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We validate a new law for the aspect ratio α = H/L of vortices in a rotating, stratified
flow, where H and L are the vertical half-height and horizontal length scale of the
vortices. The aspect ratio depends not only on the Coriolis parameter f and buoyancy
(or Brunt–Väisälä) frequency N̄ of the background flow, but also on the buoyancy
frequency Nc within the vortex and on the Rossby number Ro of the vortex, such
that α = f [Ro(1+ Ro)/(N2

c − N̄2)]1/2. This law for α is obeyed precisely by the
exact equilibrium solution of the inviscid Boussinesq equations that we show to
be a useful model of our laboratory vortices. The law is valid for both cyclones
and anticyclones. Our anticyclones are generated by injecting fluid into a rotating
tank filled with linearly stratified salt water. In one set of experiments, the vortices
viscously decay while obeying our law for α, which decreases over time. In a second
set of experiments, the vortices are sustained by a slow continuous injection. They
evolve more slowly and have larger |Ro| while still obeying our law for α. The law
for α is not only validated by our experiments, but is also shown to be consistent with
observations of the aspect ratios of Atlantic meddies and Jupiter’s Great Red Spot and
Oval BA. The relationship for α is derived and examined numerically in a companion
paper by Hassanzadeh, Marcus & Le Gal (J. Fluid Mech., vol. 706, 2012, pp. 46–57).
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1. Introduction: vortices in stratified rotating flows
The Great Red Spot (GRS) and other large vortices such as the Oval BA (Marcus

1993) are persistent giant anticyclonic vortices in Jupiter’s atmosphere. Their vertical
aspect ratios α = H/L lie in the range 0.03 6 α 6 0.1. In the Atlantic Ocean, meddies
are also long-lived anticyclones made of water of Mediterranean origin that is warmer
and saltier than the ambient Atlantic. Their lifetimes can be as long as several
years, and they have α ' 0.01 (with H ' 0.5 km and L ' 50 km). Presumably, the
aspect ratios of these vortices are the result of a competition between rotation and
stratification. A rapidly rotating flow, parameterized by a large Coriolis parameter f
and small characteristic azimuthal velocity Vθ (i.e. small Rossby number Ro = Vθ/fL)
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The universal aspect ratio of vortices in rotating stratified flows 35

is controlled by the Taylor–Proudman theorem: flows have little variation along the
rotation axis and form columnar vortices with large α. In contrast, strongly stratified
flows, parameterized by large buoyancy frequencies

N ≡
√
− g

ρ

dρ
dz

(1.1)

inhibit vertical motions and form baroclinic vortices, often appearing as thin ‘pancake’
vortices (Billant & Chomaz 2001). Here ρ is the fluid density, g is gravity and z is the
vertical coordinate.

The goal of this paper is to investigate this competition and determine and verify a
quantitative law for α. Previous experimental studies that used constant-density fluids
to simulate Jovian vortices (Antipov et al. 1986; Sommeria, Meyers & Swinney 1988)
prohibited this competition and resulted in laboratory vortices that were barotropic
Taylor columns that extended from the bottom to the top of the tank. Thus, α was
imposed by the boundaries of the tank. In our experiments, the vortices are created
near the centre of a large tank so that the tank’s boundaries have no or little influence
on α and there is little or no Ekman circulation in the tank and no Ekman spin-down
of our vortices.

2. Aspect ratio law of a model vortex
The dissipationless, Boussinesq equations for a fluid with mean density ρ0 in the

rotating frame (and ignoring the centrifugal force) are

∂v
∂t
=−(v ·∇)v− ∇p

ρ0
+ fv× ẑ− (ρ − ρ0)

ρ0
g ẑ

∂ρ

∂t
=−(v ·∇)(ρ − ρ̄)+ vz ρ0

N̄2

g

 (2.1)

where v is the divergence-free velocity, vz the vertical component of the velocity, p
is the pressure, z is the vertical coordinate, ẑ is a unit vector and an overbar above
a quantity indicates that the quantity is the equilibrium value in the undisturbed,
linearly stratified (i.e. with constant N̄) fluid. The unperturbed solution has v̄ = 0;
ρ̄ = −(N̄2/g)ρ0 z + ρ0; and p̄ = (N̄2ρ0/2) z2 − g ρ0 z + p0, where p0 is an arbitrary
constant. One steady solution of the Boussinesq equations that consists of an isolated,
compact vortex with solid-body rotation Ω has v ≡ v̄ = 0, ρ ≡ ρ̄ and p ≡ p̄
everywhere outside the vortex boundary, while inside the vortex we have vθ = Ω r,
vz = vr = 0, ρ =−(Nc

2/g) ρ0 z+ ρ0 and

p= (Nc
2 ρ0/2) z2 − g ρ0 z+ [Ω (Ω + f ) ρ0/2] r2 + pc (2.2)

where r is the cylindrical radial coordinate, vr and vθ are the radial and azimuthal
components of the velocity; pc is a constant equal to p0 − ρ0Ω (Ω + f ) L2/2, and L
is the radius of the vortex at z = 0. This vortex has a uniform buoyancy frequency
Nc throughout the entire vortex (in general, the subscript c means that the quantity
is to be evaluated at the vortex centre, i.e. at r = 0 and z = 0). The vortex boundary
is determined by requiring the pressure to be continuous throughout the flow. Note
that the density and velocity are discontinuous at the vortex boundary. Continuity of p
requires the vortex boundary to be ellipsoidal:

(r/L)2+ (z/H)2 = 1, (2.3)
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where the semi-height is H ≡
√

2 (p0 − pc)/[ρ0 (Nc
2 − N̄2)], and the semi-diameter is

L≡√2 (p0 − pc)/[Ω ρ0 (f +Ω)]. The aspect ratio of this vortex is

α ≡ H/L=
(
Ro (1+ Ro)

Nc
2 − N̄2

)1/2

f , (2.4)

where the Rossby number Ro ≡ ωc/2f = Ω/f . We have defined Ro in terms of the
vertical vorticity ω at the vortex centre to make our expression in (2.4) consistent
with a more general relationship for α that is derived in the companion paper
by Hassanzadeh, Marcus & Le Gal (2012) by assuming that the vortex has cyclo-
geostrophic balance in the horizontal directions and hydrostatic balance in the vertical
direction. One can see that the law requires for cyclones in equilibrium to have Ro> 0,
p0 > pc and Nc > N̄; for cyclostrophic anticyclones in equilibrium, the law requires
Ro < −1, p0 > pc and Nc > N̄, but for quasi-geostrophic anticyclones it requires
−1< Ro< 0, p0 < pc and Nc < N̄.

3. Comparison with previous observations or predictions of vortex aspect
ratio α

Our law (2.4) for the aspect ratio α agrees with previous experiments in rotating
and stratified flows. For example, Bush & Woods (1999) created vortices in a rotating
stratified fluid from the break-up of small-diameter rising plumes. In these experiments,
very little ambient fluid becomes entrained in a rising plume or when the plume breaks
and rolls up into vortices, so the vortex cores have nearly uniform density (Nc = 0).
Owing to angular momentum conservation, the fluid within plumes rising from a small
diameter orifice have no angular momentum or angular velocity when viewed in the
inertial frame. When viewed in the rotating frame with angular velocity f /2, these
plumes have an angular velocity Ω = −f /2. Thus, in the rotating frame these vortices
are anticyclones with Ro ' −0.5. With parameter values Nc = 0 and Ro = −0.5, (2.4)
predicts α = 0.5f /N̄, which agrees well with the experiments of Bush & Woods (1999)
that found α = 0.47f /N̄.

It is often claimed that quasi-geostrophic (QG) vortices obey the scaling law
H/L = f /N̄ (McWilliams 1985; Dritschel, de la Torre Juarez & Ambaum 1999;
Reinaud, Dritschel & Koudella 2003), independently of the values of Ro and Nc. This
scaling is broadly used among the oceanographic community for vortices created from
noise but is sometimes applied to Atlantic meddies and other vortices without close
neighbours. We show in §§ 4 and 5 that the aspect ratios of our experimental vortices
and meddies have shapes that strongly depend on Ro and their internal stratifications
Nc, and therefore α 6= f /N̄ for these vortices.

In a theoretical, inviscid analysis, Gill (1981) analytically computed a solution
for a two-dimensional vortex (that is, a unidirectional zonal flow, in contrast to an
axisymmetric vortex). He found an interior solution of the zonal flow and an exterior
solution to that flow and then matched them together requiring that the density and
all components of the velocity were continuous at the interface between the two
solutions, which are the appropriate conditions for a flow with dissipation. He found
that the exterior flow had an aspect ratio α proportional to Ro(f /N̄). We believe that
Gill’s analysis is flawed because he imposed too many matching conditions for a
dissipationless flow, where only the normal component of the velocity is continuous
(see our model in § 2). It can be shown that with the proper matching conditions
the aspect ratio of Gills zonal flow is equal to our scaling law for α in (2.4) in the
geostrophic limit where Ro(1 + Ro)→ Ro (see Hassanzadeh et al. 2012). Hedstrom &
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Armi (1988) experimentally tested the scaling law derived by Gill. Based on our own
experiments that attempted to reproduce those of Hedstrom & Armi (1988), it appears
that the measurements they carried out were made while the vortices were very young,
still undergoing geostrophic adjustment and far from equilibrium.

Note finally that our law, modified for use with discrete layers of fluid rather than a
continuous stratification, also applies to the models of anticyclonic ocean eddies used
by Nof (1981) and by Carton (2001).

4. Application to laboratory vortices
We have carried out a study of vortices in a rotating, stratified laboratory flow

in a transparent tank of dimensions 50 cm × 50 cm × 70 cm mounted on a rotating
table. Using the classic double-bucket method with salt water (Oster 1965), each
experiment initially has a linear vertical stratification, with a constant buoyancy
frequency N̄ independent of location. The values of N̄ in our experiments varied
from 1 to 2.3 rad s−1. The Coriolis parameter f can be as large as 7 rad s−1. Two
sets of experiments were carried out following works by Griffiths & Linden (1981)
and Hedstrom & Armi (1988). In the first set, once the fluid in the tank reaches
solid-body rotation, we briefly inject a small volume of fluid with constant density
ρ0 through a 2.5 mm diameter pipe along the axis of rotation at depth approximately
midway between the top and bottom of the tank. As soon as the fluid is injected,
it is deflected horizontally by the stratification and the Coriolis force organizes it
into a freely decaying anticyclone. In the second set of experiments, the vortex is
permanently sustained by a smooth and stationary injection, using a peristaltic pump
whose flux rate is chosen between 6 and 500 mL min−1, through the 2.5 mm diameter
pipe with a sphere of porous material fixed at the end of the pipe. The technique
in the second set of experiments allows us to create vortices with higher Rossby
numbers than in the first set. Moreover, the sustained anticyclones in the second set of
experiments evolve very slowly compared with those in the first set. In both sets of
experiments, the injected fluid is seeded with fluorescein dye and 100 µm – diameter
particles for particle image velocimetry (PIV) (Meunier & Leweke 2003). We follow
the evolution of the vortices using one horizontally and one vertically illuminated laser
sheet. Video images of the vertical cross-section allow us to record the changes in time
of the vortex aspect ratio (figure 1a,b), while the PIV measurements in the horizontal
sheet allow us to find the azimuthal and radial components of the velocity of the
vortex, which lead to the determination of Ro (figure 1c,d).

4.1. Freely decaying vortices
The brief injection of fluid with density ρ0 at height z0 (where ρ̄(z0) ≡ ρ0)
is immediately followed by fast adjustments where the injected fluid becomes
approximately axisymmetric. After axisymmetrization, |Vθ | and |Ro| decay very slowly
in time with the vortices persisting for 1000–1800 table rotation times (4π/f ),
or several hundred turnaround times of the vortices (2π/(fRo)). During the slow
decay, the vortex core passes through a series of quasi-equilibrium states where it
has approximately solid-body rotation with negligible radial velocity as shown in
figure 1(d). The experimentally measured boundaries of one of the slowly decaying
anticyclones that were created by injection are shown at four different times in
figure 2. Also shown are the boundaries of our theoretical model of the decaying
vortex. Our model is the solid-body rotating vortex with a discontinuous velocity
derived in § 2 with Nc ≡ 0 and with the ellipsoidally shaped boundary given by (2.3).
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Aspect ratio and Rossby
number. (a,b) Determination of the aspect ratio α = H/L. (a) Side view of a laboratory
anticyclone with N̄ = 2.3 rad s−1 and f = 2 rad s−1. (b) Image processing of vortex in (a) to
determine α. Here α = 0.3 with H = 1.9 cm and L = 6.3 cm. (c,d) Determination of Ro. (c)
Top view of laboratory anticyclone with N̄ = 2 rad s−1, f = 2 rad s−1, and Ro = −0.13. (d)
Azimuthal vθ (−) and radial vr (−−) velocities of flow in (c) as functions of radius r. The
core has a solid-body-like rotation. The magnitude of vr is consistent with the r.m.s. fractional
uncertainty of vθ , which is ±5–10 %. The fractional uncertainties in N̄ are ±10 %.

FIGURE 2. (Colour online) Image-processed side view of a vortex boundary (black) at
different times t with f = 6.8 rad s−1 and N̄ = 1.6 rad s−1 held fixed. Here |Ro| decreases
in time. Also shown are the theoretical boundaries (grey in print; blue online) of the model
vortices at each time. The model vortex has H/L given by (2.4), so the coincidence of the
grey (or blue) and black curves validates our law. Here T = 4π/f is the period of the rotating
turntable. Because f /N̄ = 4.25 is the same for all of these vortices, while α differs, it is clear
that the scaling law α = f /N̄ is not correct for these vortices.
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Owing to the slow diffusion of salt, we assume that for all time the fluid density
within the model vortex remains at its initial value of ρ0, so we assume that
Nc = 0 for all time. Owing to the lack of diffusion in the laboratory vortex, we
also assume that within the ellipsoidal boundary of the model vortex, the volume
4/3πH(t)L (t)2 = 4/3πα(t)L (t)3 remains constant, despite the fact that α and L change
in time. The theoretical boundaries of our model vortices are computed with (2.3),
where α(t) is given by our law (2.4), where Ro(t) is measured experimentally, Nc is
assumed to be zero, f is known, N̄ is assumed to remain at its initial value and where
L(t) is computed by assuming that the volume of the ellipsoid is constant in time. That
is, we set

L(t)= L0 [α0/α(t)]1/3 (4.1)

where the value of L0 is the experimental value of L from the first panel with
Ro=−0.08; α0 is the initial value of α found from (2.4) with Ro=−0.08 and α(t) is
determined from Ro(t) using (2.4).

Figure 2 shows that the boundaries of the laboratory and model vortices are nearly
coincident at four different times, and at those times the vortices have four different
Rossby numbers and four different aspect ratios. This validates the law (2.4) for α
and also shows that our assumptions that Nc = 0 and that the volume of the vortex
remains constant are both good. If the correct scaling law were H/L = f /N̄ rather
than law (2.4), then the vortex in figure 2 would have the same aspect ratio through
time, which it clearly does not. Using the scaling law of Gill (1981) with a Ro
dependence would lead to a smaller predicted aspect ratio by a factor between 3.4
and 6.

4.2. Vortices sustained by continuous injection

In the second set of experiments, the vortices are sustained by a continuous injection
of fluid with density ρ0 at a fixed flux rate, as in the experiments of Griffiths &
Linden (1981). The characteristic values of Ro for these vortices range between −0.45
and −0.20. The volume of the vortices slowly increases in time and Ro decays
very slowly compared with the viscously decaying vortices discussed in § 4.1. The
continuous injection is laminar and the rate of injection is sufficiently small so that
the volume of the vortices increases by only approximately 1 % per table rotation.
As a consequence, we use the same theoretical, elliptical model that we used for the
viscously dissipating vortices analysed in § 2. The experimentally measured boundaries
at four different times of a vortex sustained with continuous injection are shown in
figure 3. As before, the aspect ratio of the extracted shape of the laboratory vortex is
compared with α of our model vortex from law (2.4) with Nc = 0, the observed value
of Ro, and the volume calculated with the flux rate of the experiment and time t/T . As
can be seen, the comparison is excellent and validates our theoretical law (2.4) in the
cyclo-geostrophic regime.

Note that in the similar experiments of Griffiths & Linden (1981), briefly described
in section 5 of their article, continuous injections into a linearly stratified fluid were
performed. They observed vortices with aspect ratios of 0.47 and 0.99. In these two
experimental runs, N̄H/fL was estimated around 0.3, which is in disagreement with
QG law N/L = f /N̄. As no precise measurement of Ro was done, no comparison is
possible with either our law or Gill’s theory (Gill 1981).
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FIGURE 3. (Colour online) Image-processed side-view boundaries of a vortex sustained with
continuous injection at different times. The flow has f = 1.62 rad s−1, N̄ = 2.3 rad s−1 and
an injection rate of 10 mL min−1. Also shown are the theoretical boundaries of the model
vortices. Line colours are as in figure 2. The model vortex has H/L given by (2.4), so the
coincidence of the boundaries of the laboratory and model vortex validates (2.4) for α. Unlike
the vortex in figure 2, the vortex volume V changes in time. Here Ro, V and time t are given
for each image.

5. Application to meddies and Jovian vortices
Our law (2.4) for vortex aspect ratio α also applies to ocean meddies, which, unlike

our laboratory vortices, are internally stratified (i.e. Nc 6= 0). Using the reported values
of the ocean densities as functions of position within and outside the meddies (Armi
et al. 1988; Hebert, Oakley & Ruddick 1990; Pingree & Le Cann 1993; Tychensky &
Carton 1998), we have compiled in table 1 average values of the buoyancy frequencies
of the meddies Nc and their background environments N̄, along with the observed
values of α, L and Ro. Note that according to our relationship (2.4) for the aspect
ratio, the effects of non-zero Nc do matter on the aspect ratio, especially when Nc is
of order N̄, as it is for the meddies (and Jovian vortices; see below). For all but the
oldest meddy shown in figure 4, law (2.4) fits the observations. Note that setting α

equal to the alternative scaling f /N̄ does not fit the meddy data, even with the large
uncertainties of the observed values of α of the meddies shown in figure 4. Setting α
equal to the other alternative scaling discussed in § 3, Ro (f /N̄) (Gill 1981; Hedstrom
& Armi 1988), is an even poorer fit.

Law (2.4) also applies to Jovian vortices. For the GRS it is necessary to take into
account the fact that the characteristic horizontal length L of the derivative of the
pressure anomaly (p − p̄) is nearly three times smaller than the characteristic radius
Rv where the azimuthal velocity reaches its peak value (Shetty & Marcus 2010). As
shown in our companion paper by Hassanzadeh et al. (2012), when Rv > L, the law
should be modified so that Ro (1 + Ro) in (2.4) is replaced with Ro [1 + Ro (L/Rv)].
With the exceptions of H and Nc, the properties of Jovian vortices are well known and
have small uncertainties (Shetty & Marcus 2010).
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FIGURE 4. (Colour online) Tests of our theoretical law (2.4) (straight line) for α. The theory
agrees with our freely decaying vortex experiments (�) with 1.6 rad s−1 6 f 6 7 rad s−1 and
with our sustained vortex experiments with f = 1.6 rad s−1 and N = 2.3 rad s−1(�); with
Bush and Woods’ experiments at Ro = −0.5 (Bush & Woods 1999) (H); with Jupiter’s GRS
and Oval BA (Marcus 1993; de Pater et al. 2010; Shetty & Marcus 2010) (N); and with
meddies Sharon (Armi et al. 1988; Hebert et al. 1990; Schlutz Tokos & Rossby 1990) (×),
Bobby (Pingree & Le Cann 1993) (?), Hyperion (◦), Ceres (•) and Encelade (�) (Tychensky
& Carton 1998). All of the data for the meddies are given in table 1. Data and error
bars for the Jovian vortices are discussed in the online supplementary material available
at journals.cambridge.org/flm. Error bars for the meddies are dominated by uncertainties
in (N̄2 − N2

c ), which are due to uncertainties in the reported densities and temperatures of
meddies. Meddy Sharon is the oldest meddy shown, so dissipation could have modified its
shape.

Based on observations of the haze layers above the GRS and Oval BA, most
observers agree that the elevations of their top boundaries (Banfield et al. 1988;
Fletcher et al. 2010; de Pater et al. 2010) are near the elevation of 140 mb pressure.
Banfield et al. (1988) put the top of the upper tropospheric haze that is anomalously
elevated over the GRS at 160 mb and the haze over the White Ovals (from which Oval
BA formed) at 150 mb. There is less agreement on the elevations of the mid-planes
(z= 0) of the vortices. Some modellers (Morales-Juberias, Sanchez-Lavega & Dowling
2003) set z = 0 to be 680 mb (the height of the clouds from which the velocities are
extracted), making H = 33 and 34 km, respectively for the GRS and Ovals. However,
some observers (de Pater et al. 2010) argue that the z= 0 planes for both the GRS and
the Ovals are deeper at 2000 mb, making H = 59 and 60 km for the GRS and Ovals,
respectively. Based on these observations and arguments, we set the ‘observed’ H for
both the GRS and the Oval BA to be an average of these values, and we assign to
it an uncertainty that is large enough to account for both choices of the elevation of
z= 0. Thus, we set H = 46± 14 km.

Jovian values of N̄ have been measured accurately (Shetty & Marcus 2010), and
as shown in the online supplementary material, the values of (N̄2 − N2

c ) and their
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uncertainties for the GRS and the Oval BA can be inferred from thermal imaging,
which provides the temperatures of the vortices and of the background atmosphere.
We show in the online supplementary material how the values and uncertainties of Nc

for the GRS and Oval BA that are used in table 1 are calculated from the observed
temperature measurements and also how the values of Ro for the Jovian vortices in
table 1 were calculated. Using the values in table 1 for the properties of the Jovian
vortices and of the background Jovian atmosphere we have included the aspect ratio
information of the GRS and Oval BA in figure 4. The figure shows that the aspect
ratios of the Jovian anticyclones are consistent with our law (2.4) for α (with the
correction due to the fact that Rv 6= L for the GRS). Even with the large uncertainties
in H, the data show that the aspect ratios of the Jovian vortices are not equal to f /N̄ or
to Ro (f /N̄).

6. Conclusions
We have derived and verified a new law (2.4) for the aspect ratio α ≡ H/L of

vortices in stratified, rotating flows; this law depends on the Coriolis parameter f ,
the Rossby number Ro, the stratification of the ambient fluid N̄ and also on the
stratification inside the vortex Nc. This law derived in a more general context in the
companion paper by Hassanzadeh et al. (2012) exactly fits the equilibrium solution
of the Boussinesq equations that we used to model our laboratory anticyclones. We
have shown that the law works well for predicting the aspect ratios of freely decaying
anticyclones in the laboratory, of laboratory vortices that are sustained by continuous
fluid injection, of Jovian vortices and of Atlantic meddies. These vortices span a
large range of Rossby numbers, occur in different fluids, have different ambient
shears, Reynolds numbers and lifetimes, and are created and dissipated by different
mechanisms. For these vortices we have demonstrated that a previously proposed
scaling law, H/L = f /N̄, is not correct. Our law (2.4) for α shows that equilibrium
cyclones must have N̄ < Nc, that anticyclones with |Ro| < 1 have N̄ > Nc and that
anticyclones with |Ro| > 1 have N̄ < Nc. Mixing within a vortex tends to de-stratify
the fluid inside of it and therefore naturally decreases Nc from its initial value.
Therefore, if there is mixing and if there is no active process that continuously
re-stratifies the fluid within a vortex, then at late times one would expect that Nc < N̄,
and then according to our law only anticyclones with |Ro| < 1 can be in equilibrium.
This may explain why there are more anticyclonic than cyclonic eddies in the ocean,
and also why there appear to be more long-lived anticyclones than cyclones on Jupiter,
Saturn and Neptune.
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