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An analytical version of the discrete-ordinates method is used here to solve the classical

temperature-jump problem based on the BGK model in rarefied-gas dynamics. In addition to

a complete development of the discrete-ordinates method for the application considered, the

computational algorithm is implemented to yield very accurate results for the temperature

jump and the complete temperature and density distributions in the gas. The algorithm is

easy to use, and the developed code runs typically in less than a second on a 400 MHz

Pentium-based PC.

1 Introduction

Following, for example, the basic books of Cercignani [5, 6] and Williams [21], we

can consider that the diffusion of gas particles as they flow, say in a plane channel or

in a cylindrical tube, can be described mathematically by the Boltzmann equation. Of

course for the general case the gas particles interact with each other according to some

inter-atomic force laws, and these same particles interact according to specified reflection

laws with the surface or surfaces that confine the flow. So it is clear that, unless some

special conditions are specified, the scattering term in the Boltzmann equation will depend

upon the particle distribution function in a nonlinear way. While, for example, Monte

Carlo methods and computationally intensive iterative methods are ways of attempting

to extract some physical information from the nonlinear Boltzmann equation, another

approach that can be used when the density of particles is small (rarefied-gas dynamics) is

to replace the nonlinear Boltzmann equation by a so-called model equation. In regard to

model equations for work with rarefied gases, we can say that the formulation introduced

by Bhatnagar, Gross and Krook [4], and known in the classical literature as the BGK

model, is the one that has most often been employed when exact or semi-analytical

mathematical techniques are to be used to develop solutions with a (hoped for) high

degree of rigour and accuracy.

As background material, we note that in a series of recent works [2, 3, 16] we have

already used our newly developed analytical version [1] of the discrete-ordinates method

[7] to solve most of the classical BGK problems, relevant to plane-parallel media, in

the general area of rarefied-gas dynamics. To complete our work with these classical

https://doi.org/10.1017/S0956792599004180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004180


354 L. B. Barichello and C. E. Siewert

problems, we solve in this work, in a particularly concise and accurate way, the basic

temperature-jump problem defined by Welander [20].

It is clear that the literature concerning the use of the BGK model [4] in rarefied-gas

dynamics is very extensive, and so to keep this work to a modest length we do not attempt

to review the many works already devoted to this subject. Instead we consider that the

books by Cercignani [5, 6] and Williams [21] are available, and so we rely on these books,

a paper by Kriese, Chang and Siewert [9] and a recent review paper by Williams [22] for

the additional background material that could be of interest here.

2 The Boltzmann equation and boundary conditions

The temperature-jump problem defined by Welander [20] can, as mentioned by Williams

[22], be thought of as the temperature version of Kramers’ problem for flow over a flat

plate. We therefore assume that the gas occupies the half space x > 0 and that there is a

constant temperature gradient (normal to the plate) at infinity. We thus consider that the

dimensionless temperature-jump problem for the BGK model can be formulated in terms

of a linearized form of the Boltzmann equation written as

cx
∂

∂x
h(x, c) + h(x, c) = π−3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(x, c′)K(c′ : c)e−c′
2

dc′x dc′y dc′z (1)

for x > 0 and where the particle velocity vector, with magnitude c, is c = (cx, cy, cz). We

note that in equation (1)

h(x, c)⇒ h(x, cx, cy, cz) (2)

and

K(c′ : c) = 1 + 2c′ · c+
2

3

(
c′2 − 3

2

)(
c2 − 3

2

)
. (3)

Here the basic unknown h(x, c) is the perturbation from an initial Maxwellian distribution

that, due to the presence of the wall, is a component of the particle distribution function.

In addition to the defining form of the Boltzmann equation, we must specify how the

particles interact with the wall. Here we consider that some fraction 1− α of the particles

is reflected specularly and that the remaining fraction α is reflected diffusely. In other

words, the wall acts somewhat like a mirror and at the same time appears to absorb some

of the particles and then re-emit them isotropically. Because there is no loss or supply of

particles due to the presence of the wall, the boundary condition can be thought of as

conservative. This type of boundary condition can be expressed as

h(0, cx, cy, cz) = (1− α)h(0,−cx, cy, cz) + (Ih)(0) (4)

for cx ∈ (0,∞) and all cy and cz . Here

(Ih)(0) =
2α

π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

e−c′
2

h(0,−c′x, c′y, c′z)c′x dc′x dc′y dc′z , (5)

and α ∈ (0, 1] is the accommodation coefficient.

Should we wish to compute the complete solution h(x, c) then we clearly would have

to deal with equations (1) and (4) and some additional conditions imposed as x tends to
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infinity. However, since we seek only the temperature and density perturbations [22]

T (x) =
2

3
π−3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−c2

(c2 − 3/2)h(x, c) dcx dcy dcz (6 a)

and

N(x) = π−3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−c2

h(x, c) dcx dcy dcz (6 b)

we can express the desired results in terms of some moments of h(x, c). Defining the

quantities

H1(x, cx) =
1

π

∫ ∞
−∞

∫ ∞
−∞

e−(c2
y+c

2
z )h(x, cx, cy, cz) dcy dcz (7)

and

H2(x, cx) =
1

π

∫ ∞
−∞

∫ ∞
−∞

e−(c2
y+c

2
z )(c2

y + c2
z − 1)h(x, cx, cy, cz) dcy dcz, (8)

we can rewrite equations (6) as

T (x) =
2

3
π−1/2

∫ ∞
−∞

e−c2
x[(c2

x − 1/2)H1(x, cx) +H2(x, cx)] dcx (9 a)

and

N(x) = π−1/2

∫ ∞
−∞

e−c2
xH1(x, cx) dcx . (9 b)

Now to find defining equations for H1(x, cx) and H2(x, cx) we first multiply equations (1)

and (4) by

φ1(cy, cz) = e−(c2
y+c

2
z ) (10 a)

and integrate over all cy and all cz . We then repeat this projection process using

φ2(cy, cz) = e−(c2
y+c

2
z )(c2

y + c2
z − 1) (10 b)

instead of φ1(cy, cz). In this way we find, after making use of the condition of no net flow,

i.e. ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−c2

h(x, c)cx dcx dcy dcz = 0, (11)

and letting cx = ξ,

ξ
∂

∂x
Y (x, ξ) + Y (x, ξ) = π−1/2Q(ξ)

∫ ∞
−∞

QT(ξ′)Y (x, ξ′)e−ξ′
2

dξ′, (12)

for x > 0 and ξ ∈ (−∞,∞), and

Y (0, ξ)− (1− α)Y (0,−ξ)− diag
{

2α, 0
}∫ ∞

0

Y (0,−ξ′)e−ξ′2ξ′ dξ′ = 0, (13)

for ξ ∈ (0,∞); here the upper and lower components of the vector Y (x, ξ) are H1(x, ξ)

and H2(x, ξ), we use the superscript T to denote the transpose operation and

Q(ξ) =

[
(2/3)1/2

(
ξ2 − 1/2

)
1

(2/3)1/2 0

]
. (14)

Clearly, once we have found the desired Y (x, ξ) we can compute the desired temperature
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and density perturbations from equations (9) written as

T (x) =
2

3
π−1/2

∫ ∞
−∞

[
ξ2 − 1/2

1

]T

Y (x, ξ)e−ξ2

dξ (15)

and

N(x) = π−1/2

[
1

0

]T ∫ ∞
−∞

Y (x, ξ)e−ξ2

dξ. (16)

As noted previously, it is assumed for this temperature-jump problem that there is a

heat source at infinity that causes the temperature perturbation T (x) to increase (with a

constant gradient normal to the plate) as x tends to infinity. To be more precise, we follow

the defining work [20] and two early papers [13, 17] and impose on the dimensionless

temperature and density perturbations the conditions

lim
x→∞

d

dx
T (x) = 1 (17 a)

and

lim
x→∞

d

dx
N(x) = −1. (17 b)

It is clear that equations (17) define, once we note equations (15) and (16), conditions on

Y (x, ξ) that we must consider in addition to the boundary condition given as equation (13).

Thus we proceed to use our discrete-ordinates method to define a solution Y (x, ξ) of

equation (12) such that the components of Y (x, ξ) ∼ x as x→∞. In addition the required

Y (x, ξ) must satisfy equation (13) and be such that the resulting T (x) and N(x), as

computed from equations (15) and (16), satisfy equations (17).

3 The discrete-ordinates solution

Our version of the discrete-ordinates solution to equation (12) was developed and used

to solve the classical heat-transfer problem for a plane channel [16], and so much of

the material we require here is already available. However, to be complete we repeat (in

modest detail) the material from Siewert [16] that we require here. To start we multiply

equation (12) by Q−1(ξ) and define

G(x, ξ) = Q−1(ξ)Y (x, ξ) (18)

and

Ψ(ξ) = π−1/2QT(ξ)Q(ξ)e−ξ2

(19)

so we can obtain

ξ
∂

∂x
G(x, ξ) + G(x, ξ) =

∫ ∞
−∞

Ψ(ξ′)G(x, ξ′) dξ′. (20)

We note first of all that the characteristic matrix Ψ(ξ), as defined by equation (19),

is symmetric. We note also that Ψ(ξ)= Ψ(−ξ), and so we write our discrete-ordinates

equations as

±ξi d

dx
G(x,±ξi) + G(x,±ξi) =

N∑
k=1

wkΨ(ξk)[G(x, ξk) + G(x,−ξk)] (21)
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for i = 1, 2, . . . , N. In writing equations (21) as we have, we clearly are considering that the

N quadrature points {ξk} and the N weights {wk} are defined for use on the integration

interval [0,∞). We note that it is to this feature of using a ‘half-range’ quadrature scheme

that we partially attribute the especially good accuracy we have obtained from the solution

reported here. Continuing, we substitute

G(x,±ξi) = Φ(ν,±ξi)e−x/ν (22)

into equations (21) to find

(ν ∓ ξi)Φ(ν,±ξi) = ν

N∑
k=1

wkΨ(ξk)[Φ(ν, ξk) +Φ(ν,−ξk)] (23)

for i = 1, 2, . . . , N. We now let Φ1(ν,±ξi) and Φ2(ν,±ξi) denote the two components of

ΦΦΦ(ν,±ξi), and if we use

ΦΦΦ1± =
[
Φ1(ν,±ξ1), Φ1(ν,±ξ2), . . . , Φ1(ν,±ξN)

]T
(24 a)

and

ΦΦΦ2± =
[
Φ2(ν,±ξ1), Φ2(ν,±ξ2), . . . , Φ2(ν,±ξN)

]T
(24 b)

then we can rewrite equations (23) as

1

ν
MΦΦΦ+ = (I −W )ΦΦΦ+ −WΦΦΦ− (25 a)

and

−1

ν
MΦΦΦ− = (I −W )ΦΦΦ− −WΦΦΦ+. (25 b)

Here I is the 2N × 2N identity matrix, the two vector elements of Φ± are Φ1± and Φ2±,

the four N ×N block matrix elements of W , viz. W m,n, for m, n = 1, 2, are given by

(W m,n)i,j = wjψm,n(ξj) (26)

for i, j = 1, 2, . . . , N. Here ψm,n(ξ), m, n = 1, 2, are the elements of Ψ(ξ) and

M = diag
{
ξ1, ξ2, . . . , ξN, ξ1, ξ2, . . . , ξN

}
. (27)

Continuing, we now let

U = ΦΦΦ+ +ΦΦΦ− (28 a)

and

V = ΦΦΦ+ −ΦΦΦ− (28 b)

so that we can eliminate between the sum and the difference of equations (25) to find(
D − 2M−1WM−1

)
MU = λMU (29)

where λ = 1/ν2 and

D = diag
{
ξ−2

1 , ξ−2
2 , . . . , ξ−2

N , ξ−2
1 , ξ−2

2 , . . . , ξ−2
N

}
. (30)

Considering that we have found the required separation constants {±νj}, where νj > 0,

from the eigenvalues defined by equation (29), we go back to equations (23) to find
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Φ(νj ,±ξi), and so we write our general solution to equations (21) as

G(x,±ξi) =

2N∑
j=1

[
Aj

νj

νj ∓ ξi e
−x/νj + Bj

νj

νj ± ξi e
x/νj
]
F (νj) . (31)

Here F (νj) is a vector in the null space of

Ω(νj) = I − 2νj
2

N∑
α=1

wαΨ(ξα)
1

νj2 − ξα2
, (32)

I is now the 2× 2 identity matrix and the constants {Aj} and {Bj} are, at this point, arbi-

trary. Of course, we cannot allow νj = ξi in equation (31). Having obtained equation (31),

we go back and use equation (18) to write a first version of our discrete-ordinates solution

for Y (x, ξ) as

Y (x,±ξi) = Q(ξi)

2N∑
j=1

[
Aj

νj

νj ∓ ξi e
−x/νj + Bj

νj

νj ± ξi e
x/νj
]
F (νj) (33)

where the arbitrary constants {Aj, Bj} are to be determined from the conditions of the

problem to be solved. At this point we wish to introduce a modification to equation (33)

that is important for the problem considered in this work. First of all, it was shown in

Kriese et al. [9] that detΩ(z), where

Ω(z) = I − 2z2

∫ ∞
0

Ψ(ξ)
dξ

z2 − ξ2
, (34)

has a fourth-order zero at infinity, and so we ignore the contributions in equation (33)

from the two largest eigenvalues, say ν1 and ν2, and, instead, include the exact solutions

F 1(x, ξ) = F 1(ξ) =
(
2/3
)1/2

[
ξ2 − 1/2

1

]
, (35 a)

F 2(x, ξ) = F 2 =

[
1

0

]
, (35 b)

F 3(x, ξ) = (ξ − x)F 1(ξ) (35 c)

and

F 4(x, ξ) = (ξ − x)F 2 (35 d)

that Kriese, Chang and Siewert [9] found as a result of the four-fold eigenvalue at infinity.

And so, we rewrite equation (33) as

Y (x,±ξi) = Y ∗(x,±ξi) +Q(ξi)

2N∑
j=3

[
Aj

νj

νj ∓ ξi e
−x/νj + Bj

νj

νj ± ξi e
x/νj
]
F (νj) (36)

where

Y ∗(x, ξ) = [A1 + B1(x− ξ)]F 1(ξ) + [A2 + B2(x− ξ)]F 2. (37)

We note that we still have 4N arbitrary constants to determine from the imposed

conditions of our problem.

https://doi.org/10.1017/S0956792599004180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004180


The temperature-jump problem in rarefied-gas dynamics 359

4 Computational details and numerical results

Having developed the basic elements of our discrete-ordinates solution, we now are ready

to solve the problem of interest here, and so, restating from § 2, we seek an unbounded

(as x tends to infinity) solution to

ξ
∂

∂x
Y (x, ξ) + Y (x, ξ) = π−1/2Q(ξ)

∫ ∞
−∞

QT(ξ′)Y (x, ξ′)e−ξ′
2

dξ′, (38)

for x > 0 and ξ ∈ (−∞,∞), subject to the boundary condition

Y (0, ξ)− (1− α)Y (0,−ξ)− diag
{

2α, 0
}∫ ∞

0

Y (0,−ξ′)e−ξ′2ξ′ dξ′ = 0, (39)

for ξ ∈ (0,∞), and the conditions at infinity

lim
x→∞

d

dx

{2

3
π−1/2

∫ ∞
−∞

[
ξ2 − 1/2

1

]T

Y (x, ξ)e−ξ2

dξ
}

= 1 (40)

and

lim
x→∞

d

dx

{
π−1/2

[
1

0

]T ∫ ∞
−∞

Y (x, ξ)e−ξ2

dξ
}

= −1. (41)

Looking at equations (36), (37), (40) and (41), we see that we must take Bj = 0 for

j = 3, 4, . . . , 2N. Continuing to consider that equation (36) defines the solution we seek,

we note

Y (x, ξ) ∼ Y ∗(x, ξ) (42)

as x → ∞. In writing equation (42) in terms of continuous values of ξ we are making

use of a basic feature we have made a part of our discrete-ordinates solution. To be clear

on this point, we note that while equation (36) is defined only at the quadrature points

{ξi} the first part of that solution is, by way of equation (37), defined for all values of ξ.

Thus our strategy, when a relevant integration of the solution is required, is to integrate

the first component of equation (36), viz. Y ∗(x, ξ), analytically and to use the defined

quadrature scheme to integrate the second component. Now, substituting equation (37)

into equations (40) and (41), we conclude that we must take

B1 = (3/2)1/2 (43 a)

and

B2 = −1, (43 b)

and so we can express our solution as

Y (x,±ξi) = Y ∗(x,±ξi) +Q(ξi)

2N∑
j=3

Aj
νj

νj ∓ ξi e
−x/νjF (νj) (44)

where

Y ∗(x, ξ) = (2/3)1/2A1R(ξ) + (x− ξ)R(ξ) + γF 2. (45)

Here we have introduced a new constant,

γ = (2/3)1/2A1 + A2, (46)
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and

R(ξ) =

[
ξ2 − 3/2

1

]
. (47)

To complete the solution we let

Y 0(±ξi) = (2/3)1/2A1R(ξi) +Q(ξi)

2N∑
j=3

Aj
νj

νj ∓ ξiF (νj) (48)

and then substitute equation (44) into a discrete-ordinates version of equation (39) to find

Y 0(ξi)− (1− α)Y 0(−ξi)− diag
{

2α, 0
}∫ ∞

0

Y 0(−ξ′)e−ξ′2ξ′ dξ′ = (2− α)ξiR(ξi), (49)

for i = 1, 2, . . . , N. To be very clear, we repeat what we have already mentioned and note

that when the first term in equation (48) is used in the integral term in equation (49), the

integration is done exactly; on the other hand, we use our quadrature scheme to evaluate

that integral term when the second part of equation (48) is used in equation (49). We note

that the term γF 2 that appears in equation (45) satisfies equation (39) exactly and so makes

no contribution to our linear system. The collection of equations defined by equation (49)

consists of 2N linear equations for the 2N − 1 unknowns A1 and Aj , for j = 3, 4, . . . 2N,

and so the linear system is over-determined. While we could follow what was done in

Siewert [16] and use a projection technique to obtain a ‘square’ system, we solve the system

in a ‘least-squares’ sense. And so our solution is complete. Of course, having defined the

vector-valued function Y (x, ξ), we can find the dimensionless temperature and density

perturbations from equations (15) and (16). It follows that

T (x) = x+ (2/3)1/2A1 + (2/3)1/2
2N∑
j=3

Ajf1(νj)e
−x/νj (50)

and

N(x) = −x+ γ − (2/3)1/2A1 +

2N∑
j=3

Ajf2(νj)e
−x/νj (51)

where f1(νj) and f2(νj) are the upper and lower components of F (νj). We now let

Tasy(x) = x+ (2/3)1/2A1, (52)

and so we can readily see that the temperature jump ζ defined [9, 20, 22] by

Tasy(0) = ζ
d

dx
Tasy(x)

∣∣
x=0

(53)

is available from equation (52) as

ζ = (2/3)1/2A1. (54)

Finally, we rewrite equations (50) and (51) as

T (x) = x+ ζ + (2/3)1/2
2N∑
j=3

Ajf1(νj)e
−x/νj (55)
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and

N(x) = −x+ γ − ζ +

2N∑
j=3

Ajf2(νj)e
−x/νj . (56)

At this point we note that our solution satisfies all of the imposed conditions, and yet

the constant γ is still arbitrary; however, it is clear that the value of γ does not affect the

temperature jump ζ nor the dimensionless temperature perturbation T (x). On the other

hand, we will see when we compare our results to previous works that different choices

of γ have been used in previous computations of the dimensionless density perturbation.

Having formulated our results we are ready to discuss a few of the computational details

concerning the numerical implementation of the solution. We note that our solution is

not defined until we specify a quadrature scheme, and so here we follow what was done

in a recent work concerning Poiseuille flow [2]. First of all, we have used both the

transformations

u(ξ) =
1

1 + ξ
(57 a)

and

u(ξ) = e−ξ (57 b)

to map the interval ξ ∈ [0,∞) onto u ∈ [0, 1], and we then used a Gauss-Legendre scheme

mapped onto the interval [0, 1]. In regard to the choice of quadrature points, we consider

it important to note, because of the way our basic eigenvalue problem is formulated,

that we must exclude zero from the set of quadrature points. Of course to exclude

zero from the quadrature set is not considered a serious restriction since typical Gauss

quadrature schemes do not include the end-points of the integration interval. Having

defined our quadrature scheme, we found the required separation constants {νj} by using

the driver program RG from the EISPACK collection [18] to find the eigenvalues defined

by equation (29), and so, after using the subroutines DQRDC and DQRSL from the

LINPACK package [8] to solve, in a least-squares sense, the linear system derived from

equation (49) to find the constants A1, Aj , for j = 3, 4, . . . , 2N, we consider our solution

complete.

Finally, but importantly, we note that since the matrix-valued function Ψ(ξ) as defined

by equation (19) can be zero, from a computational point-of-view, we can have some, say

a total of N0, of the quadrature points {ξi} equal to some of the separation constants {νj}.
Of course this is not allowed in our solution, and so, since the quadrature points where

Ψ(ξi) is effectively zero make no contribution to the right-hand side of equation (23), we

can simply omit these quadrature points from our calculation. Of course, in omitting these

N0 quadrature points we must be sure to eliminate exactly 2N0 appropriate separation

constants, and so we have effectively changed N to N − N0 in some aspects of our final

calculation.

To complete this work we use the accompanying tables to list our results, which we

believe to be correct to all digits given, for the temperature jump ζ and the dimensionless

temperature and density perturbations, T (x) and N(x). Of course, we have no proof of

the accuracy of our results, but we have done various things to establish the confidence

we have. First of all, we have increased the value of N used in our computations until we

found stability in the final results, and we have also used both nonlinear maps given by
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Table 1. The temperature jump ζ

α = 0.1 α = 0.3 α = 0.5 α = 0.6 α = 0.7 α = 0.9 α = 1

21.45012 6.630514 3.629125 2.867615 2.317534 1.570264 1.302716

equations (57) to obtain the same results as given in our tables. In regard to published

results, we have confirmed all six of the significant figures for the temperature jump

reported for the case α = 1 in Kriese et al. [9]. We have also confirmed to five or six

significant figures and for selected values of α ∈ [0, 1] the results for the temperature jump

given in Loyalka et al. [10]. We list in Table 1 some typical results for the temperature

jump ζ as defined by equation (53). In Table 2 we report our results, as computed from

equations (55) and (56), for the temperature and density perturbations. We note that here

we have chosen to use γ = 0 in order to be consistent with recent work by Onishi [12].

In comparing our results with two known computations, we first can say that we have

confirmed the six-figure results given [17, 19] for T (x) for the case α = 1. In regard to

the results for N(x) given in Siewert & Thomas [17] and Thomas & Valougeorgis [19],

we see that our results reported here differ by an additive constant to those older results.

This difference can, however, be accommodated simply by redefining the constant γ. We

note, for example, that from equations (55) and (56) we have the general result

lim
x→∞[T (x) +N(x)] = γ. (58)

Some authors, see for example Kriese et al. [9] and Onishi [12], have elected to normalize

the density perturbation by taking γ = 0 in equation (58), and others [13, 17, 19] have

normalized the problem in such a way that the integral term in equation (13) is taken to

be zero. Finally, we note that we have confirmed Onishi’s numerical results [11] for the

temperature jump and the qualitative results (given in graphical form) for the temperature

perturbation.

We note that we have typically used N = 50 to generate the results listed in our tables.

To comment on the computational time required to solve a typical problem, we note that

our FORTRAN implementation (no special effort was made to make the code especially

efficient) of our discrete-ordinates solution (with N = 50) runs in less than a second

on a 400 MHz Pentium-based PC. Finally, to have some idea about N0, the number

of quadrature points not included in some parts of our calculation, we note that using

ε = 10−14 to decide if an eigenvalue and a quadrature point were the same ‘computation-

ally’, we found N0 = 2 when N = 50 and the map defined by equation (57b) were used.

5 Concluding remarks

Having successfully implemented our version of the discrete-ordinates method to complete

our collection of solutions to the classical plane-parallel problems based on the BGK

model, we believe the ease of use and the particularly accurate results obtained justify our

confidence that the method can also be used to solve a much larger class of problems in the

general area of rarefied-gas dynamics. In fact we are confident, because of the simplicity
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Table 2. The temperature and density perturbations

α = 0.1 α = 0.5 α = 1.0

x T (x) N(x) T (x) N(x) T (x) N(x)

0.0 20.5027 –20.7100 2.91597 –3.07437 8.53515(–1) –9.55009(–1)

0.1 20.8260 –21.0044 3.18042 –3.31664 1.05430 –1.14151

0.2 21.0362 –21.1940 3.36278 –3.48323 1.20568 –1.28284

0.3 21.2147 –21.3558 3.52167 –3.62947 1.34266 –1.41176

0.4 21.3756 –21.5028 3.66754 –3.76478 1.47158 –1.53394

0.5 21.5250 –21.6404 3.80489 –3.89310 1.59520 –1.65180

0.6 21.6663 –21.7714 3.93615 –4.01653 1.71501 –1.76661

0.7 21.8015 –21.8976 4.06283 –4.13633 1.83196 –1.87916

0.8 21.9320 –22.0200 4.18593 –4.25334 1.94665 –1.98996

0.9 22.0586 –22.1395 4.30614 –4.36814 2.05952 –2.09937

1.0 22.1821 –22.2567 4.42400 –4.48113 2.17091 –2.20764

2.0 23.3201 –23.3559 5.52928 –5.55674 3.23831 –3.25601

3.0 24.3793 –24.3981 6.57466 –6.58912 4.26751 –4.27684

4.0 25.4092 –25.4196 7.59758 –7.60560 5.28229 –5.28748

5.0 26.4255 –26.4315 8.61013 –8.61476 6.29041 –6.29340

6.0 27.4349 –27.4384 9.61737 –9.62011 7.29509 –7.29686

7.0 28.4405 –28.4426 10.6217 –10.6234 8.29789 –8.29897

8.0 29.4439 –29.4453 11.6243 –11.6254 9.29961 –9.30028

9.0 30.4461 –30.4469 12.6260 –12.6267 10.3007 –10.3011

10.0 31.4475 –31.4480 13.6271 –13.6275 11.3014 –11.3016

20.0 41.4501 –41.4501 23.6291 –23.6291 21.3027 –21.3027

of the numerical-analytical methods reported here, that a class of basic problems based

on linear models more general than the BGK model, for example the so-called ‘S model’

of Shakhov [14], as quoted by Sharipov & Seleznev [15], will soon be solved with a high

degree of rigour and accuracy.
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