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We give an example of an inde¯nite weight Sturm{Liouville problem whose
eigenfunctions form a Riesz basis under Dirichlet boundary conditions but not under
anti-periodic boundary conditions.

1. Introduction

Completeness of eigenfunctions for Sturm{Liouville equations of the form

`(y) := ¡ (py0)0 + qy = ¶ ry (1.1)

on [ ¡ 1; 1] was already investigated for the case of positive weight functions r in the
1830s. In a modern setting, one seeks complete orthonormal bases in the weighted
Hilbert space L2;r( ¡ 1; 1) with inner product given by

(y; z)r =

Z 1

¡1

ry·z: (1.2)

For the purposes of this note, it will su¯ ce to consider regular positive-de­ nite `
with self-adjoint boundary conditions and r 2 L 1 ( ¡ 1; 1).

Problems with inde­ nite r were studied around the turn of the 20th century,
and orthonormal bases of eigenfunctions were examined in a Hilbert space with the
Dirichlet inner product generated by `. We remark that early work on all the above
problems usually assumed Dirichlet boundary conditions y(1) = y( ¡ 1) = 0 for (1.1),
but the theory now encompasses arbitrary self-adjoint boundary conditions.

Around 1970, `half-range’ completeness for certain forward{backward equations
led to renewed interest in the L2;r( ¡ 1; 1) setting, but now for equations (1.1) with
inde­ nite r. An important step in the corresponding analysis of completeness is the
production of a Riesz basis of eigenfunctions. In this case, L2;r( ¡ 1; 1) is a Krein
space, but the Riesz basis is taken with respect to the underlying Hilbert space
inner product (with r replaced by jrj in (1.2)).

A standard reference in this area is [2], where Beals produces a basis (which turns
out to be a Riesz basis) of eigenfunctions for a certain class of weight functions r. In
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particular, certain `extra’ conditions on r are imposed at the single turning point,
i.e. where r changes sign. As Beals points out, the analysis extends to ­ nitely many
turning points, but there is an example of Pyatkov [9] with in­ nitely many turning
points and no Riesz basis of eigenfunctions. Also, Volkmer [11] has shown that some
`extra’ condition is necessary for the Beals result to hold. Explicit counterexamples,
based on Volkmer’s ideas, can be found in [1] and [6]. We remark that all these works
assume Dirichlet boundary conditions at 1 and ¡ 1.

We are aware of two works on completeness in L2;r( ¡ 1; 1) for problems of the
form (1.1) with inde­ nite r and general self-adjoint boundary conditions. One is [5],
which involves `extra’ conditions on r at the turning points and at the boundary.
The other [10] assumes `extra’ conditions only at the turning point. We shall show by
example that some `extra’ condition is indeed required in general at the boundary,
so [10, theorems 3.1, 3.2] are incorrect as stated. An intuitive explanation for our
example can be given as follows. There is a turning point at x = 0, where r satis­ es
an `extra’ condition, and the Dirichlet problem has a Riesz basis of eigenfunctions.
When the boundary conditions are not separated, however, the points 1 and ¡ 1
are linked and (1.1) can be thought of as living on a circle, with a second turning
point at §1. In our example, there is no `extra’ condition on r at §1 and there is
no Riesz basis of eigenfunctions for the anti-periodic problem.

We shall adapt Volkmer’s strategy, which is to establish an inequality, to be
denoted by I (see (2.3)), satis­ ed by a class V (see (2.4)) of absolutely continuous
functions. While such inequalities have been examined by various authors (and they
are sometimes called HELP inequalities, cf. [3]), Volkmer emphasizes the role of the
boundary conditions on the functions in V . Indeed, he shows that I is false in the
absence of boundary conditions, true independently of (1.1) if two Neumann-type
conditions are imposed, and true if one such condition is imposed and there is a
Riesz basis of Dirichlet eigenfunctions.

In x 2, we shall show that I also holds if there is a Riesz basis of anti-periodic
eigenfunctions and another boundary condition is imposed (in addition to Volk-
mer’s, giving a smaller class V 0). We then show that an example of (1.1) given
in [1] generates functions in V 0 and failing I, so it does not have a Riesz basis of
anti-periodic eigenfunctions. In x 3, we modify this example so as to have the prop-
erties in the abstract. This shows, incidentally, that I , even on the larger class V ,
is not su¯ cient for a Riesz basis of anti-periodic eigenfunctions.

Finally, we note that mixed boundary conditions raise the possibility of double
eigenvalues. If there are in­ nitely many such eigenvalues, then there could be some
sets of (normalized) eigenfunctions that form Riesz bases and other sets that do
not. In x 4, we prove that this di¯ culty cannot occur. In fact, all the eigenproblems
considered here have only simple eigenvalues.

2. A necessary condition for a Riesz basis

Throughout, w will denote an odd function in L 1 ( ¡ 1; 1). Here, odd will mean that
w( ¡ x) = ¡ w(x) for all x 6= 0. We use k ¢ k to denote the norm in L2( ¡ 1; 1).

We de­ ne an operator A in L2( ¡ 1; 1) on

dom(A) = ff 2 W 2
2 ( ¡ 1; 1) : f(1) + f ( ¡ 1) = 0; f 0(1) + f 0( ¡ 1) = 0g
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by

Af = ¡ f 00:

It is well known (see [12]) that A is self-adjoint with compact resolvent, and an
easy calculation shows that the eigenvalues are all positive.

We shall consider the weighted eigenvalue problem

Af = ¶ wf; (2.1)

which can be studied in a natural way as the standard eigenvalue problem for the
positive self-adjoint operator w¡1A in the weighted space L2;w( ¡ 1; 1).

The ­ rst step in our analysis is the following modi­ cation of [11, x 4]. We use the
notation

K(h) =
(
R 1

0
jh0j2=w)2

R 1

0
jhj2

R 1

0
j(h0=w)0j2

(2.2)

whenever the right-hand side makes sense.

Lemma 2.1. If w is an odd essential ly bounded function on [¡ 1; 1] such that
xw(x) > 0 for all non-zero x and if there is a Riesz basis of eigenfunctions in
L2;w( ¡ 1; 1) for the eigenvalue problem (2.1), then there exists c > 0 such that

K(h) < c2 (2.3)

for all non-zero h such that

h 2 AC(0; 1);
h0

w
2 W 1

2 (0; 1);

µ
h0

w

¶
(1) = 0 (2.4)

and

h(1) = 0: (2.5)

Proof. Since A has a positive compact inverse in L2( ¡ 1; 1), theorem 2.2 of [11]
applies and gives c such that

Z 1

¡1

jwjjf j2 6 ckA1=2gkkA1=2fk (2.6)

for all f 2 dom(A1=2) and g = A¡1(wf).
Let h satisfy (2.4) and (2.5). Extend h to an even function on [¡ 1; 1] and put

f := ¡ h0=w. By (2.4), we have f ( ¡ 1) = f (1) = 0 and therefore f belongs to

dom(A1=2) = fy 2 W 1
2 ( ¡ 1; 1) : y( ¡ 1) + y(1) = 0g

(see [7, x 7]). Moreover,

kA1=2fk2 =

Z 1

¡1

jf 0j2: (2.7)

Solving ¡ g00 = wf = ¡ h0 for g 2 dom(A), we obtain

g(x) =

Z x

0

h(t) dt; x 2 [ ¡ 1; 1]: (2.8)
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Since g 2 dom(A) and h( ¡ 1) = h(1) = 0, integration by parts yields

kA1=2gk2 =

Z 1

¡1

Ag·g =

Z 1

¡1

wf·g = ¡
Z 1

¡1

h0·g =

Z 1

¡1

jhj2: (2.9)

Substituting (2.7) and (2.9) in (2.6), we obtain

µZ 1

¡1

jwjjf j2
¶2

6 c2

Z 1

¡1

jhj2
Z 1

¡1

jf 0j2;

and since all the integrands are even functions, it follows that K(h) 6 c2 for all h
satisfying (2.4) and (2.5).

The next step is to show that functions w exist that fail the conclusion of
lemma 2.1. An analogous approach has already been used for Dirichlet boundary
conditions in [1] and [6] via Volkmer’s version of lemma 2.1 (see [11, x 4]), which
includes conditions (2.4), but not (2.5).

Theorem 2.2. There is an odd essentially bounded function w de¯ned on [ ¡ 1; 1]
with xw(x) > 0 for all non-zero x, continuously di® erentiable near 1, and such that
no set of eigenfunctions of the problem Af = ¶ wf is a Riesz basis of L2;w( ¡ 1; 1).

Proof. In [1, theorem 1], a condition (see [1, eqn (5)]) for w is given under which
lemma 2.1 fails for the set of functions h that satisfy (2.4) (but not (2.5)). The
proof of [1, theorem 1] involves functions fn de­ ned by

fn(x) = ¡
Z 1

x

gn; x 2 [0; 1];

and these evidently vanish at x = 1. The functions fn play the role of our h, and
so our additional condition (2.5) is automatically incorporated in the construction
in [1, theorem 1]. Thus [1, theorem 1] gives a su¯ cient condition for w under which
no set of eigenfunctions of the problem Af = ¶ wf is a Riesz basis of L2;w( ¡ 1; 1).
Therefore, example 2 of [1] applies to our situation.

Remarks 2.3. It follows from the construction in [1] that the function w in theo-
rem 2.2 can, in fact, be selected to be an arbitrary (essentially bounded) function
on any interval [̄ ; 1]; 0 < ¯ < 1. In view of this, the set of functions w as above
is dense in L2;w (and, indeed, in other spaces (see [1, theorem 2] for the Dirichlet
case)). In [11, x 5], Volkmer gave a similar Dirichlet density result using (2.4) alone.

3. Boundary conditions and Riesz bases

In this section we modify the construction in x 2 to produce the example promised
in the abstract.

Let w be the essentially bounded function whose existence is established in the-
orem 2.2. De­ ne S on L2;w( ¡ 1; 1) by

(Sf)(x) = f (x ¡ sgn x); x 2 [¡ 1; 1];
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where, for de­ niteness, we take sgn 0 = 1. Then r := Sw is essentially bounded and
odd. Since S2f = f for all f 2 L2;w( ¡ 1; 1), we have Sr = w. We also de­ ne Q on
L2;w( ¡ 1; 1) by

(Qf)(x) = (Sf )(x) sgn x:

The operator Q will be our main tool below and it enjoys the following properties.

Lemma 3.1.

(a) Operator Q is a unitary isomorphism between the Hilbert spaces L2;jwj( ¡ 1; 1)
and L2;jrj( ¡ 1; 1).

(b) If f 2 dom(A), then Qf 2 dom(A) and (Qf)00 = Q(f 00) a.e.

(c) If f 2 dom(A), then Q(rf) = wQf a.e.

Proof. (a) If f; g 2 L2;jwj( ¡ 1; 1), we calculate

Z 1

¡1

jrjQf ·Qg =

Z 1

¡1

S(jwjf ·g)

=

Z 1

0

jwjf ·g +

Z 0

¡1

jwjf ·g

=

Z 1

¡1

jwjf ·g:

Thus Q is an isometry. Now suppose that g 2 L2;jrj( ¡ 1; 1) and rede­ ne g on the
null set f¡ 1; 0; 1g by g( ¡ 1) = g(0) = g(1) = 0. If we de­ ne f = Qg, then it is
easily checked that g = Qf and f 2 L2;jwj( ¡ 1; 1), so Q maps L2;jwj( ¡ 1; 1) onto
L2;jrj( ¡ 1; 1) and hence is unitary.

(b) The continuity of Qf and (Qf)0 at zero follow from the boundary condi-
tions on f 2 dom(A), and conversely (interchanging the roles of f and Qf). The
remaining contentions are straightforward.

(c) Since Sr = S2w = w, the result follows from

Q(rf)(x) = S(rf)(x) sgn x = (Sr)(x)(Sf )(x) sgn x = w(x)(Qf)(x):

Now we are ready for the main result.

Theorem 3.2. There exists odd essentially bounded r, with xr(x) > 0 for all non-
zero x 2 ( ¡ 1; 1), continuously di® erentiable near 0 and such that

(a) appropriately normalized eigenfunctions of the Dirichlet problem

¡ f 00 = ¶ rf (3.1)

with f ( ¡ 1) = f (1) = 0 form a Riesz basis of L2;jrj( ¡ 1; 1); but

(b) no set of eigenfunctions of the corresponding anti-periodic problem

Af = ¶ rf (3.2)

forms such a basis.
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Proof. (a) Since the function w is continuously di¬erentiable in the interval [ ¯ ; 1],
0 < ¯ < 1, it follows that the function r is continuously di¬erentiable on
[ ¡ 1 + ¯ ; 0) [ (0; 1 ¡ ¯ ]. Thus [5, theorem 3.6] shows that the normalized eigenfunc-
tions of the Dirichlet problem form a Riesz basis in L2;jrj( ¡ 1; 1).

(b) Suppose there is a Riesz basis of eigenfunctions fn for (3.2) in L2;jrj( ¡ 1; 1).
By lemma 3.1 (a), the functions Qfn form a Riesz basis of L2;jwj( ¡ 1; 1) and, by
parts (b) and (c) of lemma 3.1, they satisfy

AQfn = ¶ wQfn:

This evidently contradicts theorem 2.2, and the proof is complete.

Remarks 3.3. As in x 2, various modi­ cations are possible. By virtue of [5, the-
orem 3.6], Dirichlet conditions can be replaced by any separated boundary con-
ditions. One can also restate the results in the Naimark framework [8] as follows.
Denote by W the operator in L2;w( ¡ 1; 1) de­ ned on

dom(W ) = ff 2 L2;w( ¡ 1; 1) : f; f 0 2 AC [ ¡ 1; 1]; (1=w)f 00 2 L2;w( ¡ 1; 1);

f (1) + f ( ¡ 1) = 0; f 0(1) + f 0( ¡ 1) = 0g

by W f = ¡ (1=w)f 00, and denote by R the analogous operator with w replaced by r.
Then QW = RQ, so W and R are unitarily similar and therefore if either operator
has a Riesz basis of eigenfunctions, so must the other.

4. Simplicity of the eigenvalues

As mentioned in x 1, if in­ nitely many double eigenvalues ¶ n exist, then the question
of whether the (normalized) eigenfunctions form a Riesz basis can be ambiguous.
Speci­ cally, if the angles ¬ n in L2;jrj( ¡ 1; 1) between the two speci­ ed eigenfunctions
at ¶ n tend to 0 as ¶ n ! 1, then the eigenfunctions do not form a Riesz basis, even
though other choices (for which ¬ n do not tend to 0) could form a Riesz basis.
We mention the related (abstract) example in [4], where angles between pairs of
eigenvectors must tend to 0, preventing existence of a Riesz basis.

Below we prove that all the eigenvalues of the problems considered earlier are, in
fact, simple.

Lemma 4.1. Let v : [0; 1] ! R be a positive essential ly bounded measurable func-
tion. Then the unique solutions of the initial-value problems

¡ y00 = vy; y(0) = 0; y0(0) = 1; (4.1)

z 00 = vz; z(0) = 0; z0(0) = 1 (4.2)

satisfy z(t) > y(t) for all t 2 (0; 1].

Proof. We write
s = z + y and d = z ¡ y

for the sum and di¬erence of z and y. We note that

s(0) = d(0) = d0(0) = 0 and s0(0) = 2:

Thus s(t) > 0 for su¯ ciently small t > 0.

https://doi.org/10.1017/S030821050000319X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000319X


A counterexample in completeness theory 247

Arguing by contradiction, we assume that there is b 6 1 such that s(t) > 0 for
0 < t < b, but s(b) = 0. Then

d0(t) =

Z t

0

vs > 0;

so

d(t) =

Z t

0

d0 > 0 (4.3)

for all t 2 (0; b]. Moreover,

s0(t) = 2 +

Z t

0

vd > 0;

so

s(b) =

Z b

0

s0 > 0:

This is the desired contradiction. Thus s > 0, and then, from (4.3), d > 0 also, on
(0; 1].

Proposition 4.2. Let r be an odd essential ly bounded measurable function de¯ned
on [ ¡ 1; 1] such that xr(x) > 0 for all non-zero x 2 [¡ 1; 1]. Then the eigenvalues of
the problems (3.1) and (3.2) in theorem 3.2 are real, symmetric with respect to 0
and simple.

Proof. It is standard that the eigenvalues of the Dirichlet problem (3.1) are real
and simple. The fact that all the eigenvalues of (3.2) are real follows from [5,
propositions 1.1, 2.3 and 2.6]. To see that the eigenvalues of both problems are
symmetric with respect to 0, replace f (t) by f ( ¡ t), t 2 [¡ 1; 1], and ¶ by ¡ ¶ .

It remains to prove the simplicity of the eigenvalues of (3.2). By the symmetry
expressed above, it is su¯ cient to consider the positive eigenvalues, so let ¶ be a
positive double eigenvalue of (3.2). Then the space of all f such that

¡ f 00 = ¶ rf; (4.4)

f (1) + f( ¡ 1) = 0; (4.5)

f 0(1) + f 0( ¡ 1) = 0; (4.6)

is two dimensional. Equivalently, all solutions of (4.4) satisfy (4.5) and (4.6).
Let f = z be the unique solution of (4.4) such that z(0) = 0 and z0(0) = 1,

and de­ ne y(x) := ¡ z( ¡ x), x 2 [0; 1]. Then, with v = ¶ r, z is a solution of (4.1)
and y is a solution of (4.2). By lemma 4.1, it follows that z(1) > ¡ z( ¡ 1), that
is, z(1) + z( ¡ 1) > 0. Thus f = z satis­ es (4.4), but not (4.5), and we have a
contradiction.

Remark 4.3. With the aid of di¬erent initial conditions in (4.1) and (4.2) of
lemma 4.1, similar reasoning shows that the eigenvalues of the periodic problem

¡ f 00 = ¶ rf; f (1) ¡ f ( ¡ 1) = 0; f 0(1) ¡ f 0( ¡ 1) = 0 (4.7)

are also simple. In particular, all the eigenvalues of (3.2) and (4.7) are simple for
the function r(x) = sgn(x), x 2 [¡ 1; 1]. It is interesting to observe that all the
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non-zero eigenvalues of the corresponding de­ nite problems (with jrj = 1 instead
of r), namely,

¡ f 00 = ¶ f; f (1) + f ( ¡ 1) = 0; f 0(1) + f 0( ¡ 1) = 0;

¡ f 00 = ¶ f; f (1) ¡ f ( ¡ 1) = 0; f 0(1) ¡ f 0( ¡ 1) = 0;

are double.
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