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A Note on Forecasting Alcohol Demand

Derby Voon® and James Fogarty "

Abstract

A recent study in the Journal of Wine Economics presented forecasts of future alcohol con-
sumption derived using the ARIMA (Box—Jenkins) method. Alcohol consumption forecasts
can be developed using many different methodologies. In this Note we highlight the value
of using multiple methods to develop alcohol consumption forecasts, and demonstrate the
capability of the R software platform as a general forecasting tool. (JEL Classifications:
D12, C53)
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1. Introduction

Convergence in global alcohol consumption patterns is an active research area
(Smith and Mitry, 2007; Aizenman and Brooks, 2008; Colen and Swinnen, 2016;
Holmes and Anderson, 2017), as is how to measure convergence in alcohol con-
sumption patterns (Mills, 2018). For large diverse markets like the United States,
there is also interest in the converse question: why do consumption differences
persist (Hart and Alston, 2019). Finally, in addition to measuring historical
trends, there has been some research for the United States that has presented fore-
casts of future alcohol consumption patterns to test whether further convergence
in alcohol consumption patterns is likely (Fogarty and Voon, 2018). The extension
of the convergence literature to consider future possible consumption patterns
raises the question of how alcohol consumption forecasts should be developed.
The Autoregressive Integrated Moving Average Model (ARIMA) approach used
in Fogarty and Voon is just one possible method for developing alcohol consumption
forecasts, and there are strong reasons to suspect that averaging across different
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forecasts will lead to an improvement in forecast accuracy (Bates and Granger, 1969;
Clemen, 1989). Further, it is also possible to think of alcohol consumption data as
hierarchical time series data, where beer, wine, and spirit consumption must add
up to total alcohol consumption. For hierarchical time series data, it is possible to
impose additional restrictions to ensure consistency in adding up.

In this note we: (i) show how the R software platform can be used to obtain
alcohol consumption forecasts using a range of different methods and (ii) show
that no single forecast approach dominates other methods in terms of forecast per-
formance. To illustrate each method, we use the LaVallee, Kim, and Yi (2014) per
capita state level consumption data for the United States.

II. Comparison Setup

The estimation approaches considered are: (i) single equation ARIMA (Box—
Jenkins) models (Box et al., 2015); (ii) hierarchical ARIMA models (Hyndman
et al.,, 2011); (i) single equation state space models (exponential smoothing
family) (Hyndman et al., 2008); (iv) hierarchical state space models (Hyndman
et al., 2011); (v) the BATS model of De Livera, Hyndman, and Snyder (2011),
which extends traditional state space models to allow for complex seasonality
through the introduction of a Box—Cox transformation and ARMA errors;' and
(vi) a neural network model of the form detailed in Hyndman and
Athanasopoulos (2018, Ch. 11). For estimation we rely on two R packages:
Hyndman (2017) and Hyndman et al. (2018).

In this application our focus is to compare the performance of different
forecast approaches, and so we separate the data set into a training set (1970 to
2007) and a test set (2008 to 2012). For each type of forecasting method we
choose the model form that minimizes AIC, over the training set, and then
compare model performance using RMSE across the test set. Figure 1 provides an
overview of how to apply each forecasting method in R, and the supplementary
material provides complete worked examples for each forecast method listed in
Figure 1.

III. Results

The first approach used to compare forecast method performance is a series of violin
plots of RMSE values, where RMSE values are grouped by estimation method and
beverage type. The take home messages from Figure 2 are: (i) in terms of RMSE,
relatively simple forecast models perform at least as well as more complex models;

"The acronym reflects: (i) the Box—Cox transformation of the time series, (ii) the inclusion of ARMA
errors, and (iii) the inclusion of Trend, and Seasonal components.
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Figure 1
Forecasting Alcohol Consumption with R

Detail Code Details
Single equation models
Load data my.data <- read.csv(‘Raw.csv’)
Create time series data <- ts{my.data[,l]), start=start.year, end=end.year)
Define training set train.data <- window(data, start=start.year, end=end.train.year)
Define test set test.data <- window(data, start=end.train.year+l, end=end.year)
Set forecast period forecast.length <- test.data
Box-lenkins forecast (auto.arima(train.data, h=forecast.length)
State space forecast (ets (train.data, h=forecast.length)
Neural network forecast (nnetar(train.data, h=forecast.length)
BATS forecast (tbats(train.data, h=forecast.length)
Joint equation models
Create time series (a) bws <- ts(my.data(,1:3], startsstart.year, end=end.year)
Create time series (b) my.dat <- hts(bws, bnames = colnames (bws))
Define training set train.data <- window(my.dat, start=start.year, end=end.year)
Box—Jenkins forecast (train.data, h=forecast.length, fmethod=‘arima’),level =1)
State space forecast (train.data, h=forecast.length, fmethod=‘ets’),level =1)

Figure 2

Violin Plots Comparing Model Performance
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Note: SS = single equation state-space; H-SS = hierarchical single equation state-space; ARIMA = single equation ARIMA;H-AR = hierar-
chical ARIMA; ANN = autoregressive neural network; BATS = BATS.

(ii) for a given beverage type, forecast models appear to have similar performance;
and (iii) across all forecast model types, wine forecasts tend to be the most accurate
and beer forecasts least accurate.

Figure 3 plots the maximum and minimum RMSE value for each state by bever-
age combination across the six forecast methods, and the plots show that there is sig-
nificant variation in forecast performance between methods across the various state
by beverage combinations. Although the plots place the variation in model perfor-
mance in perspective, they do not show whether one forecast method systematically
out performs, when forecasting future alcohol consumption.

To provide a measure of the relative performance of each forecast method, for
each state and beverage, the method with the lowest RMSE was identified, and
the information is summarized in Table 1. As can be seen from Table 1, at the indi-
vidual beverage level, the approach that, on most occasions, minimized RMSE,
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Figure 3
Within State Variation in Model Performance: RMSE Comparison
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Table 1
Convergence Measures: Coefficient of Variation and Trace
Model Spirits (No.) Wine (No.) Beer (No.) Share (%)
State space 7.5 7.5 11.5 17.3
ARIMA 8 15 6 22.2
Neural network 5 10 13 13.7
BATS 13 7 8 21.6
Hierarchical SS 8.5 7.5 3.5 12.7
Hierarchical ARIMA 9 5 5 12.4

Note: If tied each method allocated 0.5.

varied with beverage type. For spirits the forecast method that most often minimized
RSME was BATS; for wine it was the single equation ARIMA method; and for beer
it was the autoregressive neural network method. As can be seen from the final
column of Table 1, performance across forecast methods, in terms of minimizing
RMSE, is quite similar. We do not place special emphasis on particular threshold
values for Type I errors, and so with p =0.06 for a proportions test of equality
across methods, we simply conclude that there is no strong evidence that one
specific forecast method systematically outperforms another, when forecasting
future alcohol consumption.

To understand the extent of the differences in forecast consumption levels for each
beverage type across methods, the five-year-out forecast values for each method,
along with the actual value (black dash), are plotted in Figure 4. As can be seen,
there is considerable variation in the forecast level of consumption, across models,
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Figure 4

Five Year Future Forecast Comparison: Per Capita Ethanol Consumption
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and presenting these different forecasts can help place forecast uncertainty in per-
spective. For the five-year-out forecast values, the average difference between the
maximum forecast value and the minimum forecast value across methods, expressed
as a percentage of the actual consumption level, was 12.5% for spirits (SD 6.4%),
11.1% for wine (SD 6.9%), and 5.1% for beer (SD 4.1). So the variation in long
range forecasts across methods is non-trivial.

IV. Conclusion

Forecasting future alcohol consumption values allows a range of interesting hypoth-
eses to be considered. Recent work published in the Journal of Wine Economics has
focused on developing alcohol consumption forecasts using the ARIMA method. In
this Note we highlight a range of alternative forecast methods that perform at least
as well as the ARIMA method, and show how these methods can be implemented in
R. To facilitate the use of these methods, a worked example file is provided as part of
the supplementary material.

Supplementary Material

For supplementary material accompanying this paper visit https:/doi.org/10.1017/
jwe.2019.15.
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