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The Hopf bifurcation from spike solutions for the classical Gierer–Meinhardt system in a one-
dimensional interval is considered. The existence of time-periodic solution near the Hopf bifurcation
parameter for a boundary spike is rigorously proved by the classical Crandall–Rabinowitz theory.
The criteria for the stability of the limit cycle are determined, and it is shown that the limit cycle is
unstable.
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1 Introduction

In this paper, we consider the following canonical one-dimensional Gierer–Meinhardt system
[6, 13] ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Ãt = ε2Ãxx − Ã + Ã2

H̃
, Ã> 0 for 0< x< 1, t> 0,

τ H̃ t = DH̃xx − H̃ + Ã2, H̃ > 0 for 0< x< 1, t> 0,

Ãx = H̃x = 0, for x = 0, 1, t ≥ 0,

(1.1)

where the unknowns Ã = Ã(x, t) and H̃ = H̃(x, t) characterise the concentrations of the activator
and inhibitor at a point x ∈ (0, 1) and at a time t> 0. Throughout this paper, we assume that

ε > 0 is a small parameter independent of x and t,
τ > 0 is a fixed constant independent of x, t and ε, and
D> 0 depends on ε but is independent of x and t.

We further assume that D = D(ε) → ∞ as ε→ 0 and call this the weak coupling, or shadow
limit, case.
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Using the reduction techniques of [24], one can easily show that the stationary system of (1.1)
has solutions with a single boundary spike at x = 0, as ε→ 0 and D = D(ε) → ∞ at a suitable
rate. (See also early work [18].) Since we consider a boundary single-spike solution at x = 0, it
is convenient to consider the even extension (with respect to the spatial variable x) of the system
(1.1) on the interval [−1, 1]. In this case, the spike solution becomes symmetric about x = 0.

The aim of this paper is to rigorously prove that, for ε > 0 sufficiently small, there exists a
Hopf bifurcation threshold for τ beyond which a time-periodic solution of (1.1) bifurcates from
the single-spike stationary solution. In addition, we prove that this Hopf bifurcation is subcritical,
i.e., the bifurcating time-periodic solution is unstable. Previous studies into Hopf bifurcations
for the one-dimensional Gierer–Meinhardt have used matched asymptotic expansions to derive
leading order (NLEPs) with purely imaginary eigenvalues for specific, numerically computed
values of τ [21, 22]. The numerical simulations in these studies suggest that the Hopf bifurcation
is subcritical, though a rigorous proof has not yet been given. The aim of this paper is to give the
first rigorous proof of the existence of time-periodic patterns and its sub-criticality.

To prove the existence, uniqueness and stability of the Hopf bifurcation, we use the classical
Crandall–Rabinowitz bifurcation theory [1]. More precisely, we use a more concise formulation
given in Theorem I.8.2 of [10].

Theorem 1.1 (Theorem I.8.2 of [10]) For the parameter-dependent evolution equation

dx

dt
= F(x, λ), (1.2)

in a Banach space Z, we make the regularity assumptions

F : U × V → Z is a C3 mapping, where 0 ∈ U ⊂ X (a Banach space),

and λ ∈ V ⊂R are open neighbourhoods,
(1.3)

F(0, λ) = 0, DxF(0, λ) exists in L(X , Z) for all λ ∈ V , (1.4)

X ⊂ Z is continuously embedded, (1.5)

iκ0( �= 0) is a simple eigenvalue of DxF(0, λ0) with eigenvector

ϕ0 �∈ R(iκ0I − DxF(0, λ0)), ±iκ0I − DxF(0, λ0) are Fredholm operators of index zero,
(1.6)

A0 = DxF(0, λ0) as a mapping in Z, with dense domain of definition D(A0) = X ,

generates an analytic semigroup eA0t ∈ L(Z, Z), t ≥ 0, that is compact for t> 0,
(1.7)

DxF(0, λ)ϕ(λ) =μ(λ)ϕ(λ) withμ(λ0) = iκ0,μ(λ) are simple eigenvalues,

and we assume the nondegeneracy (transversality) Re(μ′(λ0)) �= 0.
(1.8)

Then, there exists a continuously differentiable curve (x(r), λ(r)) of (real) 2π/κ(r)-periodic
solutions of (1.2) through (x(0), λ(0)) = (0, λ0) with 2π/κ(0) = 2π/κ0 in (C1+α

2π/κ(r)(R, Z) ∩
Cα

2π/κ(r)(R, X )) ×R. Every other periodic solution of (1.2) in a neighbourhood of (0, λ0) is
obtained from (x(r), λ(r)) by a phase shift Sθx(r). In particular, x(−r) = Sπ/κ(r)x(r), κ(−r) = κ(r),
and λ(−r) = λ(r) for all r ∈ (−δ, δ).
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We remark here that r ∈ (−δ, δ) is a technical parameter comes from the Liapunov reduction
procedure in the proof of the bifurcation theorem. Interested readers can consult the book [10]
for more details.

The linear stability of the bifurcating periodic solutions is obtained using Corollary I.12.3 in
[10]. Specifically, besides the conditions required for Theorem 1.1, stability is determined by
the sign of certain Floquet multipliers relative to a nondegeneracy condition of (1.8), only in this
case, we also need to know the sign of Re(μ′(λ0)) (cf. Theorem 7.1 and the explanation before it).

To apply these results, we need to write (1.1) in the form of an evolution equation

Ut =Fε(U) ≡LεU + R(τ , U), (1.9)

where

U =
[

U1

U2

]
=

[
Ã − Aε

H̃ − Hε

]
,

and

Lε =
[L1

L2

]
=

⎡
⎣ε2 d2

dx2 − 1 + 2Aε
Hε

− A2
ε

H2
ε

2
τ

Aε
1
τ

(
D d2

dx2 − 1
)
⎤
⎦ ,

denote the perturbation and linearisation about the stationary single-spike solution (Aε , Hε)T ,
respectively, and R(τ , U) indicates the remaining higher-order term

R(τ , U) =
⎡
⎣ (Aε+U1)2

Hε+U2
− A2

ε

Hε
− 2AεU1

Hε
+ A2

εU2

H2
ε

1
τ

U2
1

⎤
⎦ . (1.10)

To motivate the remaining sections, we outline briefly the key components of the Hopf bifur-
cation theorem derived in [10]. This theorem states that under suitable spectral conditions on
the operator Lε at some critical parameter τ := τ h

ε , as well as additional regularity conditions on
the non-linear term, there exists a family of unique time-periodic solutions bifurcating from the
stationary steady state. Central to the conditions is the study of the eigenvalue problem⎧⎪⎨

⎪⎩
ε2(φε)xx − φε + 2

Aε
Hε

φε − A2
ε

H2
ε

ψε = λεφε ,

D(ε)(ψε)xx −ψε + 2Aεφε = τλεψε ,

(1.11)

where λε is some complex number,

φε ∈ H2
N ([−1, 1]), ψε ∈ H2

N ([−1, 1]), (1.12)

and (Aε , Hε) is the stationary solution of (1.1). Here,

H2
N ([−1, 1]) = {

φ ∈ H2([−1, 1]) : φx(−1) = φx(1) = 0
}

. (1.13)

Closely related to Lε is its adjoint:

L∗
ε =

⎡
⎣ε2 d2

dx2 − 1 + 2Aε
Hε

2
τ

Aε

− A2
ε

H2
ε

1
τ

(
D d2

dx2 − 1
)
⎤
⎦ . (1.14)
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and the corresponding eigenvalue problem is⎧⎪⎪⎨
⎪⎪⎩
ε2(φ∗

ε )xx − φ∗
ε + 2

Aε
Hε

φ∗
ε + 2

τ
Aεψ

∗
ε = λ∗

εφ
∗
ε ,

D(ε)(ψ∗
ε )xx −ψ∗

ε − τ
A2
ε

H2
ε

φ∗
ε = τλ∗

εψ
∗
ε .

(1.15)

To make the definition of adjoint clear, we establish the following definitions. For two functions
φj ∈ L2([−1, 1]), j = 1, 2, their inner product is defined by

〈φ1, φ2〉L2([−1,1]) =
∫ 1

−1
φ1(x)φ2(x)dx,

where the overbar denotes the complex conjugate. Set Z = L2([−1, 1]) × L2([−1, 1]). Then, for
two function pairs j = (φj,ψj) ∈ Z (j = 1, 2), their inner product is defined by

〈1,2〉Z = 〈φ1, φ2〉L2([−1,1]) + 〈ψ1,ψ2〉L2([−1,1]). (1.16)

With these definitions, the defining characteristic of the adjoint operator L∗ is that

〈Lε1,2〉Z = 〈1, L∗
ε2〉Z , (1.17)

for 1,2 ∈ X .
Additionally, we have the following relationships between the eigenvalues and eigenfunc-

tions of Lε and L∗
ε . First, it is easy to see that λ ∈C is an eigenvalue of Lε if and only if λ is

an eigenvalue of L∗
ε . Furthermore, if λ ∈C \R is a simple eigenvalue of Lε with a nontrivial

eigenfunction , and ∗ is a nontrivial eigenfunction of L∗
ε corresponding to λ, i.e.

Lε= λ, L∗
ε

∗ = λ∗,

then

λ〈,∗〉 = 〈Lε,∗〉 = 〈, L∗
ε

∗〉 = 〈, λ∗〉 = λ〈,∗〉,
and therefore

〈,∗〉 = 〈,∗〉 = 0. (1.18)

On the other hand, if (λI −Lε)−1 is compact for all λ ∈ ρ(Lε), we have that

〈,∗〉 �= 0. (1.19)

for the simple eigenvalue λ.
The main results of this paper can be summarised as follows: we rigorously prove that there

exists a unique τ = τ h
ε for which Hopf bifurcation appears (Lemma 4.1), and near τ ∼ τ h

ε a time-
periodic solution bifurcates (Theorem 6.1). Furthermore, this time-periodic solution is unstable,
and hence the Hopf bifurcation is subcritical (Theorem 7.1).

The study of localised patterns in the so-called Turing’s diffusion-driven-instability reaction-
diffusion systems has been a very active field of research for the last couple of decades [12].
The one-dimensional canonical model system such as the Gierer–Meinhardt system [6, 13] has
been intensively studied in many papers. For the existence and stability of steady spiky patterns
in a bounded interval or the whole space, we refer to [3, 5, 9, 15, 19, 25] and the book [26].
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The dynamics of spiky patterns for one-dimensional Gierer–Meinhardt system has been studied
in [4, 17]. For Hopf bifurcations out of spiky patterns for one-dimensional Gierer–Meinhardt
system, we refer to [21, 22]. The existence of slowly varying amplitude Hopf bifurcation for
the one-dimensional Gierer–Meinhardt system in R is studied in [20], by geometric singular
perturbation technique. It is unclear if the same technique works for bounded intervals.

We believe that the techniques and computations presented in this paper can be used for the
study of sub-criticality or super-criticality of Hopf bifurcations of spiky patterns in many other
Turing systems. For the successful treatment of the Gray–Scott system and the Shnakenberg, we
refer to our recent paper [7], where we proved that for the Shankenberg system the Hopf bifur-
cation is usually supercritical (stable limit cycle), while for the Gray–Scott system, the stability
of the limit cycle depends on the range of certain parameters.

It is highly desirable but a difficult problem is to obtain some effective ‘envelope’ equations
for the oscillations at a slow-time scale that describes more precisely the growth of oscillations,
at least close to the Hopf bifurcation. For works in this direction, we refer to the works of M. J.
Ward and his collaborators.

The remainder of this paper is organised as follows. In Section 2, we summarise important
properties of the stationary single-spike solution (Aε , Hε)T for 0< ε� 1. Then in Section 3, we
discuss the spectral properties of the leading order NLEP obtained from (1.11) for ε� 1, which
lays important foundations for the spectral analysis for the perturbed problem. Sections 4 and
5 are dedicated to the analysis of the spectral properties of the perturbed problem (1.11) for ε
sufficiently small, where we prove the main conditions in the Hopf bifurcation theorems: the
existence of the unique pair of conjugate complex eigenvalues for the linearised equation, the
setup of semigroup framework, and most importantly, the sign of Re(μ′(λ0)). This is followed
by Sections 6 and 7 where we apply, setup and state the Hopf bifurcation theorem. Finally, in
Section 8, we numerically compute an unknown quantity whose sign dictates the criticality of
the Hopf bifurcation, while in Section 9 we perform some numerical simulations which illustrate
the theoretical predictions.

2 Preliminaries

As remarked in the Introduction, investigating the eigenvalue problem (1.11) is crucial to estab-
lishing the main results of this paper. It is therefore imperative that the properties of the stationary
solution (A, H)T , appearing as coefficients in (1.11), be well understood. Indeed, the study of
the stationary solutions to (1.1) has been the subject of numerous studies. Specifically the two-
dimensional case for small ε > 0 was studied in [24]. The one-dimensional case is similar, and
we review here the most pertinent characteristics for our analysis.

We begin by supposing that

D(ε) = 1

β2(ε)
, (2.1)

so that D = D(ε) → ∞ is equivalent to β = β(ε) → 0. The stationary system for (1.1) is then⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε2Axx − A + A2

H
= 0, A> 0 in (0, 1),

1

β2
Hxx − H + A2 = 0, H > 0 in (0, 1),

Ax = Hx = 0, for x = 0, 1.

(2.2)
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As stated in the Introduction, we consider the even extension of A and H to the interval [−1, 1].
In this sense, (2.2) becomes⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε2Axx − A + A2

H
= 0, A> 0 in (−1, 1),

1

β2
Hxx − H + A2 = 0, H > 0 in (−1, 1),

Ax = Hx = 0, for x = −1, 1.

(2.3)

The equation in H can be solved using a β-dependent Green’s function whose properties we now
review. Let G0(x, ξ ) be the Green’s function satisfying⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(G0)xx(x, ξ ) − 1

2
+ δ(x − ξ ) = 0 in (−1, 1),

(G0)x(x, ξ ) = 0, for x = −1, 1,∫ 1

−1
G0(x, ξ )dx = 0.

(2.4)

For a complex number β ∈C such that d2

dx2 − β2I : H2
N ([−1, 1]) → L2([−1, 1]) is invertible, we

let Gβ(x, ξ ) be the Green’s function given by{
(Gβ)xx − β2Gβ + δ(x − ξ ) = 0 in (−1, 1),

(Gβ)x(x, ξ ) = 0, for x = −1, 1,
(2.5)

We can relate Gβ and G0 as follows. From (2.5), we get∫ 1

−1
Gβ(x, ξ )dx = β−2.

Set

Gβ(x, ξ ) = 1

2
β−2 + Ḡβ(x, ξ ).

Then ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Ḡβ)xx − β2Ḡβ − 1

2
+ δ(x − ξ ) = 0 in (−1, 1),∫ 1

−1
Ḡβ(x, ξ )dx = 0,

(Ḡβ(x, ξ ))x = 0 for x = −1, 1.

(2.6)

(2.4) and (2.6) imply that

Ḡβ(x, ξ ) =
(

d2

dx2
− β2I

)−1 (
1

2
− δ(x − ξ )

)

=
(

d2

dx2
− β2I

)−1 [(
d2

dx2
− β2I

)
G0(x, ξ ) + β2G0(x, ξ )

]

= G0(x, ξ ) + β2

(
d2

dx2
− β2I

)−1

G0(x, ξ ).
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Since G0(·, ξ ) ∈ L2([−1, 1]), we have by the spectral radius theorem

β2

(
d2

dx2
− β2I

)−1

G0(x, ξ ) =
(
β−2 d2

dx2
− I

)−1

G0(x, ξ ) = O(1),

in the operator norm of L2([−1, 1]) → H2([−1, 1]). Hence,

Gβ(x, ξ ) = 1

2
β−2 + G0(x, ξ ) + β2

(
d2

dx2
− β2I

)−1

G0 = 1

2
β−2 + G0(x, ξ ) + O(1), (2.7)

in the operator norm of L2([−1, 1]) → H2([−1, 1]).
We assume that for ε sufficiently small and D = 1

β2 sufficiently large such that

β(ε) = O(εσ ) for some constant σ > 0. (2.8)

From the argument found in Theorem 1.1 of [24], we have the following theorem.

Theorem 2.1 Problem (2.3) has a solution with the following properties:

(i) Aε(−x) = Aε(x), x ∈ [−1, 1], and

Aε(x) = ξεw
( x

ε

)
+ O(β2) (2.9)

uniformly for x ∈ [−1, 1], where

ξε = 2

ε
∫
R

w2(y)dy
, (2.10)

and w is the unique solution of the problem⎧⎪⎪⎨
⎪⎪⎩

wyy − w + w2 = 0, w> 0, in R,

w(0) = max
y∈R

w (y),

w (y) → 0, as |y| → ∞;

(2.11)

(ii) Hε(−x) = Hε(x), x ∈ [−1, 1]

Hε(x) = ξε(1 + O(β2)) uniformly for x ∈ [−1, 1]. (2.12)

Remark 2.2 The symmetry requirement of Aε and Hε implies that problem (2.2) has a boundary
spike solution at x = 0 with corresponding properties.

3 The nonlocal eigenvalue problems

In this section, we study the following nonlocal eigenvalue problem (NLEP)

Lφ := φyy − φ + 2wφ − 2

1 + τλ0

∫
R+ wφ∫
R+ w2

w2 = λ0φ, φ ∈ H2
N (R+), (3.1)

as well as the corresponding adjoint problem given by

L∗φ∗ := φ∗
yy − φ∗ + 2wφ∗ − 2

1 + τλ∗
0

∫
R+ w2φ∗∫
R+ w2

w = λ∗
0φ

∗, φ∗ ∈ H2
N (R+). (3.2)
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As we will demonstrate in the next section, these two NLEPs serve as the limiting problems for
both eigenvalue problems (1.11) and (1.15), respectively, when ε > 0 tends to zero.

It is easy to see that (3.1) can be extended to the entire real line

Lφ := φyy − φ + 2wφ − 2

1 + τλ0

∫
R

wφ∫
R

w2
w2 = λ0φ, φ ∈ H2(R), φ(y) = φ(−y). (3.3)

We define the function

ψ ≡ 2

1 + τλ0

∫
wφ∫

R
w2

. (3.4)

Similarly the adjoint problem (3.2) is equivalent to

L∗φ∗ := φ∗
yy − φ∗ + 2wφ∗ − 2

1 + τλ∗
0

∫
R

w2φ∗∫
R

w2
w = λ∗

0φ
∗, φ ∈ H2(R), φ∗(y) = φ∗(−y).

(3.5)
For the remainder of this section, we will establish several properties of the spectrum of (3.3).

We first recall the following well-known result:

Lemma 3.1 The eigenvalue problem

L0φ := φyy − φ + 2wφ =μφ, φ ∈ H2(R), (3.6)

admits the set of eigenvalues

μ1 > 0, μ2 = 0, μ3 < 0, · · · . (3.7)

The eigenfunction φ1 corresponding to μ1 can be made positive and even; the space of
eigenfunctions corresponding to the eigenvalue 0 is

K0 := span
{
wy

}
. (3.8)

For the proof of this lemma, we refer to Theorem 2.1 of [11] and Lemma C of [14]. In fact

w (y) = 3

2
sech2

( y

2

)
. (3.9)

Note that the nontrivial eigenfunctions corresponding to the eigenvalue 0 are odd functions.
A noteworthy identity for w is obtained as follows. Multiplying the equation for w by ywy and

integrating over R, we obtain

−1

2

∫
R

w2
y + 1

2

∫
R

w2 − 1

3

∫
R

w3 = 0.

Multiplying the equation for w by w and integrating over R, we obtain

−
∫
R

w2
y −

∫
R

w2 +
∫
R

w3 = 0.

Therefore, we have the integral identities∫
R

w2
y = 1

5

∫
R

w2 = 1

6

∫
R

w3. (3.10)
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Integrating the equation for w over R we obtain∫
R

w =
∫
R

w2. (3.11)

Lemma 3.2 There exists a unique τ = τh > 0 such that for τ < τh, (3.1) admits a positive eigen-
value, and for τ > τh, all nonzero eigenvalues of problem (3.1) satisfies Re(λ0)< 0. At τ = τh,
(3.1) has a complex conjugate pair of eigenvalues λ0(τh) = ±iαI with αI ∈ (0, ∞) uniquely
determined by τh. Moreover, the following transversality condition holds

Re(λ′
0(τh)) �= 0. (3.12)

Proof The existence and uniqueness part of the lemma is essentially part of Theorem 2.2 and
Lemma 2.4 of [24], which treats interior spike solutions in a two-dimensional space. The proof
found there can be applied here almost without modification but for the sake of completeness we
reproduce it here. The transversality condition (3.12) and its proof here are new.

Note we here only consider even functions. By Theorem 1.4 of [23], for τ = 0 and by perturba-
tion for τ small, all eigenvalues lie on the left half-plane. By [2], for τ large, there exist unstable
eigenvalues. Therefore, for an intermediate value of τ = τh, an eigenvalue λ0 must cross the
imaginary axis into the positive real-part half-plane. We first show that this eigenvalue may not
cross through the origin, and then we show the value of τh must be unique.

Suppose that there is a zero-eigenvalue crossing, λ0 = 0, when τ = τh. Let

L0φ ≡ φyy − φ + 2wφ,

so that at the zero-eigenvalue crossing the NLEP (3.3) becomes

L0φ − 2

∫
R

wφ∫
R

w2
w2 = 0,

and hence

L0

(
φ − 2

∫
R

wφ∫
R

w2
w

)
= 0.

Thus,

φ − 2

∫
R

wφ∫
R

w2
w ∈ K0,

and since φ is even by Lemma 3.1, we must have

φ − 2

∫
R

wφ∫
R

w2
w = 0. (3.13)

It follows from φ �≡ 0 that ∫
R

wφ �= 0.
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But on the other hand, multiplying (3.13) by w and integrating over R, we arrive at the
contradiction ∫

R

wφ = 2
∫
R

wφ.

From the preceding argument, we deduce that there must exist a τh ∈ (0, ∞) at which L has a
pair of pure imaginary eigenvalues

λ0(τh) = ±αI i,

where i = √−1 and αI > 0. Next, we show that τh is unique. From

(L0 − λ0)φ0 = 2

1 + τλ0

∫
R

wφ0∫
R

w2
w2,

we obtain for λ0 = αI i that

φ0 = 2

1 + τλ0

∫
R

wφ0∫
R

w2
(L0 − λ0)−1w2,

and hence αI i is a simple eigenvalue in the sense that

Ker(L − αI i) = Span{(L0 − αI i)
−1w2}.

Thus, we may assume that φ0 = (L0 − αI i)−1w2 whence (3.3) becomes∫
R

wφ0 = 1 + ταI i

2

∫
R

w2. (3.14)

Let φ0 = φR
0 + φI

0i with φR
0 and φI

0 real. Then from (3.14), we obtain∫
R

wφR
0 = 1

2

∫
R

w2,

and ∫
R

wφI
0 = ταI

2

∫
R

w2.

But from

φ0 = (L0 − αI i)
−1w2 = (L0 + αI i)

(
L2

0 + α2
I

)−1
w2,

we have

φR
0 = L0

(
L2

0 + α2
I

)−1
w2, φI

0 = αI

(
L2

0 + α2
I

)−1
w2.

It follows that ∫
R

[
wL0

(
L2

0 + α2
I

)−1
w2

]
= 1

2

∫
R

w2, (3.15)

∫
R

[
w

(
L2

0 + α2
I

)−1
w2

]
= τ

2

∫
R

w2. (3.16)
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Let h(αI ) ≡ ∫
R

[wL0(L2
0 + α2

I )−1w2]. Then

h′(αI ) = −2αI

∫
R

[
wL0

(
L2

0 + α2
I

)−2
w2

]
.

By integration by parts, the last equation yields

h′(αI ) = −2αI

∫
R

[
w2

(
L2

0 + α2
I

)−2
w2

]
.

Noting L2
0 + α2

I is a positive symmetric operator and so is (L2
0 + α2

I )−2, we conclude that∫
R

[
w2

(
L2

0 + α2
I

)−2
w2

]
> 0, and therefore, h′(αI )< 0.

Since

h(0) =
∫
R

w
(
L−1

0 w2
) =

∫
R

w2, and h(αI ) → 0 as αI → ∞,

there exists a unique αI ∈ (0, ∞) that (3.15) holds. The unique value of τ = τh ∈ (0, ∞) then
comes from (3.16).

It is left to show that (3.12) holds. Setting λ0 = λR(τ ) + iλI (τ ) we have the system of equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + τλR

2

∫
R

w2 =
∫
R

w
L0 − λR

(L0 − λR)2 + λ2
I

w2,

τ

2

∫
R

w2 =
∫
R

w
1

(L0 − λR)2 + λ2
I

w2,

(3.17)

Suppose that ∂(λR)
∂τ

(τh) = 0 and differentiate the second equation of (3.17) with respect to τ and
evaluate it at τ = τh to obtain

1

2

∫
R

w2 = −2λI (τh)
∂(λI )

∂τ
(τh)

∫
R

w
[
L2

0 + λ2
I (τh)

]−2
w2, (3.18)

where we have used λR(τh) = 0. This implies that ∂(λI )
∂τ

(τh) �= 0. If we now differentiate the first
equation of (3.17) with respect to τ , we obtain

0 = −∂(λ2
I )

∂τ
(τh)

∫
R

wL0
[
L2

0 + λ2
I (τh)

]−2
w2. (3.19)

However,
∂(λ2

I )
∂τ

(τh) �= 0 and integrating by parts, we see also that∫
R

wL0
[
L2

0 + λ2
I (τh)

]−2
w2 =

∫
R

[w2(L2
0 + α2

I )−2w2]> 0,

which yields a contradiction. Therefore, ∂(λR)
∂τ

(τh) �= 0.

The next lemma is a continuation of Lemma 3.2.

Lemma 3.3 Let λ0 = ±αI i be the unique imaginary eigenvalue pair described in Lemma 3.2 (at
τ = τh). Then

Re(λ′
0(τh))> 0. (3.20)
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Proof Consider the eigenvalue problem

L0φ − 2

1 + τλ0

∫
R

wφ∫
R

w2
w2 = λ0φ. (3.21)

As in the proof the transversality condition of Lemma 3.2, we have

φ = 2

1 + τλ0

∫
R

wφ∫
R

w2
(L0 − λ0)−1w2,

so that multiplying by w and integrating gives

1 + τλ0

2

∫
R

w2 =
∫
R

w(L0 − λ0)−1w2. (3.22)

Differentiating (3.22) with respect to τ , we obtain

λ0 + τλ′
0

2

∫
R

w2 = λ′
0

∫
R

w(L0 − λ0)−2w2, (3.23)

or equivalently

λ′
0 = λ0

∫
R

w2

2

(∫
R

w(L0 − λ0)−2w2 − τ

2

∫
R

w2

)−1

. (3.24)

Letting τ = τh and using Re(λ0(τh)) = 0, we obtain

Re(λ′
0(τh)) = −Im(λ0(τh))

∫
R

w2

2
Im

[(∫
R

w(L0 − λ0(τh))−2w2 − τh

2

∫
R

w2

)−1
]

. (3.25)

Denote ∫
R

w(L0 − λ0(τh))−2w2 = a + ib, c = τh

2

∫
R

w2, with a, b, c ∈R.

Then we have

Im

[(∫
R

w(L0 − λ0(τh))−2w2 − τh

2

∫
R

w2

)−1
]

= Im
[
(a + bi − c)−1

]
= −b

(a − c)2 + b2
.

(3.26)

On the other hand,∫
R

w(L0 − λ0(τh))−2w2 =
∫
R

w
L2

0 − λI (τh)2 + 2iλI (τh)L0

(L2
0 + λI (τh)2)2

w2, (3.27)

and consequently by integration by parts, we obtain

b = 2λI (τh)
∫
R

w
L0(

L2
0 + λI (τh)2

)2
w2

= 2λI (τh)
∫
R

(L0w)
(
L2

0 + λI (τh)2
)−2

w2

= 2λI (τh)
∫
R

w2
(
L2

0 + λI (τh)2
)−2

w2.
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Hence,

Re(λ′
0(τh)) = λI (τh)2

∫
R

w2

(a − c)2 + b2

∫
R

w2
(
L2

0 + λI (τh)2
)−2

w2 > 0. (3.28)

We conclude this section with an alternative representation of λ′
0(τh) and bounding the spec-

trum of (3.1). In (3.3), we write μ0 = τλ0, φ as φ0 and differentiate the equation with respect
to τ

L0φ
′
0 − 2

1 +μ0

∫
R

wφ′
0∫

R
w2

w2 + 2μ′
0

(1 +μ0)2

∫
R

wφ0∫
R

w2
w2 =

(
−μ0

τ 2
+ μ′

0

τ

)
φ0 + μ0

τ
φ′

0.

Multiplying by the conjugate of the adjoint eigenfunction φ∗
0 and integrating over R, we obtain∫

R

[
φ∗

0 L0φ
′
0

]
− 2

1 +μ0

∫
R

wφ′
0∫

R
w2

∫
R

w2φ∗
0 + 2μ′

0

(1 +μ0)2

∫
R

wφ0∫
R

w2

∫
R

w2φ∗
0

=
(

−μ0

τ 2
+ μ′

0

τ

) ∫
R

φ0φ
∗
0 + μ0

τ

∫
R

φ∗
0φ

′
0.

(3.29)

Taking conjugate of (3.5) and recalling that λ∗
0 = λ0, we obtain

L0φ
∗
0 − 2

1 +μ0

∫
R

w2φ∗
0∫

R
w2

w = μ0

τ
φ∗

0 .

Multiplying by φ′
0 and integrating over R, we obtain

∫
R

[
φ′

0L0φ
∗
0

]
− 2

1 +μ0

∫
R

w2φ∗
0∫

R
w2

∫
R

wφ′
0 = μ0

τ

∫
R

φ∗
0φ

′
0. (3.30)

Note that by integration by parts,∫
R

[
φ∗

0 L0φ
′
0

]
=

∫
R

[
φ′

0L0φ
∗
0

]
.

We obtain from (3.29) and (3.30) that

2μ′
0

(1 +μ0)2

∫
R

wφ0∫
R

w2

∫
R

w2φ∗
0 =

(
−μ0

τ 2
+ μ′

0

τ

) ∫
R

φ0φ
∗
0 . (3.31)

Therefore, we have the formula

μ′
0(τh) = λ0(τh)

∫
R
φ0φ

∗
0∫

R
φ0φ

∗
0 − 2τh

[1 + τhλ0(τh)]2
∫
R

w2

∫
R

wφ0
∫
R

w2φ∗
0

. (3.32)

Finally, we have the following bound estimates for the spectrum of (3.1) which will play a key
role in showing the unperturbed linear operator is sectorial.

Lemma 3.4 Let λ0 be an eigenvalue of (3.1). Then one of the following alternative cases
happens:
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(i) Im(λ0) = 0 and λ0 ≤μ1, where μ1 > 0 is the first eigenvalue of L0, or
(ii) Im(λ0) �= 0 and |τλ0 − 1| ≤ √

2.

Proof Multiplying (3.1) by w and integrating over R, we obtain∫
R

w2φ =
(
λ0 + 2

1 + τλ0

∫
R

w3∫
R

w2

) ∫
R

wφ. (3.33)

Using (3.10), we obtain ∫
R

w2φ =
(
λ0 + 12

5(1 + τλ0)

) ∫
R

wφ. (3.34)

Taking the conjugate ∫
R

w2φ =
(
λ0 + 12

5(1 + τλ0)

) ∫
R

wφ. (3.35)

Multiplying (3.1) by φ and integrating over R, we obtain that∫
R

(|φy|2 + |φ|2 − 2w|φ|2) = −λ0

∫
R

|φ|2 − 2

1 + τλ0

∫
R

wφ∫
R

w2

∫
R

w2φ̄. (3.36)

Combining (3.35) and (3.36), we obtain∫
R

(|φy|2 + |φ|2 − 2w|φ|2) = −λ0

∫
R

|φ|2 −
(

2λ̄0

1 + τλ0
+ 24

5|1 + τλ0|2
) | ∫

R
wφ|2∫

R
w2

. (3.37)

Writing

λ0 = λR + iλI , φ = φR + iφI ,

and considering the imaginary part of (3.37), we obtain

λI

∫
R

|φ|2 = 2λI (1 + 2τλR)

(1 + τλR)2 + τ 2λ2
I

| ∫
R

wφ|2∫
R

w2
. (3.38)

We first consider the case that λI �= 0. In this case, we have∫
R

|φ|2 = 2(1 + 2τλR)

(1 + τλR)2 + τ 2λ2
I

| ∫
R

wφ|2∫
R

w2
.

Using the Schwartz inequality

|
∫
R

wφ|2 ≤
∫
R

w2
∫
R

|φ|2,

we get

2(1 + 2τλR)

(1 + τλR)2 + τ 2λ2
I

≥ 1,

which is case (ii).
Now assume that λI = 0. If τλR + 1 = 0, then

λ0 = λR = − 1

τ
< 0<μ1.
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If τλR + 1 �= 0, we then use the Rayleigh’s formula∫
R

|φy|2 +
∫
R

|φ|2 − 2
∫
R

w|φ|2 ≥ −μ1

∫
R

|φ|2,

and (3.37) to get that

λR

∫
R

|φ|2 +
(

2λR

1 + τλR
+ 24

5|1 + τλR|2
) | ∫

R
wφ|2∫

R
w2

≤μ1

∫
R

|φ|2.

If λR ≤ 0, we are done. If λR > 0, we then have

λR

∫
R

|φ|2 ≤μ1

∫
R

|φ|2.

Hence, case (i) happens.

4 Spectral analysis of (1.11)

We want to show that the operator Lε is an infinitesimal generator of a strongly continuous and
analytical semigroup. Since it suffices to show that Lε is a sectorial operator, this naturally leads
us to study the following eigenvalue problem⎧⎪⎪⎨

⎪⎪⎩
(φε)yy − φε + 2

Aε
Hε

φε − A2
ε

H2
ε

ψε = λεφε ,

1

β2
(ψε)xx −ψε + 2Aεφε = τλεψε ,

(4.1)

where y = ε−1x, D = β−2, λε is some complex number, and

φε ∈ H2
N ([−ε−1, ε−1]), ψ ∈ H2

N ([−1, 1]). (4.2)

It is convenient to set Âε = ξ−1
ε Aε and Ĥε = ξ−1

ε Hε , so that (4.1) becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(φε)yy − φε + 2
Âε

Ĥε

φε − Â
2

ε

Ĥ
2
ε

ψε = λεφε ,

1

β2
(ψε)xx −ψε + 2ξεÂεφε = τλεψε .

(4.3)

The second equation in (4.3) is equivalent to

(ψε)xx − β2
λε
ψε + 2β2ξεÂεφε = 0, (4.4)

where

β2
λε

≡ β2(1 + τλε). (4.5)

We may assume that ‖φε‖H2([−ε−1,ε−1]) = 1.
Let χ be a smooth cut-off function which is equal to 1 in [− 1

2 , 1
2 ] and equal to 0 in R \ [−1, 1].

Let

χε(y) = χ (εy) , y ∈ [−ε−1, ε1]. (4.6)
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Define the cut-off of φε :

φc
ε (y) = φε(y)χε(y), (4.7)

where x = εy. Then, if Re(1 + λε)> c, or |Im(λε)|> c, for a small constant c> 0, we have

φc
ε = φε + e.s.t. in H2([−ε−1, ε−1]). (4.8)

Here and in the rest of the paper, e.s.t. stands for the exponentially small terms. Extend φc
ε to a

function defined on R such that

‖φc
ε‖L2(R) ≤ C0‖φε‖L2([−ε−1,ε−1]),

‖(φc
ε )y‖L2(R) ≤ C0‖(φε)y‖L2([−ε−1,ε−1]),

‖(φc
ε )yy‖L2(R) ≤ C0‖(φε)yy‖L2([−ε−1,ε−1]),

(4.9)

for a constant C0 > 1. Since ‖φε‖H2([−ε−1,ε−1]) = 1, we have ‖φc
ε‖H2(R) ≤ C0.

Using the Green’s function introduced in Section 2, we write

ψε(x) =
∫ 1

−1
2β2ξεGβλε

(x, ξ )Âε

(
ξ

ε

)
φε

(
ξ

ε

)
dξ . (4.10)

At x = 0, we calculate

ψε(0) = 2β2
∫ 1

−1
Gβλε

(0, ξ )ξεw

(
ξ

ε

)
φc
ε

(
ξ

ε

)
dξ + o(1)

= 2β2
∫ 1

−1

(
(βλε )

−2

2
+ G0(0, ξ ) + O(1)

)
ξεw

(
ξ

ε

)
φc
ε

(
ξ

ε

)
dξ + o(1)

= 2
∫ 1

−1

(
1

2(1 + τλε)
+ β2G0(0, ξ ) + O(β2)

)
ξεw

(
ξ

ε

)
φc
ε

(
ξ

ε

)
dξ + o(1)

= 1

1 + τλε
ξεε

∫
R

w (y)φc
ε (y)dy + O(β2ξεε) + o(1)

= 1 + o(1)

1 + τλε
εξε

∫
R

wφc
ε

= 2[1 + o(1)]

(1 + τλε)
∫
R

w2

∫
R

wφc
ε as ε→ 0.

(4.11)

Substituting (4.11) into the first equation of (4.3), we arrive at

(φε)yy − φε + 2wφε − 2[1 + o(1)]

1 + τλε

∫
R

wφc
ε∫

R
w2

w2 = λε[1 + o(1)]φε . (4.12)

As in the proof of Theorem 1 in [2], one obtains

λε → λ0, φε(y) → φ0(y) in H2
loc(R), as ε→ 0, (4.13)

where (λ0, φ0) is an eigenpair of the NLEP (3.1).
We can now prove the following spectral result for the eigenvalue problem (4.1).
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Lemma 4.1 If ε > 0 is sufficiently small, then there exists a unique value τ = τ h
ε for which (4.1)

has a pair of purely imaginary eigenvalues λε± = ±iαεI with αεI > 0. Moreover, this pair is unique
in the sense that if iβεI is an eigenvalue of (4.1), then βεI = αεI or βεI = −αεI . Furthermore, at this
value of τ = τ h

ε , all other eigenvalues have negative real parts.

Proof For ε > 0 sufficiently small, as in the proof of Lemma 3.2 all eigenvalues of (4.1) have
negative real parts when τ > 0 is small, whereas there exist eigenvalues with positive real part
when τ > 0 is sufficiently large. Furthermore, we can show that there are no zero eigenvalues for
any τ > 0. Thus, there exist a τ h

ε ∈ (0, ∞) such that (4.1) has a pair of pure imaginary eigenvalues.
The uniqueness comes from the fact that for Re(λε)>−c, we define hε(λεI ) := ∫

R
wRe(φc

ε ) for
the unperturbed problem (4.12) so that subject to a subsequence, αεI → αI and φε → φ0 as ε→ 0
we have

h′
ε(λ

ε
I ) → h′(λI )< 0 as ε→ 0, (4.14)

according to the calculation in the proof of Lemma 3.2 and the uniform continuity of h′(λI )
in λI .

The following two lemmas establish the semigroup framework.

Lemma 4.2 Let λε ∈C be an eigenvalue of problem (4.1). Then for sufficiently small ε > 0, one
of the following cases happens:

(i) Im(λε) = 0 and λε ≤ 3μ1, or
(ii) Im(λε) �= 0 and |τλε | ≤ 7.

Proof We may assume that the constant C0 > 1 in (4.9) is arbitrarily close to 1. Multiplying
(4.12) by φc

ε and integrating over R, we get

−
∫
R

|(φc
ε )y|2 −

∫
R

|φc
ε |2 + 2

∫
R

w|φc
ε |2 − 2[1 + o(1)]

1 + τλε

∫
R

wφc
ε∫

R
w2

∫
R

w2φc
ε = λε[1 + o(1)]

∫
R

|φc
ε |2.

(4.15)
Multiplying (4.12) by w and integrating over R, we get

[1 + o(1)]λε

∫
R

wφc
ε =

∫
R

[wyy − w + 2w2]φc
ε − 2[1 + o(1)]

1 + τλε

∫
R

w3∫
R

w2

∫
R

wφc
ε . (4.16)

Using (3.10), we obtain∫
R

w2φc
ε = [1 + o(1)]

(
λε + 12

5(1 + τλε)

) ∫
R

wφc
ε . (4.17)

From (4.15) and (4.17), we obtain

[1 + o(1)]
∫
R

(|(φc
ε )y|2 + |φc

ε |2 − 2w|φc
ε |2

)

= −λε
∫
R

|φc
ε |2 −

(
2λε

1 + τλε
+ 24

5|1 + τλε |2
)

| ∫
R

wφc
ε |2∫

R
w2

. (4.18)
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Consider the imaginary part of (4.18), we get

[1 + o(1)]λεI

∫
R

|φc
ε |2 = 2λεI (1 + 2τλεR)

(1 + τλεR)2 + τ 2(λεI )2

| ∫
R

wφc
ε |2∫

R
w2

. (4.19)

If λεI �= 0, we have

2(1 + 2τλεR)

(1 + τλεR)2 + τ 2(λεI )2
≥ 1 + o(1) ≥ 1

2
for sufficiently small ε > 0,

therefore, for small ε > 0, (
τλεR − 3

)2 + (
τλεI

)2 ≤ 13, (4.20)

From here we obtain the coarse bounds

3 − √
13 ≤ τλεR ≤ 3 + √

13, −√
13 ≤ τλεI ≤ √

13,

and

|τλε | ≤ 3 + √
13 ≤ 7. (4.21)

If λεI = 0, then λε = λεR, and (4.18) becomes

[1 + o(1)]
∫
R

(
| (φc

ε

)
y
|2 + |φc

ε |2 − 2w|φc
ε |2

)

= −λεR
∫
R

|φc
ε |2 −

(
2λεR

1 + τλεR
+ 24

5|1 + τλεR|2
) | ∫

R
wφc

ε |2∫
R

w2
.

Using the inequality ∫
R

(|(φc
ε )y|2 + |φc

ε |2 − 2w|φc
ε |2) ≥ −μ1

∫
R

|φc
ε |2,

we obtain that for ε > 0 sufficiently small

−2[1 + o(1)]μ1

∫
R

|φc
ε |2 ≤ −λεR

∫
R

|φc
ε |2 −

(
2λεR

1 + τλεR
+ 24

5|1 + τλεR|2
) | ∫

R
wφc

ε |2∫
R

w2
. (4.22)

Then λεR ≤ 0, or λεR > 0. In the case λεR > 0, we obtain from (4.22) that

λεR

∫
R

|φc
ε |2 ≤ 2[1 + o(1)]μ1

∫
R

|φc
ε |2,

and hence

λεR ≤ 3μ1. (4.23)

Note (4.23) contains the case λεR ≤ 0 naturally. This finishes the proof of the lemma.

In view of Lemma 4.2, there exist constants ε0 > 0, a> 0 and θ ∈ (π2 , π ) such that the sector

Sa,θ := {λ ∈C : |arg(λ− a)|< θ} ∪ {a} (4.24)

is contained in the resolvent set of Lε for all ε ∈ (0, ε0].
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Lemma 4.3 The operator Lε is a sectorial operator and hence generate a strongly continu-
ous and analytic semigroup on the space L2([−1, 1]) × L2([−1, 1]). Moreover, for λ ∈ Sa,θ with
a � 1, the operator R(λ, a) = (λ−Lε)−1 is compact as an operator mapping L2([−1, 1]) ×
L2([−1, 1]) into itself and there exists a constant M > 0 such that

‖R(λ, a)‖ ≤ M

|λ− a| , for λ ∈ Sa,θ . (4.25)

Proof For any λ ∈ Sa,θ , we consider the resolvent equation

(Lε − λ)

[
φ

ψ

]
=

[
f1
f2

]
, (4.26)

namely, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε2(φε)xx − φε + 2

Âε

Ĥε

φε − Â
2

ε

Ĥ
2
ε

ψε = λφε + f1,

1

β2
(ψε)xx −ψε + 2ξεÂεφε = τλψε + τ f2.

(4.27)

From the second equation of (4.27), we get

ψε(x) =
∫ 1

−1
Gβλ (x, ξ )

[
2β2ξεÂε

(
ξ

ε

)
φε

(
ξ

ε

)
− τβ2f2

(
ξ

ε

)]
dξ . (4.28)

As before, we calculate at x = 0 to get that

ψε(0) = [1 + o(1)]

(
2

1 + τλ

∫
R

wφc
ε∫

R
w2

− 2τ

1 + τλ

∫
R

f c
2

)
. (4.29)

Here, f c
2 is defined in the same manner of φc

ε . We assume a � 1 and θ be fixed. Then from the
first equation in (4.27), we get

φε =
[
ε2 d2

dx2
− (1 + λ) + 2

Aε
Hε

]−1 (
A2
ε

H2
ε

ψε + f1

)
. (4.30)

Since for ε small,

max
[−1,1]

Aε
Hε

≤ 2w(0) = 2 max
R

w,

there exists, by the standard resolvent estimate, a constant M > 0, such that

‖φε‖L2([−1,1]) ≤ M

|λ+ 1 − 4w(0)| (w2(0)‖ψε‖L2([−1,1]) + ‖f1‖L2([−1,1])).

While

‖ψε‖L2([−1,1]) ≤ 4

‖w‖L2(R)|1 + τλ| ‖φ
c
ε‖L2(R) + 4τ

|1 + τλ| ‖f c
2 ‖L2(R)

≤ C

|1 + τλ|
(‖φε‖L2([−1,1]) + ‖f2‖L2([−1,1])

)
.
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Let a> 0 to be sufficiently large, then if λ ∈ Sa,θ , we have

Mw2(0)C

|1 + τλ||λ+ 1 − 4w(0)| <
1

2
,

and hence

‖φε‖L2([−1,1]) ≤ CM

|λ− a|
(‖f1‖L2([0,1])) + ‖f2‖L2([−1,1])

)
. (4.31)

From (4.29), we then have

‖ψε‖L2([−1,1]) ≤ CM

|λ− a|
(‖f1‖L2([−1,1])) + ‖f2‖L2([−1,1])

)
, (4.32)

and therefore

‖R(λ, a)‖ ≤ CM

|λ− a| , for λ ∈ Sa,ε . (4.33)

The compactness of (λ−Lε)−1 is obvious. This finishes the proof of the lemma.

The semigroup generated by Lε is defined by the formula

T(t) = eLε t = 1

2π i

∫
�

eλtR(λ, a)dλ, (4.34)

where � is a smooth curve in Sa,θ that connects ∞e−θ i and ∞eθ i.

5 The transversality (nondegeneracy) condition for the perturbed system

We begin from the eigenvalue problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(φε)yy − φε + 2
Âε

Ĥε

φε − Â
2

ε

Ĥ
2
ε

ψε = λεφε ,

1

β2
(ψε)xx −ψε + 2ξεÂεφε = τλεψε .

(5.1)

We let με = τλε . Then, (5.1) is equivalent to the following eigenvalue problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τ

{
(φε)yy − φε + 2

Âε

Ĥε

φε − Â
2

ε

Ĥ
2
ε

ψε

}
=μεφε ,

1

β2
(ψε)xx −ψε + 2ξεÂεφε =μεψε .

(5.2)

Namely,

L

[
φε

ψε

]
=με

[
φε

ψε

]
, (5.3)

with L = τL. We note that L ∗ = τL∗.
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Let τε be the parameter value from Lemma 4.1, so that Re(λε(τ h
ε )) = 0. Then, via the

relationship

μ′
ε(τ ) = τλ′

ε(τ ) + λε(τ ), (5.4)

we obtain that Re(μ′
ε(τ

h
ε )) = τ h

ε Re(λ′
ε(τ

h
ε ))). We now show that μ′

ε(τ
h
ε )> 0 for ε > 0 sufficiently

small.
Let ε = (φε ,ψε)T be a nontrivial eigenfunction of L corresponding to με and ∗

ε =
(φ∗
ε ,ψ∗

ε )T be a nontrivial eigenfunction of L ∗ corresponding to με . We have the argument in
the Introduction

〈ε ,∗
ε〉 = 〈ε ,

∗
ε〉 = 0. (5.5)

Since λ0 is a simple eigenvalue, με is simple. Moreover, we also have

〈ε ,
∗
ε〉 = 〈ε ,∗

ε〉 �= 0. (5.6)

Write

ε =
[
φε

ψε

]
, ∗

ε =
[
φ∗
ε

ψ∗
ε

]
. (5.7)

Using the Green’s function introduced in Section 2, we write

ψε(x) =
∫ 1

−1
2β2ξεGβλε

(x, ξ )Âε

(
ξ

ε

)
φε

(
ξ

ε

)
dξ . (5.8)

By (4.11), we have

ψε(0) = (1 + o(1))

(1 + τλε)
εξε

∫
R

wφ0. (5.9)

Similar to the calculation of (4.11), we write

ψ∗
ε (x) = −

∫ 1

−1
τβ2Gβλ∗ε (x, ξ )

Â
2

ε

Ĥ
2
ε

(
ξ

ε

)
φ∗
ε

(
ξ

ε

)
dξ ,

and calculate

ξεψ
∗
ε (0) = −β2τξε

∫ 1

−1
Gβλ∗ε (0, ξ )w2

(
ξ

ε

)
(φ∗
ε )c

(
ξ

ε

)
dξ + o(1)

= −β2τξε

∫ 1

−1

(
(βλ∗

ε
)−2

2
+ G0(0, ξ ) + O(1)

)
w2

(
ξ

ε

)
(φ∗
ε )c

(
ξ

ε

)
dξ + o(1)

= −τξε
∫ 1

−1

(
1

2(1 + τλ∗
ε )

+ β2G0(0, ξ ) + O(β2)

)
w2

(
ξ

ε

)
(φ∗
ε )c

(
ξ

ε

)
dξ + o(1)
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= − τεξε

2(1 + τλ∗
ε )

∫
R

w (y)2(φ∗
ε )c(y)dy + O(β2)

= − τ (1 + o(1))

(1 + τλ∗
ε )

∫
R

w2

∫
R

w2(φ∗
ε )c

= − τ (1 + o(1))

(1 + τλ∗
ε )

∫
R

w2

∫
R

w2φ∗
0 as ε→ 0. (5.10)

Differentiating (5.3) with respect to τ , we find that

∂L

∂τ
ε + L

∂ε

∂τ
= ∂με

∂τ
ε +με

∂ε

∂τ
. (5.11)

Taking the inner product with ∗
ε gives〈

∂L

∂τ
ε ,

∗
ε

〉
+

〈
L
∂ε

∂τ
,∗

ε

〉
=

〈
∂με

∂τ
ε ,

∗
ε

〉
+

〈
με
∂ε

∂τ
,∗

ε

〉
. (5.12)

Note we have

L ∗∗
ε =με

∗
ε .

Taking the inner product with ∂ε
∂τ

gives

〈
L
∂ε

∂τ
,∗

ε

〉
=με

〈
∂ε

∂τ
,∗

ε

〉
. (5.13)

Combining (5.12), (5.13), (5.2) and (5.3), we obtain

μ′
ε

(
τ h
ε

) = ∂με

∂τ

(
τ h
ε

) =
〈
∂L
∂τ
ε ,∗

ε

〉
〈ε ,∗

ε〉
= με

τ h
ε

∫ 1
−1 φεφ

∗
ε

〈ε ,∗
ε〉

. (5.14)

We compute

∫ 1

−1
φεφ∗

ε dx = ε

∫ ε−1

−ε−1
φεφ∗

ε (y) dy

= ε[1 + o(1)]
∫
R

φ0φ
∗
0 dy,

(5.15)

and ∫ 1

−1
ψεψ∗

ε dx = 1

ξε

∫ 1

−1
ψε(x)ξεψ∗

ε (x) dx

= −ε[1 + o(1)]
2τ h
ε

[1 +με(τ h
ε )]2

∫
R

w2

∫
R

w2φ∗
0

∫
R

wφ0,

(5.16)

so that in view of (3.32), we obtain

μ′
ε(τ

h
ε ) = [1 + o(1)]λ0(τh)

∫
R
φ0φ

∗
0∫

R
φ0φ

∗
0 − 2τh

(1+τhλ0(τh))2
∫
R

w2

∫
R

wφ0
∫
R

w2φ∗
0

= [1 + o(1)]μ′
0(τh). (5.17)
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As a consequence of Lemma 3.3, we therefore have

Re(λ′
ε(τ

h
ε )) = 1

τ h
ε

Re(μ′
ε) = [1 + o(1)]Re(λ′

0(τh))> 0, for sufficiently small ε > 0. (5.18)

6 Hopf bifurcation: Existence, uniqueness and symmetry

We have now established all the assumptions of the Hopf bifurcation theorem of [10]. Indeed,
the relevant spectral and semigroup assumptions on the linearisation DUFε =Lε at τ = τ h

ε

were established in Sections 4 and 5. Furthermore, with X = H2
N ([0, 1]) × H2

N ([0, 1]) and Z =
L2([0, 1]) × L2([0, 1], the map Fε : X → Z satisfies the required regularity assumptions. We
introduce the spaces

Cγ

2πρ(R, X ) :=
{

U : R→ X
∣∣ U(t + 2πρ) = U(t) t ∈R,

||U ||X ,γ := max
t∈R

||U(t)||X + sup
s�=t

||U(t) − U(s)||X
|t − s|γ <∞

}
,

(6.1)

and

C1+γ
2πρ (R, Z) :=

{
U : R→ Z

∣∣ U ∈ Cγ

2πρ(R, Z), dU
dt ∈ Cγ

2πρ(R, Z),

||U ||Z,1+γ := ||U ||Z,γ + || dU
dt ||Z,γ <∞

}
,

(6.2)

where γ ∈ (0, 1] is the Hölder exponent. The relevant space for solutions to (1.9) is Y ≡
Cγ

2πρ(R, X ) ∩ C1+γ
2πρ (R, Z) with the norm

||U ||Y ≡ ||U ||X ,γ + || dU
dt ||Z,γ . (6.3)

The Hopf bifurcation theorem thus applies and yields the following result.

Theorem 6.1 There exists an ε0 > 0 such that for every 0< ε ≤ ε0 there are numbers δε , ηε > 0
and continuously differentiable functions ρε(s), τε(s) and (Ãε(s), H̃ε(s)) ∈ Y defined in −ηε < s<
ηε such that (Ãε(s), H̃ε(s)) is a 2πρε(s)-periodic solution to (1.1) and

τε(0) = τ h
ε , ρε(0) = 1/αεI , Ãε(0) = Aε , H̃ε(0) = Hε .

In addition, the solutions are nontrivial in that (Ãε(s), H̃ε(s)) �= (Aε , Hε) for 0< |s|<ηε .
Furthermore, we have uniqueness in the sense that if (τε1 , Ãε,1, H̃ε,1) is a 2πρε,1-periodic solu-
tion of (1.1) with |ρε,1 − 1/αεI |< δε , |τε,1 − τ h

ε |< δε , and ||(Ãε,1, H̃ε,1) − (Aε , Hε)||Y < δε , then
there exist numbers s ∈ [0, ηε) and θ ∈ [0, 2πρε,1) so that τε,1 = τε(s) and the solution (Ãε,1, H̃ε,1)
is obtained from a θ -phase shift of (Ãε(s), H̃ε(s)), i.e.,

(Ãε,1, H̃ε,1)(t) = [Sθ (Ãε(s), H̃ε(s))](t) ≡ (Ãε(s), H̃ε(s))(t + θ ) for all t ∈R.

Finally, the bifurcating solutions have the following symmetry property

(Ãε(−s), H̃ε(−s)) = Sπρε (s)(Ãε(s), H̃ε(s)), τε(−s) = τε(s), ρε(−s) = ρε(s)

for all − ηε < s<ηε .
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7 Linearised stability of the Hopf bifurcation

In this section, we investigate the linearised stability of the periodic solutions obtained in
Theorem 6.1 from the previous section. This stability analysis is carried out in the context of
a generalisation of Floquet Theory from ODEs to semilinear parabolic PDEs and we refer here
to Section I.12 of [10]. We briefly summarise the main aspects of this theory so that our stability
result may be accurately stated.

Suppose A(t) is a time-dependent linear operator which is p-periodic in t and consider the
problem

dw

dt
− A(t)w = 0. (7.1)

The Floquet multipliers of (7.1) are the eigenvalues of U(p), where w(t) = U(t)x is the solution
of (7.1) satisfying w(0) = x. We say that κ is a Floquet exponent of (7.1) if and only if e−pκ is
a Floquet multiplier, or equivalently if κ is an eigenvalue of d

dt − A(t) in the space of p-periodic
functions.

The concepts of Floquet Theory arise in the study of periodic solutions as follows. If u is a
p-periodic solution of the non-linear problem

du

dt
= g(u), (7.2)

then the linearisation about this periodic solution results in the variational equation

dv

dt
− gu(u(t))v= 0, (7.3)

from which the Floquet multipliers and exponents are defined as for (7.1) with A(t) = gu(u(t)). If
u̇ = du

dt �≡ 0, formally differentiating (7.2) shows that

du̇

dt
= gu(u(t))u̇,

so that 0 is always a Floquet exponent and 1 is a Floquet multiplier for u. It has been shown that
the stability properties of a periodic solution to (7.2) are determined by the moduli of its Floquet
multipliers (see Section 8. 2 of [8]). Specifically, if the Floquet exponent κ = 0 is simple and all
remaining Floquet exponents have positive real parts, then the p-periodic solution u is linearly
stable.

The Floquet exponent for the 2πρε(s)-periodic solutions Uε(s) = (Ãε(s), H̃ε(s)) from
Theorem 6.1 are therefore numbers κ such that the problem

1

ρε(s)

dw

dt
− (Lε + RU (τε(s), Uε(s)(ρε(s)t))

)
w = κw, w(0) = w(2π ) (7.4)

has a nontrivial solution. At s = 0, (7.4) becomes

αεI
dw

dt
−Lεw = κw, w(0) = w(2π ). (7.5)

The set of values of κ for which (7.5) has a nontrivial solution is {αεI ni − σ (Lε) : n =
±1, ±2, , . . .}, so the corresponding multipliers are e2πσ (Lε )/αεI . Thus, 1 is clearly a Floquet
multiplier with multiplicity two corresponding to the double eigenvalue κ = 0 inherited from
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±iαI ∈ σ (Lε). On the other hand, Lemma 4.1 implies that the remaining eigenvalues of Lε at
s = 0 have negative real part and therefore the remaining Floquet exponents have positive real
parts.

Since a zero Floquet exponent persists for all values of −ηε < s<ηε , it is a second, nontriv-
ial, Floquet exponent, κε(s), with κε(0) = 0 which determines the linear stability of the periodic
solution. Specifically, if Re(κε(s))> 0, then the periodic solution is linearly stable in the sense of
[8], and is otherwise unstable. With · denoting a derivative with respect to s, Theorem I.12.2 of
[10] implies that κ̇ε(0) = 0 and τ̇ε(0) = 0. Moreover, formula (I.12.34) of [10] relates the second
derivatives according to

κ̈ε(0) = 2τ̈ε(0)Re
(
λ′
ε

(
τ h
ε

))
.

From Section 5, we know Re(λ′
ε(τ

h
ε ))> 0 and therefore the first part of Corollary I.12.3, or the

Principle of Exchange of Stability, of [10] applies.

Theorem 7.1 Let the hypotheses of Theorem 6.1 be satisfied. Then

sgn(τε(s) − τ h
ε ) = sgn(κε(s)) for − ηε < s<ηε .

Hence, the bifurcating periodic solutions of Theorem 6.1 are linearly stable (resp. unstable) if
the bifurcation is supercritical (resp. subcritical).

To conclude the stability question, it remains therefore to determine the sign of τ̈ε(0). For this,
we use the formula (see equation (I.9.11) of [10])

τ̈ε(0) = 1

Re(λ′
ε(τ

h
ε ))

Re(K(ε)), (7.6)

where

K(ε) = − 〈
D3

UUU R(τ h
ε , 0)[ε ,ε ,ε],

∗
ε

〉
+ 〈

D2
UU R(τ h

ε , 0)[ε , (Lε − 2αεI i)−1D2
UU R(τ h

ε , 0)[ε ,ε]],
∗
ε

〉
+ 2

〈
D2

UU R(τ h
ε , 0)[ε , L−1

ε D2
UU R(τ h

ε , 0)[ε ,ε]],
∗
ε

〉
= K1(ε) + K2(ε) + K3(ε),

(7.7)

where ε = (φε ,ψε) is a nontrivial eigenfunction of Lε corresponding to the eigenvalue αI i,
and ∗

ε = (φ∗
ε ,ψ∗

ε ) is a nontrivial eigenfunction of L∗
ε corresponding to the eigenvalue −αI i,

moreover, 〈
ε ,

∗
ε

〉 = 1. (7.8)

As calculated before

〈
ε ,

∗
ε

〉 = ∫ 1

−1
φεφ∗

ε dx +
∫ 1

−1
ψεψ∗

ε dx

= ε[1 + o(1)]

[∫
R

φ0φ
∗
0 − 2τh

(1 + τhλ0(τh))2
∫
R

w2

∫
R

wφ0

∫
R

w2φ∗
0

]
.

(7.9)
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Therefore, we have∫
R

φ0φ
∗
0 − 2τh

(1 + τhλ0(τh))2
∫
R

w2

∫
R

wφ0

∫
R

w2φ∗
0 = 1 + o(1)

ε
. (7.10)

Recall that

R(τ , U) =
[

R1(τ , U)

R2(τ , U)

]
, (7.11)

with

R1(τ , U) = (Aε + U1)2

Hε + U2
− A2

ε

Hε

− 2AεU1

Hε

+ A2
εU2

H2
ε

,

and

R2(τ , U) = 1

τ

(
(Aε + U1)2 − A2

ε − 2AεU1
) = 2

τ
U2

1 .

For functions

g =
[

g1

g2

]
, h =

[
h1

h2

]
, l =

[
l1
l2

]
∈ Z,

we calculate

D2
UU R1(τ , 0)[g, h] = 2

Hε

g1h1 − 2Aε
H2
ε

[g1h2 + g2h1] + 2A2
ε

H3
ε

g2h2,

D3
UUU R1(τ , 0)[g, h, l] = − 2

H2
ε

[g1h2l1 + g2h1l1 + g1h1l2] + 4Aε
H3
ε

[g2h2l1 + g1h2l2 + g2h1l2]

− 6A2
ε

H4
ε

g2h2l2,

D2
UU R2(τ , 0)[g, h] = 4

τ
g1h1,

D3
UUU R2(τ , 0)[g, h, l] = 0.

Therefore,

K1(ε) = − 〈
D3

UUU R(τ h
ε , 0)[ε ,ε ,ε],

∗
ε

〉
=

∫ 1

−1

[
2

H2
ε

(2|φε |2ψε + φ2
εψε) − 4Aε

H3
ε

(ψ2
ε φε + 2φε |ψε |2) + 6A2

ε

H4
ε

ψε |ψε |2
]
φ∗
ε dx,

(7.12)

ξεK2(ε) =
〈
D2

UU R
(
τ h
ε , 0

) [
ε , ξε

(Lε − 2αεI i
)−1

D2
UU R

(
τ h
ε , 0

)
[ε ,ε]

]
,∗

ε

〉
=

∫ 1

−1

[
2

Hε

φεz
ε
1 − 2Aε

H2
ε

(
φεz

ε
2 +ψεz

ε
1

) + 2A2
ε

H3
ε

ψεz
ε
2

]
φ∗
ε dx + 4

τ h
ε

∫ 1

−1
zε1φεψ

∗
ε dx,

(7.13)

ξεK3(ε) = 2
〈
D2

UU R(τ h
ε , 0)[ε , ξεL−1

ε D2
UU R(τ h

ε , 0)[ε ,ε]],
∗
ε

〉
= 2

∫ 1

−1

[
2

Hε

φεh
ε
1 − 2Aε

H2
ε

(φεh
ε
2 +ψεh

ε
1) + 2A2

ε

H3
ε

ψεh
ε
2

]
φ∗
ε dx + 8

τ h
ε

∫ 1

−1
hε1φεψ

∗
ε dx.

(7.14)
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Here[
zε1
zε2

]
= ξε(Lε − 2αεI i)−1D2

UU (τ h
ε , 0)[ε ,ε] = ξε(Lε − 2αεI i)−1

⎡
⎣ 2

Hε
φ2
ε − 4Aε

H2
ε
φεψε + 2A2

ε

H3
ε
ψ2
ε

4
τh
ε
φ2
ε

⎤
⎦ .

Namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2(zε1)′′ − (1 + 2αεI i)zε1 + 2Aε
Hε

zε1 − A2
ε

H2
ε

zε2 = 2ξε
Hε

φ2
ε

− 4ξεAε
H2
ε

φεψε + 2ξεA2
ε

H3
ε

ψ2
ε in [−1, 1],

(zε2)′′ − β2(1 + 2τ h
ε α

ε
I i)zε2 + 2β2Aεz

ε
1 = 4β2ξεφ

2
ε in [−1, 1],

(zε1)′ = (zε2)′ = 0 for x = −1, 1.

(7.15)

By the discussions in previous sections, we can derive a limit equation of (7.15)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z′′
1 − (1 + 2αI i)z1 + 2wz1 − 2

1 + 2τhαI i

∫
R

(wz1 − 2φ2
0)∫

R
w2

w2

= 2φ2
0 − 4wφ0ψ0 + 2w2ψ2

0 in R,

z2 = 2

1 + 2τhαI i

∫
R

(wz1 − 2φ2
0)∫

R
w2

in R.

While[
hε1
hε2

]
= ξε(Lε)−1D2

UU (τ h
ε , 0)[ε ,ε] = ξε(Lε)−1

⎡
⎣ 2

Hε
|φε |2 − 2Aε

H2
ε

(φεψε +ψεφε) + 2A2
ε

H3
ε
|ψε |2

4
τh
ε
|φε |2

⎤
⎦ .

Namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2(hε1)′′ − hε1 + 2Aε
Hε

hε1 − A2
ε

H2
ε

hε2 = 2ξε
Hε

|φε |2 − 2ξεAε
H2
ε

(φεψε +ψεφε)

+ 2ξεA2
ε

H3
ε

|ψε |2 in [−1, 1],

(hε2)′′ − β2hε2 + 2β2Aεh
ε
1 = 4β2ξε |φε |2 in [−1, 1],

(hε1)′ = (hε2)′ = 0 for x = −1, 1.
(7.16)

Accordingly, the limit equation of (7.16) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h′′
1 − h1 + 2wh1 − 2

∫
R

(wh1 − 2|φ0|2)∫
R

w2
w2 = 2|φ0|2 − 2w(φ0ψ0 +ψ0φ0) + 2w2|ψ0|2 in R,

h2 = 2

∫
R

(wh1 − 2|φ0|2)∫
R

w2
in R.

Therefore, we have, as ε→ 0, that

ε−1ξ 2
ε K1(ε) = [1 + o(1)]

∫
R

[
2(2|φ0|2ψ0 + φ2

0ψ0) − 4w(ψ2
0φ0 + 2φ0|ψ0|2) + 6w2ψ0|ψ0|2

]
φ∗

0 dy.

(7.17)
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Using the estimate (5.10), we obtain, as ε→ 0, that

ε−1ξ 2
ε K2(ε) = [1 + o(1)]

∫
R

[
2φ0z1 − 2w(φ0z2 +ψ0z1) + 2w2ψ0z2

]
φ∗

0 dy

− [1 + o(1)]
4

(1 + τhαI i)
∫
R

w2

∫
R

z1φ0

∫
R

w2φ∗
0 dy.

(7.18)

Similarly, as ε→ 0,

ε−1ξ 2
ε K3(ε) = 2[1 + o(1)]

∫
R

[
2φ0h1 − 2w(φ0h2 +ψ0h1) + 2w2ψ0h2

]
φ∗

0 dy

− [1 + o(1)]
8

(1 + τhαI i)
∫
R

w2

∫
R

h1φ0

∫
R

w2φ∗
0 dy.

(7.19)

Here

ψ0 ≡ 2

1 + τhαI i

∫
R

wφ0∫
R

w2
. (7.20)

Remark 7.2 Thus for ε > 0 sufficiently small the criticality of the Hopf bifurcation for the
perturbed problem is the same as for the corresponding limiting ε→ 0 problem.

8 Numerical computation of Re(K(ε))

It remains to compute the sign of Re(K(ε)) as given by (7.7) and using the limiting behaviour as
ε→ 0 of K1, K2 and K3 found in equations (7.17), (7.18) and (7.19), respectively. This requires
us to first calculate the Hopf bifurcation time constant τh and purely imaginary eigenvalue λ0 as
well as its corresponding eigenfunction φ0 and adjoint eigenfunction φ∗

0 . Following this, we must
evaluate the auxiliary functions zk and hk for k = 1, 2 satisfying the limiting equations of (7.15)
and (7.16), respectively.

To calculate the Hopf bifurcation threshold τh and eigenvalue λ0 = iαI , we first rewrite the
NLEP (3.1) as

1 + τhλ0 − 2

∫ ∞
−∞ w(L0 − λ0)−1w2∫ ∞

−∞ w2
= 0. (8.1)

The term (L0 − λ0)−1w2 appearing in the numerator is calculated by solving the boundary
value problem (L0 − λ0)ζ = w2 with boundary conditions ζ ′(0) = 0 and ζ (y) → 0 as y → ∞.
Numerically, this is solved on the truncated domain 0< y< L for which the exponential decay
of the solution can be leveraged to replace the decay at infinity with ζ (L) = 0 provided L is
sufficiently large. For this and subsequent truncated domain computations, we will use a value
of L = 500. Additionally, we use the solve_bvp routine from the scipy.integrate library. Having
computed the relevant boundary value problem it is then straightforward to solve (8.1) for τh and
λ0 = iαI using a zero-finding routine. Specifically, by equating real and imaginary parts, we first
solve

1 − 2Re

{∫ ∞
−∞ w(L0 − iαI )−1w2∫ ∞

−∞ w2dy

}
= 0,
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for αI and then obtain τh from

τh = 2

αI
Im

{∫ ∞
−∞ w(L0 − iαI )−1w2∫ ∞

−∞ w2dy

}
.

Using the brentq routine from the scipy library, we compute

τh = 0.77107, λ0 = iαI = 1.2376i, (8.2)

for which (8.1) evaluates to an O(10−13) value. We remark that these values are in agreement
with those found in Table 1 of [21].

The corresponding eigenfunction φ0 can then be found by solving the boundary value problem

(L0 − λ0)φ0 = w2, 0< y<∞, φ′
0(0) = 0, φ0(y) → 0 as y → +∞.

Numerical integration then gives ψ0 ≈ 1 which can be verified explicitly from the definition of
ψ0. The adjoint eigenfunction φ∗

0 is found similarly. We first solve the problem

(L0 − λ̄0)q∗
0 = w, 0< y<∞, φ′

0(0) = 0, φ0(y) → 0 as y → +∞,

and then let φ∗
0 = β̄q∗

0 where the constant β is chosen so that φ0 and φ∗
0 adhere to the

normalisation (7.10) which yields

β = 1

ε

[∫ ∞

−∞
φ0q̄∗

0 − 2τh

(1 + iτhαI )2

∫ ∞
−∞ wφ0

∫ ∞
−∞ w2q̄∗

0∫ ∞
−∞ w2

]−1

.

To calculate z1 and z2, we first rewrite the z1 limit equation of (7.15) as

(L0 − 2λ0)z1 = f1 + 2

1 + 2τhλ0

∫ ∞
−∞ wz1∫ ∞
−∞ w2

w2, z′
1(0) = 0, z1(y) → 0 as y → +∞,

where

f1 := 2φ2
0 − 4wφ0ψ0 + 2w2ψ2

0 − 4

1 + 2τhλ0

∫ ∞
−∞ φ2

0∫ ∞
−∞ w2

w2.

Let ξ1 and ξ2 be the solutions to

(L0 − 2λ0)ξ1 = f1, 0< y<∞, ξ ′
1(0) = 0, ξ1(y) → 0 as y → +∞, (8.3)

and

(L0 − 2λ0)ξ2 = w2, 0< y<∞, ξ ′
2(0) = 0, ξ2(y) → 0 as y → +∞, (8.4)

respectively. Then,

z1 = ξ1 + 2

1 + 2τhλ0

∫ ∞
−∞ wz1∫ ∞
−∞ w2

ξ2,
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so that multiplying by w and integrating allows us to solve for
∫

wz1 from which we deduce

z1 = ξ1 +
2

1 + 2τhλ0

∫ ∞
−∞ wξ1∫ ∞
−∞ w2

1 − 2

1 + 2τhλ0

∫ ∞
−∞ wξ2∫ ∞
−∞ w2

ξ2. (8.5)

Therefore, z1 can be computed by solving the two corresponding boundary value problems
numerically. It is then straightforward to numerically calculate z2 ≈ −1.402 − 1.373i. The
function h1 can be found similarly by writing the limit equation of (7.16) as

L0h1 = f2 + 2
∫ ∞
−∞ wh1∫ ∞
−∞ w2

w2, h′
1(0) = 0, h1(y) → 0 as y → +∞,

where

f2 := 2|φ0|2 − 2(φ0ψ̄0 + φ̄0ψ0)w + 2w2|ψ0|2 − 4
∫ ∞
−∞ |φ0|2∫ ∞
−∞ w2

w2.

We then let η1 and η2 be the solutions to

L0η1 = f2, 0< y<∞, η′
1(0) = 0, η1(y) → 0 as y → +∞, (8.6)

and

L0η2 = w2, 0< y<∞, η′
2(0) = 0, η2(y) → 0 as y → +∞, (8.7)

respectively. Solving these two boundary value problems, we obtain h1 in the form

h1 = η1 +

2
∫ ∞
−∞ wη1∫ ∞
−∞ w2

1 − 2
∫ ∞
−∞ wη2∫ ∞
−∞ w2

η2, (8.8)

and obtain h2 ≈ −0.14669. Using (7.17), (7.18) and (7.19), we thus calculate

ξ 2
ε K1 = −1.2732 − 2.5039i + o(1),

ξ 2
ε K2 = −1.3820 − 0.39262i + o(1),

ξ 2
ε K3 = 2.6454 + 7.0406i + o(1),

and therefore

ξ 2
ε K(ε) = −0.0098061 + 4.1441i + o(1), (8.9)

where the ε−1 term from the normalisation of φ∗
0 has cancelled out the ε−1 in front of the expres-

sions (7.17), (7.18) and (7.19). The negative sign of Re(K(ε)) indicates that the Hopf bifurcation
is subcritical, and the bifurcating periodic solutions are therefore linearly unstable.
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(a) (b)

FIGURE 1. Numerical simulations performed for D = 5000 and ε = 0.02. (a) The onset of oscillatory insta-
bilities as τ exceeds the Hopf bifurcation threshold. (b) Long-time behaviour illustrating the instability and
annihilation of a time-periodic solution for values of τ = 0.79 (top), 0.9 (middle) and 1.2 (bottom).

9 Numerical verification

In this section, we illustrate the theoretical results of the previous sections by numerically com-
puting solutions of the time-dependent system (1.1) for a variety of τ values and fixed values of
D = 5000 and ε = 0.02. For convenience, we introduce the scaling

Ã(x, t) = ε−1u(x, t), H̃(x, t) = ε−1v(x, t),

so that the nontrivial equilibrium from Theorem 2.1 becomes O(1). Furthermore, the system (1.1)
becomes ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut = ε2uxx − u + u2

v
, u> 0 for 0< x< 1, t> 0,

τvt = Dvxx − v+ ε−1u2, v > 0 for 0< x< 1, t> 0,

ux = vx = 0, for x = 0, 1, t ≥ 0.

(9.1)

With the (scaled) equilibrium from Theorem 2.1 as the initial condition, we can illustrate the
theoretical results given above by solving (9.1) numerically for values of τ below and above the
predicted Hopf bifurcation threshold.

The numerical solutions are calculated by discretising the interval 0 ≤ x ≤ 1 into 1000
equidistant points and using a second-order semi-implicit backwards difference (2-SBDF)
implicit-explicit (IMEX) time stepping scheme (see [16] for details) with a time-step size of
0.0001. Since IMEX schemes use explicit (resp. implicit) methods for the non-linear (resp.
diffusive) terms, they are well suited for reaction diffusion systems where they can avoid the non-
linear solvers used in fully implicit schemes and the small time steps required in fully explicit
schemes. In Figure 1, we collect results of the numerical simulations for different values of τ .
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In Figure 1(a), we observe the onset of an oscillatory instability of the value of τ = 0.79 exceed-
ing the Hopf bifurcation threshold τh = 0.77107. On the other hand, when τ = 0.75< τh, we
observe the solution settles to the original equilibrium. The long-time behaviour is shown in
Figure 1(b), where we have chosen to plot log(1 + u(0, t)) to better demonstrate the solution’s
variability. While the uppermost subplot (τ = 0.79) appears to exhibit a stable limit-cycle solu-
tion, these oscillations are instead large-amplitude instabilities caused by the instability of the
trivial equilibrium for τ < 1 (see [21] for details). Indeed the middle subplot (τ = 0.9) shows how
the oscillations eventually subside and then lead to a substantial jump from the unstable zero-
solution. Meanwhile, the bottom subplot (τ = 1.2) shows how the initial oscillatory instabilities
subside and the solutions settle to the trivial equilibrium solution. Together, the numerical results
shown in Figure 1 support the theoretical prediction that the Hopf bifurcation is subcritical.
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