ(t, η) has the same sensitivity property. Similarly, it is clear that
V̂(t, x0 − κt, z0, η) decreases as z0 increases, and hence Ṽ(t, η) is decreasing in z0. Finally,
V̂(t, x0 − κt, z0, η) decreases if x0 − κt decreases; it readily follows that Ṽ(t, η) is decreasing
in κ . �

Appendix A. Explicit solution to the auxiliary ODEs

Our ODE problems (3.4), (3.5), (3.6) are similar to ODEs for the terminal wealth optimiza-
tion problem in [8], in which the insightful observation is made that we can solve these ODEs
with coefficients depending on time t by solving five auxiliary ODEs with constant coefficients;
see Section 4 of [8] for detailed discussions.

Lemma A.1. For k ≤ t ≤ s ≤ T, let us consider the following auxiliary ODEs for a (t, s), b(t, s),
l(t, s), w(t, s), and g(t, s):

at = − 2
(
1 − p + pρ2

)
1 − p

σ 2
μa2 +

(
2λ− 2pρσμ

(1 − p)σS

)
a − p

2(1 − p)σ 2
S

, (A.1)

bt = − 2
(
1 − p + pρ2

)
1 − p

σ 2
μab − 2λμ̄a +

(
λ− pρσμ

(1 − p)σS

)
b, (A.2)

lt = − σ 2
μa −

(
1 − p + pρ2

)
σ 2
μ

2(1 − p)
b2 − λμ̄b, (A.3)
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wt = − 2
(
1 − ρ2)σ 2

μw2 + 2
λσS + ρσμ

σS
w + 1

2σ 2
S

, (A.4)

gt = σ 2
μ

(
1 − ρ2)(w − a), (A.5)

with the terminal conditions a(s, s) = b(s, s) = l(s, s) = w(s, s) = g(s, s) = 0. Direct substitu-
tions and computations show that the solutions of the ODEs (3.4), (3.5), (3.6) are given
respectively by

A(t, s) := a(t, s)

(1 − p)
(
1 − 2a(t, s)	̂(t)

) , B(t, s) := b(t, s)

(1 − p)
(
1 − 2a(t, s)	̂(t)

) ,
C(t, s) := 1

1 − p

[
l(t, s) + 	̂(t)(

1 − 2a(t, s)	̂(t)
)b2(t, s) − 1 − p

2
log
(
1 − 2a(t, s)	̂(t)

)
− p

2
log
(
1 − 2w(t, s)	̂(t)

)− pg(t, s)
]
.

(A.6)

Following the same arguments as in [21], we can actually solve the auxiliary ODEs (A.1),
(A.2), (A.3), (A.4) and (A.5) explicitly, in the following order: we first solve the simple ODEs
(A.1) and (A.4) to get a(t, s) and w(t, s), and then obtain b(t, s) and g(t, s) by solving the ODEs
(A.2) and (A.5). Finally, we solve the ODE (A.3) to get l(t, s). We thus obtain

a(t, s) = p
(
1 − e2ξ (t−s)

)
2(1 − p)σ 2

S

[
2ξ − (ξ + γ2)

(
1 − e2ξ (t−s)

)] ,
b(t, s) = pλμ̄

(
1 − eξ (t−s)

)2
(1 − p)σ 2

S ξ
[
2ξ − (ξ + γ2)

(
1 − e2ξ (t−s)

)] ,
l(t, s) = p

2(1 − p)σ 2
S

(
λ2μ̄2

ξ2
− σ 2

μγ2

γ 2
2 − ξ2

)
(s − t)

+
pλ2μ̄2

[(
ξ + 2γ2

)
e2ξ (t−s) − 4γ2eξ (t−s) + 2γ2 − ξ

]
2(1 − p)σ 2

S ξ
3
[
2ξ − (ξ + γ2)

(
1 − e2ξ (t−s)

)]
+ pσ 2

μ

2(1 − p)σ 2
S

(
ξ2 − γ 2

2

) log

∣∣∣∣∣2ξ − (ξ + γ2)
(
1 − e2ξ (t−s)

)
2ξeξ (t−s)

∣∣∣∣∣ ,
w(t, s) = − 1

2σS

1 − e2ξ1(t−s)(
σSξ1 + λσS + ρσμ

)+ (σSξ1 − λσS − ρσμ
)
e2ξ1(t−s)

,

g(t, s) = 1

2
log

((
σSξ1 + λσS + ρσμ

)+ (σSξ1 − λσS − ρσμ
)
e2ξ1(t−s)

2σSξ1eξ1(t−s)

)

− (1 − p)(1 − ρ2)

2(1 − p + pρ2)
log

((
σSξ + λσS − ρσμp

1−p

)+ (σSξ − λσS + ρσμp
1−p

)
e2ξ (t−s)

2σSξeξ (t−s)

)

− ρ2λ(s − t)

2(1 − p + pρ2)
− ρσμ(s − t)

2(1 − p + pρ2)σS
,
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where

� := λ2 − 2λpρσμ
(1 − p)σS

− pσ 2
μ

(1 − p)σ 2
S

> 0, (A.7)

and

ξ := √
�=

√
γ 2

2 − γ1γ3, ξ1 :=
√(

1 − ρ2
)
σ 2
μ + (λσS + ρσμ

)2
σS

,

γ1 :=
(
1 − p + pρ2

)
1 − p

σ 2
μ, γ2 := −λ+ pρσμ

(1 − p)σS
, γ3 := p

(1 − p)σ 2
S

.

Moreover, it is straightforward to see that a, b, l, w, and g are globally bounded if we have
that γ3 > 0, or γ1 > 0, or γ2 < 0.

Remark A.1 Under the assumption that p< 0, (A.7) clearly holds and we have γ2 < 0.
We can see that a(t, s) ≤ 0 and b(t, s) ≤ 0 are bounded and that 1 − 2a(t, s)	̂(t)> 1 and
1 − w(t, s)	̂(t)> 1. From the expressions in (A.6), we can conclude that A(t, s), B(t, s), and
C(t, s) are all bounded on k ≤ t ≤ s ≤ T , and that

A(t, s) = a(t, s)

(1 − p)
(
1 − 2a(t, s)	̂(t)

) ≤ 0

and

B(t, s) = b(t, s)

(1 − p)
(
1 − 2a(t, s)	̂(t)

) ≤ 0

for k ≤ t ≤ s ≤ T .

Appendix B. Proof of the verification theorem

We first show that the consumption constraint ct ≥ Zt implies the constraint on the controlled
wealth process in the next lemma.

Lemma B.1. The admissible space A is non-empty if and only if the initial budget constraint
x ≥ m(k)z is fulfilled. Moreover, for each pair (π, c) ∈A, the controlled wealth process X̂π,ct
satisfies the constraint

X̂π,ct ≥ m(t)Zt, k ≤ t ≤ T, (B.1)

where the deterministic function m(t) is defined in (2.8) and refers to the cost of subsistence
consumption per unit of standard of living at time t.

Proof. Let us first assume that x ≥ m(k)z; we can always take πt ≡ 0, and

ct = ze
∫ t

k (δ(v)−α(v))dv

for t ∈ [k, T]. It is easy to verify that X̂π,ct ≥ 0 and ct ≡ Zt, so that (π, c) ∈A, and hence A is
non-empty.

On the other hand, starting from t = k with wealth x and standard of living z, the addic-
tive habits constraint ct ≥ Zt, k ≤ t ≤ T , implies that the consumption must always exceed the
subsistence consumption c̄t = Z(t; c̄t) which satisfies

dc̄t = (δ(t) − α(t))c̄tdt, c̄k = z, k ≤ t ≤ T . (B.2)
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Indeed, since Zt satisfies dZt = (δtct − αtZt)dt with Zk = z ≥ 0, the constraint ct ≥ Zt implies
that

dZt ≥ (δtZt − αtZt
)
dt, Zk = z. (B.3)

By (B.2) and (B.3), one can get d(Zt − c̄t) ≥ (δt − αt)(Zt − c̄t)dt and Zk − c̄k = 0, from which
we can derive that

e
∫ t

k (δs−αs)ds(Zt − c̄t
)≥ 0, k ≤ t ≤ T .

It follows that ct ≥ c̄t, which is equivalent to

ct ≥ ze
∫ t

k (δ(v)−α(v))dv, k ≤ t ≤ T . (B.4)

Define the exponential local martingale

H̃t = exp

(
−
∫ t

k

μ̂v

σS
dŴv − 1

2

∫ t

k

μ̂2
v

σ 2
S

dv

)
, k ≤ t ≤ T .

As μ̂t follows the dynamics (2.4), we derive that

μ̂t = e−tλη+ μ̄
(
1 − e−tλ)+ ∫ t

k
eλ(u−t)

(
	̂(u) + σSσμρ

)
σS

dŴu.

Similarly to the proof of Corollary 3.5.14 and Corollary 3.5.16 in [19], the Beneš condition
implies that H̃ is a true martingale with respect to (�,FS, P).

Now, define the probability measure P̃ by dP̃
dP = H̃T . Girsanov’s theorem states that

W̃t := Ŵt +
∫ t

k

μ̂v

σS
dv, k ≤ t ≤ T,

is a Brownian motion under (̃P, (FS
t )k≤t≤T ). We can rewrite the wealth process as

X̂T +
∫ T

k
cvdv = x +

∫ T

k
πvσSdW̃v.

As we have X̂T ≥ 0, it is easy to see that
∫ t

k πvσSdW̃v is a supermartingale under (�, FS, P̃). By

taking the expectation under P̃, we have x ≥ Ẽ

[∫ T
k cvdv

]
. Thanks to the inequality (B.4), we

further have x ≥ zẼ
[∫ T

k exp
(∫ v

k (δ(u) − α(u))du
)

dv
]
. Because δ(t) and α(t) are deterministic
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functions, we obtain that x ≥ m(k)z. In general, for any t ∈ [k, T], following the same procedure,
we can take the conditional expectation under the filtration FS

t and get

X̂t ≥ ZtẼ

[ ∫ T

t
exp

( ∫ v

t
(δ(u) − α(u))du

)
dv

∣∣∣∣FS
t

]
.

Again, as δ(t), α(t) are deterministic, we get X̂t ≥ m(t)Zt, k ≤ t ≤ T . �
We can finally prove Theorem 3.1 for the interior control problem.

Proof. For any pair of admissible controls (πt, ct) ∈A, Itô’s lemma gives

d
[
V
(
t, X̂t, Zt, μ̂t

)]= [Gπt,ct V
(
t, X̂t, Zt, μ̂t

)]
dt +

[
VxσSπt + Vη

(
	̂(t) + σSσμρ

)
σS

]
dŴt,

(B.5)

where we define the process Gπt,ct V(t, X̂t, Zt, μ̂t) by

Gπt,ct V
(
t, X̂t, Zt, μ̂t

)= Vt − α(t)ZtVt − λ(μ̂t − μ̄)Vη +
(
	̂(t) + σSσμρ

)2
2σ 2

S

Vηη − ctVx

+ ctδ(t)Vz + (ct − Zt)p

p
+ πtμ̂tVx + 1

2
σ 2

S π
2
t Vxx + Vxη

(
	̂(t) + σSσμρ

)
πt.

For any localizing sequence τn, by integrating (B.5) on [k, τn ∧ T] and taking the expectation,
we have

V(k, x, z, η) ≥E

[∫ τn∧T

k

(cs − Zs)p

p
ds

]
+E

[
V
(
τn ∧ T, X̂τn∧T , Zτn∧T , μ̂τn∧T

)]
. (B.6)

Similarly to the argument in [17], let us consider a fixed pair of controls (πt, ct) ∈A=Ax,
where we denote by Ax the admissible space with initial endowment x. For any ε > 0, it is
clear that Ax ⊆Ax+ε and (πt, ct) ∈Ax+ε . Also, it is easy to see that X̂x+ε

t = X̂x
t + ε = X̂t + ε,

k ≤ t ≤ T . As the process Zt is defined using this consumption policy ct, under the probability
measure Px,z,η, we obtain

V(k, x + ε, z, η) ≥E

[∫ τn∧T

k

(cs − Zs)p

p
ds

]
+E

[
V
(
τn ∧ T, X̂τn∧T + ε, Zτn∧T , μ̂τn∧T

)]
.

(B.7)

The monotone convergence theorem first leads to

lim
n→+∞ E

[∫ τn∧T

k

(cs − Zs)p

p
ds

]
=E

[∫ T

k

(cs − Zs)p

p
ds

]
.

For simplicity, let us write Yt =
(

X̂t − m(t)Zt

)
. The definition (3.7) implies that

V
(
τn ∧ T, X̂τn∧T + ε, Zτn∧T , μ̂τn∧T

)= 1

p
(Yτn∧T + ε)pN1−p

τn∧T .
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Lemma B.1 gives X̂t ≥ m(t)Zt for k ≤ t ≤ T under any admissible control (πt, ct), so we get that
Yτn∧T + ε ≥ ε > 0 for all k ≤ t ≤ T . As p< 0, it follows that

sup
n

(Yτn∧T + ε)p < εp <+∞. (B.8)

Remark A.1 gives that A(t, s) ≤ 0, B(t, s), and C(t, s) are all bounded on k ≤ t ≤ s ≤ T .
Also, m(s) and δ(s) are continuous functions and hence bounded on [k, T]. Hence N(k, η) ≤
k1 exp (k2η), for some constants k2, k1 > 1. It follows that there exist some constants k̄2, k̄1 > 1
such that

sup
n

N1−p
τn∧T ≤ sup

t∈[k,T]

(
k1 exp (k2μ̂t)

)1−p ≤ k̄1 exp
(

k̄2 sup
t∈[k,T]

μ̂t

)
.

The process μ̂t satisfies (2.4), which leads to

μ̂t = e−tλη+ μ̄
(
1 − e−tλ)+ ∫ t

k
eλ(u−t)

(
	̂(u) + σSσμρ

)
σS

dŴu.

Hence, there exist positive constants l and l1 > 1 large enough so that

sup
t∈[k,T]

μ̂t ≤ l + sup
t∈[k,T]

l1Ŵt, t ∈ [k, T].

Using the distribution of the running maximum of the Brownian motion, there exist some
positive constants l̄> 1 and l̄1 such that

E

[
sup

n
N1−p
τn∧T

]
≤ l̄1E

[
exp

(
sup

t∈[k,T]
l̄B̂t

)]
<+∞. (B.9)

Finally, by (B.8) and (B.9), we can conclude that

E

[
sup

n
V
(
τn ∧ T, X̂τn∧T + ε, Zτn∧T , μ̂τn∧T

)]
<+∞.

The dominated convergence theorem and N(T, μ̂T ) = 0 imply that

lim
n→∞ E

[
V
(
τn ∧ T, X̂τn∧T + ε, Zτn∧T , μ̂τn∧T

)]=E

[
1

p
(YT + ε)pN1−p(T, μ̂T

)]= 0.

Combining this with (B.7) and (πt, ct) ∈A, we have that

V(k, x + ε, z, η; θ ) ≥ sup
π,c∈A

E

[∫ T

k

(cs − Zs)p

p
ds

]
= V̂(k, x, z, η, θ ).

Note that V(t, x, z, η; θ ) is continuous in the variable x. By letting ε→ 0, we deduce that

V(k, x, z, η; θ ) = lim
ε→0

V(k, x + ε, z, η) ≥ V̂(k, x, z, η, θ ).

On the other hand, for π∗
t and c∗

t given in (3.8) and (3.9), we first need to show that the
SDE

dX̂∗
t = (π∗

t μt − c∗
t

)
dt + σSπ

∗
t dŴt, k ≤ t ≤ T, (B.10)
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with initial condition x>m(k)z admits a unique strong solution that satisfies the constraint
X̂∗

t >m(t)Z∗
t for all k ≤ t ≤ T . Let Y∗

t = X̂∗
t − m(t)Z∗

t . By Itô’s lemma and substitution of c∗
t

using (3.9), we obtain that

dY∗
t =

⎡⎣−
(
1 + δ(t)m(t)

) −p
1−p

N
+ μ̂2

t

(1 − p)σ 2
S

+
(
	̂(t) + σSσμρ

)
σ 2

S

Nη
N
μ̂t

⎤⎦ Y∗
t dt

+
[

μ̂t

(1 − p)σS
+
(
	̂(t) + σSσμρ

)
σS

Nη
N

]
Y∗

t dŴt.

In order to solve for X∗
t explicitly, we define the auxiliary process �t := N(t,μ̂t)

Y∗
t

, for k ≤ t ≤
T . Itô’s lemma gives that

d�t =�t

Nt

[
Nt − λ(μ̂t − μ̄)Nη +

(
	̂(t) + σSσμρ

)2
2σ 2

S

Nηη + μ̂t
(
	̂(t) + σSσμρ

)
p

(1 − p)σ 2
S

Nη

+ (1 + δ(t)m(t)
) −p

1−p + pμ̂2
t

(1 − p)2σ 2
S

N

]
dt + �t

[ −μ̂t

(1 − p)σS

]
dŴt.

(B.11)

As N(t, η) satisfies the linear PDE (3.3), (B.11) is reduced to

d�t = �t

[
pμ̂2

t

2(1 − p)2σ 2
S

]
dt + �t

[ −μ̂t

(1 − p)σS

]
dŴt;

the existence of a unique strong solution is thus verified, and �k = N(k,η)
x−m(k)z > 0 implies that

�t > 0, ∀k ≤ t ≤ T . Therefore, it holds that the SDE (B.10) admits a unique strong solution as
defined in (3.10), and the solution X̂∗

t satisfies the constraint (B.1).
Next, we verify that the pair (π∗

t , c∗
t ) is indeed in the admissible space A. First, by the

definitions in (3.8) and (3.9), it is clear that π∗
t and c∗

t are FS
t -progressively measurable, and by

the path continuity of Y∗
t = X̂∗

t − m(t)Z∗
t and of π∗

t and c∗
t , it is easy to show that

∫ T
k (π∗

t )2dt<

+∞ and
∫ T

k c∗
t dt<+∞, a.s. Also, because X̂∗

t >m(t)Z∗
t for all t ∈ [k, T], by the definition of

c∗
t , the consumption constraint c∗

t > Z∗
t for all t ∈ [k, T] is satisfied. It follows that (π∗

t , c∗
t ) ∈A.

Given (π∗
t , c∗

t ) as above, instead of (B.6), the following equality is proved:

V
(
k, x, z, η; θ

)=E

[∫ τn∧T

k

(
c∗

t − Z∗
t

)p
p

dt

]
+E

[
V
(
τn ∧ T, X̂∗

τn∧T , Z∗
τn∧T , μ̂τn∧T

)]
.

The monotone convergence theorem gives

lim
n→+∞ E

[∫ τn∧T

k

(
c∗

t − Z∗
t

)p
p

dt

]
=E

[∫ T

k

(
c∗

t − Z∗
t

)p
p

dt

]
.

Moreover, as we have V(t, x, z, η)< 0 by p< 0, Fatou’s lemma implies that

lim sup
n→+∞

E

[
V
(
τn ∧ T, X̂∗

τn∧T , Z∗
τn∧T , μ̂τn∧T

)]≤E

[
V
(
T, X̂∗

T , Z∗
T , μ̂T

)]= 0.
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It follows that

V(k, x, z, η; θ ) ≤E

[∫ T

k

(
c∗

t − Z∗
t

)p
p

dt

]
≤ V̂(k, x, z, η, θ ),

which completes the proof. �
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