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Abstract
This paper addresses logarithmic quantizers with dynamic sensitivity design for continuous-time linear systems
with a quantized feedback control law. The dynamics of state quantization and control quantization sensitivities
during “zoom-in”/“zoom-out” stages are proposed. Dwell times of the dynamic sensitivities are co-designed. It is
shown that with the proposed algorithm, a single-input continuous-time linear system can be stabilized by quantized
feedback control via adopting sensitivity varying algorithm under certain assumptions. Also, the advantage of log-
arithmic quantization is sustained while achieving stability. Simulation results are provided to verify the theoretical
analysis.

1. Introduction
With the development of computer technology and network technology, networked control system
(NCS) [1] has a wide range of applications in smart transportation [2], smart cities [3], the internet of
things (IoT) [4–6], and industrial automation. In NCSs, as the controller usually executes in digital form,
signals on continuous sets need to be represented with limited accuracy to process digital information
for a limited time, which necessitates the consideration of the effect of quantization during controller
design stage.

Quantization process can take different algorithms, the most common of which are linear quantiz-
ers and logarithmic quantizers [7, 8]. Quantization algorithm has considerable impact on the stability
and dynamic characteristics of the system as well as on the controller design especially by incurring
quantization errors. Therefore, the study around quantization algorithm plays a very important role in
the research of networked control systems. Examples of the most recent research papers about state
estimation and control of networked systems with quantization effect considered are refs. [9] and [10].

As early as 1956, Kalman has described the quantization effects in sampled data systems and the per-
formance of closed-loop systems in the case of control signals being quantized. Reference [11] pointed
out that if the system is not excessively unstable, a quantized feedback control law can be designed so
that the closed-loop system can be controlled to any position that is close to the origin at any time.
In ref. [12], authors showed that the coarsest quantizer that can quadratically stabilize a single-input
discrete-time invariant system is logarithmic. Authors of ref. [12] also proposed a quantized feedback
mechanism which uses a so-called “sector bound” approach. Reference [13] proposed a new design con-
cept, in which the algorithm is based on a quantizer whose sensitivity changes as the system dynamic
evolves. The benefit of such adjustment is that the sensitivity can be increased in case of saturation so
that the saturation value of the finite level quantizer also increases. Furthermore, the saturation thresh-
old is increased at a speed higher than that of the system dynamic, in order to ensure the system is less
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saturated as the time elapses until saturation is prevented after a certain period of time. The manipula-
tion is based on the facts that saturation is always undesirable in control systems as strong nonlinearity
is incurred and that almost all quantizers in NCSs are of finite level for implementation considerations.
It is worth noticing that although literatures such as refs. [14] and [15] deal with tracking control and
fault tolerant control for systems containing nonlinearities successfully, to avoid introduction of nonlin-
ear elements such as saturation into the system is still a smart approach to tackle control problems in
complex systems. In ref. [13], when the saturation no longer happens, the sensitivity can be decreased
to guarantee smaller quantization error and higher accuracy. This is an important innovation to the idea
that the quantitative density is fixed, which has been universally adopted before. This achievement has
been widely recognized [16], and its application is reflected in literature including [17–18]. Reference
[19] investigates the robust stability of uncertain discrete-time linear systems subject to input and output
quantization and packet loss. The quantization algorithm therein is also static and linear.

In the existing research, most performance analysis and controller design are based on linear quan-
tizers. However, as mentioned above, for the same input, the logarithmic quantizer has the coarsest
density, which brings to the algorithm significant advantages, for example shorter data packet to be trans-
mitted. Also, it is realized that logarithmic quantizers may experience similar difficulties for example
saturation, the solution to which is to adjust its sensitivity as the system evolves. In this paper, loga-
rithmic quantizers with dynamic sensitivities are designed, with the dynamic of the sensitivities during
“zoom-in”/“zoom-out” stages provided. Dynamic logarithmic quantization algorithm has the benefit of
logarithmic quantizer, that is the coarsest density to reduce the transmission burden, as well as the benefit
of dynamic sensitivity quantizer, that is the sensitivity can be increased in case of saturation so that the
saturation threshold of the finite level quantizer also increases. Dynamic dwell time for the sensitivities
are also proposed. Meanwhile, as an extension to ref. [19], two quantizers are designed for the state sig-
nal and the control signal respectively in this paper. Compared with one quantizer scheme adopted in ref.
[19], such design is more reflective of the actual NCSs scenario. For the state quantizer, the quantization
sensitivity is increased during “zoom-out” stage from an initial value until the quantization threshold
is not violated. Then, it is time to enter the “zoom-in” stage during which the sensitivity is decreased.
The main contribution of this paper is that the rules to adjust the sensitivity of control quantization and
state quantization are both provided for a couple of scenarios considering the status of state saturation
and input saturation. Furthermore, dwell time of the dynamic sensitivities is co-designed such that a
comprehensive solution to the problem of when and how to adjust the sensitivities is provided. It is
demonstrated that with those two dynamic logarithmic quantizers installed, the linear system consid-
ered can be stabilized if conditions on the dwell time and the laws following which the sensitivities of
quantizers evolve are all satisfied. Then, the problem of stabilizing the quantized state feedback control
system under a given control law and associated assumptions will be solved.

Notation: For a matrix M, λmin(M) and λmax(M) express minimum eigenvalue and maximum eigen-
value, respectively. For an nth order vector v = [ v1 v2 . . . vn ], ‖v‖ represents Euclidean norm of v, that
is ‖v‖ = √

v2
1 + v2

2 + · · · + v2
n.

The paper is organized as follows. Section 2 presents the problem formulation. Main results of this
paper are shown in Section 3. Section 4 is dedicated to the simulation results, and conclusions are drawn
in Section 5.

2. Problem formulation
The diagram of a typical networked control system is shown in Fig. 1. It is observed that the measure-
ment from the plant is processed by a quantization block before transmitted through a communication
channel, which is normally wireless and lossy. The controller unit receives information from the chan-
nel and generates a control signal, which is then quantized and transmitted to the actuator through a
communication channel with the same behavior.
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Figure 1. Typical networked control system

In terms of the plant model, we consider a single-input continuous-time linear system

ẋ(t) = Ax(t) + Bq̄ (u(t)) (1)

with a quantized state feedback control law

u(t) = −Kq (x(t)) . (2)

In (1), x(t) ∈ Rn is the state vector with an arbitrary initial value x(0), q (x(t)) is the result of quantization
of x(t), u ∈ R is the control input, q̄ (u(t)) is the result of quantization of u(t), A, B are known matrices
or vectors of proper dimensions. B is assumed full rank and K is a feedback gain properly designed to
ensure all eigenvalues of A − BK have non-positive real parts that is according to Lyapunov stability
theory, there exist positive definite symmetric matrices Q and D so that

(A − BK)TQ + Q(A − BK) = −D. (3)

A static logarithmic quantizer has the form [12]

Vs =
{
±vsi : vsi = 1

ρ i
vs0, i = 0, 1, 2 · · · M

}
∪ {0}

qs(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vsM a >
1

1 − δ
vsM

vsi

1

1 + δ
vsi < a ≤ 1

1 − δ
vsi

i = 0, 1, ..., M

0 0 < a ≤ 1

1 + δ
vs0

−q (−a) a < 0

(4)

δ = 1 − ρ

1 + ρ
, 0 < ρ < 1, vs0 > 0

where 2M + 1 is the order of quantizer determined by the characteristics of the communication channel,
a is a scalar to be quantized, vs0 is an initialization parameter, VsM and ρ are the range and density of the
quantizer, respectively. A single parameter δ is related to ρ and also reflects the quantizer density.

Remark 1. For the state vector x ∈ Rn in this paper, quantization is performed in an element-wise fashion
with uniform quantization density for all elements.

In Fig. 2, the quantization of x(t) is used as an example to demonstrate the mechanism of sensitivity
varying quantization. It is assumed that the quantizer order 2M + 1 is given. The sensitivity varying
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Figure 2. Flowchart of sensitivity varying quantizing mechanism

algorithm involves two stages that is “zoom-in” stage and “zoom-out” stage. When the initial input
makes the quantizer saturated, δ(t) is increased at a speed faster than the dynamic of x(t), and such
process is called the “zoom-out” stage. When the system state once gets into the non-saturated area, δ(t)
decreases following a certain law, which is called the “zoom-in” stage.

Therefore, with the dynamic logarithmic quantization scheme adopted in the following sections of
this paper, the derivation of q (x(t)) in (2) follows the quantization algorithm as in (5), which is a
significant extension from (4)

V(t) =
{
±vi(t) : vi(t) = 1

ρ i(t)
v0, i = 0, 1, · · · M

}
∪ {0},

q(x(t)) = [
q(x1(t)) q(x2(t)) ... q(xn(t))

]T
,

q(xj(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vM(t) xj(t) >
1

1 − δ(t)
vM(t)

vi(t)
1

1 + δ(t)
vi(t) < xj(t) ≤ 1

1 − δ(t)
vi(t)

i = 0, 1, ..., M

0 0 < xj(t) ≤ 1

1 + δ(t)
v0

−q
(−xj(t)

)
xj(t) < 0

(5)

δ(t) = 1 − ρ(t)

1 + ρ(t)
, 0 < ρ(t) < 1, v0 > 0, for all 1 ≤ j ≤ n.

It is also easily derived that

ρ(t) = 1 − δ(t)

1 + δ(t)
, 0 < δ(t) < 1 (6)
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And the derivation of q̄ (u(t)) in (1) follows the quantization algorithm as in (7),

V̄(t) =
{
±v̄i(t):v̄i(t) = 1

ρ̄ i(t)
v̄0, i = 0, 1, 2 · · · M̄

}
∪ {0}

q̄(u(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̄M̄(t) u(t) >
1

1 − δ̄(t)
v̄M̄(t)

v̄i(t)
1

1 + δ̄(t)
v̄i(t) < u(t) ≤ 1

1 − δ̄(t)
v̄i(t)

i = 0, 1, ..., M̄

0 0 < u(t) ≤ 1

1 + δ̄(t)
v̄0

−q (−u(t)) u(t) < 0

(7)

δ̄(t) = 1 − ρ̄(t)

1 + ρ̄(t)
, 0 < ρ̄(t) < 1, v̄0 > 0

In (5) and (7), 2M + 1 and 2M̄ + 1 are the orders of quantizers, v0 and v̄0 are initialization parameters,
V(t), V̄(t) and ρ(t), ρ̄(t) are the range and density of quantizers respectively. δ(t), δ̄(t) are associated with
ρ(t), ρ̄(t) respectively and reflect the quantizer densities.

3. Main results
For the considered continuous-time linear system with quantized state feedback controller (2), the
closed-loop behavior is as follows

ẋ(t) = Ax(t) + Bq̄ (u(t))

= Ax(t) + B (−Kq(x(t)) + ē(t))

= (A − BK)x(t) − BKe(t) + Bē(t) (8)

where e(t) = q (x(t)) − x(t), ē(t) = q̄ (u(t)) − u(t).
Let xia(t) = 1

1+δ(t)
vi(t), xib(t) = 1

1−δ(t)
vi(t), i = 1, 2, . . . , M. Then, it is observed that xMb(t) = 1

1−δ(t)
vM(t)

with vM(t) = 1
ρM (t)

v0 is the saturation threshold of the finite level state quantizer. It can be also obtained:

xMb(t) = 1

ρM(t) (1 − δ(t))
v0 = (1 + δ(t))M

(1 − δ(t))M+1
v0 (9)

considering (6).
It can be derived that if the state quantizer is not saturated and |xi(t)| > 1

1+δ(t)
v0,

ei(t) = δi(t)xi(t), with |δi(t)| ≤ δ(t), ∀i = 1, 2, ..., n.

Also,

e(t) = �(t)x(t) with �(t) = diag{δ1(t), δ2(t), ..., δn(t)}.
Then,

|ei(t)| ≤ δ(t) |xi(t)| , ‖e( · )‖2 ≤ δ2( · )
n∑

i=1

x2
i (·) = δ2( · ) ‖x (·)‖2
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Therefore, ‖e( · )‖ ≤ δ (·) ‖x (·)‖ . In a similar way,

uM̄b(t) = (1 + δ̄(t))
−
M+1

(1 − δ̄(t))M̄
v̄0, with ‖ē( · )‖ ≤ δ̄ (·) ‖u (·)‖ (10)

in case no saturation happens to q̄(u(t)).
Consider the scenario where the state quantizer is not saturated, and suppose u(t) also falls into the

non-saturation area of corresponding quantizer with an executable quantization result, then reminding
ourselves of (3) and (8) gives us ∀ti < t ≤ ti+1

d

dt
xT(t)Qx(t) = xT(t) (A − BK)

T Qx(t) + (−eT(t)
)

KTBTQx(t)

+ ēT(t)BTQx(t) + xT(t)Q (A − BK) x(t) + xT(t)BK (−e(t)) + xT(t)QBē(t)

≤ − ‖x(t)‖2 D + 2δ(t) ‖QBK‖ ‖x(t)‖2 + 2δ̄(t) ‖QB‖ ‖x(t)‖ ‖K‖ (‖x(t)‖
+δ(t) ‖x(t)‖)

≤ ‖x(t)‖2 ( − λmin (D) + 2δ(t) ‖QBK‖ + 2δ̄(t) (1 + δ(t)) ‖QB‖ ‖K‖ ) (11)

where ti is time sequence at which δ(t) and δ̄(t) are renewed, t0 is the time instant when the system gets
into the non-saturated area, τi is the sequence of dwell time of δ(t) and δ̄(t), that is τi = ti+1 − ti.

It can be seen from (11) that in order to achieve Lyapunov stability, δ(t) and δ̄(t) have to be chosen
small enough such that

2δ(t) ‖QBK‖ + 2δ̄(t)(1 + δ(t)) ‖QB‖ ‖K‖ < λmin (D) (12)

For all t, let

2δ(t) ‖QBK‖ + 2δ̄(t) (1 + δ(t)) ‖QB‖ ‖K‖ = σns(t)λmin (D) (13)

then obviously one has to have 0 < σns(t) < 1.
However, it should be noticed that due to characteristics of the actuation component, an executable

q̄ (u(t)) cannot be arbitrarily large. That means, the quantizer for u(t) is saturated, if |−Kq(x(t))| ≥ umax

with umax > 0 being the threshold enforced on u(t) due to physical or practical limitations. Set q̄(u(t)) =
q̄( − Kq (x(t)) ) = sgn( − Kq(x(t)))umax = −γ (t)Kq (x(t)) with 0 < γ (t) = umax

|−Kq(x(t))| < 1. Then although
the state quantizer is not saturated, instead of (8) the corresponding closed-loop behavior is as
follows

ẋ(t) = Ax(t) − γ (t)BKq (x(t))

= (A − BK) x(t) + (1 − γ (t)) BKx(t) − γ (t)BKe(t) (14)

Assumption 1. As the ratio between umax and |−Kq(x(t))|, γ (t) is calculated every time, |−Kq(x(t))| is
updated. It is assumed in this paper that γ (t) satisfies γ (t) = umax

|−Kq(x(t))| > 1 − λmin(D)
2‖QBD‖∀t.

As a result, the differentiation of xT(t)Qx(t) is as follows

d

dt
xT(t)Qx(t) = xT(t) (A − BK)

T Qx(t) + (1 − γ (t)) xT(t)KTBTQx(t)

− γ (t)eT(t)KTBTQx(t) + xT(t)Q (A − BK) x(t)

+ (1 − γ (t)) xT(t)QBKx(t) − γ (t)xT(t)QBKe(t)

≤ −D ‖x(t)‖2 + 2 (1 − γ (t)) ‖QBK‖ ‖x(t)‖2 + 2γ (t)δ(t) ‖QBK‖ ‖x(t)‖2

= ‖x(t)‖2 ( − λmin (D) + (2 (1 − γ (t)) + 2γ (t)δ(t)) ‖QBK‖ ) (15)
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It can be seen from (15) that in order to achieve Lyapunov stability, δ(t) has to chosen small enough such
that

1 − γ (t) + γ (t)δ(t) <
λmin (D)

2 ‖QBK‖ (16)

For all t, let

σs(t) = 2 ‖QBK‖ (1 − γ (t) + γ (t)δ(t))

λmin (D)
, (17)

then obviously one has to have 0 < σs(t) < 1. Also, when |q̄ (u(t))| ≥ umax, we leave δ̄(t) static until the
quantization of u(t) is not saturated. This will happen in finite time as x(t) enters “zoom-in” stage later
on and |−Kx(t)| shrinks accordingly.

Remark 2. It is given in Assumption 1 that γ (t) > 1 − λmin(D)
2‖QBD‖∀t. This condition means in the system

considered in this paper, the size of the quantized control signal q̄ (u(t)) should never exceed the thresh-
old of the actuator umax too much, that is |−Kq(x)|

umax
= 1

γ (t)
< 1

1− λmin(D)
2‖QBD‖

should hold for all t. This condition also
guarantees that a δ(t) > 0 to satisfy (16) exists for all t. Furthermore, it is well understood that a system
with input saturation and unstable state matrix can only be stabilized within a certain region. A limi-
tation enforced on the extent to which the calculated quantized input signal may intrude the threshold
of the actuator to ensure the system stays in such stabilization region is consistent with the common
understanding.

Theorem 3.1. For a continuous-time linear system as given in (1), assume K is a feedback gain ensuring
the existence of positive definite symmetric matrices Q and D as in (3), and initialization parameter v0 is
chosen arbitrarily small. Then there exists a control policy as described in (2), such that the solutions of
(1) with dynamic logarithmic quantizers for x(t) and u(t) as illustrated in (5) and (7) approach an arbi-
trarily small neighborhood of the origin as t → ∞. Meanwhile, the evolution of quantizer sensitivities
should follow the principles as below:

1. Case 1: If ‖x(t)‖ > xMb(t)
√

λmin(Q)
λmax(Q)

, the state quantizer is in the “zoom-out” stage. During this
stage, if the quantizer of u(t) is saturated for some t, increase δ(t) fast enough to dominate
the rate of growth of x(t), that is em‖A−ϕ(t)(In×n+�(t))BK‖t, where m > 1. If the quantization of u(t)
is not saturated at time t, increase δ(t) fast enough to dominate the rate of growth of x(t), that is
em‖A−(1+δ̄′(t))(In×n+�(t))BK‖t, where m > 1.

2. Case 2: Once ‖x(t)‖ ≤ xMb(t)
√

λmin(Q)
λmax(Q)

, the state quantizer is no longer saturated and comes into
the “zoom-in” stage. The sensitivities of the quantizers, satisfy δ(t) = δ (ti) , δ̄(t) = δ̄ (ti) , ∀ti ≤
t < ti+1, with t0 = 0, ti+1 = ti + τi, 0 < τi <

λmin(Q)
η(ti)(1−σ (ti))λmin(D)

where η(ti) = xT (ti)x(ti)
x2

Mb(ti)
, i ∈ Z+ ∪ {0}. The

evolution of δ (ti) is governed by a nonlinear function

δ (ti+1) =F(δ (ti) ) = (1 − h(ti)) + (1 + h(ti))δ(ti)

(1 + h(ti)) + (1 − h(ti)) δ(ti)
(18)

where h(ti) is the solution of f (h(ti)) = 2p(ti)hM+1(ti) + (δ(ti) − 1) h(ti) − (δ(ti) + 1) = 0, where

p(ti) =
√

λmin(Q) − τiη(ti)(1 − σ (ti))λmin(D)

λmin(Q)

with Q,D as given in (3).
The evolution of δ̄ (ti) is governed by the evolution of uM̄b(t) and can be solved for according to
(10) and (7). uM̄b(t) can be easily calculated as uM̄b(t) = uM̄b(ti), ∀ti ≤ t < ti+1, with

uM̄b(ti) =
n∑

j=1

∣∣kj

∣∣ xMb(ti) (19)

https://doi.org/10.1017/S0263574721001612 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001612


2222 Jiashuo Wang et al.

Proof. Firstly we introduce the “zoom-out” stage of x(t). During this stage, ‖x(t)‖ > xMb(t)
√

λmin(Pj)

λmax(Pj)
,

which corresponds to Case 1 in Theorem 1.
The quantizer of u(t) is saturated if |−Kq(x(t))| ≥ umax. Let |−ϕ(t)Kq(x(t))| = umax,

0 < ϕ(t) < 1.

ẋ(t) = Ax(t) + Bumaxsgn( − Kq(x(t)))

= Ax(t) + B |−ϕ(t)Kq(x(t))| sgn( − Kq(x(t)))

= Ax(t) + ϕ(t)B( − Kq(x(t)))

= (A − ϕ(t)(In×n + �(t))BK) x(t)

Define

φ(t) = e‖A−ϕ(t)(In×n+�(t))BK‖t.

It is worth noticing that as the ratio between umax and |−Kq(x(t))|, ϕ(t) is calculated every time
|−Kq(x(t))| is updated.

So during the “zoom-out” stage of x(t), if |−Kq(x(t))| ≥ umax for some t, the quantization of x(t) has
to “zoom-out” faster than the rate of growth of x(t) in order to catch the system state in finite time.
That means in such cases, it is required that δ(t) is increased at a speed fast enough to dominate the rate
of growth of em‖A−ϕ(t)(In×n+�(t))BK‖t, where m > 1. Obviously, the greater m is, the earlier xMb catches up
with x(t). But an extremely large m may deteriorate the system performance by incurring much too fast
dynamic.

If the quantization of u(t) is not saturated or some t during the “zoom-out” stage of the state quantizer,
one has |−Kq(x(t))| < umax. Let ē(t) = δ̄′(t)u(t) = −δ̄′(t)Kq(x(t)),

∣∣δ̄′(t)
∣∣ < δ̄(t).

ẋ(t) = Ax(t) + Bq̄( − Kq(x(t)))

= Ax(t) − BKq(x(t)) + Bē (u(t))

= Ax(t) − BKq(x(t)) − δ̄′(t)BKq(x(t))

= (
A − (

1 + δ̄′(t)
)

(In×n + �(t))BK
)

x(t)

Define

φ(t) = e‖A−(1+δ̄′(t))(In×n+�(t))BK‖t.

So during the “zoom-out” stage of x(t), if |−Kq(x(t))| ≤ umax for some t, the quantization of x(t) has
to “zoom-out” faster than the rate of growth of x(t) in order to catch the system state in finite time. That
means in such cases, it is required that δ(t) is increased at a speed fast enough to dominate the rate of
growth of em‖A−(1+δ̄′(t))(In×n+�(t))BK‖t, where m > 1. The greater m is, the earlier xMb catches up with x(t).
But an extremely large m may deteriorate the system performance by incurring much too fast dynamic.

Then there exists a positive integer i0 such that

∥∥x(ti0 )
∥∥ ≤ xMb(ti0 )

√
λmin(Q)

λmax(Q)
(20)

Define

i0: = min

{
r ≥ 0: ‖x(tr)‖ ≤ xMb(tr)

√
λmin(Q)

λmax(Q)
,

}

Then from (20), one has

xT(ti0 )x(ti0 ) ≤ x2
Mb(ti0 )

λmin(Q)

λmax(Q)
xT(ti0 )x(ti0 )λmax(Q) ≤ x2

Mb(ti0 )λmin(Q).
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Considering the fact that xT(ti0 )Qx(ti0 ) ≤ xT(ti0 )x(ti0 )λmax(Q), one has

xT(ti0 )Qx(ti0 ) ≤ x2
Mb(ti0 )λmin(Q)

Remark 3. It is not hard to see that with a higher rate of growth of δ(t), the rate of growth of xMb(t) is
also higher and i0 becomes smaller.

Remark 4. Also, although the rule of tuning δ(t) continuously during “zoom-out” stage is provided in
Theorem 1, the designer can still choose to update δ(t) in continuous time or only at certain discrete
instants based on the application scenario. But the evolution of δ(t) should always satisfy the dominance
rule, that is δ(t) increases with a rate dominating that of x(t).

Next, we come to the “zoom-in” stage, which corresponds to Case 2 in Theorem 1. Considering (8)
or (14) with (12) we have

xT(ti0 + 1)Qx(ti0 + 1) = xT(ti0 )Qx(ti0 ) +
∫ ti0 +τi0

ti0

d

dt
xT(t)Qx(t)dt

≤ xT(ti0 )Qx(ti0 ) +
∫ ti0 +τi0

ti0

−(1 − σ (ti0 ))λmin(D)xT(ti0 )x(ti0 )dt

≤ x2
Mb(ti0 )λmin(Q) − τi0 (1 − σ (ti0 ))λmin(D)xT(ti0 )x(ti0 ) (21)

where σ (ti0 ) is chosen either as σns(ti0 ) in (13) or σs(ti0 ) in (17) depending on whether the actuation unit
is saturated. As xT(ti)x(ti) = η(ti)x2

Mb(ti) with 0 ≤ η(ti) < 1, ∀i, we have

xT(ti0 + 1)Qx(ti0 + 1) ≤x2
Mb(ti0 )(λmin(Q) − τi0η(ti0 )(1 − σ (ti0 ))λmin(D))

It is worth noticing that η(ti) is the ratio between xT(ti)x(ti) and x2
Mb. Its value should be calculated

every time x(ti) is updated. Then remind ourselves of (21) to derive

xT(ti0+1)Qx(ti0+1) ≤ x2
Mb(ti0+1)λmin(Q).

Remark 5. Based on Theorem 1, τi can be chosen as any value as long as 0 < τi <
λmin(Q)

η(ti)(1−σ (ti))λmin(D)
is

satisfied. But in real applications, trials may be carried out such that a τi which leads to better system
performance is chosen.

By repeating the procedure above, we have xT(ti)Qx(ti) ≤ x2
Mb(ti)λmin(Q). This also guarantees that the

system will not go back to “zoom-out” stage.
Due to (19), we have

∥∥u
(
ti0

)∥∥ ≤ ∥∥k1q
(
x1

(
ti0

))∥∥ + ∥∥k2q
(
x2

(
ti0

))∥∥ + · · · + ∥∥knq
(
xn

(
ti0

))∥∥
≤ ‖k1‖ xMb

(
ti0

) + ‖k2‖ xMb

(
ti0

) + · · · + ‖kn‖ xMb

(
ti0

)
= uM̄b

(
ti0

)
Similarly, we have ‖u (ti)‖ ≤ uM̄b (ti) , ∀i ≥ i0.

It is noticed that f (0) = − (δ(ti) + 1) < 0 and f (1) = 2 (p(ti) − 1) < 0. As f (h(k)) is continuously
differentiable, the differential of f (h(ti)) is shown as

f ′(h(ti)) = 2(M + 1)p(ti)h
M(ti) + (δ(ti) − 1) .
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Let f ′(h̄(ti)) = 0, we have

h̄(ti) =
∣∣∣∣∣ M

√
1 − δ(ti)

2(M + 1)p(ti)

∣∣∣∣∣ .

f (h̄(ti)) = 1 − δ(ti)

M + 1

∣∣∣∣∣ M

√
1 − δ(ti)

2(M + 1)p(ti)

∣∣∣∣∣ − (1 − δ(ti))

∣∣∣∣∣ M

√
1 − δ(ti)

2(M + 1)p(ti)

∣∣∣∣∣ − (δ(ti) + 1)

= − M

M + 1
(1 − δ(ti))

∣∣∣∣∣ M

√
1 − δ(ti)

2(M + 1)p(ti)

∣∣∣∣∣ − (δ(ti) + 1)

< 0

Then, we have the following properties of f (h(ti)):

1. f (h(ti)) is monotonically decreasing between 0 and h̄(ti) and monotonically increasing between
h̄(ti) and ∞.

2. f (∞) > 0.
3. If h̄(ti) > 1, f (h(ti)) has single root between h̄(ti) and ∞. If h̄(ti) ≤ 1, f (h(ti)) has single root

between 1 and ∞.

4. Define the root of f (h(ti)) as h∗(ti), such that f (h∗(ti)) = 0 and h∗(ti) > 1, which implies δ(ti + 1) <

δ(ti).

5. As i increases, δ(ti) and h(ti) decrease, it can then be derived that lim
i→∞

h(ti) = 1 and lim
i→∞

δ(ti) = 0.

As a result of (5), xMb(ti) = (1+δ(ti))M

(1−δ(ti))M+1 v0 → v0 as i → ∞ and

lim
i→∞

xT(ti)Qx(ti) ≤ lim
i→∞

x2
Mb(ti)λmin(Q)

= v2
0λmin(Q) (22)

Obviously, (22) leads to ‖x(ti)‖ ≤ v0 as i → ∞, which further guarantees ‖x(t)‖ ≤ v0 as t → ∞. Then,
stability of system is guaranteed as v0 is finite and can be chosen arbitrarily small.

4. Numerical results

Example 1. Consider a third-order continuous-time linear system

ẋ(t) =
⎡
⎢⎣

0 1 0

0 −0.2 0.5

0 0 0

⎤
⎥⎦ x(t) +

⎡
⎢⎣

0

0

5

⎤
⎥⎦ u(t)

with a quantized feedback control law designed as K = [
0.0024 0.0120 0.0800

]
. As a result,

eig(A − BK) = [−0.1 −0.2 −0.3
]

.

Without loss of generality, set M = M̄ = 10, v0 = 0.1, v̄0 = 0.005, umax = 0.05 for x1, x2, x3. x (0) =[
1.6 0.9 1.8

]T
.

The quantization of x1, x3 encounters saturation at t = 0, then during the “zoom-out” stage, choose
m = 3, which results in i01 = 13 and i03 = 1. δ (ti0) and δ̄ (ti0) are both chosen as 0.13 which satisfy
Eq. (12) or (16). Then during the “zoom-in” stage, it takes the states 17 time intervals to enter the
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Figure 3. Third-order system states using dynamic logarithmic quantizer

neighborhood of the origin, that is ‖x(t)‖ ≤ v0 = 0.1. And, it is observed the states stay within the
neighborhood ever after, that is ‖x(t)‖ ≤ v0, ∀t ≥ t30.

The state variables x1, x2, x3 are shown as Figs. 3 and 4 gives a 3D view of system states. Figure 5
illustrates how ‖x(t)‖ converges into a neighborhood of the origin the width of which is v0.

The control signals u and q̄(u) are shown in Fig. 6. We could see that the control signal goes through
four stages, that is saturated, unsaturated, saturated, then enters unsaturated stage and remains in this
stage ever after.

It is observed that under quantized feedback control with proposed dynamic logarithmic quantizer,
the system state converge to a spherical neighborhood of the origin whose radius is v0. Figures 7 and 8
show the system states and control signal of the same system with linear state quantization algorithm
as in ref. [13]. Compared with the dynamic logarithmic quantization algorithm proposed in this paper,
in order to maintain the same saturation value and initial value of sensitivity, the order of dynamic
linear quantizer must satisfies M′ ≥ 13 which is larger than the order of dynamic logarithmic quantizer
M = 10. It is also noticed that the algorithm in ref. [13] did not consider the quantization of the control
signal, which is equivalent to assuming the quantization of the control signal as ideal. However, with
the algorithm proposed in this paper, quantizers are applied to both state and control signals which is
closer to situation in the actual NCSs. Although more quantization error is inevitably brought into the
system, the overall system performance is not deteriorated in comparison to that in ref. [13]. This is the
benefit brought by suitable controller-quantizer co-design, which is another advantage of the proposed
algorithm over that in ref. [13].
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Figure 4. 3D view of system states using dynamic logarithmic quantizer
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Figure 5. Convergence of system state into a neighborhood of the origin

Example 2. Consider the uninterruptible power system in ref. [20]

ẋ(t) =
⎡
⎢⎣

0.9226 0.6330 0

1 0 0

0 1 0

⎤
⎥⎦ x(t) +

⎡
⎢⎣

0.5

0

0.2

⎤
⎥⎦ u(t)

and choose a quantized feedback controller gain K = [
10.0150 24.2677 9.5755

]
. As a result,

eig(A − BK) = [−1 −2 −3
]

. Set M = M̄ = 10, v0 = 0.1, v̄0 = 0.01, umax = 50 for x1, x2, x3. x (0) =[−0.7 0.6 0.3
]T

.
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Figure 6. Control signal using dynamic logarithmic quantizer
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Figure 7. System states using dynamic linear quantizer
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Figure 8. Control signal using dynamic linear quantizer
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Figure 9. System states of the uninterruptible power system

During the “zoom-out” stage, choose m = 1.5, δ (ti0) = 0.1 and δ̄ (ti0) = 0.1. Then during the “zoom-
in” stage, it takes the states 484 time intervals to enter the neighborhood of the origin, that is ‖x(t)‖ ≤
v0 = 0.1. And it is observed the states stay within the neighborhood ever after, that is ‖x(t)‖ ≤ v0, ∀t ≥ t484.

The state variables x1, x2, x3 are shown as Figs. 9 and 10 gives a 3D view of system states.
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Figure 10. 3D view of system states

5. Conclusion
In this paper, finite level quantization is performed to both the plant state and the control signal in
continuous linear systems. In order to cope with the saturation phenomenon and guarantee coarseness
of quantization, logarithmic quantizers with dynamic sensitivities are designed and dynamics of the
sensitivities during “zoom-in” /“zoom-out” stages is proposed. With the proposed algorithm, closed-
loop system trajectory approaches an arbitrarily small neighborhood of the origin as t → ∞ with a
properly designed quantized feedback control law. Numerical simulation results are given in the end. As
the current results is restricted to single-input systems, the stability of multiple input continuous-time
linear system with dynamic logarithmic quantizers will be looked into as the future research plan.
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A. Appendix
As h(ti) is the solution of f (h(ti)) = 2p(ti)hM+1(ti) + (δ(ti) − 1) h(ti) − (δ(ti) + 1) = 0, it is derived that

2hM+1(ti)

(1 + h(ti)) + (1 − h(ti)) δ(ti)
p(ti) = 1 (A1)

For t = ti0 , rewrite (18) as

h(ti0 ) = 1 + δ(ti0 )

1 + δ(ti0 + 1)
· 1 − δ(ti0 + 1)

1 − δ(ti0 )
. (A2)

Combining (A2) with (A1) gives us(
1 + δ(ti0 )

1 + δ(ti0+1)

)M (
1 − δ(ti0+1)

1 − δ(ti0 )

)M+1

p(ti0 ) = 1

(1 + δ(ti0 ))M

(1 − δ(ti0 ))M+1
p(ti0 ) = (1 + δ(ti0+1))M

(1 − δ(ti0+1))M+1
(A3)

As

0 < τi0 <
λmin(Q)

η(ti0 )(1 − σ (ti0 ))λmin(D)
,

one has

0 < p(ti0 ) =
√

λmin(Q) − τi0η(ti0 )(1 − σ (ti0 ))λmin(D)

λmin(Q)
< 1 (A4)

Combining (A3) with (A4) gives us

(1 + δ(ti0 ))M

(1 − δ(ti0 ))M+1

√
λmin(Q) − τi0η(ti0 )(1 − σ (ti0 ))λmin(D)

λmin(Q)
= (1 + δ(ti0+1))M

(1 − δ(ti0+1))M+1

(
(1 + δ(ti0 ))M

(1 − δ(ti0 ))M+1

)2

v2
0[λmin(Q) − τi0η(ti0 )(1 − σ (ti0 ))λmin(D)] =

(
(1 + δ(ti0+1))M

(1 − δ(ti0+1))M+1

)2

v2
0λmin(Q) (A5)

Considering (9), (A5) implies

x2
Mb(ti0 )(λmin(Q) − τi0η(ti0 )(1 − σ (ti0 ))λmin(D)) = x2

Mb(ti0+1)λmin(Q).
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