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High-speed shear-driven dynamos. Part 1.
Asymptotic analysis

Kengo Deguchi†
School of Mathematical Sciences, Monash University, VIC 3800, Australia

(Received 13 September 2018; revised 11 February 2019; accepted 26 February 2019;
first published online 10 April 2019)

Rational large Reynolds number matched asymptotic expansions of three-dimensional
nonlinear magneto-hydrodynamic (MHD) states are the concern of this contribution.
The nonlinear MHD states, assumed to be predominantly driven by a unidirectional
shear, can be sustained without any linear instability of the base flow and hence
are responsible for subcritical transition to turbulence. Two classes of nonlinear
MHD states are found. The first class of nonlinear states emerged out of a nice
combination of the purely hydrodynamic vortex/wave interaction theory by Hall &
Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666) and the resonant absorption
theories on Alfvén waves, developed in the solar physics community (e.g. Sakurai
et al. Solar Phys., vol. 133, 1991, pp. 227–245; Goossens et al. Solar Phys., vol. 157,
1995, pp. 75–102). Similar to the hydrodynamic theory, the mechanism of the MHD
states can be explained by the successive interaction of the roll, streak and wave
fields, which are now defined both for the hydrodynamic and magnetic fields. The
derivation of this ‘vortex/Alfvén wave interaction’ state is rather straightforward as
the scalings for both of the hydrodynamic and magnetic fields are identical. It turns
out that the leading-order magnetic field of the asymptotic states appears only when
a small external magnetic field is present. However, it does not mean that purely
shear-driven dynamos are not possible. In fact, the second class of ‘self-sustained
shear-driven dynamo theory’ shows a magnetic generation that is slightly smaller
in size in the absence of any external field. Despite its small size, the magnetic
field causes the novel feedback mechanism in the velocity field through resonant
absorption, wherein the magnetic wave becomes more strongly amplified than the
hydrodynamic counterpart.

Key words: dynamo theory, high-speed flow, nonlinear instability

1. Introduction
We are concerned with the mathematical descriptions of high-speed nonlinear

magneto-hydrodynamic (MHD) flows driven by simple subcritical shear flows such
as the plane Couette flow. MHD turbulence states occur in electrically conductive
fluid flows (e.g. plasma or liquid metal) and are made of various complicated
vortex structures. The interaction between the velocity and magnetic fields in the
flow has attracted much attention as it can produce dynamo states that serve as an
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efficient way to convert kinetic energy to magnetic energy. The dynamo states are of
central importance in geophysics and in astrophysics where such energy conversion
mechanisms are common. However, most of the mathematical dynamo studies are
limited to the kinematic situation where the magnetic field is so small that it does
not affect the hydrodynamic field.

The strong nonlinear coupling of the velocity and magnetic fields in the MHD
turbulence implies that we must greatly rely on numerical analysis, from which it is
difficult to infer general properties. The numerical dynamo studies aiming to compute
the saturated magnetic field from the kinematic dynamos use meticulously designed
complicated flow geometries in order to avoid various anti-dynamo theorems (see the
review by Brandenburg & Subramanian (2005) and references therein) or, otherwise,
assume some linear instability of the flow (e.g. magneto-convection). Numerical
studies of dynamos in linearly stable flows are rather rare (Rincon, Ogilvie & Proctor
2007; Rincon et al. 2008; Riols et al. 2013; Nauman & Blackman 2017).

Another difficulty of fully computational study lies in the fact that the high
Reynolds number of practical relevance hinders any simulation that requires very
fine grid points. In order to analyse high Reynolds number MHD turbulence locally,
a number of isotropic homogeneous simulations are performed with some artificial
external forcing pouring energy into the hydrodynamic field (see Kida, Yanase
& Mizushima 1991; Brandenburg, Sokoloff & Subramanian 2012, for example).
However, it is not clear how those local MHD turbulent states are sustained in
physically realisable flow configurations. Although modelling approaches are used to
simplify or modify the governing equations to perform global high Reynolds number
simulations, the introduction of some artificial assumptions becomes inevitable in
order to close the model system (e.g. large eddy simulations, turbulent models,
mean-field models).

To make some theoretical progress towards the rational high-speed dynamo theory
using minimal assumptions, in this paper, we employ the large Reynolds number
matched asymptotic expansion of the viscous–resistive MHD equations. The large
hydrodynamic and magnetic Reynolds numbers limit is known as the singular limit of
the governing equations, and so, the leading-order solution may possess singularities.
The small-scale flow induced near the singular point must behave in a consistent
manner with the large-scale flows, so this is exactly the place where we need the
matching. That matching condition is the crux to close the asymptotically reduced
system, which has no need for artificial assumptions or tuning parameters, unlike
heuristic model approaches. In fact, the method on which our analysis is based is
the cornerstone of progress in understanding high Reynolds number solutions of
the Navier–Stokes and resistive MHD equations although, nowadays, only a few
researchers are working in this field due to the technical complexity associated with
the singularity. In a purely hydrodynamic study, such a singular point is known as the
‘critical layer’, which occurs whenever the speed of the background flow coincides
with the phase speed of the instability wave. For the simplest linear case, the delicate
interaction of the small- and large-scale flows through the matching conditions was
established for the first time by Lin (1945, 1955).

In the solar physics community, the similar singular behaviour of wave-like
instabilities has been studied under the resonant absorption theory. Since Alfvén
(1942), a number of researchers have studied the instability waves riding on uniform
background velocity and magnetic fields. However, the solar atmosphere is highly
non-uniform in reality, so the uniform flow assumption used in Alfvén (1942) is
actually not valid. The consideration of non-uniform background magnetic fields led

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.178


178 K. Deguchi

to the finding of the Alfvén resonant point, where the wave behaves in a singular
manner at the limit of large hydrodynamic and magnetic Reynolds numbers. The
asymptotic structure of the linear disturbances excited by a background magnetic
field was derived by Sakurai, Goossens & Hollweg (1991) and Goossens, Ruderman
& Hollweg (1995). The theory and its extended results to steady non-zero background
shear flows (Goossens, Hollweg & Sakurai 1992; Erdélyi, Goossens & Ruderman
1995; Erdélyi 1997) successfully describe the inner structure of the thin dissipative
layer surrounding the resonant point, and how it should be matched to the outer
Alfvén wave solution. Despite the similarity, the nature of the singularities was found
to be mathematically different from the purely hydrodynamic critical layer.

To date, the majority of the existing large Reynolds number nonlinear hydro-
dynamic/MHD asymptotic theories assume an absence of any O(1) feedback effect
from the instability wave to the background flow. This assumption is typical when the
background flow varies only in one direction and, hence, the wave-like perturbation
is two-dimensional; see Smith & Bodonyi (1982), Clack & Ballai (2009), Goossens,
Erdélyi & Ruderman (2011), Deguchi & Walton (2018). For those asymptotic studies
the interaction occurs merely one way from the background flow to the induced wave,
although, in turbulent flows of course, the background flow profile can be largely
distorted to cause feedback effects on the wave instability. For two-dimensional
flows, the feedback effect is difficult to implement theoretically, as a too strong
wave amplitude destroys the basic assumption that the critical or resonant layers are
sufficiently thin.

It has been pointed out by Hall, Smith and their colleagues between the late 80s
and early 90s that the three-dimensionality of the flow allows us to incorporate the
feedback effect into the theory without destroying the critical layer structure. Their
theory, called the vortex/wave interaction theory (Hall & Smith 1990; Bennett, Hall
& Smith 1991), was originally found for boundary layer flows by considering the
mutual interaction between the streamwise vortices developing slowly and the much
more rapid three-dimensional viscous (Tollmien–Schlichting) waves; see Smith (1979),
Hall (1983) and Hall & Smith (1988) also. Subsequently, those authors noticed that
a similar interaction is possible for inviscid (Rayleigh) waves as well (Hall & Smith
1991). What is remarkable in the latter type of the theory is that it rationally describes
the mechanism by which a small wave significantly modifies the background flow
to leading order. This means that the large Reynolds number approximation has the
potential to interpret the mysterious mechanism of nonlinear subcritical instability
that can destabilise the linearly stable shear flows, for example the plane Couette
flow. It was Waleffe (1997) who firstly recognised that possibility, although what
he independently proposed was rather a heuristic model approach that he termed
a ‘self-sustaining process’. His theory has rapidly spread among fluid dynamicists
as it concisely explains the sustaining mechanism of the nonlinear states through
the successive interaction of the roll, streak and wave. Here, the streak and the roll
constitute the streamwise and the cross-stream components of the vortex component in
the vortex/wave interaction; see figure 1, where the roll, streak and wave components
as computed in Deguchi & Hall (2014) are shown. Despite the great success of
the self-sustaining process, an important ingredient had been overlooked until Wang,
Gibson & Waleffe (2007) – the critical layer structure. Subsequently, Hall & Sherwin
(2010) showed that the self-sustaining process is actually equivalent to mathematically
rational frameworks of vortex/wave interaction if the former theory is supplemented
by the critical layer analysis. Two independently developed research streams over
the last two decades, both of which are greatly inspired by earlier works of Benney
(1984) and Benney & Chow (1989), have now been integrated.
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FIGURE 1. (Colour online) The nonlinear steady solution of plane Couette flow at a
Reynolds number of 16 000 (streamwise wavenumber 1.2, spanwise wavenumber 2, upper
branch; see Deguchi & Hall (2014) for definition). Here x is taken to be the direction
of the base flow; see § 2. The wave field is visualised by 30 % maximum absolute
streamwise vorticity (red is positive, blue is negative). The roll-streak field corresponds
to the streamwise average of the total flow field. The streak field is the zero locus of the
streamwise velocity, whilst the roll field is represented by the isosurfaces of the stream-
function for the cross-stream components of the averaged velocity (red is positive, blue is
negative).

The primary aim of this paper is to develop a nonlinear three-dimensional
asymptotic MHD theory by replacing the Rayleigh wave in the Hall–Smith theory
by the Alfvén wave. The formulation of this ‘vortex/Alfvén wave interaction theory’
would be rather straightforward, as the particular form of the viscous–resistive MHD
equations suggests that we should be able to apply the roll-streak-wave decomposition
to the magnetic fields as well as the velocity fields. Indeed, Rincon et al. (2007, 2008),
Riols et al. (2013) have pointed out some similarities of the nonlinear dynamo theory
and the self-sustaining process. (However, it should be noted that those works treat
dynamos driven by the magneto-rotational instability, while the effect of the system
rotation is not considered here. We shall comment on the implication of our work
for the rotational case in § 5.)

After formulating our problem in the next section, we begin the asymptotic analysis
in § 3, assuming the largeness of the Reynolds number. We shall see that the Alfvén
wave produced in inhomogeneous mean fields, namely hydrodynamic and magnetic
streaks, can be analysed using the resonant absorption theory. Interestingly, the size
of the wave in general differs from the purely hydrodynamic case as the interaction
between the wave and the vortex now occurs through the Alfvén resonant layer
rather than the critical layer. In the same section, the sustained mechanism of the
vortex/Alfvén wave interaction states will be examined to show that unless a small
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magnetic field is applied, the vortex/Alfvén wave interaction state is not possible.
However, this does not mean that the dynamo states cannot be realised in the zero
external magnetic field limit. In fact, the numerical study of shear-driven dynamos in
the companion paper (Deguchi 2019) showed the production of the magnetic field at
that limit. Motivated by that numerical result, § 4 is concerned with the mathematical
description of such self-sustained shear-driven dynamos, and shows that the induced
magnetic field is indeed slightly smaller than the vortex/Alfvén wave interaction
states. Finally, in § 5, we draw some conclusions.

2. Formulation of the problem
Throughout the paper, we use the Cartesian coordinates (x∗, y∗, z∗). Consider

incompressible viscous–resistive MHD equations for the velocity field v∗, the magnetic
field b∗, the current density j

∗
and the pressure p∗:

(∂t∗ + v∗ · ∇∗)v∗ =
1
ρ
(−∇∗p∗ + j

∗
× b∗)+ ν∇2

∗
v∗, (2.1a)

∂t∗b∗ =∇∗ × (v∗ × b∗ − ηj
∗
), (2.1b)

∇∗ · v∗ = 0, (2.1c)

j
∗
=

1
µ0
(∇∗ × b∗), (2.1d)

where ∇∗ = (∂x∗, ∂y∗, ∂z∗), ρ is the fluid density, ν is the fluid kinematic viscosity, η
is the fluid electrical resistivity and µ0 is the fluid magnetic permeability.

We assume that the flow is predominantly driven by some unidirectional hydrody-
namic base flow, and take U0, L0 to be the typical velocity magnitude and the spatial
scale of it. Using the length scale L0 and the velocity scale U0, we define the non-
dimensional variables as

v∗ =U0v, b∗ =
√
µ0ρU0b, p∗ = ρU2

0p, (2.2a−c)

(x∗, y∗, z∗)= L0(x, y, z), t∗ = (L0/U0)t, (2.2d,e)
to get the non-dimensional version of the governing equations

Dv

Dt
− (b · ∇)b=−∇q+

1
R
∇

2v, (2.3a)

Db
Dt
− (b · ∇)v =

1
Rm
∇

2b, (2.3b)

∇ · v = 0, (2.3c)

where ∇= (∂x, ∂y, ∂z), D/Dt= (∂t + v · ∇) and

q= p+
|b|2

2
(2.3d)

is the total pressure. From the induction equation (2.3b), we can show that if the
solenoidal condition ∇ · b = 0 holds at a certain instant, then it should be satisfied
for all t.

The flow is governed by the hydrodynamic Reynolds number R and the magnetic
Reynolds number Rm

R=
U0L0ρ0

µ
, Rm =

U0L0µ0

η
. (2.4a,b)
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The ratio of these parameters is known as the magnetic Prandtl number

Pm = Rm/R. (2.5)

The theory to be developed can be applied to quite a wide range of shear flows
but here, for the sake of simplicity and definiteness, we consider the plane Couette
flow. Following the convention of the shear flow study, we take x, y, z directions
to be streamwise, wall-normal and spanwise directions, respectively, assuming the
periodicity of the flow in x, z and the presence of no-slip and perfectly insulating
walls at y=±1. The system has a laminar base flow solution v=Ub(y)ex with Ub= y,
while our main interest is in other nonlinear solutions.

If the no-slip conditions are replaced by certain generalised periodic conditions,
the system becomes a ‘shearing box’ frequently used in the local analyses of
hydrodynamical and astrophysical flows (Brandenburg et al. 1995; Hawley, Gammie
& Balbus 1995; Pumir 1996; Rincon et al. 2008; Riols et al. 2013; Sekimoto, Dong
& Jiménez 2016). The system admits time periodic solutions that tend to travelling
waves as the Reynolds number gets large. Hall (2018) recently extended the vortex
wave interaction theory to represent a family of vertically periodic vortex arrays in
turbulent flows, and it is likely that the theory can be used to describe the limiting
shearing box solution. In order to extend the theory, modification is only necessary
for the boundary conditions of the asymptotic system. The similar extension in the
MHD version is fairly easy, as we shall see later. Note that our notation is different
from the common notation used in the astrophysics community, where the azimuthal
(streamwise), radial (vertical) and axial (spanwise) directions of the computational
box are denoted by y, x, z, respectively (e.g. Riols et al. 2013).

3. The vortex/Alfvén wave interaction theory

Now let us construct the large R asymptotic theory for the nonlinear three-
dimensional MHD states. We assume that the nonlinear state is a travelling wave
propagating in x with a phase speed s. Here and hereafter, we apply the Galilean
transform to convert the travelling wave to the steady state. Redefining the coordinate
x, the governing equations (2.3) can be written in component form

[(v − sex) · ∇]

u
v
w

− [b · ∇]
a

b
c

=−
qx

qy
qz

+ R−1
∇

2

u
v

w

 (3.1a)

[(v − sex) · ∇]

a
b
c

− [b · ∇]
u
v

w

= R−1
m ∇

2

a
b
c

 (3.1b)

ux + vy +wz = 0, ax + by + cz = 0, (3.1c,d)

where v = [u, v, w], b = [a, b, c]. In the following large R asymptotic analysis, we
assume that Pm ∼ O(1) or larger. The analyses for small Pm cases are given in
appendix B (valid when Pm is O(R−1) or smaller, but needs a very large external
magnetic field to maintain the three-dimensional magnetic field).
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The use of the analogy with the Hall–Smith theory yields the asymptotic expansion

u
v

w
a
b
c
q


=



Ub + P−1
m u

R−1
m v

R−1
m w
a

R−1
m b

R−1
m c

R−1R−1
m q


+ εR−1/2R−1/2

m


eiαx



ũ
ṽ
w̃
ã
b̃
c̃
q̃


+ c.c.


. (3.2)

Here, the coefficients v, b, q are real functions of y, z, and we call them the vortex
components. The coefficients ṽ, b̃, q̃ depend on y, z as well but they are complex and
are called the wave components. The c.c. stands for complex conjugate. Note that
in (3.2), we only display the terms relevant to deriving the leading-order equations.
The full asymptotic expansion must, of course, contain the higher-order vortex or
wave terms with higher streamwise harmonics, but after we derive the leading-order
system, we can check that the presence of those higher-order terms does not modify
the leading-order system. The parameter ε is the wave amplitude to be fixed in terms
of R later and is, meanwhile, assumed to be of O(1) or smaller.

Substituting (3.2) into (3.1) and then neglecting some small terms, we have the
vortex equations

[P−1
m (v∂y +w∂z)−∆2]

u
v

w

+
 0

qy
qz

=
−U′bv + (b∂y + c∂z)a

P−1
m (b∂y + c∂z)b

P−1
m (b∂y + c∂z)c


− ε2

 0
{(|ṽ|2 − |b̃|2)y + (ṽw̃∗ − b̃c̃∗)z} + c.c.
{(|w̃|2 − |̃c|2)z + (ṽw̃∗ − b̃c̃∗)y} + c.c.

 , (3.3a)

[(v∂y +w∂z)−∆2]

a
b
c

− [b∂y + c∂z]

0
v

w

=
 U′bb+ P−1

m (b∂y + c∂z)u
ε2Pm(c̃ṽ∗ − b̃w̃∗)z + c.c.
−ε2Pm(c̃ṽ∗ − b̃w̃∗)y + c.c.

 , (3.3b)

vy +wz = 0, by + cz = 0, (3.3c,d)

from the x-averaged part, and the wave equationsUiα

 ũ
ṽ
w̃

+
ṽUy + w̃Uz

0
0


−

aiα

ã
b̃
c̃

+
b̃ay + c̃az

0
0

+
iαq̃

q̃y
q̃z

= R−1∆

 ũ
ṽ
w̃

 , (3.3e)

Uiα

ã
b̃
c̃

+
ṽay + w̃az

0
0


−

aiα

 ũ
ṽ
w̃

+
b̃Uy + c̃Uz

0
0

= R−1
m ∆

ã
b̃
c̃

 , (3.3f )
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iαũ+ ṽy + w̃z = 0, iαã+ b̃y + c̃z = 0, (3.3g,h)

from the fluctuating part in x. Here ∆2 = ∂
2
y + ∂

2
z , ∆=∆2 − α

2 and

U =Ub + P−1
m u− s (3.4)

is the Doppler-shifted hydrodynamic streak. In the above equations, we have retained
the diffusion terms in (3.3e), (3.3f ) because those terms become important within the
thin ‘dissipative layers’ surrounding the singularity, which we shall explain shortly.
Outside the layers, we can formally neglect these diffusion terms.

In order to elucidate the motivation of the scaling (3.2), it is convenient to adopt the
terminology introduced by Waleffe (1997) for both of the hydrodynamic and magnetic
components; we call the x- and (y, z)-components of the vortex part the streak and roll,
respectively. Note that the roll–streak (or vortex) and the wave parts correspond to the
mean field and fluctuations in dynamo theory, respectively. The O(R−1

m ) roll scale is
chosen so that viscous–convective balance in the roll-streak equations is achieved. On
the other hand, the wave part is predominantly convected by the streak component
(including the base flow), and, therefore, this part can be approximated by ideal flows
almost everywhere. The wave equations can be regarded as the linear stability problem
of the streak, and thus, only the monochromatic wave neutral to the streak can be
excited to leading order (this is the reason why there is only one Fourier mode in
(3.2)). From the form of the roll equations, we can find the mechanism by which
the wave field causes the feedback to the roll field. In the momentum equations, the
feedback terms are produced by the advection terms and the Lorentz force terms,
hereafter called the wave Reynolds stress and the Maxwell stress, respectively (see
(3.3a)). The similar feedback terms in the induction equations are called the wave
electromotive force terms (see (3.3b)).

If the diffusion terms are neglected, the wave equations (3.3e)–(3.3g,h) are
combined to yield the single pressure equation(

q̃y

Λ

)
y

+

(
q̃z

Λ

)
z

− α2 q̃
Λ
= 0, Λ=U2

− a2. (3.5)

The pressure equation is the natural generalisation of the one derived in the
previous resonant absorption studies (Sakurai et al. 1991; Goossens et al. 1995)
for one-dimensional background flows. These works are concerned with compressible
flows; so, the incompressible limit must be compared with the above equation – see
the review by Goossens et al. (2011) also. Given the hydrodynamic and magnetic
streaks, equation (3.5) constitutes the linear eigenvalue problem for the eigenvalue s.
The pressure eigensolution may become singular when Λ vanishes, namely when the
Doppler-shifted hydrodynamic and magnetic streak energies are equipartitioned (i.e.
U2
= a2). Hereinafter, we denote the singular positions as y= f±(z) and assume that

U± a= 0 is satisfied there. Those two types of singularities correspond to the Alfvén
resonant points discussed in the resonant absorption theory.

Once q̃ is solved, we can express the other wave components as

ṽ =−
q̃yU
iαΛ

, w̃=−
q̃zU
iαΛ

, b̃=−
q̃ya
iαΛ

, c̃=−
q̃za
iαΛ

, (3.6a−d)

ũ=−
1
Λ

(
q̃yUy + q̃zUz

α2
+Uq̃

)
, ã=−

1
Λ

(
q̃yay + q̃zaz

α2
+ aq̃

)
. (3.6e,f )
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Here, we remark that the behaviour of the cross-stream components of the magnetic
wave is simply related to the hydrodynamic counterpart as

(b̃, c̃)=
a
U
(ṽ, w̃). (3.7)

This is due to the absence of diffusion in the wave induction equations and the
analogue to Alfvén’s frozen-in theorem. Hereafter, we say that the magnetic wave is
‘frozen’ to the hydrodynamic wave when (3.7) holds.

On making use of the inviscid wave solutions (3.6) to (3.3), we have the outer roll-
streak equations

[P−1
m (v∂y +w∂z)−∆2]

u
v

w

+
 0

qy
qz

=
−U′bv + (b∂y + c∂z)a

P−1
m (b∂y + c∂z)b

P−1
m (b∂y + c∂z)c


−
ε2

α2

 0
{(Λ−1

|q̃y|
2)y + (Λ

−1q̃yq̃∗z )z} + c.c.
{(Λ−1

|q̃z|
2)z + (Λ

−1q̃yq̃∗z )y} + c.c.

 , (3.8a)

[(v∂y +w∂z)−∆2]

a
b
c

− [b∂y + c∂z]

0
v

w

=
U′bb+ P−1

m (b∂y + c∂z)u
0
0

 , (3.8b)

vy +wz = 0, by + cz = 0. (3.8c,d)

There is actually no wave electromotive force terms in the above outer induction
equations. The reason is that, as remarked earlier, the cross-streamwise components
of hydrodynamic and magnetic inviscid wave solutions must behave in a similar way
except for the factor proportional to U or a; see (3.6a). The frozen wave ensures the
cancellation of the two nonlinear terms in the roll parts of the induction equations.
In other words, if there is a feedback effect from the wave to the magnetic roll, the
wave must be resistive.

Thus in the next sections we analyse the dissipative layer surrounding the singular
curve of the wave problem to find possible discontinuities in the roll field. That
‘jump’ represents the feedback mechanism from the wave to the roll-streak flow,
and together with this condition, the wave equation (3.5) and the vortex equations
(3.8) form a closure. For plane Couette flow, the wave equation (3.5) can be solved
together with the boundary conditions q̃y = 0 at y=±1, which ensures that the walls
are impermeable. (Near wall boundary layers must be inserted to satisfy the other
boundary conditions but the dynamics in the layer is passive so the analysis of it is
not necessary.) The roll-streak part is fully viscous so the no-slip conditions on the
wall must be applied.

As mentioned earlier, the present framework can also be used to describe the large
Reynolds number limit of some shearing box solutions by modifying the boundary
conditions. The conditions for the roll-streak flow can be found straightforwardly
because, excluding the base part, they should be periodic in y. At first glance the
condition for the wave part is not simple because there are many waves of different
speeds in the problem. However Hall (2018) showed that the stability problem of each
wave can be decoupled at the asymptotic limit, and the amplitude of it should decay
rapidly away from the critical point; hence |q̃| → 0 as |y| → ∞ is the appropriate
boundary conditions for the wave component.
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O(∂)

O(∂)

z

y

n
l

O(1)

y = f+(z)

y = f-(z)

FIGURE 2. (Colour online) Schematic of type 1 interaction studied in § 3.2. The body-
fitted coordinate (n, l) is shown for the upper resonant curve y = f+(z). The dissipative
layer thickness δ is defined in (3.24). Type 2 interaction occurs when the distance between
the two resonant curves becomes O(δ); see § 3.3.

3.1. Body-fitted coordinate
One of the major aims of the resonant absorption theory is to find the connection
formulae, that tell us how to connect the outer solutions across the resonant point.
Here, similar formulae must be found from the inner analysis to find the jump
that completes the nonlinear system at large R with the outer problem. However,
the singularity now occurs on a curve in the y–z plane rather than a point so it is
convenient to use ‘body-fitted’ coordinates attached to the resonant curve (Slattery
1999). Let us consider a curve y= f (z) and write the length measured along straight
lines that are normal to this curve as n, and the arc length measured along the curve
as l; see figure 2. Any location in the y–z plane can be specified by the position
vector

r= r0 + nen, (3.9)

where r0 = f ey + zez is a point on the curve y = f (z), specified by the arc length l.
(Here en, ey, ez and ex, el to be used later are all unit vectors.) We further note that
by definition of the n–l coordinates,

en =
dz
dl
(ey − f ′ez),

dz
dl
=

1√
1+ f ′2

. (3.10a,b)

Hence a straightforward calculation yields the Lamé coefficients |(∂r/∂n)| = 1 and
|(∂r/∂l)| = g, where

g(n, l)= 1+ χn, χ(l)=−
f ′′

(1+ f ′2)3/2
. (3.11a,b)

Note that χ is the curvature of the critical curve y = f (z). Given these Lamé
coefficients, we can use the standard orthogonal curvilinear coordinate theory to
derive the body-fitted coordinate expression of the equations. Writing the velocity
and magnetic field vectors as

v = u(x, n, l)ex + V(x, n, l)en +W(x, n, l)el, (3.12)
b= a(x, n, l)ex +B(x, n, l)en + C(x, n, l)el, (3.13)
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we can transform the governing equations (3.1) into[
(u− s)∂x + V∂n +

W
g
∂l

]  u
V
W

− [a∂x +B∂n +
C
g
∂l

] a
B
C

+ gn

g

 0
(C2
−W2)

(VW −BC)


=−

 qx
qn

g−1ql

+ R−1

 L1u
L2V − L3W
L2W + L3V

 , (3.14a)

[
(u− s)∂x + V∂n +

W
g
∂l

] a
B
C

− [a∂x +B∂n +
C
g
∂l

]  u
V
W

+ gn

g

 0
0

(BW − VC)


= R−1

m

 L1a
L2B− L3C
L2C + L3B

 , (3.14b)

ux + g−1(gV)n + g−1Wl = 0, ax + g−1(gB)n + g−1Cl = 0, (3.14c,d)

where

L1( )= ( )xx + g−1(g( )n)n + g−1(g−1( )l)l, (3.14e)
L2( )= ( )xx + (g−1(g( ))n)n + g−1(g−1( )l)l, (3.14f )

L3( )= g−1(g−1(g( ))n)l − (g−1( )l)n. (3.14g)

Then for V,W,B, C we can also apply the vortex–wave decomposition V
W
B
C

=


R−1
m V

R−1
m W

R−1
m B

R−1
m C

+ εR−1/2R−1/2
m

eiαx


Ṽ
W̃
B̃
C̃

+ c.c.

 (3.15)

to find the body-fitted coordinate version of the vortex and wave equations. The local
behaviour of the outer solution near the resonant curve gives the matching conditions
needed to solve the solutions within the dissipative layer. Near the resonant curve, the
wave behaves in a singular way, so its amplitude must be increased. It is this amplified
inner wave that creates derivative jumps in the outer roll components. The aim of the
next two subsections is to derive the analytic form of the jump, by the generalisation
of the connection formulae obtained in the previous resonant point analysis. The wave
Reynolds–Maxwell stress and the roll stress within the dissipative layer must be in
balance, and this condition gives the appropriate size of the wave amplitude ε in terms
of our intrinsic small parameter 1/R. We shall show that the magnitude of ε changes
depending on the distance between the two resonant layers.

3.2. Type 1: the connection formulae for the case (f+ − f−)∼O(1)
In this section, we assume the distance between the two resonant curves is O(1); this
case is called type 1 interaction and the schematic of it is shown in figure 2. Using
the body-fitted coordinate near the resonant curve y= f±(z), we can Taylor expand the
streak as

U = λ0(l)+ λu(l)n+ · · · , a=∓λ0(l)+ λa(l)n+ · · · . (3.16a,b)
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This means that we can write

Λ= λ(l)n+ · · · , λ= 2λ0(λu ± λa), (3.17a,b)

where we assume λ(l) 6= 0 for all l. Of course n= 0 is the resonant curve, and here, Λ
vanishes as required. The singularity there must be resolved within the thin dissipative
layers surrounding y= f±(z), where we retain some diffusion effects. The flows inside
and outside of the dissipative layer, analysed separately, are then connected through
the matching conditions.

Now let us analyse the singular behaviour of the outer wave solution at the edge of
the dissipative layer. In the body-fitted coordinates, the inviscid wave equation (3.5)
becomes

∂2q̃
∂n2
+
χ

g
∂ q̃
∂n
+

1
g2

∂2q̃
∂l2
−
χ ′n
g3

∂ q̃
∂l
− α2q̃−

1
Λ

(
∂Λ

∂n
∂ q̃
∂n
+

1
g2

∂Λ

∂l
∂ q̃
∂l

)
= 0. (3.18)

Since Λ∼O(n) when n is small, the above equation suggests the Frobenius expansion

q̃= q̃0(l)+ q̃2L(l)n2(ln |n| + iΘ)+ q̃2(l)n2
+ · · · , (3.19)

where

Θ =

{
0 if n> 0,
θ if n< 0. (3.20)

The quantity θ appearing in (3.20) is the jump associated with the logarithmic
singularity and physically represents the phase shift of the wave across the resonant
curve. The jump is induced by the diffusion, so the value of θ should be estimated
by the solution within the dissipative layer (it will be found later that the wave in
the layer is linear and the modulus of θ is the well-known value of π). We can fix
the coefficients q̃0, q̃2 from the boundary conditions, and all the other coefficients
in the expansion can be fixed in terms of those two coefficients. In particular, on
substituting (3.19) into (3.18), we can find

q̃2L =
1
2

(
α2q̃0 +

λ′

λ
q̃′0 − q̃′′0

)
. (3.21)

From the body-fitted coordinate expressions of (3.6) and (3.19), we can find the
small n asymptotic behaviours of the other wave components

ũ, ã∼O(n−1), Ṽ, B̃∼O(ln |n|), W̃, C̃ ∼O(n−1). (3.22a−c)

More precisely, the cross-stream components expand as

Ṽ =−
λ02q̃2L ln |n| + 2(q̃2 + iΘ q̃2L)

iαλ
+ · · · , (3.23a)

B̃=±
λ02q̃2L ln |n| + 2(q̃2 + iΘ q̃2L)

iαλ
+ · · · , (3.23b)

W̃ =−
λ0q̃′0
iαλn

+ · · · , C̃ =±
λ0q̃′0
iαλn

+ · · · . (3.23c,d)
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188 K. Deguchi

Using the stretched normal coordinate N = n/δ with the dissipative layer thickness

δ = R−1/3, (3.24)

the inner expansions consistent with (3.19), (3.22) can be found as

q̃= Q̃0(N, l)+ (δ2 ln δ)Q̃2L(N, l)+ δ2Q̃2(N, l)+ · · · , (3.25a)

ũ= δ−1Ũ0(N, l)+ · · · , ã= δ−1Ã0(N, l)+ · · · , (3.25b,c)

Ṽ = (ln δ)Ṽ0L(N, l)+ Ṽ0(N, l)+ · · · , B̃= (ln δ)B̃0L(N, l)+ B̃0(N, l)+ · · · ,
(3.25d,e)

W̃ = δ−1W̃0(N, l)+ W̃1(N, l)+ · · · , C̃ = δ−1C̃0(N, l)+ C̃1(N, l)+ · · · . (3.25f ,g)

The dissipative layer thickness is chosen in such a way that the diffusion terms
influence the inner flow.

The inner wave equations are obtained by substituting (3.16), (3.25) into the body-
fitted coordinate version of the wave equations. We must analyse the equations up to
the first order. From the n-components we can find that

Q̃0N = 0, (3.26a)
Ṽ0 ± B̃0 = 0, (3.26b)

whilst the l-components yield

W̃0 ± C̃0 = 0, (3.26c)

iαλ0(W̃1 ± C̃1)+ iαN(λuW̃0 − λaC̃0)=−Q̃0l + W̃0NN, (3.26d)

±iαλ0(W̃1 ± C̃1)+ iαN(λuC̃0 − λaW̃0)= P−1
m C̃0NN . (3.26e)

From (3.26b) and (3.26c), we see that the zeroth-order components remain frozen
within the dissipative layer.

Equations (3.26c)–(3.26e) can then be combined to yield the single equation for W̃0

iα
λ

λ0
NW̃0 =−Q̃′0 + (1+ P−1

m )W̃0NN . (3.27)

Here Q̃0 is a function of l only from (3.26a) and the prime denotes an ordinary
differentiation. The equation is linear and the solution W̃0 can be found analytically.
Note that the l-component of the wave is the most singular and it is the only
component necessary to estimate the jump in the roll components.

We note in passing that in our three-dimensional theory we can safely assume that
there are no significant effects from the nonlinear terms with respect to the waves,
unlike two-dimensional flows. For two-dimensional cases, the resonant absorption
theories have been extended to include the wave nonlinearity within the dissipation
layer. The nonlinear effects around the Alfvén resonant point is analysed by Ruderman
& Goossens (1993), Clack, Ballai & Ruderman (2009) and Ruderman, Goossens &
Andries (2010); see the review by Ballai & Ruderman (2011) also. (The absorption
theories usually concerns compressible flows where the singularity also occurs at
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the cusp wave resonant point. The corresponding nonlinear equations within the
dissipation layer can be found in Ruderman, Hollweg & Goossens (1997), Ballai &
Erdélyi (1998), Clack & Ballai (2008).) In those works it was found that we need a
certain size of wave amplitude to balance the nonlinear term. However, in our case,
the appropriate wave amplitude must be fixed in order to drive the roll component,
as we shall see shortly. Therefore, we cannot vary it to balance the nonlinear terms
in the dissipative layer wave equations as in the previous studies. The outer wave
amplitude to be shown is of O(R−1) or smaller, from which we can safely conclude
that the dissipation layer is linear. A similar conclusion was obtained in purely
hydrodynamic studies. Hall & Smith (1991) found that the inner wave equations in
their theory should be always linear for the same reason, although if the flow is
two-dimensional, the so-called nonlinear critical layer is possible (Smith & Bodonyi
1982; Deguchi & Walton 2018).

Using the new variable

ζ = sgn(λλ0)

(
iα|λ|

|λ0|(1+ P−1
m )

)1/3

N, (3.28)

the equation (3.27) can be transformed into(
∂2

∂ζ 2
− ζ

)
W̃0 =

(
|λ0|

iα|λ|

)2/3 Q′0
(1+ P−1

m )
1/3
. (3.29)

The solution of this equation that matches the outer solution can be found as

W̃0 =

(
|λ0|

iα|λ|

)2/3 Q′0
(1+ P−1

m )
1/3

S(ζ ), (3.30)

where

S(ζ )≡−i2/3
∫
∞

0
e−(t

3/3)−i2/3ζ t dt (3.31)

satisfies S′′ − ζS= 1 and S→−ζ−1 in the far-field limit (|i−1/3ζ |→∞).
The integral of S with respect to N

κ(ζ )≡

∫ ζ

0
S(ζ∗)ζ∗ =

∫
∞

0

e−i2/3ζ t
− 1

t
e−(t

3/3) dt. (3.32)

produces a logarithmic function with a constant jump for large |N|

− κ→

{
ln N∗ + c00 + · · · as N∗→∞,

ln |N∗| − iπsgn(λλ0)+ c00 + · · · as N∗→−∞,
(3.33)

where c00 is a constant (see § A.1). In short, the logarithm and jump are exactly what
we saw in the pressure expansion (3.19). Thus, in order to match the solution, the
value of the logarithmic phase shift in (3.20) must be

θ =−πsgn(λλ0). (3.34)
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The analogues result was obtained by Sakurai et al. (1991) and Goossens et al. (1995)
in the solar physics community, although it has long been recognised in hydrodynamic
studies; see Lin (1945, 1955), Haberman (1972) for example.

The other wave components can be explicitly solved, but since they are not
necessary to find the jumps in the roll components, we omit further inner wave
analysis here.

The inner roll fields expand as

q=Q0(N, l)+ · · · , V = V0(l)+ δV1(N, l)+ · · · , B= B0(l)+ δB1(N, l)+ · · · ,
(3.35a−c)

W =W0(l)+ δW1(N, l)+ · · · , C =C0(l)+ δC1(N, l)+ · · · . (3.35d,e)

The outer roll velocity and magnetic fields should be continuous across the dissipative
layer, but the normal derivative of the tangential components, namely the leading-order
vorticity and current, might suffer jumps.

Here, note that there is no jump in the normal derivative of the normal components
because from the solenoidal conditions, we have W ′0 + V1N = 0, C

′

0 + B1N = 0. Note
that the condition [V1N]

∞

−∞
= [B1N]

∞

−∞
= 0 (where [ ]∞

−∞
= [ ]

∞

N=−∞) can be written in
the outer variable expression [Vn]

+

−
= [Bn]

+

−
= 0 (where [ ]+

−
= [ ]

0+
n=0−).

The vorticity and current jumps can be found from the roll equations. Substituting
the inner expansions (3.25) and (3.35) into the body-fitted coordinate forms of the roll
equations and integrating them over N ∈ (∞,−∞),

ε2

{
[|Ṽ|2 − |B̃|2]+

−
+ χ

∫
∞

−∞

2(W̃∗0 W̃1 − C̃∗0C̃1) dN
}
+ c.c.+ · · · = [Q0]

∞

−∞
, (3.36a)

ε2

{
[ṼW̃∗

− B̃C̃∗]+
−
+
∂

∂l

∫
∞

−∞

2(W̃∗0 W̃1 − C̃∗0C̃1) dN
}
+ c.c.+ · · · = [W1N]

∞

−∞
, (3.36b)

ε2Pm[ṼC̃∗ − B̃W̃∗
]
+

−
+ c.c.+ · · · = [C1N]

∞

−∞
, (3.36c)

where the superscript asterisks are used to express the complex conjugate. The first
two equations are derived from the n- and l-components of the hydrodynamic roll
equations, and the third equation comes from the l-component of the magnetic roll
equations (analysis of the other equations are not necessary to find the jumps). In
order to derive the above equations, it is important to note that terms such as (|W̃0|

2
−

|C̃0|
2) should vanish in view of the frozen condition (3.26c). In order to balance both

sides of the equations, we must choose

ε = 1, (3.37)

which is larger than ε = R−1/6 in Hall & Smith (1991).
We can further show that the integral of (W̃∗0 W̃1 − C̃∗0C̃1)+ c.c. appearing in (3.36)

should also vanish. The behaviour of the inner wave forcing can be found in figure 3
where

JN0(N, l)=
∫ N

−N0

{W̃∗0 (N∗, l)W̃1(N∗, l)− C̃∗0(N∗, l)C̃1(N∗, l)} dN∗ + c.c. (3.38)

is numerically computed for N0 = 20. The lower panel of the figure indeed shows
that the jump vanishes at far field and this is due to the frozen property of
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FIGURE 3. (Colour online) The upper panel shows the inner wave solution for type 1
interaction (3.30). The representative parameters (α, λ0, λu, λa, Q̃′0,Pm)= (1, 1, 2, 1, 1, 1/5)
are chosen for y = f+(z). The lower panel is the force from the inner wave to the
hydrodynamic roll component (3.38).

the leading-order inner wave as shown in the upper panel. The proof showing
J(l)≡ limN→∞ JN(N, l)= 0 is given in § A.2.

Thus the contribution to the left-hand sides of (3.36) is purely from the outer wave
terms. Those terms can easily be worked out by first transforming the wave into
the pressure form (a relation similar to (3.6) holds along the body-fitted coordinate,
replacing (y, z) by (n, l)) and then substituting the pressure expansion (3.19) with the
phase shift given in (3.34):

[ṼW̃∗
− B̃C̃∗]+

−
+ c.c.=

[
qnq∗l + qlq∗n
α2Λ

]+
−

=
2πsgn(λ0)

α2|λ|
Im(q̃′∗0 q̃′′0 − α

2q̃′∗0 q̃0), (3.39)

and [|Ṽ|2 − |B̃|2]+
−
+ c.c.= [ṼC̃∗ − B̃W̃∗

]
+

−
+ c.c.= 0. Therefore,

[Q0]
∞

−∞
= [C1N]

∞

−∞
= 0, [W1N]

∞

−∞
=

πIm(α−2Q̃′∗0 Q̃′′0 − Q̃′∗0 Q̃0)

λ0|λu ± λa|
. (3.40a,b)

Reverting back to the outer variables, the jump conditions at y= f±(z) can be found
as

[q]+
−
= [{(b, c) · el}n]

+

−
= 0, [{(v,w) · el}n]

+

−
=

πIm(α−2q̃∗l q̃ll − q̃∗l q̃)
U|Un ± an|

∣∣∣∣
y=f±

(3.41a,b)

(and [{(v,w) · en}n]
+

−
=[bn]

+

−
=[cn]

+

−
= 0 as shown above). The wave equation (3.5), the

vortex equations (3.8) and the above jump conditions form a closed set of equations.
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The choice of ε= 1 means that the wave Reynolds–Maxwell stress in the outer region
(the terms proportional to ε2 in (3.8a)) is not negligible. That asymptotic structure is
quite different from the vortex/Rayleigh wave interaction where ε = δ1/2

� 1 should
be chosen, and hence, the outer wave Reynolds stress is negligible (Hall & Smith
1991). However, in the next section, we shall show that if the two resonant curves y=
f±(z) are close enough, the nature of the singularity becomes similar to the Hall–Smith
theory, and the purely hydrodynamic case can indeed be recovered at the vanishing
magnetic field limit.

3.3. Type 2: the connection formulae for the case (f+ − f−)∼O(δ)
When the distance between the two resonant curves y= f+(z) and y= f−(z) becomes
comparable to the dissipative layer thickness δ defined in (3.24) or less, we must
consider another type of inner expansion; we refer to that interaction problem as
type 2.

It is convenient to introduce the curve y = f (z) near the two resonant curves,
assuming that (aUn − Uan)|n=0 is satisfied there. In the vicinity of this curve, the
fluid and magnetic streaks admit a small n expansion

U =
λu

λa
(δλ0 + λan)+ · · · , a= (δλ0 + λan)+ · · · , (3.42a,b)

where λ0, λu, λa are functions of the tangential coordinate l attached to the curve y=
f (z).

If we define the new variable n̂= n+ δλ0/λa, then Λ∼O(n̂2) when n̂ is small. This
means that the pressure Frobenius expansion for small n̂ can be written as

q̃= q̃0(l)+ q̃2(l)n̂2
+ q̃3L(l)n̂3(ln |n̂| + iΘ)+ q̃3(l)n̂3

+ · · · . (3.43)

When we compare this expansion and (3.19), we see that now the logarithmic
singularity occurs at a higher order than type 1.

Here, the coefficients q̃0 and q̃3 are the constants to be determined by the boundary
conditions, and the substitution of the expansions Λ = λ1(l)n̂2

+ λ2(l)n̂3
+ · · · , and

(3.43) to (3.18) yields

q̃2 =
1
2

(
q̃′′0 −

λ′1
λ1

q̃′0 − α
2q̃0

)
, (3.44a)

q̃3L =
1
3

{(
2λ2

λ1
− 2χ

)
q̃2 + 2χ q̃′′0 + χ

′q̃′0 +
λ′1
λ1

(
λ′2
λ′1
−
λ2

λ1
− 2χ

)
q̃′0

}
. (3.44b)

The expansion (3.43) and the body-fitted coordinate expression of (3.6) implies the
small n̂ asymptotic behaviours

ũ, ã∼O(n̂−1), Ṽ, B̃∼O(n̂0), W̃, C̃ ∼O(n̂−1). (3.45a−c)

The above limiting forms suggest that the leading-order inner expansions for W̃ and
C̃ are unchanged from the previous case (3.25f,g) to the leading order, but with the
inner variable N= n̂/δ, where the thickness remains δ=R−1/3. The normal component
of the hydrodynamic wave equation again gives the pressure of the form q̃= Q̃0(l)+
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· · · , and then the l-component of the momentum and induction wave equations can
be found as

iαN(λuW̃0 − λaC̃0)=−Q̃′0 + W̃0NN, (3.46a)

iαN(λuC̃0 − λaW̃0)= P−1
m C̃0NN, (3.46b)

to leading order. Multiplying the second equation by hPm with a function h(l) and
adding it to the first equation, we have

iαN{(λu − Pmhλa)W̃0 + (Pmhλu − λa)C̃0} =−Q̃′0 + (W̃0NN + hC̃0NN). (3.47)

If we choose h(l) so that

Pmhλu − λa

λu − Pmhλa
= h, (3.48)

namely

h± =
1
2

{
−
λu

λa
(1− P−1

m )±

√
λ2

u

λ2
a

(1− P−1
m )

2 + 4P−1
m

}
, (3.49)

then (3.47) becomes (
∂2

∂ζ 2
− ζ

)
(W̃0 + h±C̃0)=

Q′0
(iα|λ±|)2/3

, (3.50)

where

λ± = λu − Pmh±λa, ζ± = sgn(λ±)(iα|λ±|)1/3N. (3.51a,b)

Therefore, the solution can again be solved in terms of the function S defined in
(3.31):

W̃0 + h±C̃0 =
Q̃′0S(ζ±)
(iα|λ±|)2/3

. (3.52)

Here, we assumed |λu| 6= |λa| for all l (if that assumption is violated, then either λ+ or
λ− vanishes so the solution above breaks down). Hence the l-component of the inner
wave solutions are explicitly solved as

W̃0 =
Q̃′0

h+ − h−

(
h+S(ζ−)
(iα|λ−|)2/3

−
h−S(ζ+)
(iα|λ+|)2/3

)
, (3.53a)

C̃0 =
Q̃′0

h+ − h−

(
S(ζ+)

(iα|λ+|)2/3
−

S(ζ−)
(iα|λ−|)2/3

)
. (3.53b)

The typical behaviour of the solutions is shown in figure 4(a).
Similar to the previous section, we can now derive the roll vorticity/current jump

using the inner wave solutions. As before, [Vn]
+

−
= [Bn]

+

−
= 0 from the solenoidal

conditions; additionally, we need to examine the inner roll equations to find the jump
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FIGURE 4. (Colour online) A similar plot to figure 3 but for type 2 interaction. The
upper panel is the plot of the inner wave solution (3.53). The lower panel shows the
corresponding wave forcing to the hydrodynamic roll component (3.56). The limiting value
calculated by (3.57) is shown by the dashed line.

occurring in the l-components. Applying the inner roll expansions shown in (3.35) to
the roll equations, the jump conditions can be found as

δ−1ε2χ

∫
∞

−∞

(|W̃0|
2
− |C̃0|

2) dN + c.c.+ · · · = [Q0]
∞

−∞
, (3.54a)

δ−1ε2 ∂

∂l

∫
∞

−∞

(|W̃0|
2
− |C̃0|

2) dN + c.c.+ · · · = [W1N]
∞

−∞
, (3.54b)

ε2Pm

{
[ṼC̃∗ − B̃W̃∗

]
+

−
+ χ

∫
∞

−∞

(B̃0W̃∗0 − Ṽ0C̃∗0) dN
}
+ c.c.+ · · · = [C1N]

∞

−∞
. (3.54c)

The above results are an analogue to (3.36) for type 1 but here (|W̃0|
2
− |C̃0|

2) does
not vanish as the leading-order inner magnetic wave is not frozen. Therefore, in order
to balance the roll shear and the forcing terms from the waves, we must choose the
smaller wave amplitude

ε = δ1/2 (3.55)

than the previous case.
The numerical computation of

JN0(N, l)=
∫ N

−N0

{|W̃0(N∗, l)|2 − |C̃0(N∗, l)|2}dN∗ + c.c. (3.56)
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for N0 = 20 shown in the lower panel of figure 4 suggests that there is indeed
a contribution from the inner wave to the jump in the roll vorticity. The limiting
behaviour J(l)≡ limN→∞ JN(N, l) can be found analytically (see § A.3):

J =
2|Q̃′0|

2G0(0)
(α|λ+|)5/3(h+ − h−)2

{
(h2
+
− 1)r5/3

+ (h2
−
− 1)+

24/3(1− h+h−)r
|1+ σ r|1/3

}
, (3.57)

where

G0(0)=π(2/3)2/3Γ (1/3)≈ 6.4227 (3.58)

(the function G0(X) is to be defined in (4.18)). The limiting value calculated by (3.57)
for the special case is indicated in the lower panel of figure 4 by the dashed line.

Given J, the jump conditions are obtained as

[V1N]
∞

−∞
= [B1N]

∞

−∞
= [C1N]

∞

−∞
= 0, [Q0]

∞

−∞
= χJ, [W1N]

∞

−∞
= J′. (3.59a−c)

The jump conditions, rewritten in terms of the outer variables, the wave equation (3.5),
and the vortex equations (3.8) constitute a closure: now, ε is chosen to be small so
the term proportional to ε2 is negligible in (3.8a).

To close this section, we shall make a few remarks. First, the analytic expression
for J is still valid for the limit of Pm→∞:

J(l)=
2|Q̃′0|

2G0(0)
(α|λu|)5/3

λ2
u − λ

2
a

λ2
u

. (3.60)

The limiting form of the vortex equations can be easily found by simply dropping the
terms proportional to P−1

m from (3.8). Note that the jump in the leading-order magnetic
roll remains zero despite the factor Pm in (3.54c). This is because any non-zero jump
should be produced by the resistive part of the wave, which is O(P−1

m ) times smaller
than the leading-order wave in the dissipative layer.

Second, if we take the hydrodynamic limit λa→ 0 in (3.57), the jump condition
reduces to that for the vortex/Rayleigh wave interaction:

J(l)=
2|Q̃′0|

2G0(0)
(α|λu|)5/3

. (3.61)

This is of course the expected result because, in the absence of the magnetic effect,
the entire system should become the reduced Navier–Stokes equations derived by Hall
& Smith (1991).

3.4. The interaction diagram
Here, we shall clarify the physical driving mechanism of the vortex/Alfvén wave
interaction states using the derived asymptotic closure. We begin by reviewing the
sustainment mechanism of the hydrodynamic roll-streak flow studied, for example,
by Waleffe (1997). Consider the vortex equations (3.3a) at finite Reynolds numbers.
If we define the roll streamfunction ψ so that v = ψz, w = −ψy, we have the
forced advection–diffusion equation for the hydrodynamic streak and the roll vorticity
ω=−12ψ ,

P−1
m (ψz∂y −ψy∂z)u−∆2u= the forcing terms, (3.62)
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P−1
m (ψz∂y −ψy∂z)ω−∆2ω= the forcing terms, (3.63)

where the forcing terms are from the right-hand sides of (3.3a). Then, multiplying
(3.62) by u, (3.63) by ψ and integrating over the domain (here we denote the average
over [0, 2π/α] × [−1, 1] × [0, 2π/β] by 〈 〉), we get

〈u2
y + u2

z 〉 = the terms associated with the forcing, (3.64)

〈ω2
〉 = the terms associated with the forcing, (3.65)

which we integrate by parts, assuming that the boundary parts vanish. This is indeed
the case if the domain is bounded by periodic and no-slip boundaries. The above
equations imply that ω = uy = uz = 0 everywhere, and we can further show that the
perturbation is actually zero identically. Therefore, if there is no forcing term, then
there is no non-trivial solution.

Likewise, we can define a ‘streamfunction’ for the magnetic roll (namely the
toroidal magnetic potential) as b = φz, c = −φy. Then we can regard the magnetic
streak and roll equations (3.3b) as the forced advection–diffusion equations

(ψz∂y −ψy∂z)a−∆2a= the forcing terms, (3.66)
(ψz∂y −ψy∂z)φ −∆2φ = the forcing terms. (3.67)

Multiplying (3.66) by a, (3.67) by φ and integrating them over the domain, we have

〈a2
y + a2

z 〉 = the terms associated with the forcing, (3.68)

〈φ2
y + φ

2
z 〉 = the terms associated with the forcing. (3.69)

Here again we have assumed that the boundary terms vanish when they are integrated
by parts. (If the domain is surrounded by periodic, perfectly insulating and/or
perfectly conducting boundaries, the discussion here is valid.) Thus, similar to the
hydrodynamic cases, there is no non-trivial solution if there is no forcing term. This
is the large radius limit manifestation of Cowling’s anti-dynamo theorem (Cowling
1934) that motivated the physical interpretation of the MHD self-sustaining process of
Rincon et al. (2007) and Rincon et al. (2008), where the Reynolds–Maxwell stresses
and electromotive force by magneto-rotational instability waves are used to drive
the roll components. More recently, Herreman (2018) found a possible relationship
between a sustained cycle and some critical layer-like structures in the optimised
perturbations of the induction equations at large magnetic Reynolds numbers.

Figure 5 shows the interaction diagram inspired by these works and the earlier work
of Waleffe (1997), but here it is fully based on the asymptotically reduced equations
for the vortex/Alfvén wave interaction. The arrows in the figure show the interactions
below:

(i) The arrow from the hydrodynamic roll to the hydrodynamic streak represents the
lift-up term U′bv in the hydrodynamic streak equation (see (3.8a)).

(ii) The arrow from the magnetic roll to the magnetic streak represents the term U′bb
in the magnetic streak equation (see (3.8b)). In dynamo terminology this term
corresponds to the omega effect.

(iii) The arrow from the magnetic roll and the magnetic streak to the hydrodynamic
streak represents the roll-streak Lorentz force terms in the hydrodynamic streak
equation. The small arrow from the magnetic roll to the hydrodynamic roll also
represents the Lorentz force due to the self-interaction of the magnetic rolls.
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Magnetic
streak

Hydrodynamic
streak

External magnetic field

Alfvén wave

Hydro-
dynamic

roll
Magnetic

roll

FIGURE 5. (Colour online) Illustration of the interaction diagram inferred by the
vortex/Alfvén wave interaction theory.

(iv) Both the hydrodynamic and magnetic streaks create the Alfvén wave instability
through (3.5), as shown by the arrow from the streak to the wave.

(v) The jump conditions (3.41) or (3.59) produce the forcing to the hydrodynamic
roll as indicated by the arrow from the wave to the hydrodynamic roll. In type
2, this jump is the sole mechanism of the feedback effect, whilst in type 1, it also
occurs in the outer region. In dynamo terminology, these feedbacks correspond to
the alpha effect.

The most striking feature of this diagram is that there is no forcing mechanism for
the magnetic roll components. This means that the leading-order part of the magnetic
roll cannot be maintained without some external field to support it. In the absence
of magnetic roll, the omega effect is lost, so we have a small leading-order magnetic
streak. This means that the wave instability is now purely hydrodynamic; so we are
left merely with a hydrodynamic self-sustained process with no magnetic effect.

We could add a small external magnetic field of O(R−1
m ) to drive the magnetic roll

component. However, note that the generated much bigger magnetic streak of O(1)
when the b component is supported by the external field is not a dynamo in the usual
sense, because this is merely the amplification through the omega effect.

Nevertheless, the vortex/Alfvén wave interaction states can be used to generate
non-trivial amplification mechanisms of magnetic fields. For example, consider plane
Couette flow with a small external uniform spanwise magnetic field of O(R−1

m ) (or
more generally, assume that it does not depend on z). In this case the generation of
the b component is non-trivial so it is not clear if the omega effect can be driven. The
flow remains always linearly stable. However, the nonlinear finite Reynolds number
computation in Deguchi (2019) indeed found non-trivial streamwise magnetic field
amplification. The generation of that magnetic streak must be explained by the entire
vortex/Alfvén wave interaction mechanism shown in the figure. More precisely, the b
component needed for the omega effect is induced by the hydrodynamic roll, which
should be maintained by the three-dimensional Alfvén wave.
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4. The self-sustained shear-driven dynamo theory
The result derived in the last section does not actually mean that dynamos are not

possible in the limit of zero external magnetic fields. This is because the conclusion at
the end of § 3 only inhibits the presence of a magnetic field whose size is appropriate
to the leading-order vortex/Alfvén interaction. In fact, a dynamo theory is possible
for the purely shear-driven cases if we choose slightly smaller sized leading-order
magnetic fields. The asymptotic theory here is partially motivated by the numerical
finding of such dynamos, to be shown in Deguchi (2019).

In order to formulate the asymptotic theory for such self-sustained shear-driven
dynamos, S3 dynamos for short, we consider the leading order of the roll-streak-wave
magnetic field to be smaller than the corresponding hydrodynamic parts by a factor of
δm� 1. One may think the dynamo becomes merely kinematic in that case, but later
it turned out that the magnetic wave is more amplified than the hydrodynamic wave
around the resonant curve to drive the nonlinear dynamo process. That amplification
also allows the inner wave electromotive force to cause a finite number of jumps in
the outer roll current so that any additional external force is no longer necessary to
drive the whole dynamo process, as opposed to case of the previous section.

The outer expansions of the S3 dynamos areu
v
w
q

=
Ub + u

R−1v

R−1w
R−2q

+ εR−1

eiαx

 ũ
ṽ
w̃
q̃

+ c.c.

 , (4.1a)

a
b
c

= δm

 a
R−1b
R−1c

+ εδmR−1

eiαx

ã
b̃
c̃

+ c.c.

 . (4.1b)

Here and hereafter, we restrict our attention to Pm = 1 for the sake of simplicity
(otherwise the analysis become much more complicated, although the asymptotic
closure can be found in a similar way). Under this outer scaling, we have the
leading-order outer roll-streak equations

[(v∂y +w∂z)− (∂
2
y + ∂

2
z )]

u
v
w

+
 0

qy
qz

=
−U′bv

0
0

 , (4.2a)

[(v∂y +w∂z)− (∂
2
y + ∂

2
z )]

a
b
c

− [b∂y + c∂z]

0
v

w

=
U′bb+ (b∂y + c∂z)u

0
0

 , (4.2b)

vy +wz = 0, by + cz = 0, (4.2c,d)

and the leading-order outer wave equations(
q̃y

U2

)
y

+

(
q̃z

U2

)
z

− α2 q̃
U2
= 0, U =Ub + u− s, (4.2e)

which becomes singular when U= 0. The other wave components can be related to q̃
through (3.6). The outer Lorentz force terms are completely neglected so no feedback
from the magnetic field to the hydrodynamic field can be found in the above equations.
However, as we shall see shortly, feedback does exist within the dissipation layer
occurring around the resonant curve.
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Let us write the location of the resonant curve as y= f (z) and consider the body-
fitted coordinate (n, l) attached to that curve. There is one resonant curve in the flow
so the behaviour of the outer wave pressure is the same as type 2; see (3.43). The
key to the S3 dynamo theory is in the behaviours of the wave near the resonant curve

ũ∼O(n−1), Ṽ ∼O(n0), W̃ ∼O(n−1), (4.3a−c)

ã∼O(n−2), B̃∼O(n−1), C̃ ∼O(n−2), (4.3d−f )

inferred by the wave pressure expansion and the body-fitted coordinate version of
(3.6). The behaviour (4.3) implies that near the resonant curve the small outer wave
magnetic field is more amplified than the hydrodynamic counterpart. Thus, if we
choose

δm = δ, (4.4)

with δ defined at (3.24), then within the dissipative layer, the hydrodynamic and
magnetic waves become comparable in size. In that case, the corresponding inner
wave expansions can be found as

q̃= Q̃0(N, l)+ δ2Q̃2(N, l)+ (δ3 ln δ)Q̃3L(N, l)+ δ3Q̃3(N, l)+ · · · , (4.5a)

ũ= δ−1Ũ0(N, l)+ · · · , ã= δ−2Ã0(N, l)+ · · · , (4.5b,c)

Ṽ = Ṽ0(N, l)+ · · · , B̃= δ−1B̃0(N, l)+ · · · , (4.5d,e)

W̃ = δ−1W̃0(N, l)+ · · · , C̃ = δ−2C̃0(N, l)+ · · · , (4.5f ,g)

where N = n/δ with the thickness δ = R−1/3, whilst the roll field expansions are
unchanged from (3.35).

As remarked earlier, the scaling (4.4) is motivated so that both of the wave
Reynolds and Maxwell stresses contribute to the vorticity jump in the roll field. The
leading-order part of the l- and n-components of the hydrodynamic roll equations
yield

∂

∂l

∫
∞

−∞

(|W̃0|
2
− |C̃0|

2)dN + c.c.= [W1N]
∞

−∞
, (4.6a)

χ

∫
∞

−∞

(|W̃0|
2
− |C̃0|

2)dN + c.c.= [Q0]
∞

−∞
, (4.6b)

where we choose ε = δ1/2 of type 2. As we shall see shortly, the left-hand sides of
the above equations are non-vanishing, so the hydrodynamic and magnetic fields are
strongly coupled.

On the other hand, for the inner magnetic roll equations, the balance of the
magnetic roll stress and the wave electromotive force must be altered from type 2.
Now the magnetic roll size is O(δ) smaller from (4.1b) with (4.4), but the inner
magnetic wave size is unchanged from type 2 due to the singular behaviour (4.3). As
a result, the l-component of the magnetic roll equations becomes

χ

∫
∞

−∞

(B̃0W̃∗0 − Ṽ0C̃∗0) dN + c.c.= [C1N]
∞

−∞
. (4.6c)
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The above equation suggests that there is a finite current jump occurring in the
magnetic roll component unlike the vortex/Alfvén interaction. Therefore, the dynamo
can be driven purely by shear, without any external force on the magnetic roll
component.

The derivation of the left-hand sides in (4.6) is more complicated than the previous
sections, although the first few steps are similar. Upon making use of expansions (4.5)
to the hydrodynamic and magnetic wave equations and neglecting small terms, we
have

iα(λNŨ0 − γ Ã0)+ λṼ0 + λ
′NW̃0 − γ

′C̃0 =−iαQ̃0 + Ũ0NN, (4.7a)

0=−Q̃0N, (4.7b)

iα(λNW̃0 − γ C̃0)=−Q̃0l + W̃0NN, (4.7c)

iα(λNÃ0 − γ Ũ0)− λB̃0 − λ
′NC̃0 + γ

′W̃0 = Ã0NN, (4.7d)

iα(λNB̃0 − γ Ṽ0)= B̃0NN, (4.7e)

iα(λNC̃0 − γ W̃0)= C̃0NN, (4.7f )

where, we used the Taylor expansions of the hydrodynamic streak U = λ(l)n + · · ·
and the magnetic streak a= γ (l)+· · · around n= 0. Additionally, from the solenoidal
conditions,

iαŨ0 + Ṽ0N + W̃0l = 0, (4.7g)

iαÃ0 + B̃0N + C̃0l = 0. (4.7h)

These equations must be solved subject to the matching conditions at the far field
|N|→∞, namely Q̃0→ q̃0 and

Ũ0→−
q̃′′0 −

λ′

λ
q̃′0

λα2

1
N
, Ṽ0→−

q̃′′0 −
2λ′

λ
q̃′0 − α

2q̃0

iαλ
, W̃0→−

q̃′0
iαλ

1
N
, (4.8a−c)

Ã0→−

γ ′

γ
q̃′0 + α

2q̃0

λα2

N0

N2
, B̃0→−

q̃′′0 −
2λ′

λ
q̃′0 − α

2q̃0

iαλ
N0

N
, C̃0→−

q̃′0
iαλ

N0

N2
, (4.8d−f )

where N0(l)= γ /λ.
From (4.7b), the pressure Q̃0 is a function of l only and equals q̃0. Then we can

solve for W̃0, C̃0 using the l-components of the wave equations (4.7c), (4.7f ). Those
equations can be simplified as(

∂2

∂ζ 2
∓

− ζ∓

)
(W̃0 ± C̃0)=

Q̃′0
(iα|λ|)2/3

, (4.9)

using the new variables

ζ± = sgn(λ)(iα|λ|)1/3(N ±N0). (4.10)

The solutions of (4.9) can be found in terms of the function S defined in (3.31), and
we have

W̃0 =
Q̃′0

(iα|λ|)2/3
S(ζ−)+ S(ζ+)

2
, C̃0 =

Q̃′0
(iα|λ|)2/3

S(ζ−)− S(ζ+)
2

. (4.11a,b)
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Next from (4.7a), (4.7d), (4.7e) and (4.11) we have the equations(
∂2

∂ζ 2
∓

− ζ∓

)(
Ũ0 +

λ

iαγ
B̃0 ± Ã0

)
=
(λ′N ± γ ′)Q̃′0
(iα|λ|)4/3

S(ζ±)+
iαQ̃0

(iα|λ|)2/3
, (4.12)

which give the solutions

Ũ0 +
λ

iαγ
B̃0 =

(
iαQ̃0 −

λ′Q̃′0
iαλ

)
S(ζ+)+ S(ζ−)

2(iα|λ|)2/3
+
λ′Q̃′0
(iαλ)N0

ζ+S(ζ+)− ζ−S(ζ−)
2(iα|λ|)

, (4.13)

Ã0 =

(
γ ′Q̃′0
iαγ
− iαQ̃0

)
S(ζ+)− S(ζ−)

2(iα|λ|)2/3
. (4.14)

Now Ã0, C̃0 given in (4.11), (4.14) can be used to integrate the magnetic solenoidal
condition (4.7h) with respect to N. Selecting the integration constant to satisfy the
matching condition, the normal component of the magnetic field can be found as

B̃0 =−Q̃00
κ(ζ−)− κ(ζ+)

2(iα|λ|)
−
λ′Q̃′0
3λ

ζ−S(ζ−)− ζ+S(ζ+)
2(iα|λ|)

+ Q̃′0N ′0
S(ζ−)+ S(ζ+)

2(iα|λ|)2/3
, (4.15)

where the function κ is defined in (3.32).
Finally, the last component Ṽ0 matching the outer solution can be found by

integrating the continuity equation (4.7g).

Ṽ0 = −Q̃00
κ(ζ−)+ κ(ζ+)

2(iα|λ|)
−
λ′Q̃′0
3λ

ζ−S(ζ−)+ ζ+S(ζ+)
2(iα|λ|)

+ Q̃′0N ′0
S(ζ−)− S(ζ+)

2(iα|λ|)2/3

−
Q̃00

N0

ζ−κ(ζ−)+ ζ+κ(ζ+)

2(iα|λ|)4/3
+

1
N0

(
Q̃00 +

2λ′Q̃′0
3λ

)
S′(ζ−)− S′(ζ+)

2(iα|λ|)4/3

−
1

iα|λ|

(
2Q̃00 −

4λ′Q̃′0
3λ
+
γ ′Q̃′0
γ

)
. (4.16)

Using the above wave solutions to (4.6) and doing some algebra (see § A.4), the
jumps in terms of the outer variables can be found as

[q]0+n=0− = χ

(
2|q̃l|

2G0

(α|Un|)5/3

)∣∣∣∣
y=f

, (4.17a)

[{(v,w) · el}n]
0+
n=0− =

(
2|q̃l|

2G0

(α|Un|)5/3

)
l

∣∣∣∣
y=f

, (4.17b)

[{(b, c) · el}n]
0+
n=0− = χ

(a/Un)

(α|Un|)5/3

({
|q̃l|

2
− α2
|q̃|2
}

l G1

+ 2|q̃l|
2

{
(a|Un|

−2/3)l

a|Un|
−2/3

G0 −
(a|Un|

2/3)l

a|Un|
2/3

G1

})∣∣∣∣
y=f

, (4.17c)

where

G0(X)= 2π

∫
∞

0
cos(2Xt)e−(2/3)t

3
dt, G1(X)= 2π

∫
∞

0

1− cos(2Xt)
X2

te−(2/3)t
3

dt,

(4.18a,b)
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FIGURE 6. The functions G0 and G1 computed numerically. Note that these are even
functions.

Magnetic
streak

Hydrodynamic
streak

Rayleigh
wave

Alfvén
wave

Hydro-
dynamic

roll
Magnetic

roll

FIGURE 7. (Colour online) Illustration of the interaction diagram inferred by the S3

dynamo theory.

are evaluated at X = (α|Un|)
1/3(a/Un). These special functions are numerically

evaluated in figure 6.
The interaction diagram in figure 7 is formulated using the asymptotic closure

for the S3 dynamo, namely (4.2) and (4.17). There is no arrow from the magnetic
roll/streak to the hydrodynamic roll/streak because there are no Lorentz force terms
in the outer equations. The instability wave is merely a Rayleigh wave to leading
order, because it is purely driven by the hydrodynamic streak. However, it interacts
with the magnetic streak to produce an Alfvén wave at higher order. The Rayleigh
and Alfvén waves amplified within the dissipative layer induce the feedback effects to
both the hydrodynamic and magnetic roll components through the jumps, originating
from the wave Reynolds–Maxwell stress and the wave electromotive force.

5. Conclusion and discussion
We have derived two three-dimensional nonlinear MHD theories using large

Reynolds number matched asymptotic expansion of the incompressible viscous–
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resistive MHD equations. The closures at the asymptotic limit are found by
considering the interaction between the roll, streak and wave, defined both for the
velocity and magnetic fields. The magnetic Prandtl number is assumed to be O(R0)
or larger, except for appendix B.

The asymptotic MHD state we are primarily concerned with is derived by
considering a similar roll-streak scaling as the usual vortex/wave interaction for both
hydrodynamic and magnetic components. Therefore, the theory could be viewed
as a third type of interaction, vortex/Alfvén wave interaction say, followed by
vortex/Tollmien–Schlichting wave interaction (Hall & Smith 1990; Bennett et al.
1991; Dempsey et al. 2016) and vortex/Rayleigh wave interaction (Hall & Smith
1991; Hall & Sherwin 2010). The Alfvén wave is generated by the instability of the
mean streamwise hydrodynamic and magnetic fields of O(R0) (namely, streaks). In
the majority of the flow, the wave part satisfies the inviscid equation to leading order;
so the cross-stream components of the magnetic wave field are frozen to those of the
hydrodynamic wave field; see (3.7).

The wave amplitude must be found by the analysis within the dissipative layer of
thickness δ = R−1/3 surrounding the Alfvén resonant curves that occur whenever the
modulus of the Doppler-shifted hydrodynamic streak and the modulus of the magnetic
streak coincide. As well established in the resonant absorption theory, the wave there
is amplified in a singular manner, although here, the singularity occurs on a curve
rather than a point. The strong vortex and current sheets that emerge there strongly
force the hydrodynamic roll components via the wave Reynolds and Maxwell stresses.
The resultant vorticity jumps in the outer roll solutions can be found using curved
coordinate.

If the two resonant curves are well separated, the leading-order flow within the
dissipative layer is still frozen because of the lack of diffusivity at this order. The
frozen effect cancels the leading-order Reynolds and Maxwell stresses so that the
feedback effect to the roll components becomes weaker than the hydrodynamic
case. As a result, we must choose a larger wave amplitude, which makes the outer
wave Reynolds and Maxwell stress terms important as well. The smooth analytic
solution within the dissipative layer, similar to the two-dimensional cases (Sakurai
et al. 1991; Goossens et al. 1992, 1995; Erdélyi et al. 1995; Erdélyi 1997), can be
used to determine how to connect the outer roll solutions across the resonant curves.
The scalings of the roll and streak are O(R−1P−1

m ) and O(1) respectively, which are
typical for a viscous–resistive roll-streak field. The amplitude of the inviscid wave
is O(R−1P−1/2

m ) in the majority of the flow, but it is amplified within the dissipative
layer of thickness O(R−1/3) to be larger O(R−2/3P−1/2

m ).
The aforementioned scenario, called type 1, breaks down when the distance between

the two resonant curves become less than the dissipative layer thickness. In this case,
called type 2, the two dissipative layers merge and the nature of the singularity
there becomes similar to vortex/Rayleigh wave interaction. The cancellation of the
inner Reynolds and Maxwell stresses does not occur because the leading-order inner
wave is dissipative. This means that the wave amplitude should be kept at the same
size as the hydrodynamic case. The analytic form of the jumps for type 2 can
also be found, and it is shown that, at the limit of vanishing magnetic effects, the
jump conditions derived in Hall & Smith (1991) can be recovered. The roll-streak
scaling is unchanged from type 1, but for type 2 we must choose a smaller outer
wave amplitude of O(R−7/6P−1/2

m ), which becomes larger O(R−5/6P−1/2
m ) within the

dissipative layer.
For both types, the wave has an ability to modify the background flow to leading

order, and hence the nonlinear MHD states can be realised without any linear
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instability of the base flow. However, an important caveat has been found from the
interaction diagram based on asymptotic closure pictured in figure 5; the leading-order
magnetic fields of the vortex/Alfvén wave interaction states cannot be sustained
without a weak external magnetic field forcing the magnetic roll components. The
nonlinear states nonetheless can drive a non-trivial magnetic field amplification
mechanism since if, for example, a spanwise uniform magnetic field of O(R−1

m ) is
applied, they generate a much bigger streamwise magnetic field of O(1); see the
comments at the end of § 3.

Despite the caveat, for some cases, dynamos of slightly different structures can
be driven even when the external magnetic field is switched off, as shown by the
rather surprising numerical results in the companion paper (Deguchi 2019). Section 4
successfully formulated the asymptotic theory for purely shear-driven dynamos (the
S3 dynamos), revealing that the magnetic field generation indeed survives at the large
Reynolds number limit. The key to the S3 dynamo theory is that we have to take a
different scaling for the hydrodynamic and magnetic components. The outer Alfvén
wave of O(R−3/2P−1/2

m ) is the secondary effect produced as a result of the interaction
between the leading-order outer Rayleigh wave of O(R−7/6P−1/2

m ) and the magnetic
streak of O(R−1/3). The wave resonance, which is now found at the classical critical
layer position, amplifies both the hydrodynamic and magnetic waves, to be the same
size of O(R−5/6P−1/2

m ). Therefore, the inner wave electromotive force is no longer
negligible, and hence, both of the waves now have an ability to drive both the
hydrodynamic roll components of O(R−1P−1

m ) and the magnetic roll components of
O(R−4/3P−1

m ) to sustain the entire dynamo mechanism without any external magnetic
field. The mean-flow modulation mechanisms, which in turn occur as a result of the
lift-up and omega effects, are indispensable for generating the magnetic waves, in
view of Zel’dovich’s anti-dynamo theorem (Zel’dovich 1957).

Those above travelling wave theories could be extended to describe more general
time dependent solutions. However the formulation becomes much more complicated
(see Deguchi & Hall (2016) for purely hydrodynamic cases) and thus that possibility
is omitted in this paper. When the wave is not neutral, Ruderman, Tirry & Goossens
(1995) showed that the motion in the dissipative layer is very different, although it
turned out that the jump condition is not affected by the account of non-stationarity
in the dissipative layer.

Finally, we briefly comment on the effect of the system rotation to the theory. When
that effect exists, we must add the Coriolis term

Ω

−vu
0

 (5.1)

to the left-hand side of the momentum equations (3.1a). Here, Ω is the non-
dimensionalised rotation parameter, and the shear–Coriolis instability exists for
Ω ∈ (0, 1) according to Rayleigh’s stability criterion. The Coriolis term brings a
new interaction term from the streak to the roll. We have assumed throughout the
paper that the roll components are much smaller than the streak components in order
to balance the viscous and convective effects in the roll-streak equations. In order
to further balance the new interaction term under this roll-streak scaling, we have to
choose Ω ∼O(R−2

m )� 1. This means that the Keplerian rotation of Ω = 4/3 destroys
the assumed asymptotic balance of the asymptotic theories in this paper, and this
may be the reason why it is so difficult to maintain nonlinear dynamo states in the
large Reynolds number regime (Rincon et al. 2007, 2008; Riols et al. 2013).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.178


High-speed shear-driven dynamos. Part 1. Asymptotic analysis 205

We further remark here that the recent work by Deguchi (2017) nonetheless
suggests the presence of Keplerian asymptotic dynamo states if the vortices have
short enough wavelengths. In the latter work, it was shown that, for stably stratified
flow, small vortices at the Kolmogorov microscale, found by Deguchi (2015), can
persist for an O(1) Richardson number where the vortex/wave interaction states are
impossible. Applying the analogy between the stratified and rotating flows, which
has long been recognised (Veronis 1970), we arrive at the conjecture that the short
wavelength asymptotic dynamo states might survive even when Ω ∼O(1).
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Appendix A. Useful formulae
A.1. Derivation of the logarithmic jump

The limiting form of the function κ defined in (3.32) can be found as follows. If we
write ζ = i1/3N∗ and σ = sgn(λλ0), then

− κ =

∫
∞

0

1− e−iσN∗t

t
e−(t

3/3) dt

=

∫
∞

0

1− e−t3/3

t
e−itσN∗ dt+

∫
∞

0

e−t3/3
− cos t
t

dt

+

∫
∞

0

cos t− cos(tN∗)
t

dt+ i
∫
∞

0

sin(σ tN∗)
t

dt. (A 1)

On the right-hand side, the first term becomes small for large |N∗| (integrating by
parts), the second term is a constant, the third term is ln |N∗| (using cosine integral)
and the fourth term is (iπ/2)sgn(σN∗) (using Dirichlet integral).

A.2. Calculation of the limiting function J for type 1
Here we show J(l)≡ limN→∞ JN(N, l)= 0 for the function defined in (3.38). Firstly we
note (W̃∗0 W̃1 − C̃∗0C̃1)= W̃∗0 (W̃1 ± C̃1) from (3.26c) and further using (3.26d)–(3.26e)∫

∞

−∞

(W̃∗0 W̃1 − C̃∗0C̃1) dN + c.c.=
i

2αλ0

∫
∞

−∞

W̃∗0 {Q̃
′

0 + (P
−1
m − 1)W̃0NN} dN + c.c. (A 2)

Then from (3.30) we can write W̃0= Q̃′0(WR+ iWI), where the real functions WR and
WI have a symmetry

WR(−N, l)=WR(N, l), WI(−N, l)=−WI(N, l), (A 3a,b)

see figure 3(a). Hence the right-hand side of (A 2) should vanish because the
symmetry (A 3a,b) implies that the integral is a purely imaginary function plus
its complex conjugate.
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A.3. Calculation of the limiting function J for type 2
The limiting form of (3.56) can be found as follows. First we note

J ≡ lim
N→∞

JN(N, l)=
∫
∞

−∞

(|W̃0|
2
− |C̃0|

2) dN + c.c.

=
2|Q̃′0|

2

(h+ − h−)2

{
(h2
−
− 1)

∫
∞

−∞

∣∣∣∣ S(ζ+)
(iα|λ+|)2/3

∣∣∣∣2 dN + (h2
+
− 1)

∫
∞

−∞

∣∣∣∣ S(ζ−)
(iα|λ−|)2/3

∣∣∣∣2 dN

+ (1− h+h−)
∫
∞

−∞

((
S(ζ−)

(iα|λ−|)2/3

)(
S(ζ+)

(iα|λ+|)2/3

)∗
+ c.c.

)
dN
}
. (A 4)

If we write
r=
|λ+|

|λ−|
, σ = sgn(λ+λ−)= sgn(λ2

u − λ
2
a) (A 5a,b)

then we can compute∫
∞

−∞

(
S(ζ−)

(iα|λ−|)2/3

)(
S(ζ+)

(iα|λ+|)2/3

)∗
dN

=
1

(α2|λ−||λ+|)2/3

∫
∞

−∞

∫
∞

0

∫
∞

0
e−{(t

3
+τ 3)/3}eisgn(λ−)(α|λ−|)1/3{σ r1/3t−τ }N dt dτ dN

=
1

(α2|λ−||λ+|)2/3
2π

(α|λ−|)1/3

∫
∞

0

∫
∞

0
e−{(t

3
+τ 3)/3}δ̂(σ r1/3t− τ) dt dτ

=
1

(α2|λ−||λ+|)2/3
2π

(α|λ−|)1/3

∫
∞

0

∫
∞

0
e−(1+σ r)(τ 3/3)dτ

=
rG0(0)
(α|λ+|)5/3

(
2

1+ σ r

)1/3

, (A 6)

where we assumed r< 1 (if r> 1 the factor (1+ σ r) must be swapped for (σ + r) in
the final result) and the coefficient G0(0) is given in (3.58). Here we have used the
usual integral expressions of the Dirac delta function and the gamma function

δ̂(X)=
1

2π

∫
∞

−∞

eitX dt, Γ (X)=
∫
∞

0
tX−1e−t dt, (A 7a,b)

respectively. The formula (A 6) can be used to compute the third line in (A 4), whilst
the second lime can be worked out using similar calculations.

A.4. Calculation of the jumps for the S3 dynamos
Using the wave solutions, we can explicitly find some key terms on the left-hand side
of (4.6).

2
∫
∞

−∞

(|W̃0|
2
− |C̃0|

2) dN

= |Q̃′0|
2
∫
∞

−∞

(
S(ζ−)

(iα|λ|)2/3

)(
S(ζ+)

(iα|λ|)2/3

)∗
+

(
S(ζ+)

(iα|λ|)2/3

)(
S(ζ−)

(iα|λ|)2/3

)∗
dN, (A 8a)
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2
∫
∞

−∞

(B̃0W̃∗0 − Ṽ0C̃∗0) dN

=−Q̃00Q̃′∗0

∫
∞

−∞

(
κ(ζ−)

iα|λ|

)(
S(ζ+)

(iα|λ|)2/3

)∗
−

(
κ(ζ+)

iα|λ|

)(
S(ζ−)

(iα|λ|)2/3

)∗
dN

+
Q̃00Q̃′∗0

2N0

∫
∞

−∞

(
ζ−κ(ζ−)− ζ+κ(ζ+)

(iα|λ|)4/3

)(
S(ζ−)− S(ζ+)
(iα|λ|)2/3

)∗
dN

−
1

2N0

(
Q̃00Q̃′∗0 +

2λ′|Q̃′0|
2

3λ

)∫
∞

−∞

(
S′(ζ−)− S′(ζ+)
(iα|λ|)4/3

)(
S(ζ−)− S(ζ+)
(iα|λ|)2/3

)∗
dN

+

(
N ′0 +

λ′N0

3λ

)
2
∫
∞

−∞

(|W̃0|
2
− |C̃0|

2) dN. (A 8b)

In order to derive the final expression of the jumps, the following formulae may be
useful.∫

∞

−∞

(
ζ−κ(ζ−)− ζ+κ(ζ+)

(iα|λ|)4/3

)(
S(ζ−)− S(ζ+)
(iα|λ|)2/3

)∗
dN + c.c.

= 2N0

∫
∞

−∞

(
κ(ζ−)

iα|λ|

)(
S(ζ+)

(iα|λ|)2/3

)∗
−

(
κ(ζ+)

iα|λ|

)(
S(ζ−)

(iα|λ|)2/3

)∗
dN + c.c.

−

∫
∞

−∞

(
S′(ζ−)− S′(ζ+)
(iα|λ|)4/3

)(
S(ζ−)− S(ζ+)
(iα|λ|)2/3

)∗
dN + c.c., (A 9a)∫

∞

−∞

(
S(ζ−)

(iα|λ|)2/3

)(
S(ζ+)

(iα|λ|)2/3

)∗
dN + c.c.=

2G0((α|λ|)
1/3N0)

(α|λ|)5/3
, (A 9b)∫

∞

−∞

(
S′(ζ−)− S′(ζ+)
(iα|λ|)4/3

)(
S(ζ−)− S(ζ+)
(iα|λ|)2/3

)∗
dN =−

2N2
0 G1((α|λ|)

1/3N0)

(α|λ|)5/3
. (A 9c)

Appendix B. Small magnetic Prandtl number cases
Here, we perform a similar analysis as in § 3 but assume Pm � 1. We shall

shortly see that the magnetic roll-streak field satisfies a diffusion equation so it
must be supported by some constant external magnetic fields. This means that we
are concerned with the large Reynolds number asymptotic analysis of the so-called
inductionless limit.

B.1. The case Pm ∼O(R−1) or larger
The appropriate leading-order asymptotic expansion is

u
v

w
a
b
c
q


=



u
R−1v

R−1w
a

R−1
m B+ R−1b

R−1
m C+ R−1c

R−2q


+ εR−1


eiα(x)



ũ
ṽ
w̃
ã
b̃
c̃
q̃


+ c.c.


. (B 1)
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The constants B,C are the magnetic field applied externally. Using these asymptotic
forms in the governing equations and neglecting the small terms, we have the vortex
equations

[(v∂y +w∂z)−∆2]

u
v

w

+
 0

qy
qz

=
(B∂y +C∂z)a
(B∂y +C∂z)b
(B∂y +C∂z)c


− ε2

 0
{(|ṽ|2 − |b̃|2)y + (ṽw̃∗ − b̃c̃∗)z} + c.c.
{(|w̃|2 − |̃c|2)z + (ṽw̃∗ − b̃c̃∗)y} + c.c.

 , (B 2a)

−∆2

a
b
c

− [B∂y +C∂z]

u
v

w

= 0, (B 2b)

vy +wz = 0, by + cz = 0, (B 2c,d)

and the wave equationsUiα

 ũ
ṽ
w̃

+
ṽUy + w̃Uz

0
0


−

[aiα + R−1
m B∂y + R−1

m C∂z]

ã
b̃
c̃

+
b̃ay + c̃az

0
0

+
iαq̃

q̃y
q̃z

= R−1∆

 ũ
ṽ
w̃

, (B 3a)

Uiα

ã
b̃
c̃

+
ṽay + w̃az

0
0


−

[aiα + R−1
m B∂y + R−1

m C∂z]

 ũ
ṽ
w̃

+
b̃Uy + c̃Uz

0
0

= R−1
m ∆

ã
b̃
c̃

 , (B 3b)

iαũ+ ṽy + w̃z = 0, iαã+ b̃y + c̃z = 0. (B 3c,d)

Here, by assumption, R−1
m is O(1) or smaller. If both B,C are zero, (B 2b) is merely

a diffusion equation and, thus, there is no non-trivial solution for homogeneous
boundary conditions.

The size of Rm controls the existence of the singularity in the flow. When Rm

is O(1), there is a diffusion effect in the wave equations and, thus, there is no
singularity at all. The viscous terms in the momentum equations can safely be
switched off everywhere, and we must set ε = 1 to balance the wave Reynolds stress
term in the vortex equations. If R−1

m is smaller than O(1), the dissipative effect is
absent in the wave equations and thus there is an Alfvén resonant point singularity.
However the analysis of the dissipative layer is the same as in § 3, and so, we omit
that detail here.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.178


High-speed shear-driven dynamos. Part 1. Asymptotic analysis 209

B.2. The case Pm� R−1

Now Rm is set to be asymptotically small. The governing equations suggest that we
can further rescale the magnetic fields by a factor of R1/2

m from (B 1):

u
v

w
a
b
c
q


=



u
R−1v

R−1w
a

R−1/2
m B+ R1/2

m R−1b
R−1/2

m C+ R1/2
m R−1c

R−2q


+ εR−1


eiα(x)



ũ
ṽ
w̃

R1/2
m ã

R1/2
m b̃

R1/2
m c̃
q̃


+ c.c.


. (B 4)

Substitution of this asymptotic expression into the governing equations yields the
leading-order vortex system

[(v∂y +w∂z)−∆2]

u
v
w

+
 0

qy
qz


=−ε2

 0
{(|ṽ|2 − |b̃|2)y + (ṽw̃∗ − b̃c̃∗)z} + c.c.
{(|w̃|2 − |̃c|2)z + (ṽw̃∗ − b̃c̃∗)y} + c.c.

 , (B 5a)

−∆2

a
b
c

− [B∂y +C∂z]

u
v

w

= 0, (B 5b)

vy +wz = 0, by + cz = 0, (B 5c,d)

and the wave system

Uiα

 ũ
ṽ

w̃

+
ṽUy + w̃Uz

0
0

− [B∂y +C∂z]

ã
b̃
c̃

+
iαq̃

q̃y
q̃z

= 0, (B 6a)

−[B∂y +C∂z]

 ũ
ṽ

w̃

=∆
ã

b̃
c̃

 , (B 6b)

iαũ+ ṽy + w̃z = 0, iαã+ b̃y + c̃z = 0. (B 6c,d)

There is a diffusivity in the wave equations and, thus, there is no resonant layer
singularity. The appropriate choice of the wave amplitude is ε = 1. The form of the
magnetic roll-streak equation is unchanged from the previous case so the remark made
in § B.1 is also applicable here.
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