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pCO2/pH perturbation experiments were carried out under two different pCO2 levels to evaluate effects of CO2-driven ocean
acidification on semi-continuous cultures of the marine diatom Skeletonema pseudocostatum CSA48. Under higher pCO2/
lowered pH conditions, our results showed that CO2-driven acidification had no significant impact on growth rate, chloro-
phyll-a, cellular abundance, gross photosynthesis, dark respiration, particulate organic carbon and particulate organic nitro-
gen between CO2-treatments, suggesting that S. pseudocostatum is adapted to tolerate changes of ~0.5 units of pH under high
pCO2 conditions. However, dissolved organic carbon (DOC) concentration and DOC/POC ratio were significantly higher at
high pCO2, indicating that a greater partitioning of organic carbon into the DOC pool was stimulated by high CO2/low pH
conditions. Total fatty acids (FAs) were significantly higher under low pCO2 conditions. The composition of FAs changed from
low to high pCO2, with an increase in the concentration of saturated and a reduction of monounsaturated FAs.
Polyunsaturated FAs did not show significant differences between pCO2 treatments. Our results lead to the conclusion
that the balance between negative or null effect on S. pseudocostatum ecophysiology upon low pH/high pCO2 conditions con-
stitute an important factor to be considered in order to evaluate the global effect of rising atmospheric CO2 on primary prod-
uctivity in coastal ocean. We found a significant decrease in total FAs, however no indications were found for a detrimental
effect of ocean acidification on the nutritional quality in terms of essential fatty acids.
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I N T R O D U C T I O N

Diatoms dominate the phytoplankton community in coastal
ecosystems, contributing to ~20% of global primary produc-
tion (Nelson et al., 1995). Because of their large size and
silica ballast, they contribute a major fraction of the downward
flux of particulate organic matter into deep ocean (Alldredge
& Jackson, 1995) and therefore constitute major players in
carbon sequestration from the atmosphere to the deep
ocean (Boyd et al., 2010). Chain-forming centric diatoms
are the most successful group of eukaryotic primary producers
in productive upwelling coastal ecosystems, supporting higher
trophic levels. A prerequisite for their high growth rates is an
efficient and regulated acquisition of inorganic carbon (Ci)

that compensates for the catalytic inefficiency of the enzyme
Ribulose-1,5-biphosphate carboxylase/oxygenase (RUBISCO)
(Burkhardt et al., 2001).

Ocean acidification (OA) is a consequence of increased
inorganic carbon content of the ocean surface water due to
rising atmospheric CO2. The associated drop in the average
surface water pH from ~8.2 to 7.8 represents one of the
most rapid OA events on earth over the past 300 Myr
(Caldeira & Wickett, 2003). It is a controversial issue
whether high CO2/low pH in seawater would significantly
promote growth and primary productivity. Responses of
diatoms to high pCO2 and decreased pH are likely to be
species-specific, with potential winners, neutral and losers
(Gao & Campbell, 2014). Diatoms can downregulate the activ-
ity of extracellular carbonic anhydrase (Burkhardt et al.,
2001), but they differ in their CO2 concentrating mechanisms
(CCMs) (Hopkinson et al., 2013). Photosynthetic responses to
enhanced CO2 under OA are remarkably diverse, and there is
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a large variability both between and within taxonomic groups.
Nevertheless, despite the growing body of literature on the
topic, clear trends in the photosynthetic responses of phyto-
plankton to elevated CO2 have not emerged, and positive
effects, if any, are small (Mackey et al., 2015).

In addition to growth and primary production, the elemen-
tal composition of phytoplankton might vary under OA.
Increasing CO2 can lead to increased particulate organic
carbon (POC) content relative to N and P quotas, i.e.,
higher C:N and C:P under elevated CO2 concentrations
(Riebesell et al., 2007; Feng et al., 2008). Nevertheless, system-
atic increases of particulate organic matter (POM) and C:N
ratios have not been observed in response to rising pCO2

and temperature (Burkhardt et al., 1999; Wohlers-Zöllner
et al., 2011). Moreover, the current evidence demostrated
that large differences in the elemental composition of
marine phytoplankton can arise from nutrient limitation
(Geider & LaRoche, 2002), physical factors (Laws &
Bannister, 1980; Burkhardt et al., 1999) and interspecific vari-
ability among algal species with different C:N:P requirements
(Geider & LaRoche, 2002). Elevated pCO2 and temperature
may lead to a greater partitioning of organic carbon into the
dissolved organic carbon (DOC) pool (Kim et al., 2011).

Other important proxies for food quality in marine food
webs are fatty acid (FA) content and composition.
Polyunsaturated fatty acids (PUFA) are considered especially
important as they represent essential FAs that cannot be
synthesized de novo by heterotrophic consumers (Müller-
Navarra et al., 2004). Phytoplankton production of PUFA is
highly dependent on the algal physiology and nutrients, and
therefore on the environmental conditions (Klein Breteler
et al., 2005; Leu et al., 2013). There is a paucity of information
on how OA might impact FA contents. Here, we examine the
effects of high CO2/low pH and excess nutrients on growth
and physiological rates, elemental composition, carbon
partitioning and nutritional quality of Skeletonema pseudocos-
tatum in order to evaluate: (1) how the growth rate, photosyn-
thesis, respiration and carbon partitioning of Skeletonema
pseudocostatum is affected by a drop of ~0.5 units of pH
caused by elevated pCO2 levels and (2) how physiological
rates may affect the fatty acid content under condition of
increased CO2/lowered pH.

M A T E R I A L S A N D M E T H O D S

Semi-automatic system for seawater carbonate
manipulation
Experiments were conducted using a semi-automatic meso-
cosm system for seawater carbonate chemistry manipulation
at Calfuco Marine Laboratory in south-central Chile
(39878′S, 73839′W). CO2-enriched seawater was produced
by bubbling seawater with air-CO2 mixtures, following the
method described by Torres et al. (2013). The system uses
mass flow controllers (MFC) to blend atmospheric air with
ultra-pure CO2 (i.e. research grade) to produce different
pCO2 levels (see Table 1). The seawater was continuously
bubbled with either ambient or enriched pCO2-air. The high
level of pCO2, 1123 matm, corresponded approximately with
projected atmospheric levels between years 2100 and 2150
under the RCP 8.5 scenario (Meinshausen et al., 2011). Air/

CO2 mixtures were produced using a bulk technique, where
dry air with pure CO2 were supplied to seawater using an
air mass flow controller (MFC) (Aalborg, model GFC;
http://www.aalborg.com) and a CO2 MFC (Aalborg, Model
GFC). Dry and filtered air (through a 1 mm particulate
filter) was generated by compressing atmospheric air
(117 psi) using an oil-free, 4 piston air compressor (Schulz,
model MSV12). Pressure in the air and pure CO2 were main-
tained at ~10 psi. Air flow in MFC was set manually to
5 l min21 for treatment and CO2 flow was set manually to
4.25 ml min21 to produce the high CO2 treatment. The CO2

of blended gas was monitored to allow fine regulation of
CO2 through MFC to reach target pCO2 in seawater. The
pCO2 monitoring system was based on a CO2 analyser
(Qubit System, model S151), primarily for measuring the
CO2 content in the air-CO2 mixture.

Culture conditions
Skeletonema pseudocostatum (CSA 48, non axenic) was iso-
lated from Yaldad Bay, southern Chile (43.18S–73.78W) in
March 2009 and obtained from the COPAS Sur-Austral
strain collection (http://www.ficolab.cl/), at the Department
of Botany, Concepción University. Cells were grown and accli-
mated in autoclaved (1 l) and filtered (0.1 mm) natural sea-
water (salinity: 29.8 PSU) within autoclaved glass bottles
(1 L) at the same temperature (14.7 + 0.68C), light intensity
(195 mmol m22 s21) and at a 16/8 light/dark cycle. Light
was measured with a sensor Li-192SA (Li-Cor) and was pro-
vided by cold white LED tubes (22 Watts, 6000 K). The time
of sampling was kept throughout the acclimatization and
experiment. For the acclimatization, seawater was enriched
to f/2 medium (Guillard & Ryther, 1962). Cells were main-
tained in exponential growth phase using a semicontinuous
culture. To maintain balanced exponential growth, cultures
were diluted with fresh medium every 3–4 days, keeping
cell concentrations ,43 × 104 cell ml21 during the acclima-
tion. During the first (21–25 November) and second round
(26–29 November) of the algal acclimation under low pCO2

levels, mean pH values ranged between 8.106 and 8.230,
respectively (Table 1). In cultures under high pCO2 condi-
tions, mean pH values ranged between 7.676 and 7.654,
respectively. Cultures were acclimated to the respective pH/
pCO2 values for 10 generations.

After acclimatization, cells from respective pH/pCO2 treat-
ments were inoculated in autoclaved polycarbonate carboys
filled with 20 l of autoclaved seawater (29 November) at the
same temperature and light intensity, and carboys were posi-
tioned randomly in the experimental system. Carboys were
closed with rubber stoppers pierced with glass capillaries for
inlet and outlet of air/CO2 mixture. Four carboys were used
for low pCO2 and four for high pCO2 treatments, while two
control carboys without cells were followed for monitoring
abiotic changes in carbonate system parameters. Under
these culture conditions, cells were grown for ~6 generations.
Samples for carbonate system parameters were taken on 1 and
3 December (Table 1). The harvesting of samples was carried
out on 3 December. Cell concentrations at the time of sam-
pling were ~22 × 104 cell ml21 at low pCO2 and ~14.5 ×
104 cell ml21 at high pCO2. During the experimental period,
the photosynthetic activity and cell density increased,
leading to an increase in pH (0.11 unit under low CO2 and
0.018 unit under high CO2). The concentration of DIC and
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total alkalinity (TA) decreased by 35 and 28% under low CO2

conditions and 20 and 19% under high CO2 conditions,
respectively.

Chemical analysis
Samples for nutrient analysis (NO3

2, NO2
2, PO4

32 and Si
(OH)4) were taken every day during the acclimation and
experimental periods (Table 2). Samples were filtered (GF/F)
and frozen (2208C) until analysis following Strickland &
Parsons (1968). Daily pH samples were collected in 50 ml syr-
inges and immediately transferred to a 25 ml thermostatted
cell at 25.0 + 0.188C for standardization, and measurements
were conducted with a pH electrode with a glass combined
double Ag/AgCl junction (Metrohm model 6.0258.600) cali-
brated with standard National Bureau of Standards (NBS)
calibration buffer Metrohmw 4 (Code 6.2307.200), 7 (Code
6.2307.210) and 9 (Code 6.2307.220). The estimated analysis
error for this analysis was estimated as ,0.01 pH. For dis-
solved inorganic carbon (DIC) and DOC determination, sep-
arate 30 ml subsamples were collected with a sterile syringe
and filtered through a Swinex containing a GF/F filter that
had been precombusted for 4–5 h at 4508C directly into
40 ml glass 200 Series I-CHEMw vials. For DIC analyses,
the septa of vials were exchanged for butyl rubber septa to
prevent diffusion of CO2 (DOE, 1994). Samples for DIC ana-
lysis were preserved with 50 ml of a saturated solution of mer-
curic chloride (DOE, 1994). Immediately after opening the
sample bottle, a digital syringe withdrew a small amount of
sample (0.5 ml), acidified it with 10% phosphoric acid and
subsequently measured the evolved CO2 with a LICOR 6262
non-dispersive infrared gas analyser. Certified seawater refer-
ence materials from A. Dickson were used to ensure the
quality of DIC determination by preparing a calibration
curve covering the range of DIC from 200–2000 meq l21

(Dickson et al., 2003), with a resulting precision averaging
≈ 0.1% (range 0.05–0.5%). Temperature and salinity data
were used to calculate the other carbonate system parameters
(e.g. pCO2, HCO3). Analyses were performed using CO2SYS
software for MS Excel (Pierrot et al., 2006) set with
Mehrbach solubility constants (Mehrbach et al., 1973) refitted
by Dickson & Millero (1987). The KHSO4 equilibrium con-
stant determined by Dickson (1990) was used for all
calculations.

For POC and particulate organic nitrogen (PON) analysis,
a subsample (1 l) was filtered through combusted (4–5 h at
4508C) GF/F filters to concentrate particles. Filters were
dried at ~608C for 24 h and held in a desiccator until analysed.
DOC samples were bubbled with CO2-free nitrogen for 7 min
to ensure complete removal of DIC. DOC and POC measure-
ments were conducted by the G.G. Stable Isotope Hatch,
Laboratories at the University of Ottawa, Canada, with an
analytical precision of 2%. All DOC and POC samples were
run on an total inorganic carbon-total organic carbon (TIC-
TOC) analyser (OI Analytical Analyzer, Model 1030). Data
were normalized using internal standards.

Determination of fatty acids (FAs) was conducted from
water samples onto filtered through MFS GF/F filters to con-
centrate particles. Saturated (SAFA) and unsaturated fatty
acids (MUFA: monounsaturated and PUFA: polyunsaturated)
were measured on separate filters dried at 508C for 24 h and
held in a desiccator until analysed. The fatty acid concentra-
tions were measured after extraction and methylationT
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(Kattner & Fricke, 1986) with a gas chromatograph Perkin
Elmer Sigma 300 equipped with a programmable temperature
vaporizer-injector, a fused Omegawax 53 capillary column,
and a flame ionization detector.

Biological measurements
Concentrations of S. pseudocostatum cells were determined
from samples preserved with acid Lugol’s. Cell counting was
performed using a Neubauer hemocytometer and optical
microscope (OLYMPUS CX31). Specific growth rates were
calculated using an exponential curve fitted for each replicate
of the treatments. The slope of the exponential curve was con-
sidered as the growth rate for each pCO2 treatment. Cell size
was measured using an epifluorescence microscope
(OLYMPUS IX51), choosing at random 40 individual cells
for each replicate of each pCO2 treatment. For biovolume cal-
culation we used a cylinder geometric model according to Sun
& Liu (2003). For determination of total chl-a, samples were
filtered onto GF/F filters and stored at 2208C. Chl-a was
extracted in acetone 95% and measured with a fluorometer
(Trilogy Model 7200–040, Turner Designs, Sunnyvale, CA,
USA) before and after acidification (Lorenzen, 1966). Chl-a,
POC, PON and DOC concentrations were normalized per
cell (pg cell21), assuming that changes in Chl-a, N and C
from other sources (e.g. lysis) were not significant in our cul-
tures. Gross photosynthesis (GP) and dark respiration (DR)
rates were estimated from changes observed in dissolved
oxygen concentrations after incubating in vitro in light and
dark bottles (Strickland, 1960). Water from three 20 l
carboys was transferred to 125 ml borosilicate (i.e. gravimetri-
cally calibrated) using a silicone tube; three time-zero bottles,
three light bottles and three dark bottles per replicate were
used. The light and dark bottles were incubated at the same
temperature and light regime as the 20 l polycarbonate
carboy cultures for 6 h; the dissolved oxygen from time-zero
bottles was measured at the beginning of the experiment.
Dissolved oxygen was measured using a fibre optical oxygen
transmitter (Optical Oxygen meter FIBOX, PreSensw). The
average of coefficient of variation for replicates was 0.8%.
Net photosynthesis (NP) was calculated as the difference in
the dissolved oxygen concentration between ‘light’ incubated
samples and ‘time zero’ samples. Dark respiration (DR) was
calculated as the difference between ‘dark’ incubated
samples and ‘time zero’ samples. Dark respiration rates are

expressed as a negative O2 flux. Gross photosynthesis (GP)
was calculated as the difference between NP and DR
(Gaarder & Gran, 1927). GP and DR per cell were expressed
in fmol cell21 h21.

Statistical analysis
In order to evaluate algal responses to experimental condi-
tions, Student’s t-test was used for each chemical and bio-
logical parameter. The Shapiro–Wilk statistic (Shapiro &
Wilk, 1965) was used to check the data for normality distribu-
tion and a Levene test checked the homoscedasticity.

R E S U L T S

Carbonate system
During the experimental period (day 3.12.2013), the carbon-
ate system parameters under simulated CO2-driven ocean
acidification showed significant differences in the pCO2 con-
centration (t ¼ 211.52, df ¼ 6, P , 0.0001) and pH values
(t ¼ 26.05, df ¼ 6, P , 0.0001) between both CO2 treatments
(Table 1). Significant differences were also found in HCO3

2

(t ¼ 22.88, df ¼ 6, P ¼ 0.028) and CO2 (t ¼ 211.44, df ¼
6, P , 0.0001). There were no significant differences in DIC
concentration (t ¼ 22.41, df ¼ 6, P ¼ 0.05) between CO2

treatments, although it was close to the minimal acepted prob-
ability. As expected, no significant differences were found in
the total alkalinity (TA) (t ¼ 21.22, df ¼ 6, P ¼ 0.26).

Biological parameters
The impact of high pCO2 on S. pseudocostatum physiology
was assessed by comparing 12 parameters between low and
high pCO2 treatments (Figure 1). Although cell volume
was higher at low pCO2 level (442 + 103 mm3) compared
with high pCO2 level (361 + 42 mm3), there were no signifi-
cant differences between pCO2 treatments (t ¼ 1.38, df ¼ 6,
P . 0.05). There were also no significant differences in
growth rates (t ¼ 0.53, df ¼ 6, P . 0.05), cell-normalized
Chl-a (t ¼ 2.28, df ¼ 6, P . 0.05), cellular abundance (t ¼
2.16, df ¼ 4, P . 0.05), gross photosynthesis and respiration
rates (t ¼ 2.08, df ¼ 4, P . 0.05; t ¼ 20.74, df ¼ 1.1, P .

0.05, respectively), POC (t ¼ 20.08, df ¼ 5, P . 0.05), and

Table 2. Inorganic nutrient concentrations (+SE, N ¼ 4) and nutrient ratios (+SE, N ¼ 4) during (A) acclimation and (B) experimental period and
under two different CO2 concentrations; Low pCO2 (L); High pCO2 (H).

Date Period Treatment [ pCO2] NO3
2 [mM] PO4

23 [mM] NO2
2 [mM] Si(OH)4

[mM] N:P Si:N

(A)
21–25.11.2013 1st round L 315 + 37 12 + 0.8 1.6 + 0.5 88 + 29 26 + 2.5 0.28 + 0.09
26–29.11.2013 2nd round L 244 + 13 10 + 2.3 2.2 + 1.4 97 + 53 25 + 7 0.39 + 0.2
21–25.11.2013 1st round H 345 + 25 12 + 1.2 1.5 + 0.8 99 + 32 29 + 3.5 0.28 + 0.08
26–29.11.2013 2nd round H 268 + 47 12 + 3.5 1.7 + 0.8 105 + 30 22 + 3.7 0.38 + 0.06
(B)
1.12.2013 E L

H
282 + 10
280 + 19

11.09 + 0.5
11.79 + 0.2

1.01 + 0.5
0.9 + 0.7

84.1 + 6
85.73 + 3

25.5 + 0.7
23.8 + 1.3

0.31 + 0.02
0.33 + 0.02

3.12.2013 E L
H

196 + 25
197 + 45

10.5 + 0.8
11.43 + 0.8

3.7 + 2.2
0.85 + 0.7

48.4 + 12
65.24 + 12

16.5 + 3.7
17.4 + 4.7

0.27 + 0.07
0.33 + 0.1

First round of acclimation was carried out between 21 and 25 November and second round between 26 and 29 November. Experiment started in 29
November and ended on 3 December.
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PON (t ¼ 20.75, df ¼ 5, P . 0.05) C:N ratio (t ¼ 1.57, df ¼
5, P . 0.05), R:P ratio (t ¼ 21.72, df ¼ 1.1, P . 0.05). In con-
trast, DOC/POC ratio and DOC per cell significantly
increased at high pCO2 levels (t ¼ 23.91, df ¼ 2.4, P ,

0.05; t ¼ 22.51, df ¼ 6, P , 0.05, respectively). In percentage
terms, DOC/POC and DOC per cell increased by 40.4 and
48.4% at high pCO2, respectively.

The high pCO2 treatment exhibited significant differences
in FA concentration and composition. Total FA concentration
was significantly decreased (t ¼ 5.69, df ¼ 6, P , 0.05) under
high pCO2 (0.208 + 0.04 mg l21) compared with low pCO2

(0.07 + 0.01 mg l21) (Figure 2A). The relative amount of
SAFAs was significantly higher (t ¼ 24.53, df ¼ 6, P ,

0.05) and the amount of MUFAs lower (t ¼ 16.1, df ¼ 6, P
, 0.05) at high pCO2 compared with low pCO2 treatment.
In contrast, polyunsaturated fatty acids (PUFA) did not
show significant differences between low pCO2 (t ¼ 22.2,
df ¼ 6, P . 0.05) (Figure 2B). This is exemplified by some
essential fatty acids such as docosahexaenoic acid (DHA,
22:6) and arachidonic acid (ARA, 20:4), which showed
similar concentrations under low (0.0008 mg l21 and

0.001 mg l21, respectively) and high (0.0002 mg l21 and
0.002 mg l21, respectively) pCO2 treatments.

D I S C U S S I O N

In the coastal domain, surface waters are commonly exposed
to levels in partial pCO2 higher than expected at equilibrium
with the atmosphere (Hofmann et al., 2011; Yu et al., 2011),
which is mostly associated with biological processes such as
daily time cycles of photosynthesis and respiration
(Shamberger et al., 2011) and oceanographic processes such
as riverine discharges and coastal upwelling events (Cao
et al., 2011). In consequence, diatoms inhabiting coastal
areas may be capable of tolerating larger ranges of pH and
pCO2. However, this high variability also may mean that
planktonic organisms inhabiting coastal regions are already
operating at the limits of their physiological tolerances.
Thus, future OA may drive the physiology of these marine
organisms up to the edge in their tolerance range.

The present study showed that high pCO2 had no sig-
nificant impact on cell volume, growth rate, abundance,
chl-a, C/N ratio, and photosynthesis rates in the diatom

Fig. 1. Physiological parameters: growth rate, gross photosynthesis (GP),
dark respiration (DR), cellular concentration of Chl-a, particulate organic
carbon (POC) and particulate organic nitrogen (PON), respiration losses
in % (R:P ratio), C/N ratio, carbon partitioning (DOC/POC ratio) and
DOC concentration measured during semi-continuous cultures of
S. pseudocostatum grown at exponential growth phase under two different
CO2 concentrations; Low pCO2: 212 + 30 matm; High pCO2: 1050 +
40 matm. Error bars indicate standard errors.

Fig. 2. Fatty acid concentration and composition of Skeletonema
pseudocostatum cultured at different pCO2 treatments. (A) Total fatty acid
and (B) percentage of saturated (SAFA), monounsaturated (MUFA) and
polyunsaturated (PUFA) fatty acids relative to total fatty acids during the
exponential growth phase cultured at low pCO2: 212 matm (N ¼ 3) and high
pCO2: 1050 matm (N ¼ 3) treatments. Error bars indicate standard errors.
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S. pseudocostatum (Figure 1). Although some studies have
indicated that elevated pCO2 is expected to have a stimulative
effect on growth rates (Kim et al., 2006; King et al., 2011; Low-
Décarie et al., 2011) and primary productivities (Riebesell
et al., 2007), many other studies have shown that elevated
pCO2 concentration did not affect the growth rates in
diatom monocultures, including S. costatum (Chen & Gao,
2003, 2004), Thalassiosira pseudonana (Crawfurd et al.,
2011; King et al., 2015), and Chaetoceros brevis (Boelen
et al., 2011), or in diatom-dominated natural phytoplankton
assemblages (Tortell et al., 2000). Furthermore, Berge et al.
(2010) have also shown that low pH/high pCO2 conditions
do not affect the growth rate and production rates of eight
species of phytoplankton representing diatoms, dinoflagel-
lates, cryptophytes and haptophytes. Berge et al. (2010) also
showed that 49 strains of a total 33 species of phytoplankton
exhibited similar growth rates at pH ~7.8 compared with more
alkaline levels of pH (8.1–8.2), suggesting that marine phyto-
plankton are adapted to tolerate the modelled average pH
drop due to ocean acidification by the year 2100. Our findings
are consistent with these findings, suggesting that S. pseudo-
costatum tolerates well changes of 0.5 units of pH due to
manipulated pCO2 levels.

Diatoms have the capacity for simultaneous transport of
CO2 and HCO3

2 during photosynthesis and increase their
affinities of both transport systems in response to diminishing
supply of carbon substrate (Burkhardt et al., 2001). However,
the proportion at which CO2 and HCO3

2 are taken up and the
extent to which Ci uptake is affected by changes in CO2 supply
vary among phytoplankton species (Nimer et al., 1998;
Elzenga et al., 2000; Burkhardt et al., 2001; Rost et al.,
2003). For example, Phaeodactylum tricornutum takes up
CO2 preferentially over HCO3

2 from seawater whereas
Thalassiosira weissflogii takes up HCO3

2 preferentially to
CO2 under depletion of CO2; thus for Phaeodactylum
tricornutum one would expect a pronounced response in
photosynthetic C fixation under enhanced CO2. However,
P. tricornutum showed increased photosynthetic electron
transport rates, but no change or very modest increases in
growth (5–13%; Wu et al., 2010; Li et al., 2014) or carbon fix-
ation (Burkhardt et al., 2001) under high pCO2. In our experi-
ment (3 December), significant differences in HCO3

2

concentrations were observed between pCO2 treatments
(Table 1), suggesting that both free CO2 and HCO3

2 were
probably an important inorganic carbon source for
Skeletonema pseudocostatum cells.

Rising pCO2 might affect primary producers in terms of
saving energy required for active inorganic carbon acquisi-
tion, whereas low pH could potentially increase metabolic
demand to maintain celular homeostasis relative to the
increased acidity (Gao et al., 2012). Nevertheless, our
results did not show significant differences in the respiration
rates between low and high pCO2 levels (Figure 1), which
suggest no significant changes in the balance between pro-
duction and consumption (see R:P ratio) between low and
high pCO2 levels.

Furthermore, our results also showed that there were no
significant differences in the elemental composition (C:N
ratio) between the pCO2 treatments (Figure 1), indicating
that increasing CO2 would not increase the POC:PON ratio.
In contrast, DOC per cell and the DOC/POC ratio were sig-
nificantly higher at high pCO2, suggesting that extracellular
carbon release relative to particulate carbon production

increased under elevated pCO2. The extracellular release of
photosynthesis products is especially common during nutri-
ent-depleted growth conditions (Kim et al., 2011; Borchard
& Engel, 2012), since phytoplankton exude DOC to the envir-
onment to reduce the energy costs associated with storing
surplus compounds (Wood & Van Valen, 1990). However,
it has also been reported to occur independent of nutrient
availability (Hessen et al., 2004; Hessen & Anderson, 2008)
and under continuous CO2 enrichment (Song et al., 2013).
In our experiment cells were under nutrient-replete condi-
tions (Table 2) and continuous CO2 enrichment, so the
DOC increase under high pCO2 conditions seems not to be
nutrient dependent. The higher DOC release triggered by ele-
vated CO2 is consistent with other studies carried out in
natural phytoplankton assemblages (Riebesell et al., 2007;
Kim et al., 2011; Engel et al., 2013) and monocultures
(Engel et al., 2004; Borchard & Engel, 2012). Most experimen-
tal studies have suggested that greater assimilation of carbon
into organic matter at high CO2 levels may increase the extra-
cellular organic matter release from phytoplankton. However,
our study showed that gross photosynthesis, POC concentra-
tion and C:N ratio were not significantly different between
pCO2 treatments, which rules out this process. Enrichment
of CO2 and increased acidity have also been found to stimu-
late photorespiration in diatoms T. pseudonana and P. tricor-
nutum (Gao et al., 2012), a process by which oxygen is
consumed and CO2 released under light conditions, as well
as a process by which glycolate is lost to the outside
medium as an excreted product. It has been suggested that
photorespiration is important for maintaining electron flow
to prevent photoinhibition under stress conditions (i.e. high
CO2 levels) (Heber et al., 1996), as well as under drought
stress (Wingler et al., 1999). In addition, the formation of
photorespiratory metabolites, such as glycine, serine and gly-
colate has also been measured under salt stress in C3 plants
(Downton, 1977; Di Martino et al., 1999). Therefore, photo-
respiration may play a protective role under stress conditions
and consequently contribute partially to the release of DOC
triggered under high pCO2 levels. We also recognize that
our experiment was not axenic and consequently the increase
of DOC in the bottles could also be produced by lysis and
transformation of POC to DOC by bacteria or chemical
hydrolysis (Carlson, 2002). The greater partitioning of
organic carbon into the DOC pool under high CO2/low pH
conditions may have implications for long-term C storage
in aquatic ecosystems, as DOC components can be both
important precursors in the creation of large particle aggre-
gates and also in the formation of recalcitrant DOC (Engel
2002) via heterotrophic metabolism in the upper layers of
aquatic ecosystems (Jiao et al., 2010). Important questions
arise regarding the increase of DOC production under acidifi-
cation condition scenarios, e.g. (i) How the increase of DOC
will affect the C cycling through bacteria; (ii) the formation of
transparent exopolymer particles and consequently, the
export of organic matter to the deep ocean (Passow, 2002);
and (iii) nutrient competition between bacteria and
phytoplankton.

The effects of lowered pH and increased pCO2 was also
evaluated on nutritional quality of S. pseudocostatum. Total
FAs were significatively different between pCO2-treatments,
being 63.26% higher under low pCO2 compared with high
pCO2 treatment (Figure 2A). These results agree with other
studies that showed a significant decline in total FAs of the
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centric diatom T. pseudonana under elevated CO2 (750 matm)
compared with present-day CO2 (380 matm) (Rossoll et al.,
2012). These authors found that the relative amount of
SAFAs was significantly higher at high CO2 and a ~20%
decline in the relative amount of PUFAs. Our findings
showed that the relative amount of SAFAs was significantly
higher (44 to 63%) and MUFAs significantly lower (44 to
10%) at high pCO2 compared with the low pCO2 treatment.
In contrast, lowered pH and elevated CO2 did not affect the
contribution of PUFAs to total fatty acids significantly
(Figure 2B). The important increase of saturated and decrease
of monounsaturated FA contents and total FAs under acidifi-
cation may affect the transfer of lipids to higher trophic levels.
However, the nutritional quality in terms of essential FAs
remains unchanged. Most lipids consist mainly of hydrocar-
bon chains with varying numbers of double bonds. SAFA
have hydrocarbon chains with single bonds while polyunsat-
urated FAs contain more than one double bond and include
many compounds essential for higher trophic levels, such as
for copepod egg production, hatching and maturity
(Jonasdottir et al., 2005; Klein Breteler et al., 2005). Our find-
ings are consistent with other studies showing no detrimental
effects of high pCO2 on the nutritional quality in terms of
essential fatty acids (Leu et al., 2013). Many other responses
can be expected in the total FAs and components depending
on phytoplankton functional group and species. For
example, declining PUFA content at elevated pCO2 was
reported for the Antarctic prasinophyte Pyramimonas gelidi-
cola (Wynn-Edwards et al., 2014), the sea-ice diatom N.
lecointei (Torstensson et al., 2013) and the diatom
Cylindrotheca fusiformis (Bermúdez et al., 2015). No detect-
able differences attributable to pCO2 treatment in the fatty
acids component has been observed for the centric diatoms
T. pseudonana and T. weissflogii, the green algae Dunaliella
salina, the euryhaline microalgae Chlorella autotrophica
(King et al., 2015) and the dinoflagellate Gymnodinium sp.
(Wynn-Edwards et al., 2014). In contrast, high CO2 increased
the accumulation of total lipids and polyunsaturated fatty
acids in the chlorophytes Scenedesmus obliquus and
Chlorella pyrenoidosa (Tang et al., 2011). The cellular pro-
cesses involved in FA synthesis under changing pH and
pCO2 levels are not fully understood. Because pH might act
as a regulation signal for the formation of cell membranes
by controlling the production of its synthesizing enzymes
(Young et al., 2010), it has been proposed that a higher satur-
ation degree at high CO2 levels (increase of SAFA) may be a
mechanism to control the internal cell-pH because a mem-
brane built of short chain FA is less fluid and permeable to
CO2 (Rossoll et al., 2012).

Our findings suggest that growth, gross photosynthesis and
C:N ratio were not necessarily connected to CO2-driven
changes in composition and content of FAs in S. pseudocosta-
tum. In agreement, other studies showed that CO2-driven
changes in the growth rate of the centric diatom
Thalassiosira weissflogii were not reflected by significant
changes in the elemental composition and fatty acid compos-
ition, which indicate bidirectional responses to changes in
CO2 (King et al., 2015). Since ocean acidification has the
potential to alter phytoplankton biochemistry, our results
highlight the importance for understanding the cellular pro-
cesses involved in FA synthesis under rising CO2/decreasing
pH, which will finally determine the carbon transfer efficiency
to higher trophic levels in a changing ocean.
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