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Inertia-dominated wall-sheared turbulent flows are composed of an inner and outer layer,
where the former is occupied by the well-known autonomous inner cycle while the
latter is composed of coherent structures with spatial extent comparable to the flow
depth. In arbitrary streamwise–wall-normal planes, outer-layer structures instantaneously
manifest as regions of quasi-uniform momentum – relative excesses and deficits about the
Reynolds average – and for this reason are termed uniform momentum zones (UMZs).
By virtue of this attribute, the interfacial zones between successive UMZs exhibit abrupt
wall-normal gradients in streamwise momentum; these interfacial gradients cannot be
explained by the notion of attached eddies, for which the vertical gradient goes as (x+

3 )−1

in the outer layer, where x+
3 is inner-normalized wall-normal position. Using data from

direct numerical simulation (DNS) of channel turbulence across inertial regimes, we
recover vertical profiles of Kolmogorov length a posteriori and show that η+ ∼ (x+

3 )1/4,
thereby requiring that ambient wall-normal gradients in streamwise velocity must scale as
(x+

3 )−1/2. The data reveal that UMZ interfaces are responsible for these relatively larger
wall-normal gradients. The DNS data afford a unique opportunity to interpret inner-
and outer-layer structures simultaneously: we propose that UMZs – and the associated
outer-layer dynamics – can be explained as the product of inner-layer bluff-body-like
interactions, wherein wakes of quasi-uniform momentum emanate from the inner layer;
wake-scaling arguments agree with observations from DNS.

Key words: turbulent mixing, turbulence theory

1. Introduction

The spatial attributes and energetic content of canonical turbulent wall flows are
regulated by inertial conditions. Friction Reynolds number, Reτ = uτ δν

−1, is commonly
used to define inertial conditions, where uτ , δ and ν represent shear velocity, flow depth
and kinematic viscosity, respectively. For sufficiently high Reτ , turbulent channel flows are
composed of a viscous inner (wall) region of thickness, x+

3 � 50 to 100, where ‘+’ denotes
an inner-scaled quantity, and an above logarithmic (inertial) region of thickness, 30 �
x+

3 � 2000 (see also Pope 2000). The viscous inner region is occupied by a self-sustaining
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inner cycle of sinuous streaks (Jimenez & Pinelli 1999; Schoppa & Hussain 2002), which
are enveloped by vortical hairpins due to interfacial shear (Adrian, Meinhart & Tomkins
2000). There are conceptual similarities in the vertical structure of turbulent channels,
pipes and boundary layers, but the present work is posed in the context of channels only.
Note that the viscous wall region resides within the inner layer, while the logarithmic
region resides within the inner and outer layers in the so-called overlap region; further
reading is available in Pope (2000). For Reτ � 2000, energetic content appears in the outer
layer due to the emergence of outer-layer streaks (Hutchins & Marusic 2007); substantial
evidence of an inner–outer coupling has been provided in recent years (Marusic, Mathis
& Hutchins 2010), although it is stressed that establishing dynamical hierarchy is not the
focus of this article.

In arbitrarily selected streamwise–wall-normal transects of high-Reτ flows, outer-layer
coherence in turbulent wall flows manifests as inclined parcels of quasi-uniform
momentum – relative deficits and excesses about the mean – all of which are bound by
interfacial shear zones. These so-called uniform momentum zones (UMZs) have been
observed in numerous experiments (Meinhart & Adrian 1995), and more recent efforts
have further augmented understanding of UMZs (de Silva et al. 2017; Bautista et al.
2019; Heisel et al. 2020). Prior observations have generally been based on experimental
measurements, but for this study we leverage the opportunity afforded by a recent direct
numerical simulation (DNS) modelling campaign of channel flow up to Reτ = 5200
(Lee & Moser 2015, 2019). Data for this case are used to simultaneously explore the
inner–outer-layer dynamics and to demonstrate an underlying similarity in the interfacial
shear between successive UMZs.

Table 1 provides a summary of the DNS cases, where for this work the Cartesian
vector, x+ = {x+

1 , x+
2 , x+

3 }, and the first, second and third components of any vector
correspond to constituent magnitudes in the streamwise, spanwise and wall-normal
directions, respectively. Thus, in table 1, L1/δ and L2/δ are the outer-normalized
streamwise and spanwise spatial extents, respectively, of the computation domain; δ+

1
and δ+

2 are the inner-normalized streamwise and spanwise grid resolutions; δ+
3 |w and

δ+
3 |c are the inner-normalized wall-normal grid resolutions used within the B-spline

grid discretization at the wall and centreline, respectively (Lee & Moser 2015, 2019).
The computational meshes were discretized with N1, N2 and N3 compute points in
the streamwise, spanwise and wall-normal directions, respectively, while Tuτ /δ is the
simulation time. Comprehensive simulation details are available in Lee & Moser (2015,
2019).

Analysis of the high-Reτ results clearly show the presence of UMZs, while more
in-depth processing will show that the interfacial shear between successive UMZs induces
gradients which do not scale in the wall-normal direction as (x+

3 )−1, as predicted by
the attached-eddy paradigm and associated logarithmic dependence of velocity upon x+

3 ;
rather, we will demonstrate that vertical gradients systematically decrease at the relatively
slower rate, (x+

3 )−1/2. This is recovered from assessment of inner-normalized Kolmogorov
length. Further processing of the vertical gradient of streamwise velocity and vorticity
thickness confirm this wall-normal dependence. Herein, we propose that UMZs are the
product of bluff-body-like interactions in the inner layer, which induce wakes that emanate
through the outer layer. Following Tennekes & Lumley (1972), the streamwise momentum
equation is posed in similarity form for a wake, yielding wall-normal scaling for the
vorticity thickness, velocity gradients and Kolmogorov length, in agreement with the
results from high-Reτ DNS.
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UMZ scaling arguments 906 A8-3

Case Reτ L1/δ L2/δ δ+
1 δ+

2 δ+
3 |w δ+

3 |c N1 N2 N3 Tuτ /δ

C1 182 8π 3π 4.467 3.352 1.054 × 10−2 3.059 1024 512 192 31.9
C2 544 8π 3π 8.901 5.007 2.7 × 10−3 4.528 1536 1024 384 13.6
C3 1000 8π 3π 10.908 4.602 2.765 × 10−3 6.224 2304 2048 512 12.5
C4 1995 8π 3π 12.241 6.117 2.428 × 10−3 8.2345 4096 3072 768 11.5
C5 5185 8π 3π 12.726 6.363 7.110 × 10−2 10.347 10 240 7680 1536 7.8

TABLE 1. Summary of DNS case details, where far right-hand column denotes outer-normalized
simulation time; vertical (x+

3 ) computational mesh spacing based upon B-spline discretization,
where δ+

3 |w and δ+
3 |c denote wall and centreline grid spacings, respectively. For comprehensive

details, see Lee & Moser (2015).

2. Results from DNS of high-Reτ channel flow

Figure 1 shows streamwise velocity, u+
1 , at an arbitrary time and in a series of formats

for Case C5 (for this work, fluctuations are denoted as deviations from the Reynolds
average, u′ = u − 〈u〉t, where 〈· · · 〉a denotes averaging over dimension a; where noted,
we leverage the horizontal homogeneity of channels and use the plane average as an
interchangeable surrogate for the time average). In figure 1 and all subsequent figures, blue
lines at fixed values of x+

3 denote the lower and upper limit of the logarithmic layer, as per
reference material provided in Pope (2000). Panel (a) shows a colour flood contour of u+,′

1 ,
where yellow lines denote structural inclination angle, γ = 16◦, for large-scale motions
(Hutchins & Marusic 2007). The contours reveal the ‘staircase-like’ pattern of successive
UMZs (Heisel et al. 2020), where the intensity of successive UMZs (momentum excess
or deficit) diminishes with x+

3 increasing. In order to simultaneously assess the inner- and
outer-layer dynamics, panel (b) shows isocontours of u+,′

1 = +1 (black) and −1 (grey)
over the region denoted in panel (a). The panel (b) ordinate is shown in logarithmic
scale, which reveals the presence of inner-layer regions of momentum excess and deficit
(Jimenez & Pinelli 1999; Schoppa & Hussain 2002). Panel (b) constitutes preliminary
evidence of the inner-layer bluff-body-like dynamics creating wakes that emanate into
the outer layer, which manifest as UMZs. The region, x+

1 ≈ 6.7 × 104 and ≈9.0 × 104

and x+
3 ≈ 50, marks the location of two example bluff-body-like interactions, where

parcels of momentum excess encounter parcels of momentum deficit, inducing the
wake-like parcels of fluid which conform to the inclination lines superimposed upon the
panels.

Panels (c–g) show u+
1 at the series of streamwise locations denoted in panel (a)

by vertical black lines, where panels (c–g) correspond to monotonically increasing x+
1

locations. The logarithmic law is superimposed upon the panels, for reference, while clear
UMZs were visually detected and are highlighted with annotations (more sophisticated
UMZ identification methods are available, but this is not the purpose of the present paper;
Fan et al. 2019). The observed UMZs in panels (c–g) correlate with the intersection of
parcels of quasi-uniform momentum in panel (a): consider, for example, the momentum
deficits at x+

1 ≈ 3 × 104 (d) and ≈3.5 × 104 (e), or the momentum excesses at x+
1 =

8 × 104 ( f ) and ≈11.5 × 104 (g). The existence of these UMZs necessitates relatively
large interfacial gradients. One such way to record this is through consideration of the
turbulent kinetic energy (k) balance and the Kolmogorov length.
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FIGURE 1. Instantaneous streamwise velocity from DNS of channel flow at Reτ = 5200 (Case
C5, table 1). Panels (a,b) show fluctuating streamwise velocity, u+,′

1 linear and logarithmic
ordinate scalings, respectively, where panel (b) corresponds with the relatively lesser streamwise
extent indicated in panel (a). Solid black and grey lines in panel (b) denote u+,′

1 = 1.0 and −1.0,
respectively; inclined yellow lines in panels (a,b) denote inclination line, γ = 16◦, which is
typical of inclined inertial-layer structures (Adrian et al. 2000; Hutchins & Marusic 2007). Panels
(c–g) show u+,′

1 at the five streamwise locations denoted by vertical black lines in panel (a), where
annotations are superimposed to highlight UMZs through visual inspection. In panels (c–g), the
yellow profile denotes the logarithmic velocity profile (2.3a,b), while upper and lower horizontal
blue lines in panels (b–g) denote the base and ceiling of the logarithmic layer, respectively, as
per reference material provided in Pope (2000).

For the cases recorded in table 1, figure 2(a) shows vertical profiles of plane- and
time-averaged k production (gain) and dissipation (loss), respectively, where 〈P+〉12t =
〈u+,′ ⊗ u+,′:∇+〈u+〉t〉12t and 〈ε+〉12t = 〈∇+u+,′:∇+u+,′〉12t. Annotations are superimposed
upon panel (a) to indicate the direction of increasing Reτ , which corresponds to a
monotonically increasing magnitude of dissipation and production in the inner layer.
The dissipation profiles can be used to recover the inner-normalized Kolmogorov length,
η+ = (ε+)−1/4, where figure 2(b) shows profiles for Cases C1 to C5. Panel (b) indicates
that η+ exhibits three distinct regimes of dependence upon x+

3 , where the regions of
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FIGURE 2. Turbulence statistics from DNS of channel turbulence. Panel (a) shows vertical
profiles of plane- and time-averaged inner-normalized production and dissipation, with
direction of Reτ increasing superimposed for perspective. Panel (b) shows vertical profiles of
inner-normalized Kolmogorov length, with models superimposed showing elevations of validity
for different scaling arguments. In both panels, black to light grey profiles correspond to Cases
C1 to C5, see table 1.

validity are noted below:

〈η+〉12 ∼ C for x+
3 � 20

〈η+〉12 ∼ (x+
3 )1/4 for 20 � x+

3 � λ, and

〈η+〉12 ∼ (x+
3 )1/2 for x+

3 � λ,

⎫⎪⎬
⎪⎭ (2.1)

where λ is the elevation at which the logarithmic-layer scaling transition occurs. Inspection
of figure 2(b) indicates that λ ≈ Reτ /2 (discussion to follow). With the exception
of d3+〈u+

1 〉12t(x+
3 ), all other components of the Reynolds-averaged velocity gradient

tensor vanish for a channel; this attribute provides a benchmark for assessment of the
Kolmogorov length profiles shown in figure 2(b) and the equation (2.1) results. Within the
inner (viscous wall) layer,

〈u+
1 〉12t(x+

3 ) = x+
3 for x+

3 � 50, and d3+〈u+
1 〉12t(x+

3 ) = 1, (2.2a,b)

while in the logarithmic layer, the form of 〈u+
1 〉12t(x+

3 ) changes

〈u+
1 〉12t(x+

3 ) = 1
κ

log(x+
3 ) + A for x+

3 � 50, and d3+〈u+
1 〉12t(x+

3 ) = (κx+
3 )−1.

(2.3a,b)
Thus, the inner- and logarithmic-layer estimates for velocity agree, but the intermediate
argument, 〈η+〉12 ∼ (x+

3 )1/4, cannot be explained by either. It is emphasized that the
scaling arguments superimposed upon figure 2(b) are based only on a fit (solid red lines),
and not from any order-or-magnitude analysis of governing transport equations, etc.

The results presented in figure 2 indicate the presence of a layer that cannot be
attributed to the viscous sublayer or logarithmic layer. Herein, we will demonstrate
that this non-conforming scaling is the product of elevated shear associated with the
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FIGURE 3. Vertical profiles of instantaneous absolute value of vertical gradient of streamwise
velocity (a,c,e) and vorticity thickness (b,d, f ; (2.4)) at arbitrarily selected streamwise–spanwise
locations throughout the computational domain. Results shown for Case C1 (a,b), C3 (c,d) and
C5 (e, f ), with intermediate cases omitted for brevity. In (a,c,e), yellow profiles correspond to
the maximum value of |∂3+u+

1 | reported at each elevation, horizontal green lines correspond to
analytical inner-layer gradient (2.2a,b). Solid light and dark grey lines correspond to analytical
logarithmic-layer gradient (2.3a,b) and scaling argument recovered from the Kolmogorov length
(figure 2b); annotations for both superimposed in panel (a). Solid red line in (b,d,f ) indicates
averaged vorticity thickness at each elevation; solid light and dark grey lines correspond to
idealized scaling upon x+

3 based upon logarithmic law and Kolmogorov length profiles, with
annotations both superimposed in panel (b).

passage of UMZs, for which the wall-normal gradient of streamwise velocity provides
the dominant contribution. The following results, and subsequent self-similar UMZ
interfacial wakes behaving as canonical wakes, are all entirely consistent with this result.
In the interest of brevity, a component-by-component analysis is not presented here – i.e.
〈(∂1+u+

1 )−1/4〉12t(x+
3 ), etc. – and we direct the interested reader to the Appendix.

Figure 3 shows arbitrarily selected vertical profiles of |∂3+u+
1 | (left column) and vorticity

thickness,

δ+
ω (x+

3 ) = δu+
1

max︸︷︷︸
12

(|∂3+u+
1 |) , (2.4)
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in the right column, where δu+
1 = u+

1 (x+
1,l, x2,l+, x+

3,l + δ+
3 , t+) − u+

1 (x+
1,l, x+

2,l, x+
3,l, t+), x+

l

corresponds to the locations at which individual profiles are taken, δ+
3 is the wall-normal

computational mesh resolution (table 1 and accompanying text) and 12 beneath the
‘max’ operation denotes maximum in the x1–x2 plane; after de Silva et al. (2017), we
define vorticity thickness in terms of the maximum gradient. Since successive UMZs are
composed of differing aggregate momentum, the instantaneous wall-normal gradient of
streamwise velocity can be negative. In order to focus the present article on the magnitude
of interfacial shear, the absolute value of the gradient, |∂3+u+

1 |, is used in (2.4). Profiles for
Cases C2 and C4 are omitted from figure 3 for brevity, although we report monotonic
variation of the relevant quantities with Reτ . For the purpose of figure 3, profiles are
selected arbitrarily. In panels (a,c,e), the solid green and light grey lines correspond
to the gradients predicted by (2.2a,b) and (2.3a,b), respectively, while the solid yellow
line is the maximum value recorded at each location ((2.4) denominator); the solid dark
grey line denotes |∂3+u+

1 | ∼ (x+
3 )−1/2. Panel (a) includes annotation for the outer-layer x+

3
dependencies reported. It is clear that, instantaneously, the wall-normal gradients decline
slower (in space) than would otherwise be predicted by the logarithmic law, which is
the signature of elevated shear within the interfacial zones between successive UMZs.
This is evidenced by overlap between the dark grey and yellow profiles, indicating that
elevated interfacial gradients cannot possibly be attributed to equilibrium condition shear;
UMZ shear exhibits a predictable form. Provided Reτ is sufficiently large, this trend
occurs continuously, with |∂3+u+

1 | ∼ (x+
3 )−1/2 agreeing with the maximum gradient for

20 � x+
3 � λ (see also figure 2b).

Figure 3(b,d,f ) shows arbitrarily selected profiles δ+
ω (x+

l , t+) (2.4), where panel (b)
includes annotations for the additional profiles; it is self-evident that the velocity gradient
and vorticity thickness are inversely related: the red profiles in panels (b,d, f ) are
〈δ+

w 〉12(x+
3 , t), and it is immediately apparent that this quantity exhibits 〈δ+

w 〉12(x+
3 , t) ∼

(x+
3 )1/2. Others have considered the vorticity thickness associated with the interfacial

layers (de Silva et al. 2017; Bautista et al. 2019), but the current wall-normal scaling
confounds description within the attached-eddy paradigm of the outer layer. In the
following section, the results presented herein will be interpreted in the context of a wake
model, wherein successive UMZs originate from bluff-body-like inner-layer interactions
between fluid parcels of differing age and aggregate momentum (Adrian et al. 2000).
This is sketched in figure 4, which presents an idealized depiction of the inner-layer
collision between a relatively faster parcel (red) and relatively slower parcel (blue),
necessarily leading to the interfacial wake zone (grey) and momentum defect; the figure
includes annotation for the inclination angle, γ , and readers will note conceptual similarity
between figure 4 and 1(b). The momentum parcels illustrated in figure 4 manifest as
UMZs when measured at a fixed streamwise–spanwise location, thereby leading to the
‘staircase-like’ increases in velocity with increasing x+

3 (Meinhart & Adrian 1995; de Silva
et al. 2017; Bautista et al. 2019; Heisel et al. 2020). In the following section, wake-scaling
arguments are used to recover wall-normal dependence of the velocity gradients across
UMZ interfaces.

3. Wake model for UMZ evolution

The interfacial zones between successive UMZs are envisioned as a series of recovering
wakes. Consider the inner-scaled momentum transport equation, absent spanwise transport
effects

〈u+
1 〉t · ∇+〈u+

1 〉t + ∇+ · 〈u+,′ ⊗ u+,′
1 〉t = −∂+

1 P+
0 + (∇+)2〈u+

1 〉t, (3.1)
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FIGURE 4. Conceptual schematic of dynamical and hierarchical nature of hairpin packets
(Adrian et al. 2000) originating within inner layer and emanating into outer layer. Dark to light
parcels of red and blue correspond to successive realizations of a relative streamwise momentum
excess and deficit at a series of successive times (annotations provided in panel), which manifest
at later times as UMZs. Yellow line denotes inclination angle (see also figure 1a,b), which
sets the origin of a local Cartesian coordinate system, x̂+ = {x̂+

1 , x̂+
3 }. Grey region denotes

interfacial shear between vertically adjacent UMZs, with vorticity thickness shown and idealized
instantaneous (thin solid black) and Reynolds-averaged (thick solid black) streamwise velocity
shown. Inset shows vorticity thickness and wake deficit. Superimposed upon the panel is a
yet-older parcel of streamwise momentum deficit (light blue).

where viscosity is embodied within the inner-scaled dimensions and total pressure, P+
0 =

P/(ρu2
τ ) + 〈u+

3 〉2
t , where P is mechanical pressure (discussion to follow for application to

turbulent wakes). The momentum deficit between vertically adjacent UMZs, δU+(x+),
and the vorticity thickness, δ+

ω (x+), constitute salient normalizing scales for (3.1). As
will be shown in subsequent developments, these normalizing quantities will not preclude
dependence upon x+

3 . Owing to scaling arguments of wakes, for which u+,′/δU = O(100),
divergence of the normal (turbulent) stresses and all right-hand side terms vanish from
(3.1). For the present application to UMZs, the imposed pressure gradient is eliminated,
∂+

1 P+
0 → 0, while order-of-magnitude arguments show that ∂+

1 〈u+
3 〉2

t = −∂+
1 P+ → 0;

given that comprehensive details of these developments are available in a benchmark
turbulence reference (Tennekes & Lumley 1972), additional information is left to the
interested reader. After Tennekes & Lumley (1972), it follows that the problem can
be posed in self-preserving similarity form by adopting a model of UMZs as wakes
originating from the inner-layer interactions between relatively young, slow parcels and
relatively old, fast parcels (figure 4). For descriptive purposes, a local coordinate system is
introduced, x̂+ = {x̂+

1 , x̂+
3 }, which is shown in figure 4; this coordinate system represents

an idealized depiction of the evolving interface between two parcels of fluid, and we
emphasize that the perception of a curved mapping is a product of the logarithmic–linear
axis scaling (see also figure 1b). Owing to the aforementioned reductions to (3.1), a
self-preserving similarity form requires only models for streamwise velocity and the
streamwise–wall-normal turbulent stresses; in the inclined coordinate system, these are

u+
h − 〈u+

1 〉t(x̂+
1 , x̂+

3 )

δU+(x̂+
1 )

= f (η) and
〈u+,′

1 u+,′
3 〉t

(δU+(x̂+
1 ))2

= −g(η), where η = x̂+
3

δ+
ω (x̂+

1 )
,

(3.2a,b)

where u+
h is the ‘high’ velocity above the wake (see also figure 4). Following application of

the aforementioned conditions and substitution of the similarity-form streamwise velocity
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and turbulent stresses, (3.1) becomes

u+
h

(
δU+

δ+
ω

(∂1+δ+
ω )η dη f − (∂1+[δU+]) f

)
= dηg = Re−1

T d2
η f , (3.3)

where ReT = δU+δ+
ω /νT , and it is noted that the Reynolds (turbulent) stress divergence

term has been reconciled with velocity via the incompressible Boussinesq model
(Pope 2000); with this, the turbulent stresses are expressed alternatively: 〈u+,′

1 u+,′
3 〉t =

−(δU+(x̂+
1 ))2g(η) = −νT∂3+u+

1 . Note, too, that the remaining advective term simplifies

〈u+
1 〉t∂1+〈u+

1 〉t = u+
h ∂1+〈u+

1 〉t − δU+ f ∂1+〈u+
1 〉t → u+

h ∂1+〈u+
1 〉t, (3.4)

since δU+/u+
h ∼ O(δ+

ω /x̂+
1 ), and the advective velocity embodied by each successive

UMZ is expressed relative to its predecessor (Tennekes & Lumley 1972). The following
conditions are necessary for the existence of self-preserving wakes

δ+
ω (δU+)−2∂1+δU+ = A = constant,

(δU+)−1∂1+δ+
ω = B = constant and

ReT = constant.

⎫⎪⎬
⎪⎭ (3.5)

We follow Tennekes & Lumley (1972) by adopting the general conditions, δ+
ω ∼ (x̂+

1 )n

and δU+ ∼ (x̂+
1 )m, where the requirements imposed by (3.5) yield the undetermined

system, m = n − 1, indicating the need for an additional constraint. After Tennekes &
Lumley (1972), one such constraint can conveniently be recovered from the integral-form
streamwise momentum transport equation,

∫ ∞

−∞
〈u+

1 〉t(〈u+
1 〉t − u+

h )dx̂3+ = −(u+
h )2θ, (3.6)

where θ is the momentum thickness (note that terms of order, δU+/u+
h , are eliminated

from the integral since they are vanishingly small). With this, substitution of the
self-preservation form model for 〈u+

1 〉t (3.2a,b) yields,

δU+δ+
ω

(∫ ∞

−∞
f dη − δU+

u+
h

∫ ∞

−∞
f 2 dη

)
= −u+

h θ, (3.7)

thereby providing a means to close the system: since ρ−1 d1̂+M1̂+ = −d1̂+((u+
h )2θ) = 0 –

where M1̂+ is streamwise momentum and ρ is fluid density – u+
h θ is necessarily constant,

and (3.7) necessitates that δU+δ+
ω ∼ (x̂+

1 )n(x̂+
1 )n−1 must also be constant; with this, we

recover the results already presented by Tennekes & Lumley (1972)

δU+ ∼ (x̂+
1 )−1/2 = A1(x̂+

1 )−1/2 and δ+
ω ∼ (x̂+

1 )1/2 = A2(x̂+
1 )1/2. (3.8a,b)

The proportionality constants, A1 and A2, needed in (3.8a,b), can be recovered via
subsequent rudimentary developments. The result for δ+

ω is consistent with the scaling
recovered from the DNS data (figure 3b,d, f ), which showed a pronounced region of δ+

ω ∼
(x+

3 )1/2. The result is also physically intuitive: the velocity defect and vorticity thickness
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x3
+

δU +f (η)

f (η; α)
α

η

x1
+

u1
+(x1

+, x3
+)

〈u1
+〉12t (x3

+)

FIGURE 5. Results of wake model (a) and application to modelling logarithmic layer (b). Panel
(a) shows wake profile, u+

1 = δU+ f (η), at a series of increasing streamwise locations, which
for a channel are the conceptual equivalent of increasing time; inset shows self-preserving
similarity-form wake deficit profile (3.10). Panel (b) shows instantaneous streamwise velocity
with wake deficit profile and outer velocity modelled as per (3.13).

must decrease and increase, respectively, for increasing x̂+
1 . With further developments, it

can be shown that (3.3) reduces to

f ′′ + α
(
ηf ′ + f

) = 0, (3.9)

where α = (1/2)ReTu+
h (A1/A2); the solution to (3.9) has the form,

f (η;α) = exp
(− 1

2αη2) , (3.10)

where a series of profiles for f (η;α) are shown in figure 5(a, inset), while panel (a)
itself shows the momentum defect, δU+f , for A1 → 1 at a series of streamwise locations.
The quantity is shown against x+

3 , which is enabled by the linear mapping from x̂+
1

to x+
3 afforded by the oblique-aligned Cartesian coordinate systems and the a priori

defined proportionality constant, A1. Owing to the similarity variable (3.2a,b), δU+f
correctly captures the diminishing defect for increasing values of x+

1 and x+
3 . In addition

to the correct scaling arguments already shown by (3.8a,b), note also that the preceding
developments enable recovery of the vertical dependence of the vertical gradient

∂3̂+u+
1 = − (

∂3̂+(δU+) f − δU+∂3̂+ f
) =

(
α

δU+

(δ+
ω )2

x̂+
3 − ∂3̂+δU+

)
f , (3.11)

where the second term within the far right-hand side term vanishes upon factorization
of the entire term by x̂+

3 /δ+
ω . Following substitution of the x̂+

3 scaling arguments already
established in the preceding developments (3.8a,b), it can be shown that

∂3̂+u+
1 → α

δU+

(δ+
ω )2

x̂+
3 f ∼ (x̂+

3 )−1/2

x̂+
3

x̂+
3 ∼ (x̂+

3 )−1/2 ∼ (x+
3 )−1/2, (3.12)

in accordance with the results already shown (figures 2b and 3a,c,e); it is noted, also, that
while the preceding development was posed in terms of the x+ = {x̂+

1 , x̂+
3 } vector space,

which was oblique to the x+ = {x+
1 , x+

3 } vector space by inclination angle, γ , the scaling
arguments are equally valid since both coordinate systems are Cartesian.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.800


UMZ scaling arguments 906 A8-11

As a final remark, it is worth considering how the arguments presented herein yield
d3+〈u+

1 〉12t(x+
3 ) ∼ (x+

3 )−1, where 〈u+
1 〉12t is the Reynolds-averaged streamwise velocity.

That is, if the inclined wake model correctly represents instantaneous flow states, its
Reynolds average should nevertheless recover the logarithmic law when averaged over
a sufficient number of ensembles. This condition is leveraged as a means to define u+

h ,
since

〈u+
1 〉12t = 〈u+

h 〉12 − 〈δU+ f 〉12t → 1
κ

log(x+
3 ) + A, (3.13)

where 〈δU+ f 〉12t → 0 is a natural consequence of the fluctuating nature of successive
UMZs. In adopting this approach, the streamwise-heterogeneous component within
the model for streamwise velocity, δU+f (η) (3.2a,b), encompasses the effects of time
dependence for the case of a channel. This tendency towards the logarithmic law in
a Reynolds-averaged sense is tantamount to the aforementioned Reτ dependence upon
〈η+〉12t, where we observed scaling transition at λ ≈ Reτ /2. Physical support for this
transition elevation, and dependence upon λ, will be the topic of future work.

4. Concluding remarks

Recent experiments have confirmed that the inertial layer of high-Reτ boundary layers
are dominated by UMZs (Meinhart & Adrian 1995; de Silva et al. 2017; Bautista et al.
2019; Heisel et al. 2020). These inclined regions of quasi-uniform momentum manifest
as a ‘staircase-like’ pattern when recorded at a fixed streamwise–spanwise location.
The intensity of UMZs attenuates with increasing wall-normal direction. For this work,
high-Reτ DNS of channel flow is used to quantify the influence of strong interfacial
shear between successive UMZs: results show that this interfacial shear contributes to
non-logarithmic scaling of instantaneous streamwise velocity, which subsequently affects
the wall-normal dependence of the velocity gradient and vorticity thickness. The DNS
results afford simultaneous consideration of the inner- and outer-layer processes, which
are used to develop a conceptual description of UMZs as the product of inner-layer
bluff-body-like interactions. When viewed in this way, the associated momentum defect
and turbulent stresses can be posed in self-similar form to recover wall-normal dependence
of the velocity gradient. Agreement between predictions from the similarity solution
and DNS results establishes support for the notion of UMZs as wakes emanating from
inner-layer dynamics.
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FIGURE 6. Vertical profiles of Kolmogorov length due to discrete components of the velocity
gradient tensor, averaged in the streamwise, spanwise and time dimensions. Profiles correspond
to contributions due to streamwise gradients (thin lines), spanwise gradients (intermediate line
thickness) and vertical gradients (thick lines) of streamwise velocity (black), spanwise velocity
(grey) and vertical velocity (light grey); note that 〈(∂3+u+

1 )−1/4〉12t(x+
3 ) is denoted by an amber

profile, for emphasis. Also superimposed are scaling relations used in figure 2. Profiles shown
for Case C5, see table 1.

Appendix

It is argued throughout that 〈(∂3+u+
1 )−1/4〉12t(x+

3 ) makes the dominant contribution for
the Kolmogorov length, with the resulting scaling results used to argue that this shear is
the marker of UMZ interfacial shear. In order to demonstrate efficacy of this assumption,
figure 6 shows vertical profiles of Kolmogorov length due to constituent components
of the velocity gradient tensor, with colour- and line-coding definitions provided in the
definition. Here, 〈(∂3+u+

1 )−1/4〉12t(x+
3 ) is denoted by an amber line, which confirms that the

Kolmogorov length is smallest – due to the strongest shear – for this component.
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