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We study the impact and subsequent retraction of liquid droplets upon high-speed
impact on hydrophobic surfaces. Extensive experiments show that the drop retraction
rate is a material constant and does not depend on the impact velocity. We show that
on increasing the Ohnesorge number, Oh = η/

√
ρRIγ , the retraction, i.e. dewetting,

dynamics crosses from a capillary–inertial regime to a capillary–viscous regime. We
rationalize the experimental observations by a simple but robust semi-quantitative
model for the solid–liquid contact line dynamics inspired by the standard theories for
thin-film dewetting.

1. Introduction: drop impact on solid surfaces
Drops impacting onto solid surfaces are important for a large number of

applications: for instance, almost all spray coating and deposition processes rely
ultimately on the interaction of a droplet with a surface. A large variety of phenomena
can be present during drop impact, from splashes to spreading, and from large wave
surface deformation to rebound (see Rein 1993 and references therein).

Research on drop impact has a long history, starting with the pioneering studies
of Worthington and later with the famous photographs of Edgerton (Worthington
1876; Edgerton & Killian 1954). Most previous work on drop impact has focused on
determining the maximum diameter a drop can cover upon impact (Fukai et al. 1993;
Roisman, Riboo & Tropea 2002; Clanet et al. 2004). However, the practical problem
of deposition can be very different if one wants to efficiently deposit some material on
the surface, especially when the surface is not wetted by the liquid, as is illustrated by
the high-speed video pictures in figure 1 of the impact of a water droplet. The drop
expands rapidly, due to the large speed with which it arrives at the surface. However,
due to the hydrophobicity of the surface, subsequently the drop retracts violently,
leading to the ejection of part of it from the surface: we observe droplet rebound. This
‘rebound’ it is the limiting factor for deposition in many applications, for instance
for the deposition of pesticide solutions on hydrophobic plant leaves (Bergeron et al.
2000). We study here the impact and subsequent retraction of aqueous drops onto
a hydrophobic surface, and seek to understand the dynamics of their expansion and
retraction.

In general, these problems are difficult because for most practical and laboratory
situations, three forces play an important role: the capillarity and viscous forces, and
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Figure 1. Temporal evolution of the contact radius of droplets upon impact and retraction,
normalized by that of the spherical droplets before impact. The pictures show the shape of the
droplets at the different stages of retraction. Droplet radius is 1 mm, impact speed is 2 m s−1:
(a) pure water, (b) viscous water–glycerol mixture, viscosity 50 mPa s.

the inertia of the droplets. We try to disentangle the effects of the three forces here
by performing systematic experiments, varying both the viscous and inertial forces.
We provide experimental evidence for the existence of two distinct retraction regimes.
In both, capillary forces are the motor behind the droplet retraction, which are, for
the first regime countered by inertial forces. In the second regime the main force
slowing the retraction is viscous. We also show that, perhaps surprisingly, the drop
retraction rate (the retraction speed divided by the maximum radius) does not depend
on the impact velocity for strong enough impacts. The dimensionless number that
governs the retraction rate is found to be the Ohnesorge number, Oh = η/

√
ρRIγ ,

with η the viscosity, ρ the liquid density, RI the impacting drop radius, and γ the
surface tension. The Ohnesorge number therefore compares the dissipative (viscous)
forces to the non-dissipative (capillary and inertial) forces. The crossover between the
two regimes is found to occur at a critical Ohnesorge number on the order of 0.05.
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To develop a better understanding of the different regimes that are encountered,
particularly the retraction dynamics in these regimes, we propose two simple
hydrodynamic models inspired by the standard description of thin-film dewetting
dynamics. These models provide a simple but quite robust picture that allows us
to rationalize the retraction rate in both regimes. In order to consider the speed of
retraction, one also needs to understand the maximum radius to which the droplet
expands. Combining our results with those obtained by Clanet et al. (2004) for
the maximum radius, we propose a phase diagram delimiting four regions for the
spreading and retraction dynamics of impacting drops.

2. Drop retraction dynamics: generic features
As the impact dynamics of liquid droplets on a solid surface occurs usually in

a few tens of milliseconds, we use a high-speed video system (1000 frames/second,
Photonetics) to analyse the drop-impact events. When necessary, we use an ultra-
high-speed system going up to 120 000 frames/second (Phantom V7). We study
aqueous drops impacting on a solid surface; the surface we used is Parafilm, which is
hydrophobic (receding contact angle for water θR ≈ 80◦). In addition, the surface has
a low contact angle hysteresis with water, and allows us to obtain highly reproducible
results. The liquids used are different water–glycerol mixtures. By varying the glycerol
concentration, we vary the liquid viscosity, keeping the liquid density and its surface
tension almost constant. For the highest concentration of glycerol, the surface tension
has decreased from 72 (pure water) to 59 mNm−1, whereas the density has increased to
1150 kg/m−3. The viscosity is varied between 1 and 205 mPa s. Viscosity, density and
surface tension were measured before each impact experiment. Drops were produced
using precision needles, and their initial radius RI was systematically measured on the
images (1.1 <RI < 1.4 mm). From the high-speed images such as shown in figure 1,
we follow the contact radius R in time. This section summarizes the results of more
than 80 different drop impact experiments, each of which was repeated at least two
times.

Two series of experiments were performed: first, by letting the droplets fall from
a fixed height, but increasing the viscosity, we increase the Ohnesorge number while
keeping the inertial forces constant. The second series is performed at fixed viscosity
and increasing the height from which the droplets falls; the droplet turns out to be in
free fall (as is verified in the experiment to within a few percent) and so the relation
between fall height h and impact velocity is simply V I =

√
gh, with g the gravitational

acceleration. Increasing the impact velocity increases the Weber number, We, keeping
the Ohnesorge number fixed, where We compares the inertial forces to the capillary
forces, We ≡ ρRIV

2
I/γ .

Here, we restrict considerations to high-speed impact conditions. More precisely,
the Weber and Reynolds numbers are chosen so that We > 10 and Re > 10, where
Re ≡ ρRIV I/η is the Reynolds number. This implies that inertial forces are at least
one order of magnitude larger than both the capillary and the viscous forces. Such
conditions imply large deformations of the drop when the liquid impinges on the
solid substrate. On the other hand, we also restrain our experiments to impact speeds
that are far from the ‘splashing’ regime in which the drop disintegrates after impact
to form a collection of much smaller droplets (Mundo, Sommerfeld & Tropea 1995).

Figure 1 shows that two distinct regimes exist for the shape of the droplets after
impact. For low fluid viscosity, we typically obtain the images shown in figure 1(a). At
the onset of retraction, almost all of the fluid is contained in a donut-shaped rim, with
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Figure 2. Temporal evolution of the contact radius for a water–glycerol drop Oh = 9.1×10−2,
RI = 1.2 mm: (a) contact radius vs. time, (b) contact radius normalized by the maximum
spreading radius vs. time. Impact velocities: ×, VI = 2.4m s−1; +, VI = 2.2m s−1; �, VI =
1.9m s−1; �, VI = 1.7m s−1; �, VI = 1.4m s−1; �, VI = 1m s−1.

only a thin film of liquid in the centre. For high viscosities the deformation of the drop
is less important, and the pancake-shaped droplet of figure 1(b) results. These visual
observations allow one to distinguish the capillary-inertial and the capillary-viscous
regimes that are described in detail below.

2.1. Drop retraction rate: influence of fall height and viscosity

Figure 2 summarizes the most important findings of this study. The temporal evolution
of the drop contact radius R(t) for different impact velocities, shown in (a), is
normalized in (b) by its maximal value at the end of the spreading Rmax. Two important
observations are made. (i) A well-defined retraction velocity Vret can be extracted from
each experiment; this is a non-trivial observation that will be rationalized below.
(ii) Independently of the impact speed, all the R(t)/Rmax curves collapse onto a
single curve for different impact velocities. Thus the retraction rate, rather than the
retraction speed is the natural quantity to consider, and this rate is independent of
the impact velocity. These results hold for all the viscosities tested in our experiments.

In figure 3 we plot the retraction rate ε̇ ≡ V ret/Rmax versus the impact Weber
number, where V ret is defined by V ret ≡ max [−Ṙ(t)]. Clearly, the drop retraction rate
does not depend on the impact velocity. One might think that the explanation for this
observation is rather obvious: the initial kinetic energy of the droplet is transformed
into surface energy (which fixes Rmax/RI ∝ We1/2), and is then transformed back
into kinetic energy (which in turn fixes Vret ∝ VI ). This naive explanation is wrong
for the following reasons. First, it has been observed recently that, at the onset of
retraction, low-viscosity liquids undergo vortical motion in the drop (Clanet et al.
2004). This residual flow in the drop reveals that part of the initial kinetic energy is
still available, and thus that a simple energy balance argument cannot work. This was
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Figure 3. Retraction rate vs. Impact Weber number for various water–glycerol droplets. ×,
Oh = 2.5×10−3; +, Oh = 3.9×10−3; �, Oh = 1.5×10−2; �, Oh = 1.6×10−2; �, Oh = 2.3×10−2;
�, Oh = 7.1 × 10−2.
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Figure 4. �, Normalized retraction rate ε̇τi vs. the Ohnesorge number, experimental values.
Error bars represent the maximum deviation from the mean value. Solid line: (a) ε̇τi evaluated
using (3.2), (b) ε̇τi evaluated using (3.6). Dashed line: (a) fit obtained taking the mean value
of the five first experimental points, (b) best fit according to the predicted 1/Oh power law.

indeed already suggested by previous observations of a clear disagreement between
experiments and the Rmax/RI ∝ We1/2 law (Fukai et al. 1993; Roisman et al. 2002;
Okumura et al. 2003). The second reason follows directly from figure 3, where it is
shown that the retraction rate depends on the viscosity and consequently that the
previous inviscid picture is not correct.

We therefore performed experiments to elucidate the role of viscosity, or,
equivalently, of the Ohnesorge number. It is convenient to define two intrinsic time
scales for the droplet: viscous and inertial. The viscous time is the relaxation time of
a large-scale deformation of a viscous drop: τv ≡ (ηRI)/γ , whereas the inertial time
scale: τi = ( 4

3
πρR3

I/γ )1/2 corresponds to the capillary oscillation period of a perturbed
inviscid droplet. Since τi is independent of V I and η, it is almost constant for all
tested drops.

Figure 4 shows the retraction rate, made dimensionless using the inertial time, as
a function of the Ohnesorge number. Two different regimes exist for the retraction
rate. The first region where the retraction rate ε̇ is independent of the viscosity points
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to an inertial regime and ε̇ ∝ τ−1
i . The retraction rate is consequently found not to

depend on the impact speed, a result similar to that obtained by Richard, Clanet &
Quere (2002) who show that the contact time is independent of the impact speed. For
higher viscosities, typically Oh > 0.05, the retraction rate decreases strongly. In this
regime, capillary and viscous forces govern the dynamics: we find ε̇ ∝ τ−1

v .

3. Two simple models for the drop retraction dynamics
We have established the existence of two different regimes for the retraction rate:

a viscous one and an inertial one. We now develop some simple arguments allowing
a semi-quantitative description of the dynamics, using ideas already existing for the
dynamics of dewetting, a problem closely related to the current one.

3.1. Inertial regime

We employ a Taylor–Culick approach commonly used for the inertial dewetting of
thin films (Taylor 1959; Culick 1960; Buguin, Vovelle & Brochard 1999) to describe
the drop retraction rate. For high-velocity drop impact, liquid spreads out into a
thin film of thickness h and radius Rmax. The liquid subsequently dewets the surface
rapidly, and forms a rim that collects the liquid that is initially stored in the film. The
shape of the drop surface is therefore never in a steady state and consists of a liquid
film formed during the spreading stage and a receding rim. The contact angle at the
outer side of the rim is taken to be very close to the receding contact angle (θR) since
viscous effects can be neglected (Buguin et al. 1999). The dynamics is thus determined
by a competition between capillary tension from the thin film and the inertia of the
rim. We can write momentum conservation for the liquid rim as

d

dt

(
m

dR(t)

dt

)
= FC (3.1)

with m the mass of the liquid rim and FC the capillary force acting on it, FC ∼
2πγR(t) [1 − cos(θR)]. The stationary solution of (3.1) can be obtained by writing
ṁ(t) = 2πρRV reth, and gives V ret =

√
γ [1 − cos(θR)]/(ρh). Using volume conservation,

h ∼ 4
3
R3

IR
−2
max, it follows that

V ret

Rmax

∼ τ−1
i

√
π [1 − cos θR)] (3.2)

which is the final result. Comparison with the experimental data shows that this
equation not only gives the correct scaling behaviour for the retraction in this regime
rate but also provides a rather accurate estimate of the numerical prefactor (see
figure 4): the ratio between the experimental and predicted numerical prefactors is
found to be 0.6. Repeating the experiment for water on a polycarbonate surface,
which changes the contact angle value to 60◦, we obtain exactly the same ratio of 0.6.

3.2. Viscous regime

At the opposite limit of very viscous liquids, the drops adopt pancake shapes upon
impact. During the first stages of retraction, the pancake shape rapidly relaxes towards
a roughly spherical cap, and remains like this during the retraction since the capillary
number is small. During the retraction, only the contact angle varies slowly: it is
mainly this slow contact angle dynamics that dictates the drop evolution during the
retraction. Contrary to the previous analysis, the slow receding velocity allows us to
assume a quasi-static dynamics for the surface shape during the retraction. In this
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regime, it is then natural to assume that the work done by the capillary force FC is
dissipated through viscous flow near the contact line. Since we focus our study on
high-speed impacts, Rmax is always much larger that RI which justifies a small-θ(t)
approximation at the onset of retraction. The viscous effects near the contact line
then lead to the well-known linear force–velocity relation (De Gennes 1985):

FV = −6πη

θ
ln

(
Λ

λ

)
R(t) ˙R(t) (3.3)

where Λ and λ are respectively macroscopic and microscopic cutoff lengths. Λ is
typically of the same order as the drop size ∼ 1 mm. λ is a microscopic length, and
is usually taken to be of order λ ∼ 1 mm (De Gennes 1985). On the other hand, the
capillary force drives the retraction. Near the contact line it can be written:

FC = 2πR(t)γ [cos θ(t) − cos θR]. (3.4)

Volume conservation gives 4
3
πRI 3 ∼ 1

4
πθ(t)R3(t), where we have taken the small-

angle limit. Equations (3.3) and (3.4) together with the volume constraint leads to the
following relation for the variation of the contact radius:

Ṙ(t)

R(t)
= −

[
1 − 1

2
θ2(t) − cos(θR)

]
θ(t)4/3

(144)1/3 ln(Λ/λ)
τ−1
v , (3.5)

obtained in the small-angle limit and only valid for short time after the onset of
retraction. We estimate the retraction rate ε̇ as the maximum value of Ṙ(t)/R(t) so
that

V ret

Rmax

≈
(

3

25

)1/3
(1 − cos θR)5/3

5 ln(Λ/λ)
τ−1
v . (3.6)

Comparing again to the experiments, good agreement is found: the retraction rate is
set solely by the viscous relaxation time τv and consequently ε̇τi ∝ Oh−1. Beyond this
correct scaling prediction, (3.6) provides a quite accurate estimate for the numerical
prefactor as is shown in figure 4. Indeed, the ratio between the experimental and the
predicted numerical prefactors is found to be 1.5. Again, repeating the experiment on
a polycarbonate surface, this ratio changes only slightly from 1.5 to 1.8.

4. Conclusions and perspectives
Our experiments reveal that the drop retraction rate is independent of the impact

speed. To account for the retraction speed, the maximum radius to which the droplet
expands, must be known also. A number of studies have considered the maximum
spreading radius (see for instance Fukai et al. 1993; Roisman et al. 2002; Clanet et al.
2004). However, no clear and unified picture emerges. An experimental study of Rmax,
combined with theoretical ideas in the same spirit as the ones presented here was
done by Clanet et al. (2004). They obtain a zeroth-order (asymptotic) description of
the spreading stage, compare it with experiments and suggest that two asymptotic
regimes exist for Rmax. The first is given by a subtle competition between the inertia
of the droplet and the capillary forces; if only these two are important, it follows
that Rmax/RI ∝ We1/4. In the second regime, Rmax is given by a balance between
inertia and viscous dissipation in the expanding droplet, leading to Rmax/RI ∝ Re1/5.
Consequently, a single dimensionless number is defined that discriminates between
the two regimes: P = WeRe−4/5 referred to as the Impact number. The crossover
between the two regimes occurs at P of order unity.
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Figure 5. (a) Normalized maximum spreading radius vs. the impact number. (b) Rmax

(normalized by the radius before impact) vs. Weber number for small values of the impact
number. Solid line: power-law fit. (c) Rmax (normalized by the radius before impact) vs.
Reynolds number for large values of the impact number. Solid line: predicted power-law
dependence with power 0.2. ∗, η = 10−1 Pa s; +, η = 9.5 × 10−2 Pa s; �, η = 4.8 × 10−2 Pa s;
�, η = 2.8 × 10−2 Pa s; �, η = 10−2 Pa s.

Our experimental data are in qualitative agreement with their prediction, as is
shown in figure 5(a) At low P , the scaling Rmax/RI ∼ We1/4 is clearly observed.
However, for impacts corresponding to P > 1, we observe only a very slow variation
of the maximum spreading radius as a function of P . Therefore, the relation between
Rmax and the Reynolds number is not very clear from our data (figure 5c). Although
the main trend does not strongly contradict the prediction Rmax/RI ∝ Re1/5, a power-
law fit of our data gives exponents that are always smaller than the predicted value
of 0.2. Perhaps even more important – in view of the small range of the maximal
expansion Rmax that we cover – is that the different water–glycerol mixtures do not
appear to collapse on a single curve, as would be predicted by the above argument.
However, since the maximum value of P that we reach is of order 10, we not have
reached the purely viscous regime. In that case, the capillary, inertial and viscous
forces are still of comparable amplitude and have to be taken into account together.
Note also that the more sophisticated models reviewed in Ukiwe & Kwok (2004) do
not provide better agreement with our experimental measurements.

Despite this small problem, we are now able to develop a simple unified picture
for drop impact dynamics accounting for both the spreading and the retraction
dynamics. The two natural dimensionless numbers that have been identified are the
impact number P , that quantifies the spreading of the droplet, and the Ohnesorge
number Oh that quantifies the retraction. We can thus construct a phase diagram
in the experimentally explored (Oh, We)-plane, which is shown on figure 6. The
experimentally accessible plane is divided into four parts, where the main mechanisms
at work during the impact process are different. These four parts are separated by
the curves Oh = 0.05 and We = Oh−4/3. They are labelled. as follows. IC-CI: the
drop dynamics is given by a competition between inertia and capillarity both for
the spreading and the retraction. IV-CV: inertia and viscous forces dominate the
spreading, capillary and viscous forces dominate the retraction. These two regimes
have been studied in detail here. The two more intriguing regions are IV-CI (viscous
spreading, inertial retraction) and IC-CV (capillary spreading, viscous retraction) that
are difficult to explore in detail. For the IV-CI regime, the large inertia at impact,
combined with a small surface tension, will make the droplets undergo large non-
axisymetric deformations and they will eventually splash and disintegrate. At the other
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Figure 6. Phase diagram in the (We,Oh)-plane for the impact and retraction dynamics of
droplets. The four regions are discussed in the text, and the symbols represent the parameters
of the data reported in this paper. Different symbols have been assigned for each region.

end of the phase diagram, the IC-CV region corresponds to very low impact speeds
and important capillary forces, implying very small deformations of the droplets. If
the deformations are small, pinning of the contact line of the droplets will become
important, and our simple scaling arguments for both the maximum radius and the
retraction rate are invalidated.

A numerical investigation of droplet impact would be very helpful for two reasons.
First, numerics would allow RI to be varied while keeping all the other physical
parameters constant. This would allow the robustness of our results to be checked,
since experimentally it is not easy to vary RI over a wide range. Second, as emphasized
above, the viscous regime for the maximum radius is difficult to characterize precisely
due to the smallness of the variation of Rmax for viscous drops. If precise numerical
simulations could be done, these different remaining problems could be resolved.

In sum, we have studied the retraction dynamics of liquid droplets upon high-speed
impact on non-wetting solid surfaces. Perhaps the strongest conclusion from our
investigation is that the rate of retraction of the droplet is a constant which does
not depend on the impact velocity. Two regimes for the retraction rate have been
identified: a viscous regime and an inertial regime. We have in addition shown here
that simple hydrodynamic arguments can be formulated that give very reasonable
agreement with experiments in the two different regimes.

Benjamin Helnann-Moussa is acknowledged for help with the experiments. Denis
Bartolo is indebted to the CNRS for providing a post-doctoral fellowship. LPS de
l’ENS is UMR 8550 of the CNRS, associated with the universities Paris 6 and Paris 7.
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