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Turbulent dynamics of sinusoidal oscillatory
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A direct numerical simulation study is conducted to investigate sinusoidal oscillatory
flow over a two-dimensional wavy wall. The height and wavelength of the bottom
profile, and the period and amplitude of the free-stream oscillation, are selected to
mimic a wave-driven boundary layer over vortex ripples on a sandy seabed. Two
cases with different Reynolds numbers (Re) are considered, and the higher-Re case
achieves a fully developed turbulent state with a wide separation between the energy-
containing and dissipative scales. The oscillatory flow is characterized by coherent
columnar vortices, which are the main transport agents of turbulent kinetic energy
and enstrophy. Two classes of coherent vortices are observed: (i) a primary vortex
formed at the lee side of the ripple by flow separation at the crest; (ii) a secondary
vortex formed beneath the primary vortex by vortex-induced separation. When the
free-stream velocity weakens, these vortices form a counter-rotating vortex dipole and
eject themselves over the crest with their mutual induction. Turbulence production
peaks twice in a half-cycle; during the formation of the primary vortex and during
the ejection of the vortex dipole. The intensity of the former peak remains low in
the lower-Re case, as the vortex dipole follows a higher altitude trajectory limiting
its interactions with the bottom, and leaving minimal residual turbulence around the
ripples for the subsequent half-cycle. Flow snapshots and spectral analysis reveal two
dominant three-dimensional features: (i) an energetic vortex mode with a preferred
spanwise wavelength close to the ripple wavelength; (ii) streamwise vortical structures
in near-wall regions with a relatively shorter spanwise spacing influenced by viscous
effects. The vortex mode becomes strong when the cores of the vortices are strained
to an elliptical form while moving towards the crest. Following the detachment of
the vortices from the ripple, the vortex mode in the higher-Re case breaks down the
spanwise coherence of the columnar vortices and decomposes them into intermittent
patches of turbulent vortex clusters. The distribution of wall shear stress over the
ripple is also analysed in detail. The peak values are observed near the ripple crest
around the ejection of the vortex dipole and the maximum free-stream velocity. In the
former, both the vortex mode and streamwise vortices have strong footprints on the
wall, yielding a bimodal wall-shear-stress spectrum with two distinctive peaks. In the
second high-stress regime, decaying coherent vortices impose strong inhomogeneity on
the wall shear stress as their wall-attached parts sweep the ripples. These spanwise
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variations in the wall shear provide insights into the instability of two-dimensional
sand ripples.

Key words: coastal engineering, separated flows, vortex flows

1. Introduction

Sinusoidal oscillatory flow over two-dimensional wavy bedforms represents an
idealized model for wave-induced flow over a ripple-covered seabed, a ubiquitous
configuration in coastal regions. This oscillatory flow is significantly different than
the flow over flat beds due to the presence of large-scale spanwise vortices. These
coherent vortices are formed during each half-cycle by flow separation at ripple crests
(Darwin 1883; Bagnold & Taylor 1946). While forming, the adverse gradients in their
pressure fields give rise to secondary vortices on the ripple surface (Blondeaux &
Vittori 1991, 1999). The resulting vortex pairs are eventually washed over the ripple
crests and ejected into the free stream during the flow reversal (Nakato et al. 1977). In
this phase, the vortices can suspend considerable amounts of sediments, cf. e.g. Honji,
Kaneko & Matsunaga (1980), van der Werf et al. (2006) and van der Werf et al.
(2007). Due to this prominence of vortices in the local hydrodynamics, sand ripples
are usually referred to as vortex ripples (Nielsen 1992). Natural vortex ripples have
wavelengths of O(10 cm) (Mei & Liu 1993), and the vortex formation and ejection
events occur in fully turbulent regimes. To date, the dynamics of the flow in these
regimes is not sufficiently explored in detail. This work is an effort in this direction.
We perform direct numerical simulations (DNS) of sinusoidal oscillatory flow over a
periodic array of two-dimensional ripples.

1.1. General properties of vortex ripples
For a specific ripple profile, the oscillatory flow around it has three essential length
scales: the wave-orbital amplitude A, the ripple wavelength λ, the ripple height η; and
a time scale: the wave period T , which is used to define the angular frequency ω=
2π/T . These characteristic length and time scales, together with the fluid kinematic
viscosity ν, are conveniently merged into three dimensionless parameters: Reynolds
number

Re=
A2ω

ν
, (1.1)

(typically in the range O(104–105)), Keulegan–Carpenter number

KC = 2π
A
λ
, (1.2)

giving the ratio of the ambient excursion amplitude to the ripple wavelength (typically
in the range O(1− 10)) and ripple steepness

s=
η

λ
, (1.3)

with typical values between 0.1 and 0.2.
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Study Facility Re= A2ω/ν KC = 2πA/λ s= η/λ

Sato et al. (1985) OWT 9100–93 500 4–12.7 0.1
Earnshaw & Greated
(1998)

towing tank 23 000–116 000 5–11.3 0.16

Fredsøe et al. (1999) wave flume 23 000 2.75 0.16
Ourmieres & Chaplin
(2004)

wave flume 615 000 0.94–6.28 0.05–0.175

Jespersen et al. (2004) oscillating lid 2200, 7500 (3.14–5.78)a single ripple
Blondeaux, Scandura &
Vittori (2004)

DNS 1250–1600 4.7 0.125–0.15

Nichols & Foster (2007) wave flume 6600 000 45.6 0.1
Canals & Pawlak (2011) oscillating lid 700–7500 (0.2–2)a single ripple
Hare et al. (2014) oscillatory tray 160 000 12.5 0.18

TABLE 1. Summary of previous studies on oscillatory flow over vortex ripples. OWT
stands for oscillatory water tunnel.

aIn experiments with a single ripple, the KC number is calculated using the ripple height,
i.e. KC = 2πA/η.

A considerable amount of knowledge on the turbulent flow over vortex ripples
has been obtained from laboratory experiments with rigid ripple models or sand
ripples under equilibrium conditions. Table 1 presents a short bibliographical list of
previous works. Sato, Mimura & Watanabe (1985) were among the first to explore
how the turbulence production and hydrodynamic forces are related to the dynamics
of coherent lee vortices. Earnshaw & Greated (1998) and Jespersen et al. (2004)
characterized the oscillatory flow over rigid ripples using vorticity dynamics. To this
end, they calculated the circulation, area and trajectory of the lee vortices. Fredsøe,
Andersen & Sumer (1999) visualized the formation and ejection sequence of the
primary lee vortex, and showed that the intensity of turbulence near the ripple surface
increases substantially when the lee vortex is washed over the crest. Nichols & Foster
(2007) studied movable sand ripples under large-scale free-surface wave conditions.
They showed that the intensity of instantaneous vortical structures is correlated with
the KC number. Hare et al. (2014) investigated the spatial and temporal structures of
the flow over sand ripples with turbulence-resolving experiments. Besides the basic
first-order flow statistics, they measured the distribution of Reynolds stresses, and the
turbulent kinetic energy and its production rate.

Due to resolution restrictions, the experimental measurements did not address
more detailed characteristics such as the distribution of wall shear stresses over the
ripple surface. These properties were predicted using large-eddy simulations (LES),
e.g. Zedler & Street (2006) and Grigoriadis, Dimas & Balaras (2012). However, the
subgrid-scale and wall models in these simulations are yet to be verified using DNS
or high-resolution experimental data.

1.2. The three-dimensional structure
Despite possible implications for sediment transport and the emergence of three-
dimensional ripple patterns under sea waves, the three-dimensional organization and
dynamics of the flow over vortex ripples have received relatively little attention. To
this end, Ourmieres & Chaplin (2004) studied these features in disturbed laminar
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regimes in which the flow exhibits organized structures without breakdown to
turbulence. Two types of three-dimensional pattern were reported. The first one
was a short-wavelength pattern in the form of equally spaced bridges along the
spanwise vortex columns. These structures were driven by centrifugal instabilities.
Their spanwise spacing scaled with the inverse of the Taylor number, which quantifies
the ratio of centrifugal forces to viscous forces and reads

Ta=
A2η

2λ2

√
ω

ν
(1.4)

in the case of vortex ripples (Hara & Mei 1990). In general, centrifugal instabilities
may manifest themselves as azimuthally oriented vortex filaments on the periphery
of columnar vortices (Williamson 1996), or streamwise-aligned Görtler vortices in
boundary layers around curved walls (Saric 1994; Gschwind, Regele & Kottke 1995).
Scandura, Vittori & Blondeaux (2000) observed Görtler vortices over vortex ripples
during the first stages of transition into three-dimensionality. Similar streamwise vortex
patterns were also reported by Blondeaux et al. (2004) in their low Reynolds number
DNS simulations (cf. table 1). However, they attributed the phenomena to an inviscid
mechanism, which is similar to the production of rib vortices in the braid regions of
free-shear flows. In this mechanism, the two-dimensional base flow is subject to some
secondary instabilities introducing the initial perturbations which are then continuously
stretched to form streamwise vortex pairs in regions with hyperbolic flow topology.
This streamwise-vortex production mechanism, i.e. the collapse of perturbed vortex
sheets under straining into elongated vortices, was theoretically analysed by Neu
(1984) before.

The second pattern reported by Ourmieres & Chaplin (2004) was a brick pattern,
which was in the form of shifted bridges of dye between the crests. The brick patterns
have spanwise wavelengths in the range 0.6<λz/λ< 1.3. The spanwise shifting of the
pattern from crest to crest has been observed to be approximately 0.5λ. This long-
wavelength pattern has slightly smaller dimensions than the spanwise modes observed
in steady boundary layers over wavy walls. For these stationary flows, Günther & Von
Rohr (2003) reported a dominant mode at a spanwise spacing of O(1.5λ).

Canals & Pawlak (2011) investigated the onset of three-dimensionality in coherent
columnar vortex pairs using an oscillating flap – an idealized configuration with
similar coherent-vortex dynamics to vortex ripples. They observed structures with
spanwise wavelengths in the range 2 < λz/r < 5, where r is the vortex-core radius.
They associated these structures with elliptic instabilities of vortex cores, as the
observed dimensions were in the theoretical range of these instabilities, and a mutually
imposed straining was clearly observed in the vortex cores. Canals & Pawlak (2011)
further speculated that the initial perturbations feeding the elliptic instabilities were
due to centrifugal instabilities.

1.3. The scope of the work
High-fidelity numerical simulations have played an indispensable role in elucidating
various turbulence mechanisms in stationary canonical flows, cf. e.g. the recent
reviews by Jiménez (2012), Jordan & Colonius (2013), da Silva et al. (2014).
However, detailed numerical investigations remain limited for non-stationary or
oscillatory turbulent flows due to the necessity of long integration times to acquire
time-varying statistics. To this end, most progress has been made for oscillatory
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boundary layers on flat bottoms thanks to their geometrical simplicity. For these
flows, DNS studies in disturbed-laminar regimes helped to characterize the transition
mechanisms (Vittori & Verzicco 1998; Mazzuoli, Vittori & Blondeaux 2011; Ozdemir,
Hsu & Balachandar 2014; Mazzuoli & Vittori 2016), and the near-wall flow structures
in more turbulent regimes were identified using wall-resolved LES (Salon, Armenio
& Crise 2007) or DNS (Ghodke & Apte 2016; Scandura, Faraci & Foti 2016). The
numerical efforts in the case of vortex ripples have been more modest. The wavy wall
breaks the homogeneity in the streamwise direction and prevents statistical averaging
over this direction. Consequently, a significantly longer time is required to converge
the statistics. This poses an enormous computational challenge at Reynolds numbers
close to field conditions, which has not been tackled yet by the community. The
present effort is a novel attempt in this regard.

We conduct two DNS cases with Re = 2500, 10 000; KC = 5/3π ≈ 5.24; and
s= 1/6 over a periodic array of two-dimensional ripples. The selected ripple profile
is slightly steeper than a sinusoidal profile due to presence of a second harmonic. The
characteristic coherent spanwise vortices in the high-Re case are in a fully developed
post-mixing transition (Dimotakis 2000) regime, where a wide separation between
energy- and enstrophy-dominated scales takes place. A primary objective of our work
is the detailed analysis of the two-dimensional phase-locked dynamics of coherent
spanwise vortices, and their influence on wall-shear-stress distributions. Furthermore,
to our knowledge, the three-dimensional features of the flow in fully turbulent regimes
have not yet been explored. We will show that the flow exhibits dominant large-scale
three-dimensional features even in highly turbulent conditions, and will study the
effect of these features on wall-shear-stress fluctuations.

This paper is organized as follows. In § 2, we introduce the problem and the
numerical methodology, which is a Fourier spectral/hp element method. Then, vortex
kinematics over a half-cycle is discussed in § 3. Subsequently, § 4 analyses the
global turbulent kinetic energy budget. Section 5 focuses on turbulent phase-averaged
fields, as well as on turbulence statistics along certain representative locations such
as vortex cores and turbulence-production peaks. Section 6 analyses the spanwise
structure of the flow based using instantaneous snapshots and spectral analysis.
Finally, conclusions are given in § 7.

2. Problem formulation
This section is devoted to the presentation of the problem and its numerical solution

method. The selected flow configuration is presented in § 2.1. Subsequently, direct
numerical simulation (DNS) with a Fourier spectral/hp finite element method (FEM)
is briefly described in § 2.2, followed by a discussion of the employed grid resolution
in § 2.3.

2.1. Flow configuration
We consider a sinusoidally oscillatory viscous flow over a wavy bottom. A Cartesian
coordinate system is considered with x, y, z corresponding to streamwise, wall-normal
and spanwise directions, respectively. The governing equations are the incompressible
Navier–Stokes equations and the continuity equation, which read in the selected
coordinate system as follows

∂ui

∂t
+ uj

∂ui

∂xj
=

1
ρ

∂σij

∂xj
+ f∞δix, (2.1)
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Cases C1 C2

Reynolds number (Re= A2ω/ν) 10 000 2500
Keulegan–Carpenter number (KC = 2πA/λ) 5.24 5.24
Ripple slope (s= η/λ) 1/6 1/6
Stokes length to ripple height (δs/η) 0.07 0.14
Reynolds number using Stokes length (Reδ =U0δs/ν) 141.42 70.71
Taylor number (Ta= A2η

√
ω/ν/2λ2) 3.47 6.94

TABLE 2. Dimensionless parameters for the investigated cases.

∂ui

∂xi
= 0, (2.2)

where u=[ux, uy, uz] is the velocity field, σ is the stress tensor. For an incompressible
Newtonian fluid, the stress tensor is given by σij=−pδij+ τij, where p is the pressure
field excluding the driving oscillatory pressure p0, and τ is the viscous stress tensor
τij= 2µsij with sij= ((∂ui/∂xj)+ (∂uj/∂xi))/2 being the rate of strain tensor. The term
f∞ in (2.1) is the driving uniform oscillatory pressure gradient given by

f∞ =−
1
ρ

∂p0

∂x
=U0ω sin(ωt), (2.3)

which induces a sinusoidal streamwise velocity in the free stream

u0 =−U0 cos(ωt). (2.4)

Streamwise, wall-normal and spanwise directions are associated with unit vectors î, ĵ
and k̂, respectively. We will simply denote ωt as θ hereafter.

The ripple profile is defined as the superposition of two harmonics

yη =
η

2
(cos κrx+ η′ cos 2κrx), (2.5)

where κr = 2π/λ is the wavenumber of the waviness with λ being the ripple
wavelength, and where η is the ripple height, cf. figure 1. The ratio of ripple height
to ripple length is specified to be η/λ= 1/6, and the relative amplitude of the second
harmonic is prescribed to be η′ = 0.17. This generic ripple shape is generalized
from recent laboratory experiments (Yuan, Dongxu & Madsen 2017), in which sand
ripples were produced under sinusoidal oscillatory flows over a coarse-sand (diameter
0.51 mm) movable bed. It should be noted that the flow conditions in the experiments
have a higher Re (∼O(105)) than that in our simulations. This, however, does not
defeat the main objective of this study, which is revealing the fundamental turbulence
characteristics for oscillatory flows over vortex ripples using an idealized model.

Two cases with different Reynolds numbers are considered, cf. table 2. Case C1
has a higher Reynolds number with Re = 10 000. A dimensional instance of this
case would be, e.g. U0 = 17.77 cm s−1, T = 2 s, ν = 10−6 m2 s−1, λ= 6.78 cm and
η= 1.13 cm, which is close to the vortex ripples generated in some laboratory wave
flumes (e.g. Nichols & Foster 2007). Case C2 has a moderate Reynolds number of
Re= 2500. Nevertheless, this Reynolds number is above the Reynolds number range
considered in the DNS study of Blondeaux et al. (2004) (cf. table 1) where the flows
were still turbulent. Therefore, the selected configurations allow us to investigate the
Reynolds number effects in turbulent oscillatory flows over moderate-sized vortex
ripples.
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FIGURE 1. Two-dimensional side view of the flow domain. The thick solid lines indicate
the region shown in figure 2. The dashed lines separate subdomains Ω1, Ω2, Ω3 where
different mesh configurations or element-polynomial orders are employed, cf. figure 2 and
table 3. Terms t̂ and n̂ are the unit vectors that are in the tangential and normal directions
on the ripple surface, respectively (scale for implication only).

2.2. Computational details
The two-dimensional side view of the computational domain is shown in figure 1. It
contains three ripples, i.e. has a streamwise dimension of x∈ [0,Lx= 3λ= 18η]. It has
a significant spanwise dimension of z ∈ [0, Lz = 6λ= 36η] and has the top boundary
at y = Ly = 1.5λ = 9η. Periodicity is applied in streamwise and spanwise directions.
Ripple surfaces are hydrodynamically smooth, i.e. u= 0 for x ∈Ωη, and a symmetry
boundary condition is applied on the top boundary. The governing equations (2.1)
and (2.2) supplemented with these boundary conditions are discretized and solved
using the Nektar++ code, a high-order spectral/hp element library developed by
Cantwell et al. (2015). To this end, we employ a mixed representation, where a
bi-dimensional spectral-element discretization is used in streamwise–wall-normal (x–y)
plane, and global Fourier expansions are considered in the spanwise (z) direction,
cf. Karniadakis (1990).

The element sizes along with other computational details are summarized in table 3.
A mesh with 15 685 quadrilateral elements is employed for the spectral-element
discretization, cf. figure 2. The mesh contains a structured region (Ω1) of 300 × 15
elements near the bottom wall, and an unstructured region (Ω2 ∪ Ω3) above. The
streamwise grid spacing in the structured mesh (Ω1) is calculated in local ripple
coordinates, as the mesh follows the curvature of the ripple surface. To this end,
1x is the streamwise-tangent grid spacing in Ω1. 1y is the vertical grid spacing in
Ω1. The grid is clustered towards the wall in Ω1 with an expansion ratio of 1.175
between adjacent elements in the vertical direction. It is quite anisotropic near the
wall with a factor of 1x/1y≈ 10 and becomes isotropic close to the border to Ω2.
In the unstructured mesh region (Ω2 ∪Ω3), we use a representative grid spacing

1l=
A1/2

e

Np
, (2.6)
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y2

y1

Ø3

Ø2

Ø1

FIGURE 2. Overview of the elemental decomposition with quadrilateral elements. The
structured mesh region Ω1 is located between [yη, yη + y1], where y1= 0.35η. The regions
above, i.e. Ω2 and Ω3, contain an unstructured mesh. These two regions, separated by a
line at y2 = 2.19η, have different element-polynomial orders in Case C1, cf. table 3.

Cases C1 C2

Lx, Ly, Lz 3λ(18η), 1.5λ(9η), 6λ(36η) 3λ(18η), 1.5λ(9η), 6λ(36η)
Nel(Ω1)=Nx ×Ny, Nxy(Ω2 ∪Ω3) 300× 15, 11 185 300× 15, 11 185
Np(Ω1), Np(Ω2), Np(Ω3) 6, 7, 5 4, 4, 4
Nz 2160 1080
Total number of grid points 1.23× 109 2.71× 108

1x/δs 0.142 61x/δs 6 0.166 0.106 61x/δs 6 0.124
1y/δs 0.014 61y/δs 6 0.135 0.011 61y/δs 6 0.101
1l/δs 0.043 61l/δs 6 0.869 0.032 61l/δs 6 0.543
1z/δs 0.236 0.236
1t/T 1/128 000 1/48 000
T i/T , T s/T 6, 5 6, 10

TABLE 3. Numerical parameters for the DNS studies. Nel is the number of spectral
elements, Np is the polynomial order for the modified Legendre basis and Nz is the number
of Fourier modes in the spanwise direction. The total number of grid points is calculated
with Nel ×N2

p ×Nz. The mesh consists of three regions, cf. figure 2, 1x and 1y are the
spacings in the structured mesh located in Ω1, and 1l is the spacing in the unstructured
mesh in Ω2 ∪ Ω3, cf. (2.6). The term δs =

√
2ν/ω is the Stokes length. T is the flow

period. T i and T s are the time intervals for initialization and sampling, respectively.

where Ae is the area of the spectral element, and Np is the polynomial order of the
element. In the spanwise direction, equidistant collocation points are used for Fourier
expansions with Nz = 2160 and Nz = 1080 for Cases C1 and C2, respectively.

To utilize the mixed Fourier spectral/hp element representation in the solution of
Navier–Stokes equations, we first apply the Fourier expansion

u(x, y, z, t)=
∑
κz

û(x, y, κz, t)eiκzz, (2.7)

where κz is the wavenumber in the spanwise direction. This expansion is introduced
into the governing equations. The 2/3 rule is applied to avoid aliasing errors (Boyd
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2001). Subsequently, the resulting equations are further discretized in the x–y plane
using a continuous-Galerkin projection where local element expansions are employed
using the modified Legendre basis (Szabó, Düster & Rank 2004; Karniadakis &
Sherwin 2005). In Case C1, the polynomial orders of the elements in different mesh
regions are Np = 6 in Ω1, Np = 7 in Ω2 and Np = 5 in Ω3. The slightly higher
expansion order in Ω2 was found necessary for fully resolving the flow features and
prevent instabilities due to underresolution. In Case C2, the polynomial order Np = 4
is applied everywhere in the domain.

The resulting system of differential algebraic equations is discretized in time using
a second-order scheme, in which both advection and diffusion terms are treated
implicitly, cf. Vos et al. (2011) for details. A fixed time-step size 1t is chosen
for both cases, where 1t/T = 1/128 000 for C1 and 1t/T = 1/48 000 for C2. The
maximum Courant–Friedrichs–Lewy (CFL) number in both cases remained below
0.45. Finally, the coupled linear system of equations is segregated using a velocity
correction scheme (Karniadakis, Israeli & Orszag 1991), and individual parts are
solved using an iterative solver based on static condensation with a tolerance of 10−9.

In order to trigger the transition to turbulence, the cases are initialized with
random low-amplitude perturbations (‖u′‖ 6 0.0001U0) seeded on the y–z plane,
which are uniform in the streamwise direction. Transition to turbulence has been
observed around t= T/4. The flow is observed to reach a periodic state in 6 periods,
i.e. T i

= 6T . Afterwards, we collected 64 three-dimensional snapshots per cycle for
statistical analysis. This second phase lasted five periods in Case C1 (T s

= 5T) and
10 periods in C2 (T s

= 10T). Consequently, a database containing around 26 terabytes
of flow data was produced.

The simulations are run on ASPIRE 1, the petascale supercomputer of the National
Supercomputer Center of Singapore (NSCC). We have used Intel Xeon dual socket
E5-2690v3 CPUs, where 2160 cores were employed for Case C1, and 960 cores
for Case C2. Parallelization was achieved with message passing interface (MPI).
Cases C1 and C2 required approximately 13 and 5 terabytes of memory during
runtime. With this configuration, a time step lasted around 9 s and 3.5 s for Cases C1
and C2, respectively. The overall runtime cost of the simulations was over 10× 106

CPU hours.

2.3. Grid assessment
In order to validate our DNS experiments, we will investigate the representation of the
smallest and largest scales of the flow in the chosen grids and computational domain.
The spatial resolution will be assessed in this section. A more detailed investigation
using energy spectra is presented in appendix A. The domain size is accessed in
appendix B. Finally, some comparisons to experimental measurements are made in
appendix C.

We start with the analysis of near-wall resolutions. The essential quantities in the
inner wall layer are the wall units, i.e. the kinematic viscosity ν, and the local friction
velocity uτ =

√
〈τt〉/ρ, which is calculated using the streamwise component of the

phase-averaged shear stress 〈τt〉 on the wall. A local viscous length scale δν = ν/uτ
is defined using these wall units. Consequently, any length can be expressed in wall
units using δν , i.e. l+= l/δν , where the superscript ‘+’ indicates scaling in wall units.
The near-wall resolutions can be justified by analysing the grid spacings in wall units.
To this end, the tangential grid spacing to the ripple surface (1x) and the constant
spanwise grid spacing (1z) are employed to test the resolution in the streamwise and
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FIGURE 3. (Colour online) Extremal grid spacings over a flow cycle. (a–c) Largest grid
spacings on the wall in wall units. 1yw is the vertical distance of the first grid point
from the ripple surface. (d,e) Largest grid spacings in free stream in Kolmogorov units
(lη = (ν3/ε)1/4). 1l is the representative grid spacing in the unstructured hp–FEM mesh,
cf. (2.6). (–E): Case C1; (–@): Case C2.

spanwise directions, respectively. In the highly non-uniform vertical direction, the first
quadrature points from the ripple surface (1yw) are selected. Figure 3(a–c) shows
the coarsest wall-layer resolutions over the cycle in wall units. In spectral-element
discretizations, Karniadakis & Sherwin (2005) suggest to resolve the first nine wall
units away from the wall with at least ten collocation points. Figure 3(b) shows
that this criterion is well satisfied for both cases, as 1y+w 6 0.41 for Case C1
and 1y+w 6 0.22 for Case C2. Standard values for the streamwise and spanwise
grid resolutions in recent DNS studies of wall-bounded flows are in the range
1x+≈ 12 and 1z+≈ 6, e.g. Hoyas & Jiménez (2006) employed (12.3, 0.323, 6.1) and
Lozano-Durán & Jiménez (2014) employed (12.8, 0.314, 6.4) for (1x+, 1y+w , 1z+)
resolutions, respectively. Figure 3(a,c) shows that the resolutions in these directions
are well within these ranges for both cases. Moreover, our streamwise resolution is
finer with 1x+6 4.1 for Case C1 and 1x+6 2.2 for Case C2, as we have to resolve
the additional effects due to streamwise pressure gradients and the curvature of the
ripple.

In free stream, the smallest eddies in the dissipation range have to be resolved.
According to Kolmogorov’s first hypothesis of similarity (Kolmogorov 1941), the
local isotropic Kolmogorov microscale lη = (ν3/ε)1/4 is the length scale of the
smallest eddies where ε is the local dissipation rate, cf. (4.4). The spectral elements
are unstructured and approximately isotropic in regions Ω2 and Ω3 where coherent
vortices spend most of their lives. Therefore, the resolution in the x–y plane is
checked by comparing the local lη to the element length scale 1l (cf. (2.6)). In the
spanwise direction, a constant spacing 1z is used. The largest free-stream resolutions
over the cycle are plotted in figure 3(d,e). We see that grid spacings are of the order
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of the Kolmogorov scales with 1l/lη6 2.8, 1z/lη6 2.9 for Case C1, 1l/lη6 1.26,and
1z/lη 6 1.54. Mahesh & Moin (1998) remarks that the smallest resolved length scale
in a DNS is required to be O(lη), not lη, as accurate first- and second-order statistics
can be obtained when most of the dissipation is captured. In this regard, the selected
spatial resolutions are sufficient for both cases, and we will show in appendix A that
dissipation is also well captured.

3. Phase-locked vortex kinematics

In this section, we discuss the kinematics of wave-induced flow over ripples with
a special emphasis on the motion of coherent spanwise vortices. In the considered
oscillatory flow, ensemble averaging is approximated using phase-locked averaging
combined with spatial averaging over homogeneous direction and ripple-based
averaging, e.g. for velocity,

〈u〉(x, y, t)=
1

NM

M−1∑
m=0

N−1∑
n=0

ũ(x+mλ, y, t+ nT), 0 6 x< λ, 0 6 t< T, (3.1)

where ũ is the spatially averaged velocity over the homogeneous direction z, N is the
total number of sampling periods and M is the number of ripples in the domain. Using
this averaging, Reynolds decomposition is applied to the fields of interest, e.g. u =
〈u〉 + u′, where u′ is the fluctuating part of the turbulent velocity field.

Figures 4 and 5 show the phase-averaged spanwise vorticity 〈ωz〉 contours, i.e.

〈ωz〉 =
∂〈uy〉

∂x
−
∂〈ux〉

∂y
, (3.2)

and velocity 〈u〉 vectors along the half-cycle (0 6 θ < π) for cases C1 and C2,
respectively. We will use the 〈ωz〉-field to discuss the coherent-vortex kinematics.
To this end, we define a coherent vortex as an enclosed region of concentrated
〈ωz〉. Similar definitions have previously been employed in the studies of turbulent
coherent structures in free-shear flows, cf. e.g. Hussain (1986). The strength of a
coherent vortex can be measured by its circulation, which is calculated by (Batchelor
2000)

Γ =

∮
C
〈u〉 · dl=

∫
A
〈ωz〉 dA, (3.3)

where C is the closed curve representing the vortex boundary, and A is the area of
the vortex region. We have selected the contours |〈ωz〉| = 0.15U0/η as the boundary
threshold for vortices. This value corresponds to the lowest contour level in figures 4
and 5, and it is approximately 2.5 % of the maximum vorticity level in the figures.
The circulation of coherent vortices is presented in parentheses in figures 4 and 5.
These values can be compared with the total circulation around a single ripple, which
can be calculated using a line integral on a closed curve containing the ripple surface,
vertical lines normal to the troughs and a horizontal line in the free stream. In our
cases, the total circulation at a phase equals to ΓR =−u0λ=−6u0η.

Figure 6(a,b) further shows the vorticity distributions on the ripple surface Ωη, i.e.

〈ωz(x, θ)〉 =−
∂〈u(x, θ)〉

∂x
· n̂ for x ∈Ωη, (3.4)
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FIGURE 4. (Colour online) (a–h) Evolution of vorticity and velocity fields along the
half-cycle for Case C1. (Left) Contours of phase-averaged spanwise vorticity 〈ωz〉; (right)
the phase-averaged velocity 〈u〉 vectors. The values in parentheses show the normalized
circulation Γ /U0η of the vortices, cf. (3.3). The thick lines show a section of the isolines
〈p〉, which are employed to separate P- and S-vortices; (a,b) 〈p〉/ρU2

0 = 0.2 and (h)
〈p〉/ρU2

0 = 0.075.
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FIGURE 5. (Colour online) Evolution of vorticity and velocity fields along the half-cycle
for Case C2. See figure 4 for captions.

where n̂ is the normal of the ripple surface (cf. figure 1 for its orientation). In
these figures, we consider 〈ωz〉 = 0 (thick solid lines) as the average position of the
separation and reattachment points.
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FIGURE 6. (Colour online) Distribution of the phase-averaged spanwise vorticity 〈ωz〉 on
the ripple surface around the cycle. The thick solid lines show 〈ωz〉 = 0. The dashed lines
bound the time interval without flow separation. The dotted lines show the position of
the minimum vorticity on the ripple for 0 6 θ 6 40π/32. A local ripple coordinate x′ =
(x− xc)/λ is employed with xc being the streamwise location of the ripple crest.

We will discuss the deceleration and acceleration phases in §§ 3.1 and 3.2,
respectively. In the deceleration phase between 0 6 θ <π/2 (figures 4a–d and 5a–d).
In this stage, new vortices form and start absorbing the flow energy. Therefore,
we will also denote the deceleration phase as the vortex-formation phase. In the
acceleration stage in the interval π/2 6 θ < π (figures 4e–h and 5e–h), the coherent
vortices travel large distances with their self-induced velocities, and produce jet-like
flows. We will denote the acceleration phase as the jet ejection, or simply ejection,
phase.

3.1. Vortex-formation (deceleration) phase (0 6 θ <π/2)
At the start of deceleration phase at θ = 0, where the free-stream velocity is at its
negative peak (cf. figures 4a and 5a), the flow separates at the crest of the ripple
(x′= 0) and reattaches at x′≈−0.4 (x′= (x− xc)/λ where xc is the streamwise location
of the crest) for Case C1, cf. figure 6(a). The reattachment point in Case C2 is further
downstream at the stoss side at around x′ ≈ 0.4, cf. figure 6(b). The positive-vorticity
flux from the crest feeds the forming vortex in the lee of the ripple. We denote this
vortex P+, where P stands for primary vortex, and the superscript ‘+’ indicates the
positive circulation – not to be confused with the wall units superscript. Furthermore,
there is a secondary vortex from previous half-cycle (S+) with the same sense of
circulation. In order to distinguish these vortices, we employ a segment of the
pressure isoline 〈p〉/ρU2

0 = 0.2, cf. the thick solid lines in figures 4(a,b) and 5(a,b).
This practical selection is based on the observation that the ejected secondary vortex
quickly loses its property of being a low-pressure centre after being detached from
the ripple crest. Moreover, the boundary layer beneath the S+-vortex contains the
same sign of vorticity with the vortex. In order to differentiate the boundary layer
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FIGURE 7. (Colour online) Formation of the secondary spanwise vortex S− via flow
separation induced by the adverse pressure gradient in the primary vortex P+ at θ =8π/32.
Shaded contours show 〈p〉/ρU2

0 . The thick contour lines are Λ= 1/2(ΩijΩij − SijSij)= 0.
Blue contours show 〈ωz〉/(U0/η)= |0.15| indicating the coherent-vortex boundaries.

and vortex regions, we exclude the wall layer of 1y = 2δs thickness from the
circulation field of the S+-vortex. At θ = 0, there is another primary vortex, P−,
moving to the west above the ripple crest. It has formed in the previous half-cycle
on the eastern side of the eastern neighbour, hence has a negative circulation. This
residual vortex has around 25 % and 33 % circulation of P+-vortices in Cases C1 and
C2, respectively. This suggests a small but non-negligible flow interference between
neighbouring ripples.

We further see at θ = 0 that P+-vortex induces a thin boundary layer on the wall
with reverse circulation, cf. the negative vorticity contours at the lee side (x′ < 0) in
figure 6(a,b). While the vorticity flux at the crest keeps increasing the circulation
of P+, the reverse flow becomes also stronger, cf. S− in figures 4(b,c) and 5(b,c).
Furthermore, the low-pressure zone in the P+-vortex intensifies, and a strong adverse
pressure gradient is created along the ripple surface at the lee side. This is shown
in figure 7 for both cases at phase θ = 8π/32. The adverse pressure gradient along
the wall yields a secondary flow separation within the vortex-induced boundary layer,
cf. positive-vorticity islands at the lee side (x′ < 0) in 2π/32 6 θ 6 9π/32 for C1
and in 4π/32 6 θ 6 12π/32 for C2 in figure 6(a,b). Following the separation, S−
rolls into a secondary separation bubble. Figure 7 demonstrates this using the Okubo–
Weiss parameter Λ= 1/2(ΩijΩij−SijSij), where Ωij= 1/2(∂〈ui〉/∂xj− ∂〈uj〉/∂xi) is the
phase-averaged rate of rotation tensor, ΩijΩij = 1/2〈ωz〉

2 in two dimensions and

Sij =
1
2

(
∂〈ui〉

∂xj
+
∂〈uj〉

∂xi

)
(3.5)

is the phase-averaged rate of strain tensor. Positive values of Λ identify vortex cores
where the vorticity prevails over strain (Okubo 1970; Weiss 1991). To this end, the
isoline of Λ = 0 shows the development of secondary separation bubble in S− for
both cases in figure 7. General properties of secondary vortex development due to
vortex-induced separation are discussed in Doligalski, Smith & Walker (1994). In the
case of vortex ripples, the phenomenon has been documented previously by Blondeaux
& Vittori (1991) in a two-dimensional setting. The coherent secondary vortex is not
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FIGURE 8. (Colour online) Comparison between the net shed circulation at the crest
(1Γc(0, θ), cf. (3.7)) and the absorbed circulation (1ΓP+ = ΓP+(θ) − ΓP+(0)) in the
primary vortex P+ during its formation. Circulations are normalized by U0η.

captured in studies with discrete vortex models, e.g. cf. Longuet-Higgins (1981), and
sometimes not captured in experiments either, cf. e.g. Earnshaw & Greated (1998) and
Fredsøe et al. (1999).

The coherent spanwise vortices are highly turbulent structures. Therefore, the
amount of spanwise vorticity shed from the crest is considerably higher than that
absorbed in the P+-vortex. This can be shown by comparing the shed and absorbed
circulations in the temporal range with prominent flow separation, i.e. 06 θ < 12π/32.
To this end, the total positive-vorticity flux across the boundary layer above the crest,
which is located at (xc, yc = yη(xc)), can be calculated using

Γ̇c =

∫ yδ

yη(xc)

〈ux(xc, y)〉〈ωz(xc, y)〉 dy, (3.6)

where yδ is the vertical coordinate of the peak streamwise velocity. Consequently, the
total shed positive vorticity from the crest in a range θi 6 θ 6 θf is given by

1Γc(θi, θf )=

∫ t=θf /ω

t=θi/ω

Γ̇c dt. (3.7)

Figure 8 compares the net shed positive vorticity 1Γc(0, θ) with the net absorbed
circulation in P+, i.e. 1ΓP+= ΓP+(θ)− ΓP+(0). We see that P+ cannot keep most of
the shed circulation, and the gap 1Γc −1ΓP+ grows with time. In particular, 1ΓP+
starts to decay for both cases after θ > 6π/32 showing that the loss of circulation due
to turbulent diffusion dominates over the gain due to positive-vorticity flux from the
crest. The shed circulation is higher in Case C1 but the overall absorbed vorticity in
the primary vortex is less for this case. This suggests a more active turbulent dynamics
in P+ for C1. The turbulence properties of vortices will be discussed in § 5.

We see in figures 4(c,d) and 5(c,d) that the P+ vortex grows and spreads vertically
when the free-stream velocity further decelerates. Moreover, the passing residual
vortex P− pushes P+ slightly away from the crest, and moves the reattachment point
of P+ further towards west to the stoss region, cf. 〈ωz〉 = 0 contours in figure 6.
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The motion of P+ during its formation can also be tracked by the location of the
most-intense vorticity on the ripple surface, cf. the dotted lines in figure 6. In this
regard, P+ moves towards the trough of the ripple until θ = 12π/32, and then heads
back to the crest, when its self-induction dominates over the weakening free-stream
velocity. The boundary layer at the stoss side stops separating at θ = 14π/32, and
a reverse flow to the east follows subsequently on the whole ripple until around
θ = 20π/32. This regime without flow separation is indicated with dashed lines in
figure 6.

3.2. Jet-ejection (acceleration) phase (π/2 6 θ <π)

When the free-stream velocity vanishes at θ = 16π/32, the P+–S− vortex dipole is
about to eject itself from the crest, cf. figures 4(e) and 5(e). The total circulation
vanishes for this phase, i.e. ΓR= 0, as the free-stream velocity u0 vanishes. Therefore,
the circulation contained in the near-wall layer is Γν =−ΓP+−ΓP−−ΓS−=−1.1U0η

for Case C1, and Γν = −0.9U0η for C2. These negative values indicate the phase
difference between the free stream and the wall shear.

We have discussed in § 3.1 that P+ changes its convection direction ahead of
the free-stream flow reversal at θ = 14π/32, and moves towards the crest with its
self-induced velocity. P+ is stretched along an axis roughly parallel to the ripple
slope during this process, and deforms into an elliptic geometry. The velocity fields
in figures 4(e) and 5(e) further show that the self-induced motion produces a wall jet.
This wall jet induces high shear on the wall at the footprint of the vortex, cf. encircled
regions with red lines in figure 6. Further in the cycle θ = 20π/32, the P+–S−
vortex dipole ejects itself over the ripple, cf. 〈u〉 vectors in figures 4( f ) and 5( f ).
The resulting jet is very strong with a peak velocity magnitude of approximately
2U0. Due to this strong jet, the maximum values in the local wall vorticity, and
analogously in the local wall shear stress (cf. § 5.3 for details), are observed during
the ejection process. The free jet resulting from the ejection is inclined with an
angle approximately parallel to the ripple slope. While detaching from the crest,
the jet and the trajectory of the vortex pair become less inclined, cf. figures 4(g)
and 5(g). We note that the ejection angle is steeper in Case C2. The size and the
orientation of the S− vortex appear to lead to this Reynolds number effect. The S−
vortex occupies significantly more space in C2 compared to the one in C1 due to
larger boundary-layer thickness, and is more detached from the wall, cf. figure 7(a,b).
Consequently, the induced velocities by the P+–S− pair are more inclined in C2,
leading to a steeper ejection angle. The ejection angle has important consequences
on the turbulent dynamics, which will be discussed in § 5.

When the vortex pair completely detaches from the crest, a new primary vortex
forms at its trail, cf. P− vortices in figures 4(h) and 5(h). The detached vortices travel
to the east in an approximately horizontal trajectory. In this process, S− loses its
circulation at a higher rate than P+ due to interactions with the wall. This effect is
less pronounced in C2, i.e. ΓS− = −1.9 in C2, whereas ΓS− = −1.1 in C1. This is
due to steeper ejection angle leading a higher altitude vortex trajectory in C2, which
limits the wall interference.

4. Space- and time-averaged turbulence statistics

To give a global picture, we will analyse now spatially or temporally averaged fields.
The main emphasis will be on the budget terms of turbulent kinetic energy (TKE)
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k= 〈u′iu
′

i〉/2. The transport equation for TKE reads as follows:

∂k
∂t
+
∂(〈ui〉k+ Ti)

∂xi
=P − ε, (4.1)

where
Ti =

1
2 〈u
′

iu
′

ju
′

j〉 + 〈u
′

ip
′
〉/ρ − 2ν〈u′js

′

ij〉 (4.2)

contains the turbulent transport terms,

P =−〈u′iu′j〉
∂〈ui〉

∂xj
(4.3)

is the turbulent-production term, and

ε= 2ν〈s′ijs
′

ij〉 (4.4)

is the turbulent dissipation term. In (4.2) and (4.4), s′ij is the fluctuating rate of strain:

s′ij =
1
2

(
∂u′i
∂xj
+
∂u′j
∂xi

)
. (4.5)

We start with the analysis of global TKE-budget. The global TKE-budget for a
ripple can be obtained by spatially integrating individual terms in a periodic two-
dimensional domain occupying the computational region between a ripple and the
top boundary, i.e. V := [0, λ] × [yη, Ly = 1.5λ]. As a result of this integration, the
divergence terms on the left-hand side of (4.1) vanish, i.e.∫

V

∂(〈ui〉k+ Ti)

∂xi
dx dy=

∫
S

ni(〈ui〉k+ Ti) dx dy= 0, (4.6)

as velocity fluctuations vanish on the top boundary and the ripple wall, and the
contributions on the periodic boundaries cancel out. Consequently, the local balance
in (4.1) is transformed into the following simplified global form

dkV
dt
=PV − εV , (4.7)

where kV =
∫
V k dx dy, PV =

∫
V P dx dy and εV =

∫
V ε dx dy are global turbulent kinetic

energy, production and dissipation, respectively, and are scalar functions of time.
Figure 9 shows the intra-period variations of PV and εV for both cases. We see

two production peaks in a half-cycle, one at approximately θ = 4π/32 and another at
θ = 24π/32. The first peak (P1

max) is roughly at the beginning of the vortex-formation
stage, when the free-stream velocity is strong, and the circulation of P+-vortex starts
to saturate. The second peak (P2

max) is in the ejection phase, and corresponds to the
phase when the primary vortex, along with the secondary vortex, is washed over from
the ripple (cf. figures 4g and 5g).

There is a Reynolds number effect on the production peaks, especially for P1
max. The

value of P1
max in Case C1 is approximately double that of Case C2. The difference in

P2
max remains approximately 20 %. Moreover, the two production peaks in Case C2

are of similar magnitude, where P1
max clearly dominates in Case C1. Furthermore, the
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FIGURE 9. (Colour online) Evolution of global TKE production PV and dissipation εV
along the cycle, cf. (4.7). For normalization we employed the area V = λη.

vortex formation stage dominates the overall k-production in Case C1, where both
vortex formation and ejection stages make similar contributions to k in Case C2.

We consider now time-averaged fields for a preliminary analysis of spatial
distributions. Time averaging is defined as follows, e.g. for k,

k(x, y)=
1
T

∫ T

0
k(x, y, t) dt. (4.8)

Figure 10 shows the time-averaged TKE k, production P and dissipation ε for both
cases. In addition to TKE-budget terms, we also consider the time-averaged fluctuating
enstrophy E = 〈ω′iω′i〉/2. All fields are normalized with their respective peak value,
hence the contours vary between [0, 1].

Figure 10(a) shows that k is concentrated in the regions where lee vortices form
during the cycle. The turbulent kinetic energy in the near-wall region is considerably
lower than that in the vortex regions. This suggests that the wall turbulence is less
dominant in the overall dynamics for the selected flow configurations – a condition
that might change in higher Reynolds numbers or in the presence of rough walls. In
general, k in C1 remains more localized around the ripple compared to the k in C2.
This is due to vortices reaching higher altitudes in the free stream in Case C2 thanks
to the steeper ejection angle of the P+–S− vortex dipole.

Figures 10(b) and 10(d) show that E and ε have very similar distributions in
Case C1, as both vorticity and strain rate are small-scale quantities, which deliver
similar average fields in high Reynolds number turbulence (Tennekes & Lumley
1972). These fields show more noticeable differences in C2 due to the relatively low
Reynolds number. For these terms, the highest values are located in the vicinity of
the wall, which is not resolved in figure 10(b,d). Therefore, the upper end of the
colour scale is selected to be 0.3 to enhance the presentation of the distributions
in the free stream in figure 10(b,d). The time-averaged production rate peaks at the
crests, cf. figure 10(c). In the free-stream region, P has a similar organization to the
dissipation rate in Case C2, while in C1 it concentrates mainly in the separating layer,
which is more horizontally distributed compared to the one in C2. Furthermore, the
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FIGURE 10. (Colour online) Time-averaged turbulent flow fields. The fields are symmetric
with respect to the crest plane at x/η= 3. The thick isolines near troughs in (c) indicate
P = 0. Below these lines the production rates are negative.

average production rate in the regions close to the troughs is negative in both cases
meaning that the mean flow receives its energy from turbulence in these regions.

In summary, figure 10 shows that the turbulent kinetic energy in Case C1 is
produced in separated shear layers, and is dissipated in the core of lee vortices. The
spatial separation among production and dissipation regions is typical for coherent
large-scale vortices in high Reynolds numbers, as shown by Hussain (1986) for
turbulent mixing layers and jets. The lack of this physical separation in C2 is an
effect of the low Reynolds number. Blondeaux et al. (2004) previously observed
similar overlaps between production and dissipation zones in the case of oscillatory
flow over vortex ripples at low Reynolds numbers.

5. Phase-locked turbulence statistics

In this section, we investigate how the TKE-budget terms (4.1)–(4.4) vary over
a flow cycle. The focus is on the terms contributing to the global budget in (4.7),
i.e. k, P and ε. Furthermore, additional turbulence statistics at several representative
locations will be analysed to gain further insights into the turbulence dynamics. To
this end, we consider anisotropies using the invariants

Πb =−
1
2 bijbji, Πv =−

1
2 v ijv ji, (5.1a,b)

where bij and v ij are the anisotropy tensors for velocity and vorticity, respectively, i.e.

bij =
〈u′iu

′

j〉

〈u′iu′i〉
−

1
3
δij, v ij =

〈ω′iω
′

j〉

〈ω′iω
′
i〉
−

1
3
δij. (5.2a,b)
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The absolute value of the invariants range between 0 (isotropic field) and 1/3 (perfect
alignment to one direction) (Lumley 1979). Furthermore, we consider the parameter

K =
2〈u′2x′ 〉

〈u′y′u
′

y′〉 + 〈u
′

z′u
′

z′〉
, (5.3)

where local coordinates (x′, y′, z′) aligned with the local ensemble-averaged velocity
vector are employed. Lee, Kim & Moin (1990) suggested K>5 as an indicator for the
presence of quasi-streamwise streaks in the velocity fields of turbulent shear flows.
These low-speed streaks and accompanying flow structures have been previously
shown to yield non-random preferential concentrations for particles near the wall
(Rouson & Eaton 2001), hence they play a key role in sediment-transport processes.
Another useful quantity is the shear-rate parameter (Corrsin 1958)

S∗ =
Sk
ε
, (5.4)

where S = (2SijSij)
1/2. This parameter gives the ratio of turnover time of energy-

containing eddies to the mean-deformation time scale; S∗� 1 indicates the dominance
of the mean shear on the nonlinear turbulence dynamics.

5.1. Evolution of turbulent fields
Figures 11 and 12 show the distribution of the turbulent kinetic energy k, its
production rate P and its dissipation rate ε at four representative phases for Cases C1
and C2, respectively. The thick contours show |〈ωz〉| = 0.15U0/η indicating the
coherent-vortex boundaries. Figures 11(a–c) and 12(a–c) show the budget terms at
θ = 4π/32, when the first global production peak occurs (cf. figure 9). In Case C1,
the turbulence is already well developed in the primary vortex P+ (cf. figures 4 and 5
for vortex nomenclature), where k reaches values up to 0.35U2

0 . In the free stream
above the ripple, we see the residual vortex from the previous half-cycle, i.e. P−,
with considerably lower turbulent kinetic energy at around k ≈ 0.03U2

0 . In contrast,
P+ and P− vortices have much closer turbulence levels in C2, as turbulence at the
lee side is not well developed yet for this case, cf. figure 12(a).

Figures 11(b) and 12(b) further show that the turbulence production concentrates
in the separated shear layers from the crest. A set of turbulent quantities evaluated
at locations where the production peaks (indicated with X1 in figures) is presented
in table 4. We see that the peak in C1 has approximately four times the production
rate of the C2-peak (cf. also the difference in the global production rate in figure 9).
This is mainly due to more intense turbulence on the lee side for Case C1, as mean
strain rates have similar values in both cases, i.e. S/(U0/λ)≈ 36.9, k/U2

0 ≈ 0.21 at X1
in C1, and S/(U0/λ)≈ 33.5, k/U2

0 ≈ 0.07 at X1 in C2. The quantity kS is used here
as a surrogate for production rate P =−〈u′iu′j〉Sij, which is bounded by |P|6 kS. In
parallel to the production rate, the dissipation rate also remains considerably lower for
C2 compared to C1 at θ = 4π/32.

With the deceleration of free-stream velocity, the turbulence production rate in the
free-separated layers weakens, cf. the phase θ = 12π/32 in figures 11(e) and 12(e).
Two other production regions in this phase are the primary vortex core away from
the wall and the secondary separation zone near the wall due to formation of the
vortex S−. Later, when the vortices eject themselves from the crest, the production
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FIGURE 11. (Colour online) Evolution of selected TKE-budget terms in Case C1. Shaded
contours indicate TKE (k = 〈u′iu

′

i〉/2) (a,d,g,j), turbulent-production rate P (b,e,h,k) and
turbulent dissipation rate ε (c,f,i,l), and the thick isolines indicate |〈ωz〉|/(U0/η) = 0.15.
Markers in k-plots indicate the points where k peaks in coherent vortices; (E): S− vortex;
(@): P+ vortex. The trajectories of these points are shown in figure 15.

rate near the wall intensifies. The peak-production locations here are indicated as X2
in figures 11(h) and 12(h). Table 4 shows that the production rate at X2 is lower than
X1 in C1, while X1 and X2 have similar rates in C2.

We now turn to the turbulence properties at θ = 24π/32 (figures 11j–l and 12j–l),
where the second global production peak occurs in the half-cycle. This phase
is characterized by the self-ejection of the P+–S− vortex dipole over the crest.
Figures 11( j) and 12( j) show that k is mainly concentrated in the vortices. For
the production and dissipation rate, C1 again leads over C2, but in this phase the
differences are less pronounced compared to the first global production peak around
θ = 4π/32. The production rate peaks in the separated shear layer located in S−
vortex (indicated with X3 in figures 11k and 12k).

The major difference between C1 and C2 at θ = 24π/32 is the ejection angle of the
vortex dipole P+–S−, i.e. the angle is steeper in C2. This leads to essential differences
in turbulent kinetic energy in further phases. This is shown using the evolution of k
after the ejection of vortices, cf. figure 13(a–d) for Case C1 and figure 13(e–h) for
Case C2. The region in the lee of the ripple, where the main differences occur, is
marked with red ellipses in the figures. We see that S− in C1 follows a path closer to
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FIGURE 12. (Colour online) Evolution of TKE-budget terms in Case C2. See figure 11
for captions.

Cases C1 C2
Points X1 X2 X3 X1 X2 X3

θ 4π/32 20π/32 24π/32 4π/32 20π/32 24π/32
(x/η, y/η) (5.15, 0.67) (5.85, 0.63) (6.85, 0.54) (5.15, 0.71) (5.63, 0.64) (6.71, 0.68)
‖〈u〉‖/U0 0.65 1.16 0.91 0.63 1.26 1.09
k/U2

0 0.21 0.13 0.15 0.08 0.06 0.06
P/U3

0λ 3.12 1.67 1.99 0.82 0.84 0.89
P/ε 5.1 4.89 5.61 4.52 5.19 4.97
S/(U0/λ) 36.91 76.08 46.78 33.54 40.5 46.21
K 2.77 7.02 5.02 5.89 11.03 8
S∗ 12.8 28.58 19.21 13.78 15.63 15.19
|Πb| 0.09 0.16 0.12 0.17 0.20 0.17
|Πv| 0.01 0.16 0.02 0.01 0.08 0.12

TABLE 4. Turbulence parameters at peak-production points for three representative
phases. See (5.1)–(5.4) for the definitions of Πb, Πv , K and S∗.
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FIGURE 13. (Colour online) Filled contours showing the evolution of k/U2
0 during

the vortex-ejection (acceleration) stage. Contour lines indicate |〈ωz〉| = 0.15U0/η. (a–d)
Case C1; (e–f ) Case C2.

the ripple surface due to a more horizontal ejection angle. This leads to more intense
vortex–wall interactions, which increase turbulence levels in the marked regions. In
contrast, k remains low near the wall in C2, as S− follows a higher trajectory limiting
the wall interference. Consequently, the lee of the ripple remains quite turbulent in C1
during the passage of the vortices, and the free separated layer at θ = 31π/32 feeds
an already well-developed turbulent zone at the trail of the vortices, cf. marked region
in figure 13(d). This is not the case in C2, where the lee side remains ‘quiet’ after
the passage of vortices, cf. figure 13(h). These observations provide some insights into
the role of the ejection angle in the significantly different lee side turbulence levels
(figures 11a and 12a) and global production rates at the start of the cycle (figure 9).

5.2. Turbulence statistics along a set of trajectories
Turbulence characteristics of the flow can be further elucidated using the data along
the trajectories at certain representative locations. To this end, we have selected three
locations at each instant: the cores of the P+ and S− vortices, and the point where the
production rate P peaks. Table 5 presents the details of the trajectories formed from
these points. We have seen in previous sections that the cores of coherent vortices are
characterized by peak levels of phase-averaged spanwise vorticity and turbulent kinetic
energy. Since the focus is on turbulence in this section, the vortex-core trajectories
xP(θ) and xS(θ) are defined by tracking the points where k peaks in the vortex at
each respective phase. We track the primary vortex P+ in 4π/32 6 θ 6 33π/32,
and the secondary vortex S− in 12π/32 6 θ 6 33π/32. The selected range for S−

starts at a later phase, as S− forms later than P+, when the latter becomes strong
enough to induce a secondary separation on the wall. Note that these temporal ranges
are merely selected to present dynamically more interesting phases, and they do not
correspond to the lifetime of the vortices – vortices exist before and after the selected
time intervals. The resulting vortex-core trajectories are shown in figures 15( f,l) and
16( f,l). Similarly, the production peaks are tracked in 12π/32 6 θ 6 25π/32. This
range is selected to elaborate the dynamics in the near-wall layers, and the trajectory
follows the wall-attached portions of the S− vortex during its ejection over the ripple.
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FIGURE 14. (Colour online) Evolution of flow quantities (a–d, f –i) along the
production-peak trajectory xk(θ) (e,j) for 12π/326 θ 6 25π/32, cf. table 5. (E): Case C1;
(@): Case C2. Each data point is separated in time by π/32, and filled markers indicate
every fourth data point. See (5.1)–(5.4) for the definitions of Πb, Πv , K and S∗.

Trajectory Phase location Definition Temporal range

xP(θ) Centre of P+ k(xP(θ), θ)> k(x, y, θ) for (x, y) ∈ P+ 4π/32 6 θ 6 33π/32
xS(θ) Centre of S− k(xS(θ), θ)> k(x, y, θ) for (x, y) ∈ S− 12π/32 6 θ 6 33π/32
xk(θ) Production peak P(xk(θ), θ)>P(x, y, θ) for (x, y) ∈Ω 12π/32 6 θ 6 25π/32

TABLE 5. Definition of two-dimensional trajectories employed in figures 14–16. The
k-production trajectories xk are plotted in figure 14(e,j). Vortex-core trajectories xP and
xS are plotted in figures 15( f,l) and 16( f,l).

The trajectory includes the points X2 and X3 from table 4. The point X1 from the
same table is not a part of the trajectory, as it is located in the free-shear layer
feeding the P+ vortex. Figure 14(e,j) shows the resulting peak-production trajectories
xk(θ) for both cases.
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Figure 14 demonstrates a set of turbulence parameters evaluated along the
production trajectories (xk). We see that during the ejection phase, the S− vortex
accelerates towards the crest (figure 14a), and its wall-attached parts are highly
stretched in this process, cf. the points in 56 x/η6 6 in figure 14(b,g). High straining,
together with increasing turbulence levels (figure 14c), leads to a substantial rise in
the production rate (figure 14d). The production rate reaches maximum levels near
the crest, and starts to decay slowly after detachment of the vortex, cf. x/η > 6 in
figure 14(d).

The turbulent fields at the production peaks show high anisotropy as they approach
the crest, i.e. 5 6 x/η 6 6, where K and the invariants of the anisotropy tensors
increase substantially, cf. figure 14( f,h,i). The transition of the vorticity field from
almost complete isotropy to high levels of anisotropy in 5 < x/η < 6 is particularly
remarkable, cf. figure 14(h). The invariants here peak at Πv ≈ 0.25 in C1, and
Πv ≈ 0.2 in C2 – note that Πv = 1/3 corresponds to the one-component limit of the
anisotropy tensor. This growth in anisotropy suggests that coherent-vortex structures
with a certain directional preference exist around the ripple crest in the range
20π/32 6 θ 6 24π/32. We will see in § 6 that these structures are counter-rotating
vortex pairs that are elongated in the streamwise direction. In canonical near-wall
turbulence, these coherent vortices are known to give rise to low streamwise-velocity
streaks, as they lift up the low-momentum fluid between them (Swearingen &
Blackwelder 1987; Robinson 1991). In this regard, the substantial increase in the
anisotropy of the velocity field and K parameter in 5 < x/η < 6 is consistent with
the existence of streamwise vortices, cf. figure 14( f,i). After ejection from the crest,
vorticity and velocity fields at the production peaks return to more isotropic states,
cf. points for x/η > 6 in figure 14(h,i).

Figure 15 shows the evolution of turbulence parameters along the vortex-core
trajectories xP(θ) (figure 15a–e) and xS(θ) (figure 15g–k). The vortex cores are also
indicated in k plots of figures 11 and 12. We see in figure 15( f,l) that trajectories
confirm the previous observations, as the P+–S− vortex couple in C2 follows a higher
altitude trajectory due to steeper ejection angle. Turbulent kinetic energy (k) and
phase-averaged fluctuating enstrophy (E = 〈ω′iω′i〉/2) in the P+-core are significantly
higher in C1 than in C2 initially, cf. x/η ≈ 4 in figures 15(a,b). There is a strong
decay in k and E in C1 afterwards. The vorticity is isotropic in the vortex cores
of P+ and S− in C1, and almost isotropic in C2, cf. figures 15(c) and 15(i). This
implies that small-scale motions reach locally isotropic states in coherent-vortex cores,
so turbulence is well developed in these regions. We further see in figures 15(e)
and 15(k) that the mean-shear parameters rise during the motion of the vortex couple
towards the ripple crest, and they peak when the vortices pass the ripple crest (see
the instance at 20π/32 marked with green circles). This suggests that vortices strain
each other by mutually induced velocity fields. Such a straining effect elucidates the
elliptic deformations observed in § 3.

Higher-order moments, i.e. the skewness S(a) = 〈a3
〉/〈a2
〉

3/2 and the kurtosis
K(a) = 〈a4

〉/〈a2
〉

2, of the fluctuating streamwise velocity u′x and of its streamwise
derivative ∂u′x/∂x are shown in figures 16(a–d) and 16(g–j) along the xP(θ) and xS(θ)

trajectories, respectively. Furthermore, the Taylor-microscale Reynolds number

ReT = u′λT/ν, (5.5)

where u′ =
√

2k/3 and λT =
√

10νk/ε, is also evaluated along the trajectories,
cf. figures 16(e) and 16(k).
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FIGURE 15. (Colour online) Trajectory of the ( f ) P-vortex cores (xP(θ)) for 4π/32 6
θ 6 33π/32 and (l) S-vortex cores (xP(θ)) for 12π/32 6 θ 6 33π/32, cf. table 5 for the
definition of trajectories. Turbulence parameters evaluated (a–e): on xP(θ); (g–k): on xS(θ).
(E): Case C1; (@): Case C2. Each data point is separated by π/32 in phase, and filled
markers indicate every fourth data point. See (5.1), (5.2) and (5.4) for the definitions of
Πb, Πv , and S∗.

Figures 16(a,c) and 16(g,i) show that the velocity derivatives deviate from
Gaussianity (S = 0, K = 3 in a Gaussian distribution) in both vortex cores.
The deviation is particularly strong in kurtosis, which is typical for developed
turbulent flows due to their internal intermittency, as first observed by Batchelor
& Townsend (1949). Experimental data showed a Reynolds number dependent
variation K(∂u′x/∂x) = Re3/8

T for this departure (Van Atta & Antonia 1980). These
variations are shown with solid lines in figures 16(a) and 16(g). We see that initially
K(∂u′x/∂x) in both vortex cores is consistent with experimental values, and follows
the Re3/8

T -curves. The kurtosis dramatically increases then in C1 despite the decreasing
ReT , cf. x/η > 6 in figure 16(a,e) and x/η > 8 in figure 16(g,k). High values in the
range of K(∂u′x/∂x)≈ 15 are reached, showing a stronger departure from Gaussianity
than expected in standard fully developed turbulence. This suggests an additional
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FIGURE 16. (Colour online) High-order moments (a–d) and (g–j) evaluated on xP(θ) ( f )
for 4π/32 6 θ 6 33π/32 and on xS(θ) (l) for 12π/32 6 θ 6 33π/32, cf. table 5 for the
details about trajectories xP(θ) and xS(θ). The Taylor-microscale Reynolds number (5.5)
evaluated on xP(θ) (e) and on xS(θ) (k). (E): Case C1; (@): Case C2. Each data point is
separated by π/32 in time, and filled markers indicate every fourth data point. K is the
kurtosis, S is the skewness.

intermittency mechanism on the spanwise-vortex column. We will see in § 6 that the
spanwise vortices disintegrate into large-scale vortex clusters with relatively quiet
regions in between, which is indicative of external intermittency. The vortices in
C2 do not develop such a strong external intermittency, and the departures from
experimental values of kurtosis are relatively modest.

Figures 16(b) and 16(h) further show that K(u′x) < 3 for all of the trajectories
(except for some initial points of P+ in C2). This shows that the probability density
functions (PDFs) of the streamwise velocity are more flat than the normal distribution,
i.e. high deviations from the mean value are rarer than for a random Gaussian variable.
Furthermore, PDFs of the streamwise velocities are in general skewed. In particular,
S−-cores show pronounced negative skewness, when S− arrives at the neighbouring
ripple, cf. x/η > 9 in figure 16( j).
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5.3. Statistics of the wall shear stress
A significant quantity for sediment-transport processes is the imposed shear stress
on the ripple surface. In § 3, we analysed a related quantity, i.e. the spanwise wall
vorticity (cf. figure 6). The local phase-averaged tangential shear stress, simply the
wall shear stress, on the ripple surface Ωη can be calculated using the wall vorticity
as follows

〈τt(x, θ)〉 =−ν〈ωz(x, θ)〉 for x ∈Ωη. (5.6)

Using the Reynolds decomposition, the instantaneous wall shear stress can be written
as τt = 〈τt〉 + τ

′

t , where τ ′t is the fluctuating part.
Figure 17 shows the distribution of the wall shear stress and its fluctuation intensity

over the period. The values in figure 17(a,b) are normalized by τ f
max = ρU2

0Re−1/2,
which is the maximum value for the wall shear stress in a laminar sinusoidal
oscillatory flow over a flat smooth wall (Batchelor 2000). The laminar scaling is
selected, as Reynolds numbers in this work are below the transition Reynolds number
(Re≈ 40 000, cf. Jensen, Sumer & Fredsoe (1989)) of the smooth bottom oscillatory
boundary layer. The regions with intense shear are of most practical interest, as they
imply regions prone to active sediment motion. In order to elaborate the statistics
in these regions, we define a high-shear trajectory xτ (θ), which goes through the
phase maxima of the wall shear stress at the lee of the ripple. The thick solid lines
in figure 17 show the evolution of the trajectory over the ripple for 0 6 θ 6 40π/32.
The maximum shear on this trajectory occurs at xτ (22π/32) for both cases. This
is the global maximum of the wall shear stress, which will be denoted as τmax,
i.e. τmax :=max{〈τt(x, θ)〉} for x∈Ωη. The intensities in figure 17(c,d) are normalized
by these respective values of τmax. Black markers in figure 17(a,b) indicate τmax for
both cases, where τmax = 4.18τ f

max in Case C1 and τmax = 1.08τ f
max in Case C2. We

see an increase in the wall-shear-stress peak with increasing Re in contrast to laminar
oscillatory boundary layers over a smooth flat wall, where wall shear stress decays
with Re−1/2.

At the start of the period in 0 6 θ 6 26π/32, 〈τt(xτ (θ), θ)〉 corresponds to the
footprint of the P+-vortex that is forming and will eventually eject itself in the positive
streamwise direction. The relation of these intense shear locations to the motion of the
vortex was discussed in § 3; 〈τt〉 reaches its highest values in the range 16π/326 θ 6
36π/32 near the ripple crest, cf. figure 17(a,b). Two peaks are observed in this range.
The first one is τmax at θ = 22π/32 and occurs during the ejection of the vortex pair
from the crest. The second peak occurs at θ ≈π, when the free-stream velocity peaks.
It is observed that high fluctuation regimes occur near these peaks, cf. figure 17(c,d).
The intensities in figure 17(c,d) are normalized by these respective values of τmax.

Figure 18 shows the statistical moments of τt on high-shear trajectories xτ (θ).
Two regimes with high 〈τt〉 and 〈τ ′2t 〉 appear as two peaks after θ > 16π/32,
cf. figure 18(a,b). The flatness factors (figure 18c) and the skewness factors
(figure 18d) show that these two intense shear regimes have very different fluctuation
characteristics. There is a dramatic rise in the skewness and flatness in the second
high-stress regime, which takes place at approximately 27π/32 < θ < 34π/32. This
rise, occurring slightly ahead of the rise in the first- and second-order moments, leads
to strong departures from a normal distribution in the PDFs, f (τt). This is shown
in figure 19 using PDFs at two different phases: an instance in the vortex-ejection
regime at xτ (20π/32) and another instance in the high free-stream velocity regime
at xτ (31π/32). These selected points on xτ are indicated by the green markers in
figure 17. We see that the PDFs at θ = 31π/32 show high positive skewness with
long tails, so the mean values do not have the highest probability density.
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FIGURE 17. (Colour online) Distribution of the phase-averaged wall shear stress 〈τt〉 (a,b)
and its fluctuation intensity 〈τ ′2t 〉

1/2 (c,d). The location of the global maximum of the wall
shear stress, i.e. τmax := max{〈τt(x, θ)〉}, is indicated by the black markers in (a,b). The
intensities are normalized by this value in the respective cases. The thick solid lines go
through the phase maxima of the local wall shear stress. The probability density functions
of τt at the locations shown with green markers are plotted in figure 19.

The strongly non-Gaussian range in 27π/32<θ < 34π/32 is related to the passage
of the P+–S− vortices from the previous half-cycle over the ripple crest. Therefore, the
positively skewed fluctuations with long tails appear to be imposed by these vortices.

6. Three-dimensional structures
The main structural elements of the flow are the coherent spanwise vortices whose

two-dimensional phase-averaged statistics were studied in the previous sections. The
observations in § 5.2 suggested that these vortices lose their spanwise coherence and
would develop external intermittency. Furthermore, the resulting intermittent features
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FIGURE 18. (Colour online) Central moments of the wall shear stress evaluated on a
high-shear trajectory xτ (θ), cf. thick lines in figure 17. (a) Mean value scaled with τmax :=

max{〈τt(x, θ)〉}; (b) fluctuation intensity scaled with τmax; (c) the skewness factor S(τ ′t )=
〈τ ′3t 〉/〈τ

′2
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3/2; (d) the flatness factor F(τ ′t )= 〈τ ′4t 〉/〈τ
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t 〉

2. (E) Case C1; (@) Case C2. The
filled markers indicate the selected phases for the presentation of PDFs in figure 19.
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FIGURE 19. (Colour online) Probability density functions (PDFs) of the local wall
shear stress, f (τt), evaluated at xτ (20π/32) and xτ (31π/32). The selected points are
indicated with green markers in figure 17. Markers show the PDFs of mean values,
i.e. f (〈τt(xτ (θ), θ)〉). Sample spaces are normalized with the global maximum of the wall
shear stress, i.e. τmax :=max{〈τt(x, θ)〉}, cf. black markers in figure 17(a,b).

appear to have an influence on the non-Gaussian wall-shear-stress fields when they
arrive at the neighbouring ripple. In this section, we provide visual evidence for these
results, and also conduct further statistical analyses using the transverse spectra of the
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fluctuating fields along the vortex trajectories. To this end, we focus on the energetic
vortex modes responsible for the breakdown of spanwise coherence. We have further
observed in § 5.2 (cf. figure 14g,h) that anisotropies in the fluctuating fields increase
drastically in the near-wall region when the P–S dipole moves over the crest. This
suggested that coherent structures with strong alignment to one direction dominate the
near-wall layer in this phase. We will also study these near-wall turbulent structures
and their footprints on wall-shear-stress fluctuations.

6.1. Three-dimensional visualization of instantaneous flow fields
We start our analysis with three-dimensional visualizations of the instantaneous flow.
Only the fluctuating fields are considered, as we have discussed the motion of
Reynolds-averaged fields in detail in § 3. We focus on the ejection phase (θ > π/2).
The spanwise vortices in the vortex-formation phase (θ < π/2) remain relatively
immobile at the lee side, and their footprints on the ripple surface are mild until
their ejection over the ripple (cf. the discussion in § 5.3). Therefore, their structural
features in the vortex-formation phase are of less importance, and are not presented
here for brevity. A more complete picture including the vortex-formation phase will
be given in the spectral analysis of § 6.2.

In order to extract the flow structures, we employ the second invariant of the
fluctuating velocity gradient tensor, i.e.

Q= 1
2(Ω

′

ijΩ
′

ij − s′ijs
′

ij), (6.1)

where Ω ′ij = 1/2(∂u′i/∂xj − ∂u′j/∂xi) is the fluctuating rate of spin tensor. The
Q-invariant extracted from fluctuating fields is usually employed to analyse inhomo-
geneous turbulent flows, e.g. Gomes-Fernandes, Ganapathisubramani & Vassilicos
(2014) and Buxton, Breda & Chen (2017). Positive values of Q occur in the regions
where the fluctuating vorticity dominates over the fluctuating strain. These regions are
intense in enstrophy. Similarly, negative values of Q occur in strain-dominated regions,
which are strongly dissipative. Both strain and vorticity are essential in the turbulent
dynamics, as the term ω′iω

′

js
′

ij is the main driver of the enstrophy production and the
turbulent cascade (Tennekes & Lumley 1972). We have observed in our simulations
that large values of positive and negative Q concentrate in the same regions. Therefore,
we use merely the positive isosurfaces of Q to visualize dynamically active regions.
The regions of intense strain usually neighbour the visualized regions, and are not
discussed below for brevity.

Figure 20 demonstrates intensive enstrophy regions in a selected subdomain for
three different phases at θ = 20π/32, 26π/32, 31π/32. The isosurfaces are coloured
with the fluctuating streamwise velocity u′x. We see that during their ejection from
the crest at θ = 20π/32, the P+ and S− vortices are in the form of turbulent vortex
clouds that span the entire lateral dimension of the selected subdomain (also of the
entire computational domain, not shown here), cf. figure 20(a,b). In C1, there are large
regions on the vortex cloud that are predominantly in red, i.e. have a higher velocity
than its surrounding. These regions indicate the presence of an unstable vortex mode
on the vortex column, which gives rise to large-scale high-momentum structures with
spanwise dimensions of approximately 3η−4η. One instance of these high-momentum
structures is marked with a black circle in figure 20(a). These structures cannot be
easily identified in C2 with the selected visualization method. However, we will see
in spectral analysis in § 6.2 that a dominant vortex mode also exists in C2.
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FIGURE 20. (Colour online) Isosurfaces of Q parameter (cf. (6.1)) at three different
instances θ = 20π/32, 26π/32, 31π/32. Surfaces are coloured based on streamwise-
velocity fluctuations u′x. The flows are convected from left to right. (a,c,e) Case C1,
Q = 40(U0/η)

2; (b,d, f ) Case C2, Q = 3.2(U0/η)
2. Black circles in (a,c,e) show the

evolution of a high-momentum structure. Red ellipses in (a–d) indicate an instance of
streamwise-oriented vortical structures.
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In addition to large-scale momentum structures on the vortex column, there are
also organized features near the wall in the form of streamwise-oriented elongated
vortex pairs. Two examples are indicated with red ellipses in figure 20(a,b). In C2,
these vortices are arranged in a somewhat regular fashion along the entire spanwise
extent (figure 20b). In contrast, in C1 they concentrate preferably in the trail of high-
momentum structures (figure 20a). These streamwise-aligned longitudinal structures
are responsible for the highly anisotropic near-wall layers observed in the statistical
analysis of § 5.2 (cf. figure 14g,h).

When the coherent spanwise vortices detach themselves from the ripple crest, the
streamwise structures are still observable in their trail around the crest, cf. red ellipses
at θ = 26π/32 in figure 20(c,d). We further see in this phase that the high-momentum
structure (black circle) in C1 keeps its coherence, whereas low-momentum regions
(blue parts) around it become slowly depleted in intense vortical structures.

Figure 20(e, f ) show the phase θ = 31π/32 when the vortex clouds arrive at the
crest of the neighbouring ripple. These structures show quite different characteristics
in C1 and C2. We see in figure 20(e) that vortical structures in C1 survive only in
the regions with high fluctuating velocity (marked with solid circle) and are mostly
depleted in low velocity regions (marked with dotted circle). As the regions between
high-momentum structures are relatively quiet in terms of intense vortical structures
and strain structures (not shown here), the flow can be considered intermittent in
the spanwise direction. Namely, small-scale turbulence preferentially concentrates
in regions with positive fluctuating velocity. We denote the final isolated form of
the high-momentum structure as a turbulent vortex cluster. Turbulent vortex clusters
seem to have the tendency to be arranged in staggered patterns, such that there is a
spanwise shift between the neighbouring vortex clusters in the streamwise direction.
Such an arrangement is reminiscent of a brick pattern. The clustering of highly
vortical elements in high-momentum structures is not observed in C2 (figure 20f ).
These observations provide a visual perspective for the relatively high kurtosis in
the velocity derivative ∂u′x/∂x (a small-scale quantity like Q) compared with the
standard values in fully developed turbulence at vortex cores of C1 (cf. figures 16.Ia
and 16.IIa). As the external intermittency is not strong in C2, the small-scale kurtosis
in C2 remains close to fully developed turbulence values, cf. the discussion in § 5.2.

Large-scale momentum structures have strong footprints on the wall. This is
shown in figure 21 for Case C1 at phases θ = 20π/32, 31π/32. These phases
are in the regimes where the peak values of wall shear stress and its fluctuation
occur (cf. figure 17a,c). The dotted lines in figure 21(a,c) indicate the locations
on the ripple where the phase-averaged wall shear stress peaks at the respective
phase, i.e. xτ (20π/32) and xτ (31π/32) (cf. the green markers in figure 17a). It
is observed at θ = 20π/32 that wall-shear-stress fluctuations closely follow the
large-scale patterns in the spanwise vortex. One instance of this relation is marked
with circles in figure 21(a,b). A high shear-stress region with circa 3η − 4η width
is observed in figure 21(a), which is at the footprint of a high-momentum structure
indicated in figure 21(b). Furthermore, the selected high-stress region also features
narrow stripy patterns elongated in the streamwise direction, which are produced by
near-wall streamwise vortices and accompanying low-speed streaks.

At θ = 31π/32, turbulent vortex clusters sweep the neighbouring ripple and induce
large-scale fluctuations in wall shear stress in this process. One instance of this event
is indicated with circles in figure 21(c,d). The induced fluctuations due to sweeping
are significantly more intense than the ones observed during the ejection of the vortex
cloud (note the different range employed in colour bars of figure 21a,c). Outside the
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FIGURE 21. (Colour online) Footprints of turbulent vortex clusters on the wall shear stress
for Case C1. (a,c) Wall-shear-stress fluctuations τ ′t /τmax; (b,d) top view of Q-isosurfaces
coloured with streamwise-velocity fluctuations u′x. Circles in (a,b) and (c,d) mark a large-
scale structure and its footprint on the wall shear stress. Dashed lines show the ripple
crests, and dotted lines in (a,c) show the location of maximum phase-averaged wall shear
stress (〈τt〉).

contact regions with the vortex cluster, the shear-stress fluctuations appear negative
and relatively weak.

We now turn to instantaneous signals along a spanwise line to further elaborate
the vortex–wall interaction during the sweeping process. To this end, figure 22 shows
in (a,b) the spanwise distributions of fluctuating streamwise velocity u′x at the centre
of the primary and secondary vortices (xP(31π/32) and xS(31π/32)), and in (c) the
wall-shear-stress fluctuations τ ′t on the high-shear line at the footprint of the these
vortices at xτ (31π/32), cf. the dotted line at x/η ≈ 11 in figure 21(c). The selected
points for probing, i.e. xP(31π/32), xS(31π/32) and xτ (31π/32), are shown in the
inset in figure 22. The window corresponding to the marked vortex cluster and its
footprint in figure 21(c,d) are encircled with green lines. It is observed in figure 22(c)
that τ ′t (xτ (31π/32), z, 31π/32) is highly intermittent and positively skewed. This is
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FIGURE 22. (Colour online) Instantaneous signals on the spanwise line at three
selected locations at phase 31π/32. (a) Streamwise velocity at the primary vortex
core, u′x(xP(31π/32), z, 31π/32); (b) streamwise velocity at the secondary vortex core,
u′x(xS(31π/32), z, 31π/32); (c) tangential wall-shear-stress fluctuations at the peak-stress
point, τ ′t (xτ (31π/32), z, 31π/32). The probing locations xP, xS and xτ are shown in the
inset located at bottom left. The windows corresponding to the selected high-momentum
vortex cluster in figure 21(c,d) are encircled with green lines. The red lines show the
signals when τ ′t > 0.1τmax.

the representation of the strongly non-Gaussian character of τ ′t (xτ (31π/32), z,31π/32)
previously presented in figure 19(a).

We further see in figure 22 that positive values of τ ′t usually occur when the
streamwise velocities are positive in the vortex cores. This is shown by marking
the signals when τ ′t > 0.1τmax, cf. the red lines. Here we selected τ ′t = 0.1τmax as
a threshold to filter out weak positive fluctuations. A conditional average on these
marked portions yielded 〈u′x(xP)|τ ′t>0.1τmax〉/〈u

′

x(xP)
2
〉

1/2
≈ 0.88 and 〈u′x(xS)|τ ′t>0.1τmax〉/

〈u′x(xS)
2
〉

1/2
≈ 0.74. These values are remarkably high considering that the vortex cores

are quite remotely located from the wall probe. Especially, the P+-core is located
around η away from the wall. These strong correlations between the velocities in
the vortex cores and the intermittent fluctuations in the wall shear stress are the
manifestation of the sweeping mechanism observed in figure 21(c,d).

Wall shear stress is the driving force for mobilizing sediment grains or producing
near-bed sediment transport (conventionally called bedload transport), so the spanwise
fluctuation of wall shear stress can lead to spanwise inhomogeneity in sediment
motion and eventually lead to spanwise variation of bed morphology. Our DNS
simulations do not consider a mobile sand bed, but we still can expect that the
spanwise inhomogeneity of wall shear stress should be equally or even more
significant over real sand ripples. As a result, long-crested (two-dimensional) sand
ripples are unstable and becomes three-dimensional eventually, which is observed in
many laboratory experiments (e.g. O’Donoghue et al. 2006). Additional modelling
work which includes sediment transport is required to further elucidate this hypothesis.
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6.2. Analysis of spanwise spectra
We now turn to the spanwise spectral densities to analyse the average spanwise
spacings of the observed structures in § 6.1. The spanwise spectral density function
for fluctuating velocities is defined as follows

Eij(κz, x, y, θ)=
1
1κz
〈û′i(κz, x, y, θ)û

′
∗

j (κz, x, y, θ)〉, (6.2)

where û′i are the Fourier coefficients of the fluctuating velocity, cf. (2.7), û
′
∗

i are the
complex conjugates, κz is the wavenumber in the spanwise direction and 1κz= 2π/Lz
is the wavenumber spacing. We will investigate the streamwise turbulent kinetic energy
spectrum Exx, where the integrated spectrum gives the streamwise turbulent kinetic
energy, i.e. 〈u′xu

′

x〉 =
∑

κz
Exx(κz)1κz. Similarly, we define a spectral density function

for the fluctuating vorticity

Φij(κz, x, y, θ)=
1
1κz
〈ω̂′i(κz, x, y, θ)ω̂

′
∗

j (κz, x, y, θ)〉, (6.3)

where ω̂′i are the Fourier coefficients of the fluctuating vorticity. The spectrum of total
enstrophy fluctuations is given by ΦE =Φii/2, where repeated indices are summed. We
consider this enstrophy spectrum to study the dissipative scales of motion. Finally, the
spectral density for wall-shear-stress fluctuations is given by

Tij(κz, x, y, θ)=
1
1κz
〈τ̂ ′i (κz, x, y, θ)τ̂

′
∗

j (κz, x, y, θ)〉, (6.4)

where τ̂ ′i are the Fourier coefficients of the fluctuating wall-shear-stress component. We
will consider only the spectrum of shear-stress fluctuations that are streamwise tangent
to the ripple surface, i.e. Ttt.

The extracted spectral densities from our database contained a high noise-to-signal
ratio due to limited sampling. In order to enhance the presentation, we have smoothed
the data using the SciPy implementation of the Savitzky–Golay filter (Savitzky &
Golay 1964). In this process, we employed second-order polynomials with a window
length of nine samples. The raw spectra are shown in some of the figures for
reference.

Figure 23 shows the premultiplied spectral densities κzExx (lines) and κzΦE
(shades) along the vortex-core trajectories xP(θ) and xS(θ). A premultiplied spectral
density plot shows the energy per log κz, or log λz. To show this, we first write
the total energy using continuous variables 〈u′xu

′

x〉 =
∑

Exx1κz ≈
∫

Exx dκz. In
a log–linear plot with a logarithmic axis of wavenumbers, the integral reads∫

Exx dκz=
∫
κzExx d log κz, where we have used dκz= d log κz/κz. Finally, wavenumbers

and wavelengths can be interchanged without modifying the integrand, as d log κz =

−d log λz, i.e.
∫ κmax

κmin
κzExx d log κz = −

∫ λmin

λmax
κzExx d log λz =

∫ λmax

λmin
κzExx d log λz. In

the premultiplied spectrum plots, equal areas indicate equal contributions to energy.
Premultiplied spectral density analysis is commonly employed to identify energetic
turbulent structures in regions with intense multiscale dynamics, e.g. outer layer of
wall-bounded flows (Hutchins & Marusic 2007; Jiménez 2013).

We see in figure 23 that contour lines and shaded contours minimally overlap in C1
(figure 23a,b), while they share most of the spectrum in C2 (figure 23c,d). Namely, the
dissipative (enstrophy-containing) and energy-containing scales are well separated in
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FIGURE 23. (Colour online) Premultiplied one-dimensional spectra of streamwise
turbulent kinetic energy (u′xu

′

x) and enstrophy (E) evaluated for spanwise
wavelengths along the vortex-core trajectories xP(θ) and xS(θ), cf. table 5 for the
definition of trajectories. (a,c) P-vortex, i.e. κzExx(κz, xP(θ), θ)/U2

0 (contours) and
κzΦε(κz, xP(θ), θ)/(U0/η)

2 (shades). (b,d) S-vortex, i.e. κzExx(κz, xS(θ), θ)/U2
0 (contours)

and κzΦε(κz, xS(θ), θ)/(U0/η)
2 (shades). (a,b) Case C1, contour levels are 0.04(0.04)0.32;

(c,d) Case C2, contour levels are 0.025(0.025)0.2.

C1, as the former occurs on substantially smaller scales. Saffman (1978) suggested a
well-defined separation between the energy-containing range and the dissipative range
when the Taylor-microscale Reynolds number exceeds a critical value Rec

T ≈ 100.
Our results are consistent with Saffman’s conjecture, as ReT > Rec

T along xP and
xS in the case of C1, and ReT ≈ 60 in the case of C2 (cf. figures 16e and 16j).
Dimotakis (2000) further showed that many turbulent flows change their dynamics
and qualitative behaviour when their Reynolds number is above Rec

T . He defined this
second step of transition (after the breakdown of the laminar state) as the mixing
transition, since the flows possess significantly enhanced and more homogeneous
mixing properties following this transition. Beyond the mixing transition, general
flow properties appear to be only weakly dependent on the Reynolds number, hence
the turbulence can be assumed to be fully developed. In this regard, the flow in
C1 is in a fully developed post-mixing-transition state. Marked differences in the
instantaneous snapshots (figure 20) and big disparity in the enstrophy levels of the
cases (cf. e.g. figures 15b and 15g) can be attributed to this fact.
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We now turn to the spectral distribution of the streamwise turbulent kinetic energy
along the trajectories of the vortex cores. The peaks in the spectra at each phase
are marked with dots in figure 23. It is observed in figure 23(a) that the energy in
P-vortex cores initially centred around a peak at λz≈ 0.6λ in Case C1. The energetic
centre slowly evolves to λz ≈ 0.9λ and remains dominant throughout the remaining
lifetime of the vortex. This high concentration of energy in certain wavelengths is
the manifestation of a dominant vortex mode. This mode is responsible for breaking
down coherent spanwise vortices into intermittent vortex clusters in C1, cf. § 6.1.
The wavelengths of the peaks represent the average spanwise spacing for large-scale
structures observed in figure 20(a,c,e) and figure 21(b,d). A similar energetic vortex
mode is also observed in the P-vortex cores of Case C2, cf. figure 23(c). The growth
of the mode in both cases, i.e. the increase of the wavelengths from λz ≈ 0.6λ to
λz ≈ 0.9λ, suggests merging of some neighbouring structures during the evolution of
the coherent vortex.

Figure 23(b,d) shows that the energetic vortex mode is also effective in the
S-vortices. It becomes increasingly prominent in the spectra when the vortex moves
towards the crest in the self-ejection process in the range 12π/32 6 θ 6 20π/32.
The energy of the mode reaches a global peak around θ = 20π/32, i.e. just before
the ejection of the vortex from the crest. We see that after the ejection, the portion
of the vortex mode in S-vortex is demolished, and energy concentrates in smaller
wavelengths, cf. θ > 24π/32 in figure 23(b,d). We also note that after ejection from
the wall, the enstrophy significantly increases in the S-vortex core, cf. the rise in
the shaded contour levels in figure 23(b,d). This suggests a transition to a more
dissipative and less coherent state, under which small-scale motions are promoted.

The overall dominance of the vortex mode can be elaborated using the cumulative
energy contribution of the spectral range related to this mode. Such a cumulative
analysis, where a certain range of scales is attributed to a class of turbulent structures,
has been previously employed to investigate the prominence of flow structures in
turbulent wall-bounded flows, cf. e.g. Guala, Hommema & Adrian (2006). To this
end, the fraction of the fluctuation energy in the wavelengths greater or equal than a
selected wavelength λc is calculated with

Υij(λc)=

κz=2π/λc∑
κz=0

Eij(κz)

κz=κ
max
z∑

κz=0

Eij(κz)

. (6.5)

We omitted the explicit dependency of Eij on y, z, θ for brevity. To conduct the
analysis, we associate the energy in the long-wavelength range λz > 0.5λ with the
vortex mode. This threshold is demonstrated with vertical lines in figure 23. Figure 24
shows the fraction of the streamwise turbulent kinetic energy in the range λz > 0.5λ,
i.e. Υxx(0.5λ), evaluated along xP(θ) and xS(θ). We see that the P+–S− dipole is
unstable to the vortex mode, whose energy grows during the motion of the dipole
towards the crest. When the vortices pass the crest at x/η = 6, coherent motions
related to the vortex mode contain a significant portion of the total streamwise
fluctuation energy – approximately 70 % in the P-vortex core, and approximately
75 % in the S-vortex core. Large-scale dynamics of vortices differs following their
ejection from the crest. We have previously seen that S− vortex loses most of the
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FIGURE 24. (Colour online) The cumulative fraction of the streamwise turbulent kinetic
energy in transverse wavelengths λz > 0.5λ, cf. (6.5). (a) Evaluated on xP(θ) in 4π/32 6
θ 6 π; (b) evaluated on xS(θ) in 12π/32 6 θ 6 π, cf. table 5 for trajectories xP(θ) and
xS(θ). (E) Case C1; (@) Case C2. Each data point is separated by π/32 in time, and filled
markers indicate every fourth data point.

large-scale energy after it passes the crest. This is also clearly seen in figure 24(b),
where Υxx(0.5λ) decreases rapidly to approximately 40 % following x/η > 6.5. In
contrast, the coherent large-scale motions remain active in the primary vortex, and
their fractional contributions to the overall energy remain above 60 %. This difference
between P- and S-vortices is likely due to their respective distances to the ripple
surface, which seems to dissolve the portion of the vortex mode passing nearby.

Figure 23 showed that preferred spanwise spacings of the three-dimensional
structures driven by the energetic vortex mode vary in the range 0.6 < λz/λ < 0.9.
These values are in the same range with the spanwise spacing of the brick patterns
(0.6 < λz/λ < 1.3) observed by Ourmieres & Chaplin (2004) in disturbed-laminar
regimes over vortex ripples. Moreover, we have observed in § 6.1 that the arrangement
of large-scale structures in Case C1 is also reminiscent of brick patterns. In this
regard, the current study provides preliminary evidence for the emergence of these
subharmonic flow patterns in fully turbulent regimes.

Canals & Pawlak (2011) also reported dominant large-scale structures on a vortex
dipole, which is formed around a single ripple attached to an oscillating tray. These
structures were formed by an elliptic instability of the strained vortex cores, and had
spanwise spacings in the range 2 < λz/r < 5, where r is the vortex-core radius. If
we assume the radius of the vortex cores in our study is approximately r ≈ η, then
there is a good overlap between the observed spanwise spacings in our simulations
(3.6< λz/η < 5.4) and in experiments by Canals & Pawlak (2011). Furthermore, we
have seen in figure 24 that the vortex mode energy increases during the motion of the
dipole towards the crest in the range 8π/326 θ 6 16π/32. This is the stage where the
vortices mutually strain each other to elliptic forms (cf. figures 4c–e and 5c–e in § 3).
Therefore, we believe that the observed vortex mode is driven by elliptic instabilities
of coherent-vortex cores.
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FIGURE 25. (Colour online) Premultiplied streamwise turbulent kinetic energy spectra
evaluated at the P-vortex core (black) and at the S-vortex core (red), and premultiplied
wall-shear-stress spectra evaluated at the local wall-shear-stress maximum (green).
(a,c) θ = 20π/32; (b,d) θ = 31π/32. (a,b) Case C1; (c,d) Case C2. The thin lines show
raw spectra without the Savitzky–Golay filter. The spectra are normalized with the local
average values such that areas under the curves are equal to unity. The markers in insets
show the respective probing points xP, xS and xτ , where the same colour coding with the
lines is employed.

We have shown in § 6.1 that large-scale momentum structures have strong footprints
on the wall. Figure 25 elaborates this by comparing the premultiplied spanwise spectra
evaluated at the cores of primary and secondary vortices, κzExx(xP), κzExx(xS) and
at the local wall-shear-stress peak, κzTtt(xτ ), for the phases previously employed in
figure 21, i.e. θ = 20π/32, 31π/32. All spectra are normalized with local fluctuation
levels such that the areas under the curves are equal to unity. It is observed in both
cases at θ = 20π/32 that the vortex mode yields a dominant peak at λz = 0.9λ in
all three spectra, cf. solid vertical lines in figure 25(a,c). There is a second peak
with shorter wavelength in the wall-shear-stress spectra, cf. dashed vertical lines in
figure 25(a,c). This peak appears to be Reynolds number dependent, and occurs
on smaller wavelengths in Case C1. The secondary peak is not observed in the
vortex cores, as it is related to the streaky velocity field induced by streamwise
vortices near the wall. At θ = 31π/32, the second peak appears to be absent in
κzTtt(xτ ), cf. figure 25(b,d). The vortex mode, now active only in the P+ vortex, still
influences the wall-shear-stress spectrum at this phase, cf. solid lines at λz = 0.9λ
in figure 25(b,d). The mode is less dominant at this phase, and the peaks are less
pronounced. Moreover, κzExx(xS) does not contain such a peak, as S− vortex has
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FIGURE 26. (Colour online) Premultiplied spectra of tangential wall-shear-stress
fluctuations presented as functions of spanwise wavelength scaled with the Stokes length
(δs =

√
2ν/ω). The spectra are evaluated at xτ (20π/32) in (a) and at xτ (24π/32) in (b).

The dashed lines show λz/δs = 7. The thin lines represent the raw spectra.

transitioned to a less coherent state after leaving the crest, as previously shown in
figures 23(b,d) and 24(b).

We now turn to the scaling of organized streamwise vortices. A natural length
scale to relate the spacing of streamwise vortices is the boundary-layer thickness over
the vortex ripple, which is expected to be related to the Stokes length δs =

√
2ν/ω.

Figure 26 shows premultiplied wall-shear-stress spectra at θ = 20π/32, 24π/32 as
functions of wavelengths that are normalized with the Stokes length. We see that the
streamwise structures scale well with the Stokes length for the two cases, i.e. the
short-wavelength peaks collapse well at λz/δs ≈ 7. The same value (7δs) is also
reported in Blondeaux et al. (2004) for the spanwise spacing of streamwise vortices
forming along the upstream side of ripples (cf. figure 9 and its discussion on p. 224 in
Blondeaux et al. (2004)). Although our limited dataset prevents a further elaboration
of this result, it is informative to compare this spacing with the one produced by
centrifugal instabilities over vortex ripples, as curved ripple walls can promote these
instabilities. Using a wide variety of configurations, Ourmieres & Chaplin (2004)
analysed these features in disturbed-laminar regimes. They showed that centrifugal
instabilities produce spanwise patterns along the vortex columns with a well-defined
spacing of λz/δs≈

√
2λ2/Aη. In this regard, the spacing of the streamwise structures in

our DNS experiments is in the same range but slightly smaller, i.e. λz/δs≈ 7≈ λ2/Aη.
These results point towards possible relations between the short spanwise wavelength
patterns in disturbed-laminar and turbulent conditions. Exploring these links further
may be an interesting future study that can shed light on the origin and scaling of
the streamwise structures over vortex ripples.

7. Conclusions
We have conducted a DNS study to investigate the sinusoidal oscillatory flow

over a two-dimensional wavy bottom. The model conditions were selected to mimic
wave-driven flow conditions above long crested sand ripples in coastal regions. Two
different Reynolds numbers were involved. The higher-Re case was found to produce
a fully developed turbulent flow in which energy-containing and dissipative motions
concentrate at exclusive scales.
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The oscillatory flow is dominated by coherent columnar vortices of two types. A
primary lee vortex is formed during the deceleration phase by the separation of the
boundary layer at the ripple crest. When this vortex becomes stronger, the gradients in
its pressure field give rise to a secondary flow separation, and eventually a secondary
vortex forms at the lee of the ripple. With further weakening of the free-stream
velocity, the primary and secondary vortices form a counter-rotating vortex dipole,
and move towards the crest. They eventually eject themselves over the ripple crest
with their mutually induced velocities. At this moment, they create a high-speed jet
near the crest with peak velocities reaching twice that of the maximum free-stream
velocity. The inclination angle of the ejection showed a Reynolds number dependence.
As the boundary layers are thinner in the higher-Re case, the secondary separation
and succeeding vortex creation are bound to a smaller volume beneath the primary
vortex. Consequently, the primary vortex is less repelled away from the ripple, and
the resulting ejection angle is more horizontal. This paves the way for more intense
wall–vortex interactions in the higher-Re case.

Coherent vortices are the main transport means for turbulent kinetic energy and
enstrophy. The boundary layers on the ripple surface are only mildly turbulent in both
cases. The main production zones are the free separated layers with intense shear,
and the main dissipation regions are the vortex cores and boundary layers. The global
turbulence production rate peaks twice over a half-cycle. The first peak occurs close to
the start of the deceleration phase, and the second one takes place when the vortices
eject themselves over the ripple. This initial peak is weak in the lower-Re case, as
milder wall–vortex interactions in this case leave quieter flow in the lee of the ripples
for the subsequent vortex-formation stage. The turbulent dissipation is most intense
during the formation of coherent vortices.

The structural characteristics of coherent vortices are investigated by evaluating
their statistics along their path and by visualizing their instantaneous regions with
high enstrophy. In the beginning of their lives, coherent vortices keep their spanwise
coherence, and are in the form of turbulent vortex clouds that fill the entire spanwise
extent of the computational domain. A large-scale vortex mode with transverse
wavelengths in the range 0.6 < λz/λ < 0.9 develops along the vortex column when
the vortex dipole moves towards the ripple crest in the ejection process. At this
phase, the vortex cores are strained by mutual induction, and vortices become more
elliptic. Therefore, this vortex mode is possibly a result of an elliptic instability
occurring on the vortex dipole, which was previously observed by Canals & Pawlak
(2011) in different oscillatory flow settings. Following their detachment from the
ripple, the vortices in the higher-Re case begin to lose their spanwise coherence
due to the large-scale vortex mode, and develop an external intermittency along the
transverse direction. Consequently, they break down into turbulent vortex clusters
whose streamwise arrangement is reminiscent of a brick pattern. The breakdown of
spanwise coherence and resulting subharmonic vortex patterns are not observed in
the lower-Re case.

Furthermore, we have observed secondary structures near to the wall in the form of
elongated streamwise vortices, which become more evident during the vortex-ejection
stage. These highly anisotropic structures have shorter spanwise spacing. The spectral
peaks related to these structures are observed to collapse well at λz/δs≈7 when scaled
with the Stokes length.

Coherent spanwise vortices have been found to have strong footprints in the
near-wall region. During their formation, the primary vortex induces a wall shear
in a reverse direction to the free-stream velocity. This wall shear becomes more
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pronounced when the primary and secondary vortices accelerate towards the crest,
and produce the high-speed wall jet. This is the phase when the highest values
in the local phase-averaged wall shear stress are observed. Moreover, the coherent
vortices also yield strong spanwise inhomogeneity in the wall shear stress as they
evolve. In the ejection stage, both large-scale structures driven by the vortex mode
and streamwise-vortex structures impose strong fluctuations on the ripple surface.
This creates a bimodal premultiplied energy spectrum with two distinctive peaks
for wall-shear-stress fluctuations. When decaying coherent vortices arrive at the
neighbouring ripple towards the end of the free-stream acceleration, their wall-attached
portions sweep the ripple surface and dramatically increase the wall shear stress in
their convection direction. This leads to highly skewed probability density functions
with long tails for the local wall shear stresses in the contact areas.

The findings in this study provide important implications for the breakdown of
long crested sand ripples into three-dimensional forms. Large-scale three-dimensional
patterns along the transverse vortex columns could produce inhomogeneous sediment
suspension and deposition processes. Furthermore, spanwise variations in the wall
shear stress can possibly lead inhomogeneous near-surface sediment motions. In this
regard, further knowledge about the origin and scaling behaviour of the observed
three-dimensional instabilities can be of key practical importance. Experimentation in
a wider parameter space is necessary to gain these insights.
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Appendix A. Spectral assessment of the spatial resolution
In this appendix, we further assess the resolution of the dissipative motions using

one-dimensional spectra in the homogenous spanwise direction. This spectral analysis
tests the spanwise resolution. As dissipative motions are essentially isotropic, and the
largest grid spacings in Kolmogorov units have similar values in the x–y plane and
the in z direction (compare the largest values in figure 3d,e in § 2.3), the results are
also instructive for the spatial resolution in the x–y plane.

We start with proving the spectra for Kolmogorov’s laws (Kolmogorov 1941),
assuming they are applicable in the energetic locations of our flows. We have seen
in § 5 that turbulent kinetic energy concentrates in the core of coherent vortices P
and S, on which the trajectories xP and xS are defined. Figure 27 shows the spanwise
energy spectra of streamwise velocity fluctuations evaluated at xP and xS at several
representative phases with high turbulent kinetic energy. The spectra are presented
in Kolmogorov units, i.e. λz/lη, and are normalized by (εν5)1/4 such that all lines
should collapse on the universal Kolmogorov spectrum in the highest wavenumbers,
i.e. in the dissipative range. Pope (2000) presented such a collapse for κxlη > 0.1
using the streamwise spectra of many different types of turbulent flows. We see
in figure 27(a,b) that all spectra lie on a single curve for κzlη > 0.1 also in our
simulations, which shows that dissipative motions are well resolved. In the inertial
range, the Kolmogorov spectrum follows the -5/3 power law (Pope 2000)

Exx(κz)

(εν5)1/4
=

4
3
Ck(κzlη)−5/3, (A 1)
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FIGURE 27. (Colour online) Spanwise energy spectra of streamwise-velocity fluctuations
evaluated at the coherent-vortex cores xP and xS and presented as functions of the
spanwise wavenumber κz in local Kolmogorov units (lη = (ν3/ε)1/4).
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FIGURE 28. (Colour online) One-dimensional premultiplied enstrophy spectra evaluated
at the coherent-vortex cores xP and xS and presented as functions of the spanwise
wavenumber κz in local Kolmogorov units (lη = (ν3/ε)1/4). The vertical lines show κzlη =
2π/40.

where Ck = 0.53 is the universal Kolmogorov constant (Sreenivasan 1995), and the
factor 4/3 is added for using the transverse velocity spectra. The dashed lines in
figure 27(a,b) represents the power law. We see that −5/3 power law is applicable
at the coherent-vortex cores of both cases, and the spectra follows the dashed line
in the inertial range starting from κzlη < 0.1. The inertial range extends to lower
wavenumbers in C1 due to higher Reynolds number in this case.

Figure 28 shows the premultiplied enstrophy spectra evaluated at the coherent-vortex
cores at the same phases with figure 27. For brevity, only results for C1 are presented.
We see that vorticity concentrates around κzlη ≈ 2π/40, and all curves collapse in the
dissipation range, i.e. κzlη > 0.1. The peak at κzlη ≈ 2π/40 appears to be universal
for small-scale quantities such as vorticity or strain rate at sufficiently high Reynolds
numbers, e.g. Jiménez (2013) also showed a peaking of the dissipation spectra around
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FIGURE 29. Spanwise autocorrelations of streamwise velocity evaluated at the coherent-
vortex cores xP and xS in Case C1.

κzlη ≈ 2π/40 in the logarithmic layer of a wall-bounded flow. Figure 28 also shows
that smallest scales of the flow are well resolved in our DNS experiments. There are
no noticeable aliasing errors due to underresolution in S-vortex cores, cf. figure 28(b).
We observe only a minor artificial rise due to aliasing in highest wavenumbers at
(xP(4π/32), 4π/32), cf. the blue line in κzlη > 1 in figure 28(a). In their DNS study
of channel flow, Del Álamo et al. (2006) calculated the percentage of enstrophy
residing in the aliased wavenumber range and found values in the range 2–3 %. We
did a similar calculation for the spectra at (xP(4π/32), 4π/32) and found that the
enstrophy residing in the aliased range (κzlη > 1) is less than 0.2 % of the total
enstrophy E(xP(4π/32), 4π/32).

Appendix B. Analysis of the computational domain size

In this section, we assess the computational domain lengths in the spanwise and
vertical directions. In order to validate the spanwise extent of the domain, the two-
point correlation function in the spanwise direction, i.e.

Rij(1z, x, y, θ)=
〈u′i(x, y, z, θ)u′j(x, y, z+1z, θ)〉

〈u′i(x, y, z+1z, θ)2〉1/2〈u′j(x, y, z, θ)2〉1/2
, (B 1)

is employed. Figure 29 shows the spanwise correlations of streamwise velocity
fluctuations at the coherent-vortex cores of Case C1 (similar results are applicable
to C2). Mahesh & Moin (1998) suggests two-point correlation functions should
decay completely within the half of the length of the domain, in order to prevent
the interference of periodic boundaries with the largest scales of the flow. We see
in figures that the spanwise domain length satisfies this condition. The correlation
function decays to negligible values for |1z| > 6η(= λ) with somewhat more noise
beyond |1z|> 6η in the case of P-vortex, cf. figure 29(a).

We now turn to the verification of the extent of the vertical domain. For this
purpose, we investigate horizontally averaged fields, which are defined as

〈˜̃u〉(y, θ)= 1
λ

∫ λ
0
〈u〉(x, y, θ) dx. (B 2)
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FIGURE 30. (Colour online) Horizontally averaged streamwise velocity (a) and turbulent
kinetic energy (b). (–×): θ = 0; (–@): θ = 8π/32; (–E): θ = 16π/32; (–+): θ = 24π/32.
Dashed lines in (a) show the value of the free-stream velocity (u0(θ)) at respective phases.

0

0

0.1

0.5 1.0
x/¬

y/¬

1.5 2.0

FIGURE 31. Comparison of the ripple profiles considered in this work (dashed line) and
in du Toit & Sleath (1981) (solid line).

Figure 30 shows the horizontally averaged streamwise velocity and TKE at several
phases in the half-cycle of Case C1. In the free-stream, streamwise velocity should
return to irrotational velocity u0 (cf. (2.4)) and TKE should vanish. We see in figures
that these conditions are satisfied for y> 6η. Therefore, we conclude that the vertical
extent of our computational domain is sufficiently large to allow free-stream conditions
away from the bottom.

Appendix C. Comparisons to experimental data
Although there are quite a few experimental studies on oscillatory flow over rippled

beds, an equivalent experiment to Cases C1 and C2 has not yet been conducted.
Laboratory flows are usually at higher Reynolds numbers than attained in this
work and KC number and ripple geometries also vary. Despite this limitation, we
can examine some common flow features using experimental data with similar
configurations. To this end, we consider an experiment by du Toit & Sleath (1981)
(TS81 henceforth), which was conducted in an oscillating water tunnel using
self-formed ripples. The flow parameters in this experiment are Re = 21 617 and
KC = 4.46. The ripple steepness is the same as our cases (s ≈ 0.17), and the ripple
profile is shown by the solid line in figure 31. This profile is slightly sharper towards
the crest than the one considered in this work (given by the dashed line in figure 31).
Only Case C1 will be considered in the comparison, as it has a closer Reynolds
number to the selected experiment.

Figure 32 shows the intra-period variations of phase-averaged streamwise velocity
and streamwise turbulent intensity at two selected points. The experimental data are
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FIGURE 32. Intra-period variations of phase-averaged streamwise velocity and turbulent
intensity over the crest at (xc, (y − yc)/δs = 1.44) (a) and over the trough at (xt, (y −
yc)/η = 0.058) (b), where subscripts c and t refer to the coordinates of the crest and
trough, respectively. (×): 〈ux〉/U0, Case C1; (——): 〈ux〉/U0 digitized from figure 15 in du
Toit & Sleath (1981); (E): 〈u′2x 〉

1/2/U0, Case C1; (· · ·): 〈u′2x 〉
1/2/U0 digitized from figure 18

in du Toit & Sleath (1981).

digitized from figures 15 and 18 in TS81. The first probing point is slightly above
the ripple crest at (xc, (y− yc)/δs = 1.44) and the second point is located above the
ripple trough close to crest level at (xt, (y− yc)/η= 0.058), where subscripts c and t
refer to the coordinates of the ripple crest and the ripple trough. The variations in the
respective half-cycles of the experimental data are not the mirror image of each other
due to some experimental errors.

We see in figure 32(a) that the mean streamwise velocity over the ripple crest
agrees well with the experimental data within the margin of experimental errors. The
peaks in velocity occur when the coherent vortices are washed over the crest at θ ≈
−8/32, 24/32π and when the free-stream velocity has maximum magnitude at θ =
0,π. Turbulent intensity peaks during the vortex ejection at θ ≈−8/32, 24/32π, and
the magnitude and phase of this peak match well. The turbulent intensity between
−π6 θ 6−24/32π (0 6 θ 6 8/32π) is higher in TS81.

Figure 32(b) shows the variations at the point located over the ripple trough. It is
observed that the maximum amplitude of the streamwise velocity is approximately
U0 at this location for both Case C1 and TS81. This peak in the velocity occurs
when the coherent vortices pass over the ripple trough. This event takes place at
θ ≈−4/32,28/32π in C1 – approximately θ ≈2/32 earlier than TS81. A similar delay
applies to turbulence intensities, which peak also during the passage of the vortex.
This minor phase difference is likely related to the difference in KC number, which
is slightly lower in TS81 (KC = 4.46) than C1 (KC = 5.24), hence the vortex passage
corresponds to a later phase.
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