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Abstract. The path is sought in the temperature–density plane that allows
desired plasma burning conditions to be reached in the shortest possible time.
This task is undertaken using the tools of classical variational analysis. The
derived expression of Euler’s equation is found to be degenerate. Ways to
overcome such an impasse are examined, and eventually the solution is
obtained. Illustrative applications to the OMITRON proposed ignition
experiment are presented, which make reference to the Lackner–Gottardi and
ITER-P89 scalings for the energy confinement time.

1. Introduction

The present paper is targeted specifically at the non-superconducting ignition
experiments that are currently being proposed by a number of fusion
laboratories. Indeed, it is well recognized that in a non-superconducting
ignition experiment, the need to reach plasma burning conditions within the
allowed pulse length (as determined, typically, by the Joule heating of the
toroidal magnet) imposes an important constraint. This means that one is
actually not allowed to waste any time in steering the plasma toward ignition
– implying that one must take advantage of strategies properly optimized to
that end.

For some of the device parameters and plasma parameters that are involved,
the strategies to follow are actually obvious: for example, the induced plasma
current must be at all times as large as permitted by the involved constraints,
the impurity content must be at all times as low as possible, etc. For one plasma
parameter in particular, however – the plasma density – the optimization
prescription is not that obvious. The scope of the present paper is indeed to find
out which density control pattern is required to drive the plasma to ignition
within the shortest possible time.

In this paper the key features characterizing the problem are examined, and
illustrated with the help of a simplified, zero-dimensional, pilot calculation. In
the latter, for the sake of simplicity, all considered device and plasma
parameters – with the important exceptions of plasma temperature and plasma
density – are held constant with respect to time. The problem thus reduces to
finding the trajectory in the temperature–density plane that minimizes the time
needed to reach plasma burning conditions. This is in a way reminiscent of the
search for the brachystochrone – a famous problem going back to the early days
of rational mechanics and the calculus of variations. In analogy, therefore, we
have chosen here to refer to our sought-after optimal path in the temperature–
density plane as the ‘ ignition brachystochrone’.
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2. The unconstrained extremal problem

Our calculation proceeds from the obvious relation

dE

dt
¯P, (1)

where E is the total kinetic energy content of the plasma, P is the net power
input into the plasma, and t is the time. The plasma kinetic energy E can be
expressed as

E¯NW, (2)

where N is the total number of particles (electrons, fuel ions, and impurity ions)
in the plasma, and W is the mean kinetic energy per plasma particle. The
quantities N and W can in turn be written as

N¯ 2VCna , W¯
3

2
kTh , (3a, b)

where n- is the average electron density, V is the plasma volume, C is the
coefficient required to properly relate n- to N in the presence of impurities (see
further in Sec. 4), k is Boltzmann’s constant, and T4 is the appropriately defined
average of the temperature that is required for (3b) to hold (see again Sec. 4).

From the expression for E thus obtained

E¯ 3VCna kTh , (4)

one can express the total differential dE in terms of the differentials dna and dTh
(remembering that everything else in the problem is taken to be constant) :

dE¯ 3VCk(na dTh Th dna ). (5)

As the next step, we prescribe a trajectory S in the (na ,Th ) plane, and require the
point representative of our physical system to stay on such a trajectory. The
differentials dna and dTh are thus no longer independent, and we can write

dE¯ 3VCk0na Th
dna
dTh 1 dTh , (6)

with the quantity dna }dTh being defined by the local trajectory slope. A further
step – whereby (6) is related back to (1) – produces the following expression for
the differential dt of the time variable, calculated along the given trajectory:

dt¯
dE

P
¯ 3VCk

na Th dna }dTh

P(na ,Th )
dTh , (7)

where on the right-hand side, the fact that the net power P is a function of na
and Th has been directly emphasized. Equation (7) clearly enables us to compute
the time t

s
taken by our physical system to evolve from start to end along the

introduced trajectory S :

t
s
¯&

S

F(Th ,na ,na «) dTh , (8)

where

F(Th ,na ,na «)¯ 3VCk
na Th na «
P(Th ,na )

, na «¯
dna
dTh

. (9a, b)

https://doi.org/10.1017/S0022377801008911 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801008911


The ignition brachystochrone 61

Having thus properly set the stage, we are in a position to formulate the
extremal problem in which we are interested. Given, in the (na ,Ta ) plane, a starting
point (representative of well-established plasma conditions, attained somewhat
after discharge breakdown) and an end point (representative of the regime of
plasma burning at which we are aiming), within the collection of all possible
trajectories connecting the two points, we must seek out the one that makes the
evolution time t

s
(as computed from the integral in (8)) the shortest. This

problem is typical of the discipline of the calculus of variations, and its solution,
as is well known, can be found with the help of Euler’s equation (here written
with reference to the notation of (8)) :

¦#F

¦na «#
na §

¦#F

¦na « ¦na
na «

¦#F

¦na « ¦Th
®

¦F

¦na
¯ 0. (10)

Before carrying on with our specific case, it is important to point out that in
the vast majority of mechanical and physical applications, the integrand in the
expression that is to be extremized is a nonlinear function of the first derivative
of the unknown (in our notation, that would mean of n- «). Under such
circumstances, Euler’s equation is a second-order ordinary differential equation
for the unknown function (in our notation, that would be the function na (Th )).
The general solution of a second-order differential equation, obviously, contains
two arbitrary constants, which can in principle be fixed by requiring the
solution to go through a starting point and an end point conveniently assigned.
This pins down the sought-after extremal trajectory uniquely.

On the other hand, however, it so happens that in our problem the integrand
F(Th ,na ,na «) depends on n- only linearly (as a glance at (9a) promptly reveals). This
circumstance actually entails special consequences. In order to bring the latter
to light, let us make this linearity explicit by writing the integrand in the form

F(Th ,na ,na «)¯G
"
(Th ,na )na «G

#
(Th ,na ), (11)

where

G
"
(Th ,na )¯

3VCkTh

P(Th ,na )
, G

#
(Th ,na )¯

3VCkna
P(Th ,na )

. (12a, b)

Upon substituting (11) and (12) into (10), one can appreciate that some
important simplifications take place, on account of which Euler’s equation
comes eventually to be written as follows:

¦G
"
(Th ,na )
¦Th

®
¦G

#
(Th ,na )
¦na

¯ 0. (13)

The feature that is most worth emphasizing in the latter expression is that both
the first and second derivatives of the unknown function na (Th ) are missing from
it: implying, therefore, that Euler’s second-order differential equation has
degenerated into a zeroth-order, finite equation. The latter, clearly, specifies a
unique curve in the (na ,Th ) plane, whose role and meaning in the context of the
considered extremal problem is a priori not clear. For convenience, in this
paper, we shall introduce a special name for this curve: for reasons that will
indeed become clear in the sequel, we shall term it the brachystochrone kernel
curve.
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It is important here to emphasize that the reason why the function F displays
the linear behaviour expressed by (11) – and hence why Euler’s equation
becomes degenerate – can be ultimately tracked down to (2) : which expresses
the basic fact that kinetic energies of single particles combine additively to
yield the total kinetic energy content E of the plasma. Thus the degeneracy of
Euler’s equation is apparently describing a fundamental physical feature of our
problem, and we must live with it.

Looking for help on how to deal with such a degeneracy in Euler’s equation,
we may try browsing through the literature.† By so doing, we may eventually
meet the following statement (Elsgolc 1962): if the assigned starting and end
points both belong to the curve that is the solution of the degenerate Euler
equation then (it is claimed) the arc of this curve between these two points is
indeed an extremal trajectory; if, on the other hand, the two assigned points do
not both belong to this curve then the formulated variational problem has no
solution (i.e. no extremal trajectory exists).

It is perhaps appropriate here to recall that any statement about extremals is
a statement about the existence of an extremal in the small (that is, in the
context of a first-order, perturbative searching procedure). Hence the existence
of such an extremal in the small does not guarantee that a corresponding
extremal exists also in the large (that is, in an absolute sense). Indeed, as an
addendum to the above-quoted statement from the literature, it can be proved
that – as far as our case is concerned – a minimum in the large of the time t

s
never

exists, even if the starting and end points are both assigned to belong to the
brachystochrone kernel curve.

The above statements appear at first rather puzzling. Physical intuition
would in fact seem to suggest that in the considered problem an extremal
trajectory ought to exist for any arbitrarily assigned starting and end points in
the (na ,Th ) plane. A way out of this dilemma can perhaps be found in the
considerations that follow. It may be, indeed, that there is a flaw in our
procedure, to be imputed possibly to the fact that we have been searching for
an extremal within an ensemble of trajectories that is too large. Not all
mathematically allowed trajectories may in fact be physically acceptable.
Perhaps, then, if we were to properly trim down the set of trajectories among
which to search, we might find, after all, that an extremal trajectory does exist,
indeed, for any arbitrarily assigned starting and end points. This obviously
suggests that we must look to that area of the calculus of variations that deals
with the so-called constrained extremal problems (see e.g. Garfinkel 1967). We
shall do that in the next section.

3. The constrained extremal problem

To help us get to the root of the problem, let us begin by noting that everywhere
in the (na ,Th ) plane, trajectory elements can be constructed that make the time
differential dt defined by (7) a negative quantity. Readers may themselves easily

† Actually, quite a large number of current books on the calculus of variations make no
comment on the possible occurrence of the above-noted degeneracy in Euler’s equation. An
exception is the didactically oriented book by Elsgolc (1962), where at least the reader is
presented with the statement about the issue that we are reporting above.
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ascertain the truth of this statement.† Now, by assembling many such
trajectory elements together, trajectories can clearly be constructed that are
characterized by arbitrarily large negative transit times. This explains why a
minimum transit time does not exist, in general, for trajectories starting and
ending at arbitrarily assigned pairs of points in the (na ,Th ) plane.

However, trajectory elements yielding negative values of dt have no physical
meaning, since the time parameter t, obviously, can only grow along any
physically admissible trajectory. We are thus led, sensibly, to place the
constraint dt% 0 on all elemental arcs of our sought-after extremal curve. Such
a constraint clearly specifies the value 0 to be a lower bound for the transit time
of any trajectory: implying therefore that minimum-time trajectories do indeed
exist in this case for any assigned starting and end points.

In the case that is of concern to us, however, the condition dt% 0 is possibly
still too lenient. Under this condition, indeed, trajectorial arcs are still allowed
along which the density parameter rate of change (i.e. the quantity dna }dt) can be
very large‡ – possibly larger than, on physical grounds, it can be allowed to be.
There are, in fact, obvious physical and}or technological limitations that affect
the rate at which n- can either grow or decrease. The rate of density growth is
controlled typically by fuel feed mechanisms (gas puffing and}or pellet
injection), while the rate of density decrease can in some way be understood to
be related to particle transport in the plasma. All this suggests that on all
trajectory elements that make up our sought-after optimal path, we should
perhaps place a pair of unilateral constraints of the following type:

®
na

ατ
E

%
dna
dt

%na
t
, (14)

where the lower limit on the density rate of change (the left-hand side) is
expressed in terms of the particle confinement time ατ

E
(written, as is often done,

as the energy confinement time τ
E

times a multiplicative factor α), while the
upper limit (the right-hand side) is simply taken to be a constant value na

t
,

selected on the basis of the performance ascribed to the fuel-feed mechanisms
employed. Clearly, because of (7) and (9b), (14) can also be rewritten as follows:

®
na

ατ
E

%
P

3kV(na Th na «)
na «%na

t
, (15)

where the two constraints must be thought of as being imposed on n- «.
Having thus convinced ourselves that the variational problem that concerns

us must be reformulated as a constrained extremal problem – so as to indeed
include the unilateral constraints expressed by (15) in an essential way – we shall
here take a little time to recall the main features that characterize constrained
extremal problems in the calculus of variations. The point that needs to be made
is that in the latter framework, extremal trajectories are no longer (in general)
fully smooth curves, but are instead typically constructed as sequences of

† It must be remembered, of course, that a trajectory element is identified by specifying
an infinitesimal arc plus a sense of orientation on it.

‡ As a matter of fact, since the differential dt occurs in the denominator of the expression
for the density parameter rate of change, near the limit of the condition dt% 0, the fact that
dt can be very small may be understood to imply that the density parameter rate of change
can actually become arbitrarily large.
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smooth sections that join to each other at corner points. Adjacent smooth
sections satisfy different (finite or differential) equations, to be chosen among a
set that comprises Euler’s equation together with the equations obtained by
taking the equalities in the unilateral constraints that have been introduced
into the problem. Many different forms can be envisioned, in principle, for the
resulting composed extremal curves, and to find the correct one, it is very often
necessary to rely principally on physical common sense and}or trial-and-error
procedures.

Applying all this to our problem, we are led to identify the following type of
construction of the brachystochrone as the appropriate one for our case of
concern. To begin with, one must calculate the brachystochrone kernel curve
defined in the previous section, and plot it in the (na ,Th ) plane. The initial and
end points of the sought-after optimal trajectory (such as those conceivably
assigned to represent a meaningful scenario of the approach to ignition) are
likely to lie, typically, far from the brachystochrone kernel curve (in fact, quite
far below it in density values). Hence common sense suggests that a three-piece
construction of the brachystochrone may be a sensible first-trial choice, with
the centre section of the curve being taken from the brachystochrone kernel
curve, while the first section leads to it by way of a density increase, and the last
section leads away from it by way of a density decrease.

Such a choice proves to be the correct one for a number of significant
selections of the set of simulation parameters. For these cases – by applying the
prescriptions of conditioned variational analysis recalled above – the first
section of the brachystochrone is thus obtained as a solution of the equation
resulting from taking the equality in the right-hand constraint of (15) (which
implies then that the maximum rate of density increase is applied). Solving this
equation for n- «, one obtains

na «¯
3kVna

P}na
t
®3kVTh

. (16)

The latter is a first-order differential equation for the unknown na (Th ), whose
solution is uniquely determined by requiring it to go through the assigned
starting point in the (na ,Th ) plane. Obviously, the curve defined by this solution
must be followed until it intersects the brachystochrone kernel curve (at which
place, the first corner point is located).

To follow, the second section of the brachystochrone must unfold along the
brachystochrone kernel curve: that is, along the curve defined by the (finite)
equation (13). Note that the latter equation, on account of (12), can also be cast
into the simpler form

0na ¦
¦na

®Th
¦

¦Th 1P(Th ,na )¯ 0. (17)

Here an important warning is in order, however. In principle, this second
section of the brachystochrone can have subsections in which the density is
growing and subsections in which it is decreasing. For consistency, it must be
checked, obviously, that the constraint on the density increase rate is not
violated in the first case, and that the constraint on the density decrease rate
is not violated in the second case. If any such violation should indeed occur then
a different recipe would have to be applied to the construction of the
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brachystochrone: perhaps a four-piece or five-piece construction, instead of the
three-piece construction that is being considered here. As an illustration of
these concepts, a case with a four-piece construction of the brachystochrone will
be presented in Sec. 5.

Finally, the third (and last) section of the extremal curve must be related to
the assumed maximum rate of density decrease; that is, it must satisfy the
equation obtained by taking the equality in the left-hand constraint of (15).
Solving this equation for n- «, one obtains

na «¯®
3kVna

Pατ
E
}na 3kVTh

. (18)

The latter is a first-order differential equation for the unknown na (Th ), whose
solution is uniquely determined by requiring it to go through the assigned end
point in the (na ,Th ) plane. The curve defined by this solution must be followed
back, clearly, until it intersects the brachystochrone kernel curve (at which
place the second corner point is located).

What has been said so far fully specifies all that is needed for constructing the
ignition brachystochrone (i.e. our sought-after extremal trajectory). A number of
aspects of the discussion here will become clearer in Sec. 5, where the results of
some simulations are presented.

4. Plasma simulation model

Before presenting actual simulation results, it is fitting to say a few words to
illustrate some key aspects of the computational model adopted. To begin with,
we note that in the performed simulations, reference is made to the proposed
high-field tokamak ignition experiment known as OMITRON (Barberis et al
1993; for a more complete discussion, see also Sestero 1997). The corresponding
values of device and plasma parameters (at least those that are relevant to our
problem) are listed in Table 1.† Note that – in complying with the simpli-
fications of the calculation discussed in Sec. 2 – all the quantities listed in Table
1 have been held constant with respect to time throughout the performed
simulations.

As far as the plasma composition is concerned, the dominant impurity species
is assumed to be carbon (originating from the graphite coating of the vessel
inner wall). The presence of impurity ions affects various features in the
simulation: for the sake of brevity, we omit much of the details here. We feel
the need to write down at least one formula, however, which relates the
coefficient C in (3a) to the quantities Z

i
and f

i
listed in Table 1:

C¯
1

2

(Z
i
®1) f

i
2

(Z
i
®1) f

i
1

. (19)

At various points in the simulation scheme, integrations over the
plasma cross-section are carried out. This requires that information on radial

† It is interesting to compare the OMITRON device parameters with those of the better
known IGNITOR proposed experiment: while the dimensions and shape of the plasma
doughnut are similar in the two machines, the toroidal field in OMITRON has a much greater
strength (due to substantial differences in the toroidal magnet engineering design).
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Table 1. Key parameters of simulation model.

Device parameters
Major radius 1±50 m
Minor radius 0±42 m
Elongation 2±00
Toroidal field on axis 20 T
Toroidal plasma current 15 MA
Additional heating powera 24 MW

Plasma parameters (symbols are defined and}or referred to in Secs 3 and 4)
Atomic number of dominant impurity, Z

i
6

Fractional abundance of impurity ions,b f
i

0±007
Density profile exponent, p

n
1

Temperature profile exponent, p
T

1
Maximum density increase rate, na

t
5¬10#! m−$ s−"

Particle confinement parameter, α 5

a The original design value (see Sestero 1997) was 18 MW. However, recent developments
in the design of ICRH launching apparatus for compact high-field tokamak experiments
make the increased value adopted here a plausible option.

b Defined as the ratio of the number of impurity ions to the total number of ions. The
corresponding value of Z

effective
is 1±2.

profiles be available : in particular on the radial profiles of the (electron) density
n and of the (common) temperature T. In the performed calculations, the radial
density and temperature profiles have been actually taken to be of the following
forms

n£ 0x#

a#


y#

b#1
pn

, T£ 0x#

a#


y#

b#1
pT

. (20a, b)

Here the meaning of the symbols is as follows. The plasma cross-section is
assumed to have a vertically elongated, elliptical shape, with minor radius a
(horizontal) and major radius b (vertical). In the plane of the cross-section,
Cartesian coordinates x (horizontal) and y (vertical) are introduced, referred to
the plasma centre.

Manifestly, the profiles described by (20) are peaked at the plasma centre,
with the degree of peakedness being controlled by the exponents p

n
and p

T
.

Moreover, the profile shapes expressed by (20) have an especially useful
property, which can in principle significantly lessen the calculational effort
required by the simulation: namely, all integrations over plasma cross-section
for which the integrands can be expressed as polynomials in n and T can be
performed in closed analytical form. As a matter of fact, in order to fully exploit
the above feature, we took care that all of our integrand functions were indeed
written in polynomial form (resorting to suitable polynomial approximations,
valid in the correspondingly appropriate ranges of values, for those integrand
functions that were not of that form to begin with).‡.

One such cross-sectional integration is required, clearly to produce the

‡ The payoff secured has certainly been non-trivial, if one considers how demanding it
would have been, alternatively, to reliably calculate the derivatives appearing in Euler’s
equation (although only first-order derivatives are present in the degenerate case – see (13))
through an entirely numerical approach.
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average electron density n- used throughout the present paper. Another such
integration, similarly, is involved in the derivation of the other key variable
used throughout the simulation scheme, namely the quantity Th . The latter is
defined by the relation

Th ¯
nT

na
, (21)

the overbar denoting cross-sectional averaging. On account of the last equation,
it is not difficult to show that Th is actually a measure of mean energy per particle.

As with most other simulation parameters, the profile exponents p
n

and p
T

have been held constant with respect to time. It should be noted, however, that
by so doing one is actually performing calculations that lean significantly
towards the pessimistic side: in fact, one is thereby precluding the possibility of
exploiting such favourable features as the decoupling of current and
temperature profiles in the initial phase, and the peaking of the temperature
profile (due to local ignition) in the final phase. This ought to be borne in mind
when comparing our simple simulation code with other calculational procedures
not bound by the same profile-constancy constraint (in particular, that is, with
one-dimensional simulation codes, whereby profiles are calculated by solving an
appropriate set of diffusion equations).

We come next to discuss the net power P, which – of the variables that have
been introduced in Sec. 2 – is actually the one that contains the most physical
information. In our simulation, the net power P is expressed as the (algebraic)
sum of five terms: three gain terms (Ohmic power, additional heating power,
and α-particle power) and two loss terms (radiative Bremsstrahlung power and
diffusive transport power). Bulk losses from synchrotron radiation, line
radiation, and charge exchange are neglected (a sensible approximation,
actually, in view of the high densities that characterize the simulated device).
No energy gain is attributed to particles fed into the plasma (their entering
energy is low, indeed, compared with the mean energy of plasma particles).
Similarly, no energy loss is attributed to particles leaving the plasma (their
energy, too, is low compared with the mean energy of plasma particles, because
they can only leave after diffusing (and cooling down in the process) from the
hot centre region to the cold border plasma).

Of the five terms that we have included in the expression for the net power
P, the additional heating power is simply prescribed to take on a given constant
value throughout the simulation. As for the other terms, three of them (Ohmic
power, α-particle power and Bremsstrahlung power) involve integrations over the
plasma cross-section of quantities that are physically well known, and for which
reliable expressions – as functions of the local values of density and temperature
– are available from the literature. Hence we shall not dwell on these subjects
any further here.

Finally, there is the diffusive-transport power loss. Of all the terms appearing
in the power balance, this is the one that is subject to the greatest uncertainty,
as is well known. In our simulations – for lack of better information – we have
chosen to model it by two among the most commonly exploited scaling laws for
the energy confinement time. For constructing our first example (to be
illustrated in Sec. 5) we have chosen the so-called Lackner–Gottardi scaling. This
scaling has a theoretical basis and some experimental support; moreover, it has
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been frequently used† in attempts to predict plasma performance in studies of
proposed high-field tokamak ignition experiments such as IGNITOR and
OMITRON. Results from an alternative example based on the so-called ITER-
P89 scaling, will also be presented in Sec. 5. Both of these examples are
representative of the family of scalings that embody confinement degradation
features.

5. Illustrative examples

For our first example, with Lackner–Gottardi scaling, the main results of the
performed simulation are depicted in Fig. 1, which shows a portion of the (na ,
Th ) plane, with white areas representing domains where the net power P entering
the plasma is positive, and shaded areas domains where it is negative. The gap
between the Bremsstrahlung barrier at the upper left and the diffusion barrier at
the lower right is sometimes referred to as the Cordey pass. Any trajectory
leading the plasma system from a point representative of initial plasma
conditions on the lower left to a point representative of plasma burning
conditions on the upper right must obviously go through this gap.

The partly dashed, partly solid, parabola-like curve that appears to surround
the Bremsstrahlung barrier is the brachystochrone kernel curve, introduced and
discussed in Secs 2 and 3. It must be noted that a saddle point of the function
P(na ,Th ) ideally marks the centre of the ‘Cordey pass ’. Recalling that the saddle
point is defined by the simultaneous satisfaction of the two conditions:

¦P

¦Th
¯ 0,

¦P

¦na
¯ 0, (22a, b)

it is an easy step to show that if (22) hold then obviously also (17) is satisfied.
In other words, the saddle point itself belongs to the brachystochrone kernel
curve.‡

The dashed curve on the upper right of the figure is the locus of points where,
upon switching off the additional heating power, the system is in thermal
equilibrium. More precisely, points lying on the curve to the left of its vertex
represent thermally unstable states (ignition points), whereas points to the
right of the vertex represent thermally stable states (operating points). For
convenience, the vertex of the above thermal stability curve has been chosen as
the target point (‘end’ point) of our sought-after optimal trajectory. By making
this choice, we have picked out – among all possible operating points – the one
that is characterized by the lowest plasma energy content. As for the starting
point of our system trajectory, clearly we must require that it be representative
of a well-formed, post-breakdown plasma. Conventionally, in our simulations,
we have taken it to be defined by the following plasma conditions: Th ¯ 1 keV
and na ¯ 10#! m−$.

The ignition brachystochrone (i.e. the goal of the calculations performed in this
paper) is shown in Fig. 1 as a solid curve connecting the assigned starting and
end points. As was anticipated in Sec. 3, it is constructed out of three smooth

† Albeit often in a slightly different form, known as Coppi’s ubiquitous mode scaling.
‡ That the fastest path to ignition should go through the lowest point of the Cordey pass

(i.e. the saddle point of the function F) is clearly something that fits in with our physical
intuition.
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Bremsstrahlung barrier

Burn domain

Diffusion barrier

End

Start

14

12

10

8

6

4

2

0

Saddle point

0 2 4 6 8 12 1410
T (keV)˜

n 
(1

020
 m

–3
)

Figure 1. Ignition brachystochrone for the OMITRON device on the basis of
Lackner–Gottardi scaling. The evolution time from start to end is 4±95 s.

sections joining at corner points : the three sections (ordered from the starting
point to the end point) are solutions of (16), (17), and (18), respectively. The
way in which the brachystochrone unfolds – that is, the way the brachysto-
chrone kernel curve is first approached and then left – seems to comply
with the guiding rule that one must stay on the brachystochrone kernel curve
for as long as possible. On more specific grounds, the first rapid rise in density
at relatively low temperature is justified by the advantage of storing energy
with great efficiency at an early time in the plasma, by exploiting strong low-
temperature Ohmic heating. The second density rise (which takes place after
the crossing of the Cordey-pass saddle point) is once again justified by the
advantage of steering into a region of favourable energy balance (brought about
in this case by the prominence of α-particle heating).

The transit time calculated for the ignition brachystochrone is, by definition,
the shortest possible among the transit times of all possible alternative
trajectories.† For the case depicted in Fig. 1, the brachystochrone transit time
is found to be 4±95 s. In order to judge whether or not this is ‘ fast enough’, we
must compare it with an ‘effective’ (i.e. constant-current equivalent) pulse
duration calculated for the OMITRON device, to which our simulation refers.
In the OMITRON development work, this ‘effective’ pulse duration, from
engineering considerations, was assessed to be 6±5 s (Sestero 1997). For the
example illustrated in Fig. 1, therefore, there appear to exist a comfortable time

† Direct comparisons with transit times calculated for a number of alternative trajectories
– arbitrarily drawn to connect the assigned starting and end points under the assumed
constraints – have practically confirmed this result. Such verifications have concurrently
produced an empirical check of the fact that the existence of the minimum transit time –
established by the variational procedure only in the small – is a result that also holds in the
large (i.e. in an absolute sense). A rigorous mathematical proof thereof has not been
attempted here, however.
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Figure 2. Ignition brachystochrone for the OMITRON device on the basis of ITER-P89
scaling. The evolution time from start to end is 7±87 s.

margin for the plasma system to reach the targeted operating point during the
available pulse duration.

So much for our first example. It is interesting to see, for comparison, what
can happen in other circumstances too. In Fig. 2, a different case is illustrated,
in which the Lackner–Gottardi scaling for the energy confinement time has
been replaced by the equally well-known ITER-P89 scaling (everything else in
the simulation being left unchanged). It turns out that this scaling is somewhat
less favourable than the Lackner–Gottardi scaling: indeed, the brachystochrone
transit time for this case is found to be 7±87 s. This value, in the context of
concern here (referring again to the above quoted time limit of 6±5 s), is actually
somewhat too long.

However, in the example of Fig. 2, there is another feature worth calling
attention to. Indeed, this is one of those cases (anticipated in Sec. 3) in which
the very construction of the brachystochrone is different from the standard
recipe that is illustrated in Fig. 1. From start to end, in fact, there are four
pieces to the brachystochrone (instead of three), these four pieces being
solutions of (16), (18), (17), and (18) again, respectively. The additional piece is
actually the second, defined as the particular solution of (18) that is tangent to
the brachystochrone kernel curve. The reason for such a four-piece construction
is that a three-piece construction of the type exploited in Fig. 1 would have led
to a violation of the constraint on the rate of density decrease (just to the right of
the first corner point, in fact). We must, in any case, be aware that other types
of brachystochrone construction may be met, in principle, when tinkering with
simulation parameter values, the examples depicted in Figs 1 and 2 being just
two out of a set of possible circumstances.
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6. Concluding remarks

Within the framework of the simplified plasma simulation model dealt with in
this paper, it has been made clear that the goal of pursuing the optimum
trajectory toward the chosen burning regime is reduced to the issue of
implementing an appropriate density control scheme during the heating-up
phase of the plasma. Physical and technological limits on the achievable density
rates of change have been taken into account in a fundamental way, through
the specification of (14) or, equivalently, (15). The form of the latter relations
has been taken to be very simple, as appropriate to a pilot calculation, but no
problem of principle forbids changing them to more realistic expressions, as may
be suggested in the future by actual operation experience with specific devices.

To be sure, in the idealized mathematical treatment of the presented
optimization procedure, corner points occur at certain positions along the
ignition brachystochrone (as previously noted and discussed). At such corner
points, the regime of density control must, in principle, change abruptly. This
is, of course, impossible to achieve in practice: any realistic density control
scheme would indeed result in the corners of the brachystochrone being more
or less significantly rounded off. However, the increase in system transit time
resulting from this is expected not to be of particular importance.

In spite of all the positive features noted above, it must be realized that the
time is not yet ripe for introducing the optimization machinery developed
above into the design guidelines for currently investigated non-superconducting
ignition experiments. The blame for this is indeed to be laid on the circumstance
that the (theoretical or empirical) scaling laws that we are currently using are
still quite dubious and deceptive: they are much too ambiguous, indeed, even
to allow a plausible assessment of the overall ignition capability of currently
proposed ignition devices – let alone to allow a meaningful spelling out of the
peculiarities of ignition-path optimization. It is thus expected that the
procedure illustrated in this paper will yield important practical results chiefly
at some future time, when we shall know more about energy confinement in
burning (or nearly burning) plasmas.

On the above grounds, we must issue a warning against considering the
results of the previous sections a trustworthy prediction of plasma performance
in the OMITRON proposed experiment. In this respect, indeed, in addition to
the above uncertainties regarding the employed scaling laws, we must consider
the circumstance that in our simulation, for the sake of simplicity, we have
made a number of conservative modelling choices – the most important of
which is that of limiting ourselves to a global, zero-dimensional description of
plasma behaviour. It is well known, in fact, that this type of plasma modelling
(because of the rigidity introduced in the radial profiles of the various physical
quantities involved) unavoidably yields partially unfaithful results (leaning, in
fact, somewhat to the pessimistic side). With respect to this, it is obvious that
the extension of the procedure outlined in this paper to one-dimensional plasma
simulation models (that is, models constructed in terms of energy transport
coefficients rather than of global energy confinement times) would be a highly
desirable development: but we must realize that it is not going to be an easy
task to accomplish.
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