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It is generally accepted that ocean internal solitary waves can arise from the interaction
of the barotropic tide with the continental shelf, which generates an internal tide that
in turn steepens and forms solitary waves as it propagates shorewards. Some field
observations, however, reveal large-amplitude internal solitary waves in deep water,
hundreds of kilometres away from the continental shelf, suggesting an alternative
generation mechanism: tidal flow over steep topography forces a propagating beam
of internal tidal wave energy which impacts the thermocline at a considerable distance
from the forcing site and gives rise to internal solitary waves there. Motivated by
this possibility, a simple nonlinear long-wave model is proposed for the interaction
of a tidal wave beam with the thermocline and the ensuing local generation of
solitary waves. The thermocline is modelled as a density jump across the interface of
a shallow homogeneous fluid layer on top of a deep uniformly stratified fluid, and
a finite-amplitude propagating internal wave beam of tidal frequency in the lower
fluid is assumed to be incident and reflected at the interface. The induced weakly
nonlinear long-wave disturbance on the interface is governed in the far field by
an integral–differential equation which accounts for nonlinear and dispersive effects
as well as energy loss owing to radiation into the lower fluid. Depending on the
strength of the thermocline and the intensity of the incident beam, nonlinear wave
steepening can overcome radiation damping so a series of solitary waves may arise
in the thermocline. Sample numerical solutions of the governing evolution equation
suggest that this mechanism is quite robust for typical oceanic conditions.

1. Introduction
Internal solitary waves are commonly observed in the coastal oceans and are

often modelled by evolution equations of the Korteweg–de Vries type, appropriate
for shallow waters (see, for instance, Grimshaw 2001; Helfrich & Melville 2006).
In coastal regions it is generally accepted that these can be generated through the
interaction of the barotropic tide with the continental shelf, generating an internal tide
that in turn steepens and forms internal solitary waves as it propagates shorewards.

However, based on field observations in the Bay of Biscay, New & Pingree (1990)
first suggested that ocean internal solitary waves may also arise from the interaction of
a propagating internal tidal beam with the thermocline. In this alternative mechanism,
the internal tidal beam is itself generated by tidal flow over steep topography near the
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shelf break, but impacts the thermocline at a considerable distance from the forcing
site and thereby generates internal solitary waves propagating offshore in deep water.

The field data in the Bay of Biscay revealed large-amplitude solitary wave packets
about 150 km away from the shelf break. New & Pingree (1990, 1992) argued that it
was unlikely for these waves to have travelled this far along the thermocline without
experiencing significant dissipation. They conjectured that the observed solitary waves
were instead generated locally by a propagating beam of internal tidal energy which
had originated at the topography and, after reflecting from the bottom, encountered
the thermocline close to the position where the solitary waves were found.

There are additional observations in the Bay of Biscay that support the hypothesis
of a local generation mechanism. By analysing remote-sensing synthetic aperture
radar data, New & da Silva (2002) identified packets of solitary waves in the vicinity
of the shelf break as well as at a considerable distance (150–180 km) from the nearest
topography; the latter were generated locally by a tidal wave beam originating from
the shelf break, as both sets of solitary waves were seen to decay over 90–120 km
of travel. Moreover, although earlier observations had focused on the northern and
central parts of the Bay of Biscay, Azevedo, da Silva & New (2006) presented evidence
from satellite images that the southern part of this bay is also a site with high-level
internal solitary-wave activity, and the same local generation mechanism is applicable
there as well.

On the theoretical side, Gerkema (2001) studied the local generation of solitary
waves by internal tides in a two-layer flow configuration, representing the thermocline
as a density jump across the interface of a relatively shallow homogeneous fluid layer
on top of a finite-depth stratified fluid. The bottom topography had a smooth shelf
profile, and a time-harmonic current of tidal frequency was used as forcing. Gerkema
(2001) computed the linear hydrostatic response as an expansion in terms of the long-
wave modes of this two-fluid system, and argued that local generation of solitary
waves is the result of a two-stage process: an internal tidal beam originating at the
topography first hits the thermocline and, via an essentially linear mechanism, excites
an appreciable long-wave disturbance there, only if the thermocline is moderately
strong – a condition that apparently was met in the Bay of Biscay according to the
field data. Then, in the course of propagating along the thermocline, the disturbance
triggered by the beam experiences the effects of dispersion and nonlinearity, thereby
forming solitary waves. This scenario is supported by numerical simulations using
a coupled equation system that allows for dispersive and nonlinear effects in the
modal expansion of the response; the solitary waves gradually decay though, owing
to leakage of energy in the lower fluid as they propagate along the thermocline.

In the present study, the thermocline again is modelled as a density jump across
the interface of a homogeneous layer lying on top of a stratified fluid. However,
attention is focused on the reflection of a tidal beam that is incident at the interface
from the lower fluid, assumed to be infinitely deep, as well as on the evolution of the
resulting interfacial disturbance, ignoring the process by which the beam is generated.
A similar two-layer model was used by Thorpe (1998) to study nonlinear effects in the
reflection of internal waves at the base of the ocean mixed layer. The approach taken
here accounts for the essential ingredients of the mechanism for local generation of
solitary waves, while avoiding a modal expansion. This makes it possible to derive
a long-wave asymptotic model via suitable scaling of the governing equations, and
thereby examine systematically the conditions under which solitary waves can arise.

Internal wave beams derive from the anisotropic nature of wave propagation
in stratified fluids, since gravity provides a preferred direction. Ocean internal wave
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beams, in particular, are excited by tidal flow over bottom topography as demonstrated
by theoretical models (Bell 1975; Khatiwala 2003; Lamb 2004) as well as field
measurements. In the Bay of Biscay, for instance, Pingree & New (1989, 1991) report
observations of a tidal wave beam with amplitudes ranging from approximately 150 m
near the shelf break to 100 m further out into the deep ocean.

In the two-fluid configuration considered here, apart from internal waves
propagating in the lower fluid with frequencies less than the buoyancy (Brunt–Väisälä)
frequency, it is also possible to have interfacial waves; these, however, propagate
without leaking energy into the lower fluid only for frequencies above the Brunt–
Väisälä frequency. As a result, ignoring nonlinear effects, interfacial disturbances
owing to a tidal wave beam incident and reflected at the interface, would be attenuated
far from the region of forcing. This suggests that solitary waves could arise from the
interaction of a beam with the thermocline only if radiation damping is relatively
light, thus allowing nonlinear steepening to come into play.

In our model, taking the upper fluid layer to be thin relative to the interfacial
horizontal length scale, as is typically the case for the upper well-mixed layer of the
ocean, light radiation damping results when the thermocline (the strength of which is
controlled by the density jump at the interface) is not very weak. Under this condition,
nonlinear-steepening and dispersive effects can be brought into balance with radiation
damping, and the far-field evolution of the interfacial disturbance induced by a finite-
amplitude wave beam is governed by an integral–differential equation of the type
derived in Maslowe & Redekopp (1980) and Romanova (1981).

This evolution equation is subject to forcing from the incident and reflected tidal
wave beam. The induced disturbance, which propagates to the right of the region
where the incident beam hits the thermocline, is a sinusoidal wave with the same
frequency as the forcing and wavelength determined by the interfacial long-wave
speed, that in turn is controlled by the thermocline strength. The amplitude of this
near-field response is a key factor in deciding whether nonlinear steepening is strong
enough for solitary waves to form in the far field. Fixing the incident beam, it turns
out that the near-field response amplitude becomes small in the limit of a strong
or weak thermocline; as a result, no solitary-wave generation is feasible in either
of these two extremes, explaining the conclusion reached by Gerkema (2001) that
solitary waves arise only when the thermocline is moderately strong.

It appears that the nonlinear long-wave model proposed here could be generalized
to account for the Earth’s rotation, which is known to modify the propagation
direction of tidal wave beams and also to introduce additional dispersive effects in
the propagation of disturbances along the thermocline. We shall return to this issue
at the end of the paper.

2. Flow model and linear response
Our analysis is based on an inviscid two-fluid configuration sketched in figure 1.

A homogeneous fluid of depth h (0 <z <h), representing the upper well-mixed layer
of the ocean, is bounded by a rigid lid and lies on top of an infinitely deep fluid
(−∞ < z < 0) which, for simplicity, is taken to be uniformly stratified with (constant)
Brunt–Väisälä frequency N0, and the Boussinesq approximation is made. Denoting
the reference density in the lower fluid by ρ0 and the constant density of the upper
layer by ρ0(1−∆), the density jump ρ0∆ (∆ � 1) across the interface z = 0 represents
the thermocline.
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h

L
z = η(x, t) 

ρ =  ρ0 (1– ∆)

ρ0, N0

z = h

x

z

g

Figure 1. Sketch of the two-fluid configuration. The upper fluid layer is homogeneous with
density ρ = ρ0(1 − ∆). The lower fluid is uniformly stratified and Boussinesq with reference
density ρ0 and constant buoyancy frequency N0.

This two-fluid system supports interfacial gravity waves owing to the density jump
at z = 0 as well as internal gravity waves owing to the buoyancy force in the lower
fluid; the former are akin to trapped waves propagating along the ocean thermocline,
whereas the latter can form wave beams similar to those induced by tidal flow over
bottom topography. Our interest centres on the possible generation of interfacial
solitary waves by an internal wave beam that is incident and reflected at the interface.
To address this issue, we shall study the reflection of a finite-amplitude beam at the
interface and the subsequent evolution of the resulting interfacial disturbance.

We begin by summarizing the salient features of the linear response; while nonlinear
wave steepening is necessary for the formation of solitary waves, the linear response
provides motivation for the appropriate scaling of the nonlinear problem in §3. In

dimensionless variables, using h as length scale and h/c0 as time scale, c0 =
(
gh∆

)1/2

being the long-interfacial-wave speed, the governing equations for linear disturbances
consist of Laplace’s equation

φxx + φzz = 0 (0 < z < 1), (2.1)

for the velocity potential φ(x, z, t) in the upper fluid layer, and

(ζxx + ζzz)t t + µ2ζxx = 0 (−∞ < z < 0), (2.2)

for the vertical particle displacement ζ (x, z, t) in the lower fluid, where

µ =
N0h

c0

. (2.3)

These equations are subject to the boundary condition

φz = 0 (z = 1) (2.4)

at the rigid lid, and the kinematic

ηt = φz = ζt (z = 0), (2.5)

and dynamic

ηxx − φtxx − ζztt = 0 (z = 0) (2.6)

conditions at the interface.
It is clear from (2.2) that harmonic plane waves, ζ = f (z) exp{i(kx − ωt)},

propagating along x but confined close to the interface, f (z) → 0 as z → −∞,
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z = 1

x

z
g

c

c

θ θ

cg

cg

Figure 2. A propagating harmonic plane internal wave incident from the lower fluid on the
interface at an angle θ to the horizontal and reflected there. The group velocity cg of the
incoming wave points towards the interface, while that of the reflected wave points in the
opposite direction. The phase speed c is perpendicular to cg .

can be found only if

ω > µ. (2.7)

This condition is also brought out by the dispersion relation of interfacial waves,

ω2 =
k tanh k

1 + (1 − µ2/ω2)1/2 tanh |k| , (2.8)

that can be readily obtained from the equation system (2.1)−(2.6), taking ζ → 0
as z → −∞. According to (2.8), µ is a cutoff frequency below which k is complex,
implying that interfacial waves are evanescent rather than propagating along x when
ω <µ.

According to the field observations (New & Pingree 1990), interfacial disturbances
are long compared to h so k � 1; in this limit, (2.8) can be approximated as

ω2 = k2
{
1 − (1 − µ2/ω2)1/2|k| + · · ·

}
. (2.9)

Note that, since ω2 ∼ k2 � 1, ω2 � µ2 in general; long interfacial waves, therefore,
are strongly evanescent owing to radiation damping unless

k ∼ µ � 1. (2.10)

From the definition of µ in (2.3), it is clear that the condition µ � 1, under which
long waves propagate subject to light radiation damping along the interface, would
not be satisfied if the thermocline happens to be very weak. Since, as will be seen
later, nonlinear steepening is possible only under light radiation damping, solitary
waves would not be expected to form in the limit of a very weak thermocline.

Consider next a propagating harmonic plane internal wave in the lower fluid
incident on the interface at an angle θ to the horizontal (figure 2). The appropriate
expressions for ζ , η and φ are

ζ = exp{i(kx − lz − ωt)} + B exp{i(kx + lz − ωt)}, (2.11)

η = A exp{i(kx − ωt)}, (2.12)

φ = D cosh k(z − 1) exp{i(kx − ωt)}, (2.13)
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where k, l > 0 and ω = µ sin θ =µk/(k2 + l2)1/2 according to the familiar dispersion
relation of internal waves. Note that, in keeping with causality, the wavevectors in
(2.12) have been chosen such that the group velocity (and hence the direction of
energy transport) associated with the incoming wave points towards the interface,
while that of the reflected wave points in the opposite direction.

The undetermined coefficients A, B and D in (2.12)–(2.13) are found by imposing
the interfacial conditions (2.5) and (2.6). The reflection coefficient, in particular,
satisfies |B|2 = 1 and is consistent with the expression of Delisi & Orlanski (1975) in
the short-wave limit (k � 1). Of more interest here is A, the amplitude of the induced
interfacial wave, which in the long-wave limit (k � 1) can be approximated as

A = −i
kµ2 sin 2θ

k2 − µ2 sin2 θ − 1
2
ikµ2 sin 2θ

. (2.14)

As expected, when µ � 1 so condition (2.10) is satisfied, the poles of A are close to
the real k-axis, corresponding to slightly evanescent interfacial waves.

The interfacial disturbance induced by the reflection of an internal wave beam,
incident on the interface at an angle θ to the horizontal, can be readily found by
superposition. Specifically, an incoming beam with frequency ω = µ sin θ takes the
form

ζinc =
e−iωt

2π

∫ ∞

0

Q(k) exp{ik(x − z cot θ)} dk, (2.15)

where Q(k) is related to the specific beam profile and k is restricted to k > 0, so that
energy is transported towards the interface in accordance with figure 2. The induced
interfacial disturbance then is

η =
eiωt

2π

∫ ∞

0

Q(k)A(k)eikx dk, (2.16)

where A(k) is the known interfacial amplitude for plane-wave reflection, given by
(2.14) in the long-wave limit.

Since the poles of A(k) are away from the real k-axis, the linear response (2.16) is
locally confined, η → 0 as x → ±∞. However, as remarked earlier, in the case µ � 1,
A has a pole at k = k∗ slightly above the positive k-axis:

k∗ = ω + 1
2
iωµ cos θ, (2.17)

and this pole provides the far-field response for x → ∞:

η ∼ µ2 sin 2θ

2
Q(ω) exp

(
−ωµ cos θ

x

2

)
eiω(x−t) (x → ∞). (2.18)

According to (2.18), under flow conditions for which µ � 1, the far-field response at
the interface propagates to the right of the incident beam only, and is in the form of a
long sinusoidal wave with slowly decaying amplitude owing to leaking of energy into
the lower fluid. The possibility that nonlinear steepening may overcome the radiation
damping of the linear response (2.18) to give rise to solitary waves is examined below.

3. Nonlinear response
3.1. Reflection of tidal wave beam

Based on the linear analysis of § 2, long interfacial waves of wavenumber k and
frequency ω are subject to light radiation damping, so nonlinear steepening is likely
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to be more effective, when k ∼ ω ∼ µ � 1. This suggests treating µ as a small
parameter and re-scaling x and t as follows:

X = µx, T = µt (µ � 1). (3.1)

Furthermore, from (2.18), such lightly damped interfacial waves are triggered by wave
beams incident on the interface from below at an angle θ to the horizontal, where
θ =O(1) in general. In the lower fluid, therefore, the vertical coordinate is scaled in
sympathy with X:

Z = µz. (3.2)

The vertical particle displacement ζ (X, Z, T ) then is governed, to leading order in µ,
by a linear equation analogous to (2.2):

(ζXX + ζZZ)T T + ζXX = 0 (−∞ < z < η), (3.3)

even for finite-amplitude disturbances.
Turning next to the interfacial elevation η(X, T ), according to (2.14), for long waves

with k = O(µ), the ratio of the interfacial amplitude to the incident-wave amplitude
is O(µ). This suggests that the interfacial disturbance induced by a finite-amplitude
long-wave beam is weakly nonlinear, namely

η = µη̃; (3.4)

as a result, to leading order in µ, the linearized interfacial conditions (2.5) and (2.6)
on z =0 continue to hold:

φz = µζT = µ2η̃T (z = 0), (3.5)

η̃XX − φT XX − ζZT T = 0 (z = 0). (3.6)

Furthermore, the velocity potential in the upper fluid layer, φ(z; X, T ), which satisfies
Laplace’s equation (2.1) and the rigid-lid condition (2.4), can be expanded as

φ = a(X, T ) − 1
2
µ2(z − 1)2aXX + · · · . (3.7)

Therefore, according to (3.5), η̃T = aXX =φXX so (3.6) becomes a forced wave equation
for η̃(X, T ):

η̃XX − η̃T T = ζZT T |Z=0. (3.8)

The forcing on the right-hand side of (3.8) derives from the incident and reflected
internal wave beam at the interface. Specifically, for a finite-amplitude beam incident
at an angle θ to the horizontal with frequency Ω = sin θ , it follows from (3.3) that

ζ = {q(X − Z cot θ) + r(X + Z cot θ)} e−iΩT + c.c., (3.9)

where c.c. stands for the complex conjugate. However, according to (3.5), ζ =O(µ)
on Z = 0, implying that the incident beam is nearly perfectly reflected at the interface,
so r(X) = − q(X) to leading order. Hence,

ζZT T |Z=0 = 2Ω2 cot θ qX e−iΩT + c.c., (3.10)

where

q(X) =
1

2π

∫ ∞

0

q̂(k) eikX dk, (3.11)

in accordance with the radiation condition noted earlier (see figure 2), requiring the
incoming and reflected beam profiles q(X) and r(X) to involve plane waves with k > 0
only.
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Finally, inserting (3.10) into (3.8), the interfacial response η̃(X, T ) satisfies

η̃XX − η̃T T = sin 2θ qX e−iΩT + c.c. (3.12)

This forced wave equation can be readily solved by taking Fourier transform in X.
The response propagates to the right of the incident beam (X > 0) only and, assuming
that the forcing owing to the incident and reflected beam is turned on at T = 0, is
given by

η̃(X, T ) ∼ 1
2
sin 2θ q̂(Ω) eiΩ(X−T )H(T − X) + c.c. (X → ∞), (3.13)

where H(X) stands for the Heaviside function. According to (3.13), to leading order
in µ, the reflection of a finite-amplitude beam at the interface gives rise to a weakly
nonlinear sinusoidal long wave there, which propagates to the right of the incident
beam.

The wave amplitude in (3.13), being proportional to q̂(Ω), depends on the incoming-
beam profile. To bring out this effect more clearly, it is convenient to introduce the
parameter

α =
N0L

c0

, (3.14)

where L denotes the characteristic beam width. Note that α measures the width along
the interface of the incoming-beam profile, L/ sin θ , in comparison to 2πc0/(N0 sin θ),
the wavelength of the generated long wave (3.13) on the interface. In terms of α, the
incident beam then takes the form

ζinc = F (χ/α) e−iΩT + c.c. (3.15)

with

F (χ/α) =
1

2π

∫ ∞

0

eikχ/αF̂ (k) dk, (3.16)

where χ = X sin θ − Z cos θ is the cross-beam coordinate and, in view of (3.9),

q(X) = F (X sin θ/α). (3.17)

Therefore, since Ω = sin θ ,

q̂(Ω) =
α

sin θ
F̂ (α), (3.18)

and (3.13) becomes

η̃(X, T ) ∼ αF̂ (α) cos θ eiΩ(X−T )H(T − X) + c.c. (X → ∞). (3.19)

From (3.19), it is now clear that the amplitude of the induced interfacial wave, which
is a major control of the nonlinear steepening, hinges on the value of the parameter
α. In particular, fixing the beam profile and angle of incidence, the maximum wave
amplitude on the interface is expected when α = O(1); as discussed later (see §4), this
flow regime is realized when the thermocline is of moderate strength.

We also remark that, unlike the linear interfacial response (2.18) obtained earlier,
expressions (3.13) and (3.19) do not include radiation damping; this comes into play
for X =O(1/µ) along with the nonlinear and dispersive effects. A far-field analysis
that takes into account these effects is presented below.

3.2. Far-field evolution

For the purpose of analysing the far-field response, we shall adopt a reference
frame moving with the interfacial linear-long-wave speed, Θ = X − T , and introduce
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ξ = µX = µ2x so that ξ = O(1) in the far field. In terms of these variables, the near-
field response (3.19) may be viewed as an ‘inner’ solution valid as ξ → 0, and the
far-field response η̃(Θ, ξ ) (−∞ <Θ < ∞, ξ > 0), which is the ‘outer’ solution, obeys
the matching condition:

η̃ → αF̂ (α) cos θ eiΩΘH(−Θ) + c.c. (ξ → 0). (3.20)

As the incident and reflected beam is not present in the far field, η̃(Θ, ξ ) thus
propagates as a free disturbance for ξ > 0, and (3.20) provides the necessary connection
with the forcing owing to these beams.

We now derive an equation that governs the evolution of the far-field response for
ξ > 0. Consider the lower fluid first. Since no forcing is present, the far-field vertical
particle displacement accompanying η̃(Θ, ξ ) is weakly nonlinear, ζ = µζ̃ (Θ, Z, ξ ) and,
from (3.3), satisfies the linear equation

ζ̃ΘΘ + ζ̃ZZ + ζ̃ = 0 (−∞ < Z < 0), (3.21)

to leading order in µ.
Turning next to the upper fluid layer, using Laplace’s equation (2.1) along with the

rigid-lid condition (2.4), the velocity potential φ(z; Θ, ξ ) has an expansion analogous
to (3.7):

φ = ã(Θ, ξ ) − 1
2
µ2(z − 1)2ãΘΘ − µ3(z − 1)2ãΘξ + · · · . (3.22)

Imposing the kinematic conditions at the interface z = µη̃ and making use of (3.22)
then yields

ãΘ = −η̃ − µη̃2 − 2µãξ + O(µ2), (3.23)

ζ̃ |Z=0 = η̃ + O(µ2). (3.24)

Finally, the dynamic condition requires the pressure to be continuous at the interface
z = µη̃. For our two-fluid system, Thorpe (1998) has derived an approximation to
this condition, correct to second order in the amplitude, that can be applied at z = 0.
Implementing the long-wave scalings valid here, this leads to

(η̃ + ãΘ )Θ + µ
(
η̃ξ + ãΘξ − 1

2
(ã2

Θ )Θ − ζ̃ΘZ|Z=0

)
= O(µ2). (3.25)

Using then (3.23) to eliminate ã from (3.25) results in the following evolution
equation for η̃(Θ, ξ ):

2η̃ξ − 3η̃η̃Θ − (ζ̃Z|Z=0)Θ = 0. (3.26)

The third term in (3.26), which accounts for the presence of the lower fluid, can be
expressed in terms of η̃ by solving (3.21) subject to the boundary condition (3.24) on
Z = 0 and the appropriate radiation condition as Z → −∞. Specifically, taking the
Fourier transform in Θ ,

η̂(κ; ξ ) =

∫ ∞

−∞
e−iκΘ η̃(Θ, ξ ) dΘ, (3.27)

we have

ζ̃Z|Z=0 =
1

2π

∫ ∞

−∞
i m eiκΘ η̂(κ; ξ ) dκ, (3.28)

where

m =

{
−i (κ2 − 1)1/2 (κ2 > 1),
sgnκ (1 − κ2)1/2 (κ2 < 1).

(3.29)
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The choice of the branch of the square root in (3.29) is dictated by causality; it ensures
that, as Z → −∞, the disturbance in the lower fluid either decays (for κ2 > 1) or
transports energy away from the interface (for κ2 < 1), resulting in radiation damping
of η̃.

Combining (3.26) with (3.28), the evolution equation governing the far-field response
η̃(Θ, ξ ),

2η̃ξ − 3η̃η̃Θ +
1

2π

∫ ∞

−∞
κ m eiκΘ η̂(κ; ξ ) dκ = 0, (3.30)

is an integral–differential equation of the type derived earlier by Maslowe & Redekopp
(1980) for the purpose of discussing the radiation damping of weakly nonlinear long
waves in stratified shear flows of large depth. The same equation was also obtained
independently by Romanova (1981). If the lower fluid is not stratified so radiation
damping is absent, (3.29) is replaced by m = − i|κ | and (3.30) reduces to the familiar
Benjamin–Davis–Ono (BDO) equation for the propagation of long interfacial waves
in deep fluids. As is well known, the BDO equation admits solitary-wave solutions
with algebraic profiles.

In the present context, (3.30) is to be solved subject to the ‘initial’ condition (3.20)
at ξ = 0 that ensures matching with the near-field response. Ignoring nonlinearity,
the far-field response eventually decays via radiation damping as implied by (2.18),
and the question of interest here is whether nonlinear steepening, represented by the
second term in (3.30), can reverse this trend so that the disturbance induced by the
tidal beam can give rise to solitary waves. This issue is now taken up by solving (3.30)
subject to (3.20) numerically.

4. Numerical results
In our computations, the incident tidal beam is taken to have an exponential profile

so that

ζinc = C exp(−|χ |/α) (T = 0), (4.1)

C being a parameter that controls the peak amplitude of the vertical particle
displacement ζinc associated with the wave beam. The choice (4.1) corresponds to

F̂ (k) =
2C

1 + k2
(4.2)

in (3.16).
The evolution equation (3.30) for η̃(Θ, ξ ) is solved numerically as an initial-value

problem, treating the matching condition (3.20) as initial condition at ξ = 0 and
advancing η̃ in ξ > 0. For this purpose, we employ a pseudospectral technique in
which, at each step �ξ , the nonlinear term in (3.30) is advanced by a forward Euler
finite-difference scheme while the linear term is treated by Fourier transform using
the fast Fourier transform in a finite computational domain Θ−∞ <Θ <Θ+∞.

Using (4.2) in (3.20), the initial condition applied at ξ = 0 is

η̃(Θ, ξ = 0) =
4αC cos θ

(1 + α2)
sin(ΩΘ)H(−Θ), (4.3)

where the phase of the incident wave beam has been chosen so as to avoid a
discontinuity at Θ = 0. Moreover, in implementing (4.3) numerically, η̃(Θ, ξ = 0) was
tapered off as Θ → −∞ so that the disturbance goes to zero and does not reach the
boundaries of the computational domain. Note that although the parameter µ does
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Figure 3. The far-field response η̃(Θ, ξ ) at various stations ξ along the interface for the choice
of parameters θ =10◦, C = 0.75 and α = 1.0. The bottom plot is the ‘initial’ condition (4.3) at
ξ = 0, and ξ increases upwards by steps of 2.

not affect η̃(Θ, ξ ), it plays an important part in transforming the spatial evolution
η̃(Θ, ξ ) to the temporal evolution η̃(X, T ), as well as in determining the interface
elevation, η = µη̃.

Figure 3 displays results at different values of ξ from a sample run using a
computational domain Θ+∞ − Θ−∞ = 1536 with 8192 grid points along Θ and step
size �ξ = 0.0001, for the choice of parameters θ = 10◦, C = 0.75 and α = 1.0. Each
station ξ specifies a fixed location along the interface, and η̃(Θ, ξ ) furnishes the
corresponding time history of the response there. The sinusoidal disturbance triggered
by the beam initially steepens in a typical hyperbolic fashion owing to the nonlinear
term in (3.30) and, as dispersive effects become important, trains of solitary waves
are seen to emerge, but eventually radiation damping comes into play, causing the
solitary waves to decay far from the region of forcing.

We now apply our model to the local generation of solitary waves in the ocean
thermocline. For the tidal period τ = 12 h, the angle θ at which the incoming beam
hits the thermocline is fixed by the dispersion relation of internal waves in the lower
fluid, sin θ = τ/(2πN0). In the ocean, the buoyancy frequency N0 is in the range
1–3 × 10−3 s−1, so θ varies between roughly 3◦ and 8◦. Moreover, taking h = 60 m
and ∆ =1.5 × 10−3 as in Gerkema (2001), it follows from (2.3) that the parameter
µ is in the range 0.06 − 0.2. We chose N0 = 2 × 10−3 s−1, the value of N0 assumed
by Gerkema (2001), which implies θ =4.17◦ and µ = 0.128. We also took α = 0.65,
corresponding to an incoming beam of width roughly 25 km along the horizontal, as
suggested by figure 3 of Gerkema (2001). Finally, we used a computational domain
Θ+∞ − Θ−∞ =2048 with 8192 points along Θ and step size �ξ =0.0001.

Figure 4 shows snapshots every 1.5 h within a tidal period of the interface elevation
η in dimensional variables for three values of the amplitude parameter, C = 0.75,
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Figure 4. Snapshots of the far-field interfacial response induced by a tidal beam incident on
the thermocline at an angle θ = 4.17◦ to the horizontal, under flow conditions corresponding
to µ= 0.128. The interface elevation η is displayed every 1.5 h within a tidal period, 42 h
after the beam has been turned on (time increases from top to bottom). The beam profile has
fixed width, corresponding to α = 0.65 in (4.1), and the amplitude parameter C is varied: (a)
C =0.75; (b) C = 1.0; (c) C = 1.25.
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C = 1.0 and C = 1.25, that correspond, respectively, to peak vertical-displacement
amplitudes of 45 m, 60 m and 75 m for the incoming beam. Clearly, the generation
mechanism of solitary waves is sensitive to the beam strength; increasing the amplitude
of the incoming beam from 45 m to 75 m causes the generated solitary waves to be
significantly steeper and to form closer to the region where the beam reflects at
the thermocline. While no direct comparison can be made with the simulations in
Gerkema (2001), the evolution depicted in figure 4(b) for a beam with peak amplitude
60 m is similar to the evolution of the interface shown in his figure 8 for a moderate-
strength thermocline. Note, in particular, that solitary waves first appear on a trough
of the induced disturbance, roughly 35 km from the position where the beam impacts
the thermocline, attain a peak amplitude of about 25 m and then gradually decay
owing to radiation damping, in qualitative agreement with Gerkema’s simulation.

We next turn to the role of the thermocline strength in the local generation
of solitary waves. In the present two-layer flow configuration, the strength of the
thermocline is controlled by the density jump ∆ at the interface, which affects the
long-wave speed c0 and thereby the values of the flow parameters µ and α defined
in (2.3) and (3.14), respectively; in particular, if ∆ is increased (decreased), the rest
of the flow and the beam specifications being fixed, the parameters µ and α decrease
(increase). In the course of varying ∆, however, since αf̂ (α) → 0 for α � 1 and
α � 1, the amplitude of the near-field response (4.3) is expected to attain a maximum
value when α =O(1), indicating that the optimal condition for solitary waves to be
generated in the far field would result when the thermocline is of moderate strength.

Figure 5 shows the effect of varying ∆ on the values of the parameters α, µ

and the amplitude of the near-field response (4.3) under the flow conditions chosen
earlier and for the same incident beam as in figure 4(b). Note that the maximum
amplitude is obtained for α =1.0 (∆ =0.63 × 10−3), while the response shown in
figure 4(b) corresponds to a stronger thermocline (α = 0.65, ∆ =1.5 × 10−3) than the
optimal. This indicates that appreciable solitary waves can be generated for a range
of intermediate thermocline strengths. Of course, as the amplitude of the near-field
response (4.3) is proportional to C, the range of thermocline strengths for which local
generation of solitary waves is feasible, depends on the peak amplitude of the incident
wave beam.

Outside this range, the amplitude of the near-field response (4.3) is small so
nonlinear steepening is relatively insignificant and no appreciable solitary waves
arise, as illustrated in figure 6. In the case of a strong thermocline, in particular,
the interface is disturbed very little (figure 6a) while, in the other extreme of a very
weak thermocline, the response is dominated by radiation damping, with only small-
amplitude wavetrains propagating in the far field (figure 6b). These computations
were carried out using the same resolution as those in figure 4, and the results are in
qualitative agreement with the numerical simulations in figure 8 of Gerkema (2001).

5. Discussion
We have developed a nonlinear long-wave theory for the interaction of an internal

tidal wave beam with the ocean thermocline and for the ensuing local generation
of solitary waves in the context of a two-layer flow configuration, representing the
thermocline as a density jump across the interface between a homogeneous upper
layer and an infinitely deep uniformly stratified fluid. Apart from providing theoretical
confirmation of the two-stage process envisaged by Gerkema (2001), the proposed
asymptotic model enables us to examine systematically the conditions under which
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Figure 5. Variation with the thermocline strength ∆ of the flow parameters µ (−·−),
α (− − −) and the amplitude of the ‘initial’ condition (4.3), 4αC cos θ/(1 + α2) (−−).

solitary waves can arise and reveals several useful insights into the local generation
mechanism.

The evolution of the induced wave disturbance in the thermocline depends primarily
on the parameters µ and α defined in (2.3) and (3.14), respectively, as well as on
the beam peak-amplitude parameter C; the angle of incidence θ of the wave beam
is fixed by the tidal frequency, given the buoyancy frequency in the lower fluid. The
asymptotic theory assumes that µ � 1; under this condition, long-wave disturbances
in the thermocline are only lightly attenuated owing to leakage of energy into the
lower fluid, making it possible for nonlinear steepening and dispersive effects to be
brought into balance with radiation damping. In this distinguished limit, the far-field
evolution is governed by the integral–differential equation (3.30), a generalization of
the BDO equation that accounts for radiation damping. Ultimately, whether or not
solitary waves are generated, however, is determined by the amplitude of the response
close to the region where the beam hits the thermocline, and the parameters α and C

play an important part in this respect.
The optimal setting for solitary-wave generation is realized when C =O(1) and

α = O(1), as the amplitude of the near-field response turns out to be maximum
under these conditions, thus leading to the strongest nonlinear steepening in the far
field. Specifically, for µ � 1, the analysis shows that a finite-amplitude (C =O(1))
incident wave beam induces a weakly nonlinear (O(µ)) disturbance on the interface,
confirming the assertion of Gerkema (2001) that the scattering of the beam at the
interface is essentially a linear process. In the vicinity of the region where the beam
hits the thermocline, the response is a sinusoidal long wave with the same frequency
as the forcing and propagates to the right of the incident beam, in keeping with the
radiation conditions obeyed by the incident and reflected beams. The amplitude of
this near-field response, as expected, is proportional to C, but it is also controlled by
the parameter α, which measures the width of the incoming beam along the interface
relative to the wavelength of the propagating wave on the interface. When α = O(1),
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Figure 6. Snapshots of the far-field interfacial response induced by a tidal beam incident on
the thermocline at an angle θ = 4.17◦ to the horizontal. The interface elevation η is displayed
every 1.5 h within a tidal period, 42 h after the beam has been turned on (time increases
from top to bottom). The beam profile has fixed peak amplitude (C = 1) and width. The
thermocline strength is varied: (a) strong thermocline, ∆= 4.0 × 10−3 (µ= 0.078, α = 0.4);
(b) weak thermocline, ∆ = 0.04 × 10−3 (µ= 0.78, α = 4).

these two length scales are comparable, so the forcing owing to the incident beam is
most effective, and the near-field response attains its maximum amplitude.

In the light of these scalings, it is easy to understand the finding of Gerkema
(2001) that solitary waves form only when the thermocline is of moderate strength.
Indeed, increasing (decreasing) the thermocline strength causes the interfacial long-
wave speed c0 to increase (decrease) as well and, since the forcing frequency is fixed
by the tide, this amounts to increasing (decreasing) the wavelength of the induced
wave on the interface. Therefore, assuming the incoming-beam profile is held fixed
as in Gerkema (2001), increasing (decreasing) the strength of the thermocline is
equivalent to decreasing (increasing) the parameter α, the most favourable condition
for solitary-wave generation, α = O(1), thus corresponding to an intermediate range
of thermocline strengths.
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Based on numerical solutions of the far-field evolution equation (3.30) for typical
oceanic conditions, the local solitary-wave generation mechanism is quite sensitive
to the peak amplitude of the incoming beam, controlled by the parameter C, and
increasing C broadens the range of thermocline strengths for which solitary waves
arise.

Finally, the present theory ignores the Earth’s rotation. The effects of rotation will
show up in the propagation of the incoming internal wave beam in the lower fluid
as well as in the evolution of the disturbance on the interface owing to the beam
reflection. Including rotation in the lower fluid, in particular, the dispersion relation
ω2 =µ2 sin2 θ used in our analysis is replaced by

ω2 = µ2 sin2 θ + γ 2 cos2 θ, (5.1)

where

γ =
f h

c0

, (5.2)

f being the Coriolis parameter. Hence, the angle of incidence θ of the incoming
beam is reduced by the rotation, and this effect would be important since the Coriolis
parameter typically is comparable to the frequency of the internal tides. For instance,
the value θ = 4.17◦ obtained earlier for f = 0 under the flow conditions used in the
computations shown in figure 4, would decrease to θ = 3.03◦ for f = 1.0 × 10−4 s−1,
a value of the Coriolis parameter appropriate in the Bay of Biscay. This, in turn,
would cause the vertical-displacement amplitude of the incoming beam, controlled
by the parameter C, to decrease by the factor sin 3.03◦/ sin 4.17◦ = 0.72, implying
that rotation would inhibit the formation of solitary waves, as noted in Gerkema
(2001). We remark, however, that the responses shown in figure 4 are due to beams
with relatively low vertical-displacement peak amplitudes; even the largest value of
C = 1.25 (figure 4c) corresponds to 75 m, which is in the very low end of the range
of observed beam amplitudes reported by Pingree & New (1989, 1991) in the Bay of
Biscay. This suggests that a strong enough incident beam could still generate solitary
waves when the effect of the Earth’s rotation on the angle of propagation is taken
into account.

On the other hand, the Earth’s rotation would appear to play a less prominent role
in the evolution of the solitary waves, given that these form quite quickly relative
to the tidal period according to our results. More specifically, based on a simple ad
hoc analysis, adding a term γ 2 to the right-hand side of the interfacial dispersion
relation (2.9), it is seen that the effect of rotation is measured by the parameter
γ 2/µ3 = (f/N0)

2/µ in the long-wave regime (2.10) of interest here. Now, under typical
conditions, f/N0 � 0.1 while µ is in the range 5 × 10−2 − 0.2, indicating that γ 2/µ3 in
fact is quite small, at most 0.1. This suggests that rotation will not play a significant
role in the evolution of the solitary waves, but after a long distance of travel will
affect their eventual decay; this scenario could be taken into account by replacing the
evolution equation (3.30) with an Ostrovsky-type equation (Grimshaw et al. 1998).
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