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Abstract

In an earlier paper of Wee Teck Gan and Gordan Savin, the local Langlands correspon-
dence for metaplectic groups over a nonarchimedean local field of characteristic zero
was established. In this paper, we formulate and prove a local intertwining relation
for metaplectic groups assuming the local intertwining relation for non-quasi-split odd
special orthogonal groups.

1. Introduction

In his long-awaited book [Art13], Arthur obtained a classification of irreducible representations
of quasi-split symplectic and special orthogonal groups over local fields of characteristic zero
(the local Langlands correspondence, which we shall refer to as LLC for short). Recall the basic
form of the correspondence over nonarchimedean local fields of characteristic zero. Let F be
a p-adic field, i.e. a finite extension of Qp, for some prime number p. Let ΓF and WF be the
absolute Galois group and the absolute Weil group of F , respectively. We shall write WDF for
the Weil–Deligne group WF × SL2(C).

LetG be a connected reductive algebraic group defined over F . The LLC proposes a classifica-
tion of irreducible tempered admissible representations of G(F ) in terms of tempered admissible
L-parameters for G. Let Ĝ be the connected complex Langlands dual group of G. We write
Πtemp(G) for the set of equivalence classes of irreducible tempered admissible representations
of G(F ), and Φtemp(G) for the set of equivalence classes of tempered admissible L-parameters
φ : WDF → Ĝ�WF . The basic form of the LLC is the following.

Conjecture 1.1.

(1) There exists a canonical map

LL : Πtemp(G) −→ Φtemp(G)

with some important properties.
(2) For each φ ∈ Φtemp(G), the fiber Πφ = Πφ(G) = LL−1(φ) is a finite set, called a packet.

There are further expected properties. We refer the reader to [Bor79], [Art89b], or [Kal16]
for details.

As mentioned above, Arthur [Art13] established the LLC for quasi-split SO2n, SO2n+1, and
Sp2n, i.e. the even special orthogonal, odd special orthogonal, and symplectic groups of rank n,
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respectively. Moreover, Mœglin and Renard [MR18] provided a classification of irreducible tem-
pered representations of non-quasi-split odd special orthogonal groups over p-adic fields, hence
the LLC of Vogan type. Recall the LLC of Vogan type [Vog93, Conjecture 4.15] over p-adic
fields. Let G∗ be a quasi-split connected reductive algebraic group over a p-adic field F . The
LLC of Vogan type treats pure inner twists of G∗ at the same time. For each φ ∈ Φtemp(G), we
let Sφ = Sφ(G) denote the centralizer Cent(Imφ, Ĝ) and π0(Sφ) its component group. Then the
LLC of Vogan type proposes the following.

Conjecture 1.2.

(1) There exists a canonical map

LLV :
⊔
(ξ,z)

Πtemp(G) −→ Φtemp(G∗),

where (ξ, z) runs over the isomorphism classes of pure inner twists of G∗, i.e. ξ : G∗ → G is
an inner twist and z ∈ Z1(ΓF , G∗) is a 1-cocycle such that ξ−1 ◦ σ ◦ ξ ◦ σ−1 = Ad(z(σ)) for
all σ ∈ ΓF . This map satisfies some important properties.

(2) For each φ ∈ Φtemp(G∗), the fiber Πφ = LLV−1(φ) is a finite set.
(3) For each φ ∈ Φtemp(G∗), there exists a bijective map

ι : Πφ −→ Irr(π0(Sφ)),

where Irr(π0(Sφ)) denotes the set of equivalence classes of irreducible representations of
the finite group π0(Sφ), and this bijection ι satisfies the endoscopic character relations and
other nice properties. Moreover, once we fix a Whittaker datum of G∗, the map ι is uniquely
determined.

In this paper we consider the metaplectic groups, which are possibly not algebraic groups
but whose representation theory is similar to that of algebraic groups. The LLC for metaplectic
groups, which we now introduce, was established by Gan and Savin [GS12]. The metaplectic
group, denoted by Mp2n(F ), is a unique nonlinear two-fold cover of Sp2n(F ) with an exact
sequence

1 −→ {±1} −→ Mp2n(F ) −→ Sp2n(F ) −→ 1.

Thus we identify Mp2n(F ) with Sp2n(F )× {±1} as sets. We say that a representation π of
Mp2n(F ) is genuine if π((1,−1)) is not trivial. Let Πtemp(Mp2n) be the set of equivalence classes
of irreducible genuine tempered admissible representations of Mp2n(F ), and let Φtemp(Mp2n) =
Φtemp(SO2n+1). Fix a nontrivial additive character ψ : F → C1. We have the following LLC for
Mp2n(F ) depending on the choice of ψ, due to Gan and Savin [GS12].

Theorem 1.3.

(1) There exists a map

LLψ : Πtemp(Mp2n) −→ Φtemp(Mp2n)

with some important properties.

(2) For each φ ∈ Φtemp(Mp2n), the fiber Πφ,ψ = LL−1
ψ (φ) is a finite set.
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(3) For each φ ∈ Φtemp(Mp2n), there exists a unique bijective map

ιψ : Πφ,ψ −→ Irr(π0(Sφ))

which depends on the choice of ψ, and this map satisfies some nice properties.

Although in general the map LL may not be bijective, there is a formula that describes
how the bijection ι classifies elements in the same packet in terms of intertwining operators.
Specifically, this formula can distinguish the elements of each packet Πφ more precisely by means
of the eigenvalues of intertwining operators. We call this formula the local intertwining relation.
This of course is closely related to the endoscopic character relations. Also, it is related to global
theories such as the trace formula: global intertwining operators appear in the main terms of the
trace formula, and local intertwining operators are their local factors.

In [Art13], Arthur proved the local intertwining relation for quasi-split special orthogonal and
symplectic groups [Art13, Theorem 2.4.1]. Mok [Mok15] and Kaletha et al. [KMSW14] proved
it for inner forms of unitary groups. Our aim in this paper is to formulate and prove a local
intertwining relation for Mp2n(F ) under the assumption that the local intertwining relation for
the non-quasi-split odd special orthogonal groups holds.

Now we explain the local intertwining relation and our result in more detail. Let G be a
classical group defined over F , and let P be a proper parabolic subgroup of G with a Levi sub-
group M defined over F . We then have a canonical inclusion M̂ ⊂ Ĝ. Composing this inclusion
and an L-parameter for M gives an inclusion Φtemp(M) ⊂ Φtemp(G). Let φ ∈ Φtemp(M) be an
L-parameter for M , and also regard it as an L-parameter for G. Then the LLC and LLC of
Vogan type conjecture that the packet Πφ(G) consists of the irreducible constituents of the rep-
resentations that are parabolically induced from the elements of Πφ(M). For simplicity, we shall
consider only the Vogan-type conjecture. The local intertwining relation can distinguish these
constituents π of IndGP (πM ) in terms of the eigenvalues of certain maps for each πM ∈ Πφ(M).
The relation asserts that for any x ∈ π0(Sφ), one can construct an endomorphism RP (x, πM )
of IndGP (πM ) explicitly such that RP (x, πM ) acts on π by a scalar multiplication by ι(π)(x). In
other words, we expect that for any x ∈ π0(Sφ), the concretely defined endomorphism

RP (x, πM ) ∈ EndG(IndGP (πM ))

satisfies

RP (x, πM )
∣∣
π

= ι(π)(x)

for π ⊂ IndGP (πM ). This endomorphism is called the normalized self-intertwining operator.
In general, not only the proof of the local intertwining relation but also the definition of the

normalized self-intertwining operator are not trivial. This is because we have to consider some
constant factors, such as the ε-factors, Kottwitz sign, and Langlands constants (λ-factors), to
define the normalizing factors. In particular, ε-factors depend on the representation πM , so they
are particularly important. See [Art89b] or [Art13] for details.

In this paper we treat the case where G is a metaplectic group Mp2n. We shall define
normalized intertwining operators RP (x, πM ) for Mp2n in § 7.3 by

RP (x, πM ) = γF (ψ)d(x,πM )γ(1
2 , φx, ψ)−1γ(0, ρ∨ ◦ φ, ψ)M(x, πM ), (1.1)
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where d(x, πM ) is a certain nonnegative integer, φx and ρ∨ ◦ φ are certain L-parameters, and
M(x, πM ) is an unnormalized intertwining operator. Our definition of the normalized intertwin-
ing operators resembles that of classical linear algebraic groups, but there are three subtle and
important differences. First, unlike the case of linear algebraic groups, we can have the Weil
index γF (ψ) appearing in the normalizing factors; this is a constant that depends only on the
additive character ψ. Second, the gamma factor γ(1

2 , φx, ψ)−1 at 1
2 appears. Third, the choice

of the Haar measure on the unipotent radical of a parabolic subgroup of Mp2n(F ) is slightly
different from that in the case of linear algebraic groups. These issues will be dealt with in
§§ 7.2 and 7.3.

Then we define the normalized self-intertwining operator RP (x, πM ) in § 7.3 by using the
normalized intertwining operator (1.1). The main theorem (Theorem 4.2) is the following.

Theorem 1.4. Assume the local intertwining relation for the odd special orthogonal groups

(Hypothesis 5.2 below). Let φ ∈ Φtemp(M) be an L-parameter for a Levi subgroup M of a

parabolic subgroup P of Mp2n(F ), and let πM ∈ Πφ,ψ(M). Then for any x ∈ π0(Sφ(Mp2n)), the

normalized self-intertwining operator

RP (x, πM ) ∈ EndMp2n(F )(IndMp2n(F )
P (πM ))

satisfies

RP (x, πM )
∣∣
π

= ιψ(π)(x)

for π ⊂ IndMp2n(F )
P (πM ).

Notation. Let F be a p-adic field and | − |F the normalized absolute value on F . We shall write
WF and WDF = WF × SL2(C) for the Weil group and Weil–Deligne group of F , respectively. We
also write ΓF for the Galois group of F . Let (−,−)F denote the quadratic Hilbert symbol of F .
The Hilbert symbol defines a non-degenerate bilinear form on F×/F×2. Fix a nontrivial additive
character ψ : F → C1 = { z ∈ C | zz = 1 }. For any c ∈ F , we define an additive character ψc of
F by

ψc(x) = ψ(cx).

For a non-degenerate quadratic form q on a finite-dimensional vector space over F , we write
γF (ψ ◦ q) for the unnormalized Weil index of ψ ◦ q, a character of second degree. See [Ran93,
Appendix] for the definition of the Weil index. Note that if a quadratic form q is an orthogonal
direct sum q1 +̇ q2 of two non-degenerate quadratic forms q1 and q2, then

γF (ψ ◦ q) = γF (ψ ◦ q1)γF (ψ ◦ q2).

Let us write γF (ψ) for the unnormalized Weil index of [x �→ ψ(x2)] and γF (a, ψ) for the nor-
malized Weil index, which is defined by γF (a, ψ) = γF (ψa)/γF (ψ) for a ∈ F×. For a totally
disconnected locally compact group G, let Irr(G) denote the set of equivalence classes of
irreducible smooth admissible representations of G. In this paper, we deal only with smooth
admissible representations over C, except for representations of WDF . For simplicity, by repre-
sentations of G we mean such representations of G. If G is a linear algebraic group (respectively
a metaplectic group) over F , we write Πtemp(G) for the set of equivalence classes of irreducible
tempered representations (respectively irreducible genuine tempered representations) of G(F ),
and we may write G = G(F ) with an abuse of notation. For an algebraic group H, we define
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the component group of H by π0(H) = H/H◦, where H◦ is the identity component of H. The
connected complex Langlands dual group of a connected reductive linear algebraic group G is
denoted by Ĝ. For any finite-dimensional vector space X over F , we write S(X) for the space
of compactly supported locally constant C-valued functions on X. For any representation ρ, we
write ρ∨ for its contragredient.

2. Metaplectic and orthogonal groups

Let us begin with a brief review of the metaplectic and orthogonal groups. In this section, we fix
some notation for the groups of interest in this paper.

2.1 Symplectic group
First we introduce some notation for symplectic groups. Let (W, 〈−,−〉W ) be a symplectic vector
space of dimension 2n over F , with associated symplectic group

Sp(W ) =
{
g ∈ GL(W )

∣∣ 〈gw, gw′〉W = 〈w,w′〉W ∀w,w′ ∈W
}
.

Choose a symplectic basis { y1, . . . , yn, y
∗
1, . . . , y

∗
n } of W , and define

Yk = spanF (y1, . . . , yk), Y ∗
k = spanF (y∗1, . . . , y

∗
k)

for k = 1, . . . , n, so that we have a standard complete polarization W = Yn ⊕ Y ∗
n . We also let

Wn−k = spanF (yk+1, . . . , yn, y
∗
k+1, . . . y

∗
n)

so that

W = Yk ⊕Wn−k ⊕ Y ∗
k .

If n = 0, then W = {0}, Sp(W ) = {1}, and the basis is the empty set.
We now describe the parabolic subgroups of Sp(W ) up to conjugacy. Let k = (k1, . . . , km) be

a sequence of positive integers such that k1 + · · ·+ km ≤ n, and put k0 = 0 and n0 = n− (k1 +
· · ·+ km). Consider a flag of isotropic subspaces

Yk1 ⊂ Yk1+k2 ⊂ · · · ⊂ Yk1+···+km

in Yn. The stabilizer of such a flag is a parabolic subgroup Pk whose Levi subgroup Mk is given
by

Mk
∼= GLk1 × · · · ×GLkm × Sp(Wn0),

where GLki is identified with the general linear group of a ki-dimensional space

spanF (yk0+···+ki−1+1, . . . , yk0+···+ki−1+ki).

The reason we use the overlines for Mk and Pk will become clear in the next subsection. We shall
write Nk for the unipotent radical of Pk. Parabolic subgroups of this form are standard with
respect to the splitting splSp(W ) defined in § 7.1. Any parabolic subgroup of Sp(W ) is conjugate
to a parabolic subgroup of this form. If m = 1 and k = (k), we shall write Pk, Mk, and Nk

instead of Pk, Mk, and Nk, respectively, for simplicity.
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2.2 Metaplectic group
Next we come to metaplectic groups. If n = 0, we put Mp(W ) = {±1}. If n ≥ 1, then the sym-
plectic group Sp(W ) has a unique nonlinear two-fold central extension Mp(W ), which is called
the metaplectic group:

1 −→ {±1} −→ Mp(W ) −→ Sp(W ) −→ 1. (2.1)

As a set, we may write
Mp(W ) = Sp(W )× {±1}

with group law given by
(g, ε) · (g′, ε′) = (gg′, εε′c(g, g′)),

where c is Ranga Rao’s normalized cocycle, which is a 2-cocycle on Sp(W ) valued in {±1}. See
[Ran93, § 5] or [Szp07, § 2] for details. For any subset A ⊂ Sp(W ), we write Ã for its preimage
under the covering map Mp(W )→ Sp(W ). Also, for any subset B ⊂ Mp(W ), we write B for its
image under the covering map.

By the parabolic subgroups of Mp(W ) and their Levi subgroups we mean the preimages of the
parabolic subgroups of Sp(W ) and their Levi subgroups, respectively. Not only the metaplectic
group Mp(W ) but also its parabolic subgroups and Levi subgroups are in general nonlinear.

Let us describe the parabolic subgroup Pk = P̃k of Mp(W ), which we shall call a standard
parabolic subgroup (with respect to the splitting splSp(W )). The covering (2.1) splits over the
unipotent radical Nk of Pk by n �→ (n, 1), so we may canonically regard Nk as a subgroup of
Mp(W ), and we have a Levi decomposition

Pk = Mk �Nk

where Mk = M̃k is a Levi subgroup. The covering Mk over Mk
∼= GLk1 ×GLk2 × · · · ×GLkm ×

Sp(Wn0) is given by
Mk
∼= G̃Lk1 ×μ2 · · · ×μ2 G̃Lkm ×μ2 Mp(Wn0).

Here, the restriction of the covering to Sp(Wn0) is nothing but the metaplectic cover Mp(Wn0)
of Sp(Wn0), and the covering over GLki is

G̃Lki = GLki × {±1 }

with group law
(g, ε) · (g′, ε′) = (gg′, εε′(det g,det g′)F ).

Let k be a positive integer. The (genuine) representation theory of G̃Lk can be easily related
to the representation theory of GLk. Indeed, to any irreducible representation τ of GLk we can
attach an irreducible genuine representation τ̃ of G̃Lk as in [GS12, § 2.4], and this attachment
τ �→ τ̃ gives a bijection between Irr(GLk) and Irr(G̃Lk), where Irr(G̃Lk) is the set of equivalence
classes of irreducible genuine representations of G̃Lk. We stress that this bijection depends on
the choice of the additive character ψ because τ̃ is the twist τ ⊗ χψ by a genuine character χψ,
which is defined using ψ, as in [GS12, § 2.4].

2.3 Orthogonal group
Now we come to the orthogonal groups. Let V be a (2n+ 1)-dimensional vector space over
F equipped with a non-degenerate quadratic form q = qV of discriminant 1. Then we define a
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symmetric bilinear form bq associated to q by

bq(v, v′) = q(v + v′)− q(v)− q(v′).

If n ≥ 1, then up to isomorphism there are precisely two such quadratic spaces V . One
of them, denoted by V +, has maximal isotropic subspaces of dimension n, whereas the other,
denoted by V −, has maximal isotropic subspaces of dimension n− 1. As such, we call the former
the split quadratic space and the latter the non-split quadratic space. We shall write

ε(V ) =

{
+1, V = V +,

−1, V = V −.

If n = 0, we have only one such V up to isomorphism, and we put V + = V and ε(V ) = +1.
Let

O(V ) = { h ∈ GL(V ) | q(hv) = q(v) ∀ v ∈ V }
be the associated orthogonal group. Then observe that O(V ) = SO(V )× {±1}, where

SO(V ) = O(V ) ∩ SL(V )

is the special orthogonal group. The group SO(V ) is split (respectively non-quasi-split) if V
is the split (respectively non-split) quadratic space. If n ≥ 1, then up to isomorphism there are
precisely two pure inner twists of SO(V +), namely SO(V +) and SO(V −). Note that the Kottwitz
sign [Kot83] of SO(V ) is equal to ε(V ).

Let r be the dimension of a maximal isotropic subspace of V , so that r = n− (1− ε(V ))/2.
Choose a basis {x1, . . . , xn, x0, x

∗
1, . . . , x

∗
n } of V such that

bq(xi, xj) = bq(x∗i , x
∗
j ) = 0, bq(xi, x∗j ) = δi,j ,

bq(x0, xi) = bq(x0, x
∗
i ) = 0, q(x0) = 1

for 1 ≤ i, j ≤ r and, if r = n− 1,

bq(xn, xi) = bq(xn, x∗i ) = bq(x∗n, xi) = bq(x∗n, x
∗
i ) = 0

for any 1 ≤ i ≤ r. For each 1 ≤ k ≤ r, put

Xk = spanF (x1, . . . , xk), X∗
k = spanF (x∗1, . . . , x

∗
k),

Vn−k = spanF (xk+1, . . . , xn, x0, x
∗
k+1, . . . x

∗
n),

so that
V = Xk ⊕ Vn−k ⊕X∗

k .

We now describe the parabolic subgroups of SO(V ) up to conjugacy. Let k = (k1, . . . , km)
be a sequence of positive integers such that k1 + · · ·+ km ≤ r. Put k0 = 0 and n0 = n− (k1 +
· · ·+ km). Consider a flag of isotropic subspaces

Xk1 ⊂ Xk1+k2 ⊂ · · · ⊂ Xk1+···+km

in Xr. The stabilizer of such a flag is a parabolic subgroup Qk whose Levi subgroup Lk is given
by

Lk
∼= GLk1 × · · · ×GLkm × SO(Vn0),
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where GLki is identified with the general linear group of a ki-dimensional space

spanF (xk0+···+ki−1+1, . . . , xk0+···+ki−1+ki).

We shall write Uk for the unipotent radical of Qk. Parabolic subgroups of this form are standard
with respect to the splitting splSO(V +) defined in § 7.1 if V = V +. Any parabolic subgroup of
SO(V ) is conjugate to a parabolic subgroup of this form.

3. Tempered L-parameters for Mp(W ) and SO(V )

In this section, we recall the notion of L-parameters for Mp(W ) and SO(V ). See [GGP12] for
details.

3.1 Symplectic representations of WDF and their component groups
We say that a homomorphism φ : WDF → GLd(C) is a representation of WDF if:

– φ(Frob) is semi-simple, where Frob ∈WF is a geometric Frobenius;
– the restriction of φ to SL2(C) is algebraic;
– the restriction of φ to WF is smooth.

We say that φ is tempered if the image of WF is bounded, and we say that φ is symplec-
tic if there exists a non-degenerate anti-symmetric bilinear form B : Cd × Cd → C such that
B(φ(w)x, φ(w)y) = B(x, y) for any x, y ∈ Cd and w ∈WDF ; in this case, φ is self-dual.

Let φ : WDF → GLd(C) be a tempered symplectic representation. By changing bases if
necessary, we may assume that φ : WDF → Spd(C). Then, by [GGP12, § 4], we can write

φ =
⊕
i∈Iφ

�iφi ⊕ (ϕ⊕ ϕ∨),

where the �i are positive integers, Iφ is an indexing set for mutually non-equivalent irreducible
symplectic representations φi of WDF , and ϕ is a representation of WDF such that all irreducible
summands are non-symplectic. Let Sφ = Cent(Imφ,Spd(C)) be the centralizer of the image Im(φ)
in Spd(C). Then, by [GGP12, § 4], its component group π0(Sφ) is canonically identified with a
free Z/2Z-module of rank #Iφ:

π0(Sφ) ∼=
⊕
i∈Iφ

(Z/2Z)ai,

where {ai} is a formal basis associated to {φi}. In the rest of this paper, we identify π0(Sφ) with⊕
i(Z/2Z)ai. We shall write zφ for the image of −1 ∈ Sφ in π0(Sφ).

3.2 Tempered L-parameters for Mp(W ) and SO(V )
Let Φtemp(GLk) be the set of equivalence classes of tempered L-parameters for GLk. Recall that
it can be identified with the set of equivalence classes of tempered representations φ : WDF →
GLk(C) of dimension k. Now let Φtemp(Mp2n) and Φtemp(SO2n+1) be the sets of equivalence
classes of tempered L-parameters for Mp(W ) and SO(V ), respectively. Then, by [GGP12, §§ 11
and 8], we can identify Φtemp(Mp2n) and Φtemp(SO2n+1) with the set of equivalence classes of
tempered symplectic representations φ : WDF → Sp2n(C) of dimension 2n.
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Let k = (k1, . . . , km) and let n0 be as in the previous section. For (G,P,M) =
(Mp(W ), Pk,Mk) or (SO(V ), Qk, Lk), put

Ĝ = Sp2n(C), M̂ = GLk1(C)× · · · ×GLkm(C)× Sp2n0
(C),

with a standard embedding M̂ ↪→ Ĝ as a Levi subgroup of a standard parabolic subgroup P̂ of
Ĝ. Let φ be a tempered L-parameter for G with the image Im(φ) in M̂ . This is of the form

φ = φ1 ⊕ · · · ⊕ φm ⊕ φ0 ⊕ φ∨m ⊕ · · · ⊕ φ∨1 , (3.1)

where φi ∈ Φtemp(GLki) for i = 1, . . . ,m and φ0 ∈ Φtemp(Mp2n0
) = Φtemp(SO2n0+1). Let AM̂ be

the maximal central torus of M̂ . Put

Nφ(M,G) = Norm(AM̂ , Sφ)/Cent(AM̂ , S
◦
φ),

Wφ(M,G) = Norm(AM̂ , Sφ)/Cent(AM̂ , Sφ),

S�φ(M,G) = Norm(AM̂ , Sφ)/Norm(AM̂ , S
◦
φ).

We have a natural surjection

Nφ(M,G) � S�φ(M,G), (3.2)

natural inclusions

Wφ(M,G) ⊂W(M̂, Ĝ), S�φ(M,G) ⊂ π0(Sφ),

and a natural short exact sequence

1 −→ π0(Sφ0) −→ Nφ(M,G) −→Wφ(M,G) −→ 1.

By applying [Art13, p. 104] or [KMSW14, p. 103, after (2.4.1)] to SO(V ), the injection π0(Sφ0)→
Nφ(M,G) admits a canonical splitting

Nφ(M,G) = π0(Sφ0)×Wφ(M,G).

4. Local Langlands correspondence for Mp(W ) and the main theorem

In this section, we summarize some properties of the LLC for metaplectic groups and state the
main theorem (Theorem 4.2). The correspondence is defined by combining the local Shimura
correspondence with the LLC for odd special orthogonal groups, which we shall summarize in
§§ 5 and 6 below.

The local Langlands correspondence for metaplectic groups was established by Gan and
Savin; see [GS12, Corollary 1.2 and Theorem 1.3], and [Han19] for the last assertion of the
theorem.

Theorem 4.1.

(1) There exists a surjection (depending on ψ)

LLψ : Πtemp(Mp(W )) −→ Φtemp(Mp2n),

with finite fibers Πφ,ψ = Πφ,ψ(Mp(W )) = LL−1
ψ (φ).
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(2) For each φ ∈ Φtemp(Mp2n), there exists a unique bijection (depending on ψ)

ιψ : Πφ,ψ −→ Irr(π0(Sφ)).

(3) Let k = (k1, . . . , km) and n0 = n− (k1 + · · ·+ km) ≥ 0, and let φ ∈ Φtemp(Mp2n) be of the

form (3.1). Then we have

Πφ,ψ =
{
π
∣∣∣ π ⊂ IndMp(W )

Pk
(τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0), irreducible constituent, π0 ∈ Πφ0,ψ

}
,

where τi is the representation of GLki which corresponds to φi, for i = 1, . . . ,m. Moreover,

for any π0 ∈ Πφ0,ψ we have

IndMp(W )
Pk

(τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0) =
⊕

π∈Πφ,ψ
ιψ(π)|π0(Sφ0

)=ιψ(π0)

π.

In the setting of Theorem 4.1(3), for w ∈Wφ(Mk,Mp(W )) let

RPk
(w, τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0) ∈ EndMp(W )(IndMp(W )

Pk
(τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0))

be the normalized self-intertwining operator defined in § 7.3 below. Then we can state the main
theorem as follows.

Theorem 4.2. Assume the local intertwining relation for the odd special orthogonal groups

(Hypothesis 5.2 below). Let xw ∈ S�φ(Mk,Mp(W )) be the image of w ∈Wφ(Mk,Mp(W ))
under the natural surjection (3.2). Then the restriction of RPk

(w, τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0) to π ⊂
IndMp(W )

Pk
(τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0) is the scalar multiplication by ιψ(π)(xw).

We will reduce the main theorem to Proposition 7.3 in § 7.4, and we will complete a proof of
the proposition in § 9.3.

5. Local Langlands correspondence and the local intertwining relation for SO(V )

The LLC for odd special orthogonal groups was established by Arthur [Art13] and by Mœglin
and Renard [MR18]. In this section, we summarize some properties of the correspondence and
the local intertwining relation.

Arthur [Art13] studied representations of SO(V +) and Mœglin and Renard [MR18] rep-
resentations of SO(V −). Their results imply the LLC of Vogan type for SO(V ), stated as
follows.

Theorem 5.1.

(1) There exists a surjection

LLV : Πtemp(SO(V +)) �Πtemp(SO(V −)) −→ Φtemp(SO2n+1),

with finite fibers Πφ = Πφ(SO(V +)) �Πφ(SO(V −)) = LLV−1(φ).
(2) For each φ ∈ Φtemp(SO2n+1), there exists a unique bijective map

ι : Πφ −→ Irr(π0(Sφ))
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such that

Πφ(SO(V ±)) = { σ ∈ Πφ | ι(σ)(zφ) = ±1 } .

(3) Let V = V + or V −. Let k = (k1, . . . , km) be a sequence of positive integers such that k1 +
· · ·+ km ≤ r, and put n0 = n− (k1 + · · ·+ km). Let φ ∈ Φtemp(SO2n+1) be of the form (3.1).

Then we have

Πφ =
{
σ
∣∣∣ σ ⊂ IndSO(V )

Qk
(τ1 ⊗ · · · ⊗ τm ⊗ σ0), irreducible constituent, σ0 ∈ Πφ0

}
,

where τi is the representation of GLki which corresponds to φi, for i = 1, . . . ,m. Moreover,

for any σ0 ∈ Πφ0 , we have

IndSO(V )
Qk

(τ1 ⊗ · · · ⊗ τm ⊗ σ0) =
⊕
σ∈Πφ

ι(σ)|π0(Sφ0
)=ι(σ0)

σ.

In the setting of Theorem 5.1(3), for w ∈Wφ(Lk,SO(V )) let

RQk
(w, τ1 ⊗ · · · ⊗ τm ⊗ σ0) ∈ EndSO(V )(IndSO(V )

Qk
(τ1 ⊗ · · · ⊗ τm ⊗ σ0))

be the normalized self-intertwining operator defined in § 7.3 below. The next hypothesis is the
local intertwining relation for SO(V ), and it has already been proven in the V = V + case by
Arthur [Art13, § 2.4].

Hypothesis 5.2. Let xw ∈ S�φ(Lk,SO(V )) be the image of w ∈Wφ(Lk,SO(V )) under the nat-

ural surjection (3.2). Then the restriction of RQk
(w, τ1 ⊗ · · · ⊗ τm ⊗ σ0) to σ ⊂ IndSO(V )

Qk
(τ1 ⊗

· · · ⊗ τm ⊗ σ0) is the scalar multiplication by ι(σ)(xw).

6. Local Shimura correspondence

Gan and Savin [GS12] showed the local Shimura correspondence, which is the natural bijection
between the set of isomorphism classes of irreducible genuine representations of Mp(W ) and
the set of isomorphism classes of irreducible representations of SO(V +) and SO(V −). This is
given by the local theta correspondence, and we can construct the LLC for Mp(W ) (Theorem
4.1) by combining the local Shimura correspondence with the LLC of Vogan type for SO(V )
(Theorem 5.1). In this section we review their results. First we recall the Weil representation for
Mp(W )×O(V ) and the notion of local theta correspondence.

6.1 Weil representation
The group Mp(W )×O(V ) has a natural representation ωV,W,ψ depending on ψ, given as follows.
The tensor product W = V ⊗F W has a natural symplectic form 〈−,−〉 defined by

〈v ⊗ w, v′ ⊗ w′〉 = bq(v, v′) · 〈w,w′〉W .

Then there is a natural map

Sp(W )×O(V ) −→ Sp(W). (6.1)

One has the metaplectic C1-cover Mp(W) of Sp(W), and the additive character ψ determines
the Weil representation ωψ ofMp(W). Kudla [Kud94] gives a splitting of the metaplectic cover
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over Mp(W )×O(V ), and hence there exists a commutative diagram

Mp(W )×O(V ) −−−−→ Mp(W)⏐⏐� ⏐⏐�
Sp(W )×O(V ) −−−−→ Sp(W),

where the right vertical map is given by the metaplectic C1-covering map, the left vertical map
is given by the two-fold cover (2.1), and the lower horizontal map is (6.1). Thus, we have a Weil
representation ωV,W,ψ of Mp(W )×O(V ). Later, in § 8.6, we will give some realizations of the
Weil representation ωV,W,ψ to show the main theorem. Here, a splitting over Mp(W )×O(V ) is
not unique, and we choose one following [Kud94].

6.2 Local theta correspondence
In this subsection, we summarize the Gan–Savin result [GS12]. First, note that the theorems
in [GS12] had been verified only for the case of odd residue characteristic, as the Howe duality
for even residue characteristic was conjecture at the time. However, the Howe duality for even
residue characteristic was then verified by Gan and Takeda [GT16], so now we have the results
of [GS12] for arbitrary residue characteristic.

Given an irreducible representation σ of O(V ), the maximal σ-isotypic quotient of ωV,W,ψ is
of the form

σ � ΘV,W,ψ(σ)

for some representation ΘV,W,ψ(σ) of Mp(W ) (called the big theta lift of σ). Then ΘV,W,ψ(σ)
either is zero or has finite length. The maximal semi-simple quotient of ΘV,W,ψ(σ) is denoted by
θV,W,ψ(σ) (called the small theta lift of σ).

Similarly, if π is an irreducible genuine representation of Mp(W ), then one has its big theta
lift ΘW,V,ψ(π) and its small theta lift θW,V,ψ(π), which are representations of O(V ).

By the Howe duality, each small theta lift is irreducible or zero [Wal90; GT16]. Gan and
Savin [GS12, § 6] showed that:

(i) for π ∈ Irr(Mp(W )), exactly one of θW,V +,ψ(π) or θW,V −,ψ(π) is nonzero;
(ii) given σ ∈ Irr(SO(V )), with the extensions σ+ and σ− to O(V ), exactly one of ΘV,W,ψ(σ+)

or ΘV,W,ψ(σ−) is nonzero.

Here Irr(Mp(W )) is the set of equivalence classes of irreducible genuine representations of
Mp(W ), and σ± denote the extensions such that −1 ∈ O(V ) acts as ±1, respectively. Then
Gan and Savin derived the following theorems [GS12, Theorems 1.1 and 1.3].

Theorem 6.1. There is a bijection

Θψ : Irr(Mp(W ))←→ Irr(SO(V +)) � Irr(SO(V −)),

given by the theta correspondence with respect to ψ.

Theorem 6.2. Suppose that σ ∈ Irr(SO(V )) and π ∈ Irr(Mp(W )) correspond under Θψ. Then

the following hold.

(1) σ is a discrete series representation if and only if π is a discrete series representation.
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(2) σ is tempered if and only if π is tempered. Moreover, suppose that

σ ⊂ IndSO(V )
Qk

(τ1 ⊗ · · · ⊗ τm ⊗ σ0),

where k = (k1, . . . , km) is a sequence such that k1 + · · ·+ km ≤ r, the τi are tempered rep-

resentations of GLki , σ0 is a tempered representation of SO(Vn0), and n0 = n− (k1 + · · ·+
km). Then

π ⊂ IndMp(W )
Pk

(τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0),

where π0 = Θψ(σ0). In particular, Θψ gives a bijection between the (isomorphism classes

of) irreducible constituents of IndSO(V )
Qk

(τ1 ⊗ · · · ⊗ τm ⊗ σ0) and those of IndMp(W )
Pk

(τ̃1 ⊗ · · · ⊗
τ̃m ⊗ π0).

(3) If σ is an irreducible representation of SO(V ) and ρ is an irreducible representation of GLl,
then there is a Plancherel measure μ(s, σ × ρ, ψ) associated to the parabolically induced

representation IndSO(V )
Ql

(ρs ⊗ σ), where ρs = ρ⊗ |det|sF . If π = Θψ(σ), then one has

μ(s, σ × ρ, ψ) = μ(s, π × ρ, ψ).

See [GI14, Appendix B] and [GI16, Appendix A.7] for details on Plancherel measures.
By combining Theorem 6.2 with Theorem 5.1 and [Han19], we obtain Theorem 4.1.

7. Intertwining operators

In this section, we define the normalized self-intertwining operators of SO(V ) (following [Art13,
§ 2.3]) and those of Mp(W ), which are used in Theorem 4.2 and Hypothesis 5.2 above. The
definition of the normalized self-intertwining operators is very subtle because one has to choose
the following data appropriately:

– representatives of a Weyl group element w;
– Haar measures on the unipotent radicals to define the unnormalized intertwining operators;
– normalizing factors rP (w, πM,s) and rQ(w, σL,s);
– an intertwining isomorphism Aw.

Let k = (k1, . . . , km) be a sequence of positive integers such that k1 + · · ·+ km ≤ r. Put
k0 = 0, k = k1 + · · ·+ km, n0 = n− k, and

P = Pk, M = Mk, N = Nk, Q = Qk, L = Lk, U = Uk.

7.1 Representatives of a Weyl group element
Let w ∈W(M̂,Sp2n(C)) be a Weyl group element. We shall identify w with elements in
W(M,Mp(W )) and W(L,SO(V )) in a standard way, and take representatives w̃P ∈ Mp(W )
and w̃Q ∈ SO(V ) following the work of Langlands and Shelstad [LS87] and Gan and Li [GL18].
In this subsection we review the procedure; see [LS87, § 2.1], [Art13, § 2.3], or [GL18, Definition
4.1] for details.

First, we realize the relative Weyl group W(M̂, Sp2n(C)) in Sm � (Z/2Z)m and identify it
with relative Weyl groups W(M,Sp(W )) and W(L,SO(V )). We can do this in a canonical way,
because the Levi subgroups M̂ , M , and L are of the form

GLk1 × · · · ×GLkm ×G−

over C or F , where G− is a semi-simple algebraic group.
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Next, we take standard splittings splSp(W ) of Sp(W ) and splSO(V +) of SO(V +) by

splSp(W ) = (BW , TW , {Xαi}i=1,...,n), splSO(V +) = (BV , TV , {Xβi}i=1,...,n),

where:

– BW and BV are, respectively, the Borel subgroups stabilizing the F -flags

Fy1 ⊂ Fy1 + Fy2 ⊂ · · · ⊂ Fy1 + · · ·+ Fyn, Fx1 ⊂ Fx1 + Fx2 ⊂ · · · ⊂ Fx1 + · · ·+ Fxn;

– TW and TV are, respectively, their maximal tori which are diagonalized by the bases

{ y1, . . . , yn, y
∗
1, . . . , y

∗
n } , {x1, . . . , xn, x0, x

∗
1, . . . , x

∗
n } ;

– Xαi and Xβi are simple root vectors given by

Xαi : yj �→
{
yi j = i+ 1,

0 otherwise,
y∗j �→

{
−y∗i+1 j = i,

0 otherwise,
for 1 ≤ i ≤ n− 1,

Xαn : yj �→ 0, y∗j �→
{
yn j = n,

0 otherwise,

Xβi : xj �→
{
xi j = i+ 1,

0 otherwise,
x∗j �→

{
−x∗i+1 j = i,

0 otherwise,
for 1 ≤ i ≤ n− 1,

Xβn : xj �→
{

2xn j = 0,

0 otherwise,
x∗j �→

{
−x0 j = n,

0 otherwise.

Then M and P (respectively L and Q) are standard, in the sense that they contain T̃W and B̃W
(respectively TV and BV ), respectively. Let Φ(TW ,Sp(W )) and Δ(BW ) = {α1, . . . , αn} denote
the set of roots and the set of simple positive roots with the indices relative to the basis. Then we
can see that the simple root vectors Xαi do indeed correspond to αi. Let X−αi be the root vector
for −αi such that the Lie bracket [Xαi , X−αi ] is the coroot for αi. Let us take Φ(TV ,SO(V +)),
Δ(BV ) = {β1, . . . , βn}, and X−βi similarly.

Now let us take representatives w̃P and w̃Q of w. First assume that V = V +. Let wT and
w′
T denote the representatives of w in the Weyl groups W(TW ,Sp(W )) and W(TV ,SO(V +))

that stabilize the simple positive roots inside M and L, respectively. We shall write wλ for the
reflection corresponding to a root λ. We then have Langlands–Shelstad representatives

w̃P = w̃α(1)
· · · w̃α(�)

, w̃Q = w̃β(1)
· · · w̃β(�)

,

where wT = wα(1)
· · ·wα(�)

and w′
T = wβ(1)

· · ·wβ(�)
are reduced decompositions of wT and w′

T in
W(TW ,Sp(W )) and W(TV ,SO(V +)), respectively, and

w̃α = (exp(Xα) exp(−X−α) exp(Xα), 1), w̃β = exp(Xβ) exp(−X−β) exp(Xβ)

for any α ∈ Δ(BW ) and β ∈ Δ(BV ).
In the case of V = V −, the representative w̃Q ∈ SO(V −) is defined to be the corresponding

element via the canonical pure inner twist (ξ, z) : SO(V +)→ SO(V −). The following lemma is
obvious but important.
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Lemma 7.1. Let w = w1 · · ·wl be a reduced decomposition of w as an element of the relative

Weyl group W(M̂,Sp2n(C)). Then we have

w̃P = w̃1P · · · w̃lP and w̃Q = w̃1Q · · · w̃lQ.

The representatives can be given more explicitly in the m = 1 case. See Proposition 8.1
below.

7.2 Haar measures on the unipotent radicals
In this subsection we shall choose Haar measures on N and U . We first define Haar measures
du on U for V = V + and d′n on N with respect to the splittings splSO(V +) and splSp(W ),
following [Art13, § 2.3] or [KMSW14, § 2.2]. Here, d′n is a Haar measure when we regard N as
the unipotent radical of a parabolic subgroup P of Sp(W ). On the unipotent radical N of the
parabolic subgroup P of Mp(W ), we take a Haar measure dn = |2|−k/2F d′n.

Since the splittings are given explicitly, one can describe these measures explicitly. We will
give an explicit definition of the measures in the case of m = 1, i.e. k = (k), in § 8.5 below. The
measures for m = 1 give us the following descriptions of du and dn.

For 1 ≤ i ≤ m, put ni = n− (k0 + · · ·+ ki−1). As in §§ 2.1 and 2.3, let N (i) and U (i) be the
unipotent radicals of the maximal parabolic subgroups of Sp(Wni) and SO(Vni) stabilizing

spanF (yk0+···+ki−1+1, . . . , yk0+···+ki), spanF (xk0+···+ki−1+1, . . . , xk0+···+ki),

respectively. If we take Haar measures on each N (i) and U (i) as we will do on Nk and Uk in
§ 8.5 below, then the Haar measures dn on N and du on U are the measures defined via the
homeomorphisms

N (1) × · · · ×N (m) −→ N, (n1, . . . , nm) �→ n1 · · ·nm,

U (1) × · · · × U (m) −→ U, (u1, . . . , um) �→ u1 · · ·um.

In the case of V = V −, we define the Haar measure du on U by using the above homeomorphism.

7.3 Intertwining operators
Now we define intertwining operators. Let τi be irreducible tempered representations of GLki on
a vector space Vτi , for i = 1, . . . ,m. For any s = (s1, . . . , sm) ∈ Cm, we realize the representation
τi,si = τi ⊗ |det|siF on Vτi by setting τi,si(a)v = |det a|siF τi(a)v for v ∈ Vτi and a ∈ GLki . Let π0 be
an irreducible genuine tempered representation of Mp(Wn0) on Vπ0 and σ0 an irreducible tem-
pered representation of SO(Vn0) on Vσ0 such that π0 and σ0 correspond under the bijection Θψ.
Put πM,s = τ̃1,s1 ⊗ · · · ⊗ τ̃m,sm ⊗ π0 and σL,s = τ1,s1 ⊗ · · · ⊗ τm,sm ⊗ σ0. In particular, we shall
write πM = πM,0 and σL = σL,0.

The normalized parabolically induced representation IndMp(W )
P (πM,s) is realized on the space

of (Vτ1 ⊗ · · · ⊗ Vτm ⊗ Vπ0) -valued smooth functions Fs on Mp(W ) such that

Fs(mng) = δP (m)1/2πM,s(m)Fs(g)

for any m ∈M , n ∈ N , and g ∈ Mp(W ), where δP is the modulus function. For w ∈
W(M̂,Sp2n(C)) we define the unnormalized intertwining operator

M(w̃P , πM,s) : IndMp(W )
P (πM,s)→ IndMp(W )

P (wπM,s)

1574

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

by the meromorphic continuation of the integral

M(w̃P , πM,s)Fs(g) =
∫

(wN∩N)\N
Fs((w̃P )−1ng) dn,

where wN = w̃PNw̃
−1
P and wπM,s is the representation of M on Vτ1 ⊗ · · · ⊗ Vτm ⊗ Vπ0 given by

wπM,s(m) = πM,s((w̃P )−1mw̃P )

for m ∈M . The integral above converges absolutely on some open set of Cm in s and has a
meromorphic continuation to s ∈ Cm. The operator is well-defined for s ∈ Cm except at finite
poles modulo (2πi/ log qF )Zm. Similarly, we can define the unnormalized intertwining operator
M(w̃Q, σL,s) from IndSO(V )

Q (σL,s) to IndSO(V )
Q (wσL,s).

Before stating the definition of the normalized self-intertwining operators, we need to nor-
malize the operatorsM(w̃P , πM,s) andM(w̃Q, σL,s) so that they are holomorphic at s = 0. Put
Pw = (w̃P )−1Pw̃P and Qw = (w̃Q)−1Qw̃Q, and let φ1, . . . , φm, φ0 be the L-parameters corre-
sponding to τ1, . . . , τm, σ0 via the LLC. Since σ0 = Θψ(π0), the L-parameter for π0 is also φ0. As
in (3.1), put

φ = φ1 ⊕ · · · ⊕ φm ⊕ φ0 ⊕ φ∨m ⊕ · · · ⊕ φ∨1
so that φ ∈ Φtemp(SO2n+1) = Φtemp(Mp2n) and Im(φ) ⊂ M̂ . We define the twist φs of φ by s as
follows:

φs = (φ1 ⊗ | − |s1)⊕ · · · ⊕ (φm ⊗ | − |sm)⊕ φ0 ⊕ (φ∨m ⊗ | − |−sm)⊕ · · · ⊕ (φ∨1 ⊗ | − |−s1).

Then we define a normalizing factor

rPw|P (s, φ, ψ) = γ(0, ρ∨Pw|P ◦ φs, ψ)−1,

where ρPw|P denotes the representation of M̂ defined in [Art13, pp. 80–81]. Similarly, define a
normalizing factor rQw|Q(s, φ, ψ) = γ(0, ρ∨Qw|Q ◦ φs, ψ)−1. The realization of W(M̂, Sp2n(C)) as a
subgroup of Sm � (Z/2Z)m gives an expression

w = σw � (di)mi=1.

Let y : Z/2Z→ {0, 1} be a map such that y(2Z) = 0 and y(1 + 2Z) = 1. We then define a
representation y(w, φs) of WDF and a complex number y(w, s) by

y(w, φs) =
m⊕
i=1

y(di)φi ⊗ | − |si , y(w, s) =
m∑
i=1

y(di)si.

Let us define normalized intertwining operators

RP (w, πM,s, ψ) = γF (ψ)dim y(w,φ)|2|2y(w,s)F γ(1
2 , y(w, φs), ψ)−1rPw|P (s, φ, ψ)−1M(w̃P , πM,s),

RQ(w, σL,s) = ε(V )dim y(w,φ)rQw|Q(s, φ, ψ)−1M(w̃Q, σL,s).

It is known that RQ(w, σL,s) is independent of the choice of the additive character ψ (see [Art13,
p. 83]). We can see that the intertwining operators can be defined at s = 0.

Lemma 7.2. The normalized intertwining operators RP (w, πM,s, ψ) and RQ(w, σL,s) are holo-

morphic at s = 0.
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Proof. By [Art13, Proposition 2.3.1], RQ(w, σL,s) is holomorphic at s = 0 if V = V +. Next, let
us consider the metaplectic case. By the definition of the representative w̃P , we can decompose
the operator into the product of the operators for simple reflections in W(M̂, Sp2n(C)). There are
two cases to consider: w ∈ Sm and w ∈ (Z/2Z)m. If w ∈ Sm, the assertion is reduced to the case
of GLk and follows from [Sha81, Proposition 3.1.4 and (3.2.1)]. If w ∈ (Z/2Z)m, the assertion is
reduced to the case of m = 1, i.e.P = Pk is a maximal parabolic subgroup Pk. In this case, since
the explicit formula of Plancherel measures for the metaplectic group [GI16, Appendix A.7] is
known, the assertion can be proven as in [Art89a, Theorem 2.1]. In the V = V − case, a similar
argument goes. �

We shall put

RP (w, πM , ψ) = RP (w, πM,0, ψ), RQ(w, σL) = RQ(w, σL,0).

Let us define the normalized self-intertwining operators. Assume that

w ∈Wφ(M,Mp(W )) = Wφ(L,SO(V )),

which is equivalent to wπM ∼= πM and wσL ∼= σL. We take the unique Whittaker normalized
isomorphism

Aw : Vτ1 ⊗ · · · ⊗ Vτm −→ Vτ1 ⊗ · · · ⊗ Vτm

and define the normalized self-intertwining operators

RP (w, πM ) : IndMp(W )
P (πM ) −→ IndMp(W )

P (πM ),

RQ(w, σL) : IndSO(V )
Q (σL) −→ IndSO(V )

Q (σL)

as in [GI16, p. 756].

7.4 Reduction
Since the LLC for Mp(W ) is defined by using the theta correspondence, to prove Theorem 4.2 it
suffices to consider the relation between the theta correspondence and the intertwining operators.
The following proposition will be proved later.

Proposition 7.3. Put σ̆L = τ1 ⊗ · · · ⊗ τm ⊗ σ∨0 . There exists a nonzero SO(V )×Mp(W )-
equivariant map

T : ωV,W,ψ ⊗ IndSO(V )
Q (σ̆L) −→ IndMp(W )

P (πM )

such that:

(a) for any irreducible constituent σ of IndSO(V )
Q (σ̆L), the restriction of T to ωV,W,ψ ⊗ σ is

nonzero;

(b) the diagram

ωV,W,ψ ⊗ IndSO(V )
Q (σ̆L) T−−−−→ IndMp(W )

P (πM )

1ωV,W,ψ⊗RQ(w,σ̆L)

⏐⏐� ⏐⏐�RP (w,πM )

ωV,W,ψ ⊗ IndSO(V )
Q (σ̆L) T−−−−→ IndMp(W )

P (πM )

commutes.
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Once the above proposition is proven, we have Theorem 4.2.

Proposition 7.4. Proposition 7.3 implies Theorem 4.2.

Proof. Suppose that Proposition 7.3 holds. Because any irreducible representation of an odd
special orthogonal group is self-dual [MVW87, Ch. 4, § II.1], we have σ∨0

∼= σ0. Now fix an
isomorphism σL ∼= σ̆L and identify σ̆L with σL.

Let π ⊂ IndMp(W )
P (πM ) be an irreducible tempered representation and put σ = Θψ(π) ⊂

IndSO(V )
Q (σL). Then, by Proposition 7.3 and the identification σL ∼= σ̆L, there exists a nonzero

SO(V )×Mp(W )-equivariant map

T : ωV,W,ψ ⊗ IndSO(V )
Q (σL) −→ IndMp(W )

P (πM )

such that its restriction to ωV,W,ψ ⊗ σ is nonzero and it satisfies the following commutative
diagram:

ωV,W,ψ ⊗ IndSO(V )
Q (σL) T−−−−→ IndMp(W )

P (πM )

1ωV,W,ψ⊗RQ(w,σL)

⏐⏐� ⏐⏐�RP (w,πM )

ωV,W,ψ ⊗ IndSO(V )
Q (σL) T−−−−→ IndMp(W )

P (πM ).

By the Howe duality and the fact that σ∨ ∼= σ, T sends ωV,W,ψ ⊗ σ to π. Therefore, T gives
a nonzero SO(V )×Mp(W )-equivariant map

Tσ,π : ωV,W,ψ ⊗ σ −→ π

such that

RP (w, πM )
∣∣
π
◦ Tσ,π = Tσ,π ◦

(
1ωV,W,ψ ⊗RQ(w, σL)

∣∣
σ

)
. (7.1)

Suppose that Hypothesis 5.2 holds. Then we have RQ(w, σL)|σ = η(xw) where η = ι(σ), and
xw ∈ S�φ(L,SO(V )) = S�φ(M,Mp(W )) is the image of w under the natural map (3.2). Now the
relation (7.1) shows that

RP (w, πM )
∣∣
π
◦ Tσ,π = η(xw)Tσ,π.

Since Tσ,π �= 0 and π is irreducible, we have RP (w, πM )|π = η(xw). We also have η = ιψ(π) by
the definition of the LLC for Mp(W ). This completes the proof. �

8. Preparations for the proof of Proposition 7.3

In the next section we shall give a proof of Proposition 7.3. For this, we introduce some more
notation, following Gan and Ichino [GI16, §§ 7 and 8], in this section.

8.1 Maximal parabolic subgroups
We have described the parabolic subgroups of Sp(W ), Mp(W ), and SO(V ) in §§ 2.1–2.3. Referring
to [Ato18], we can describe their maximal parabolic subgroups more explicitl

Let k be a positive integer, and put n0 = n− k. Put Y = Yk and Y ∗ = Y ∗
k . We shall write

an element in the symplectic group Sp(W ) as a block matrix relative to the decomposition
W = Y ⊕Wn0 ⊕ Y ∗. Following § 2.1 or 2.2, put P = Pk, M = Mk, and N = Nk so that P = Pk
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and M = Mk. Then we have

M = {m(a)g0 | a ∈ GL(Y ), g0 ∈ Sp(Wn0)},

N = {nb(b)nc(c) | b ∈ Hom(Wn0 , Y ), c ∈ Sym(Y ∗, Y )},

where m(a), nb(b), nc(c), and Sym(Y ∗, Y ) are defined as in [Ato18, § 2.4]. Recall that P and M
are the double covers of P andM , respectively. Note that the natural inclusion Sp(Wn0) ⊂ Sp(W )
induces an inclusion Mp(Wn0) ⊂ Mp(W ), (g0, ε) �→ (g0, ε). Put

ρP =
2n− k + 1

2
.

Assume that k ≤ r. Put X = Xk and X∗ = X∗
k , and write an element in the special orthog-

onal group SO(V ) as a block matrix relative to the decomposition V = X ⊕ Vn0 ⊕X∗, as above.
Put Q = Qk, L = Lk, and U = Uk, following § 2.3. Then we have

L = {l(a)h0 | a ∈ GL(X), h0 ∈ SO(Vn0)},

U = {u = ub(b)uc(c) | b ∈ Hom(Vn0 , X), c ∈ Alt(X∗, X)},

where l(a), ub(b), uc(c), and Alt(X∗, X) are given in a similar way to [Ato18, § 2.4]. Put

ρQ =
2n− k

2
.

8.2 Representatives of wM and wL

Let wM (respectively wL) be the nontrivial element of the relative Weyl group W(M, Sp(W ))
(respectively W(L,SO(V ))). Note that W(M, Sp(W )) ∼= W(L,SO(V )) ∼= Z/2Z. In this subsec-
tion, we shall take representatives of wM and wL, following Langlands and Shelstad (see § 7.1),
and calculate them explicitly.

First, let us define IX ∈ Hom(X∗, X) and IY ∈ Hom(Y ∗, Y ) by IXx
∗
i = xi and IY y

∗
i = yi.

With respect to the bases, IX and IY correspond to the identity matrix. Put

J =

⎛⎜⎜⎜⎝
(−1)n+1

(−1)n+2

. ..

(−1)n+k

⎞⎟⎟⎟⎠ ∈ GLk.

Using the bases, we can identify GL(X) and GL(Y ) with GLk and regard J as an element of
GL(X) or GL(Y ). Let us define elements wY ∈ Sp(W ) and wX ∈ SO(V ) by

wY =

⎛⎝ IY
(−1)k1Wn0

−I−1
Y

⎞⎠ , wX =

⎛⎝ −IX
(−1)k1Vn0

−I−1
X

⎞⎠ .

We take the representatives w′
M ∈ Mp(W ) and w′

L ∈ SO(V ) of wM and wL defined by

w′
M =

⎛⎝(−1)k

⎛⎝ −JIY
1Wn0

JI−1
Y

⎞⎠ , εLS

⎞⎠ , w′
L = (−1)k

⎛⎝ JIX
1Vn0

JI−1
X

⎞⎠ ,

respectively, where εLS = (−1,−1)k(k−1)/2
F .

1578

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

Let w̃P and w̃Q denote Langlands and Shelstad’s representatives (see [LS87, § 2.1] and [GL18,
Definition 4.1]) of wM and wL with respect to the F -splittings splSp(W ) and splSO(V +). Then we
have the following proposition.

Proposition 8.1. We have

w̃P = w′
M ,

w̃Q = w′
L.

The proof is similar to that of [GI16, Lemma 7.2]. Also, as pointed out in [GI16, p. 755], in
the V = V − case one can see that w′

L corresponds to w̃Q ∈ SO(V +) via the canonical pure inner
twist. However, we shall give a proof of the first assertion in § 8.4, since the calculation of w̃P is
too complicated because we have to consider Ranga Rao’s 2-cocycle.

8.3 Ranga Rao’s 2-cocycle
Before proving Proposition 8.1, we introduce some notation and review Ranga Rao’s x -function
and normalized cocycle [Ran93].

For three nonnegative integers r, s, t ∈ Z≥0, define ιGL
r,s,t to be an embedding of GLs into

GLr+s+t by

A �→

⎛⎝ 1r
A

1t

⎞⎠ .

For a ∈ GL(Yn), we write mn(a) for an element
( a

(a∗)−1

)
of a Levi subgroup Mn of the Siegel

parabolic subgroup Pn. For any subset S ⊂ { 1, . . . , n }, define σS and aS by

σS · yi =

{
y∗i if i ∈ S,
yi if i /∈ S,

σS · y∗i =

{
−yi if i ∈ S,
y∗i if i /∈ S

and

aS · yi =

{
−yi if i ∈ S,
yi if i /∈ S,

aS · y∗i =

{
−y∗i if i ∈ S,
y∗i if i /∈ S.

When S is a singleton {i}, we shall write σi = σ{i} for simplicity.
Next, we review the notions of Ranga Rao’s x-function and normalized cocycle. We have

Sp(W ) = ∪SPnσSPn, where the disjoint union runs over all subsets S ⊂ {1, . . . , n}, and Ranga
Rao’s x-function is defined by

x(p1σSp2) = det(p1p2|Yn)(mod(F×)2), p1, p2 ∈ Pn, S ⊂ { 1, . . . , n } .

This is well-defined [Ran93, Lemma 5.1]. Then, let c(−,−) denote Ranga Rao’s normalized
cocycle, which is a 2-cocycle on Sp(W ) valued in {±1}. The precise definition of c(−,−) is
omitted here, but we list several of its properties. See [Ran93, § 5] or [Szp07, § 2] for details.

Proposition 8.2. Let p, p′ ∈ Pn, S, S′ ⊂ { 1, . . . , n }, and g, g′ ∈ Sp(W ). Put j = |S ∩ S′|. Then

c(σS , σS′) = (−1,−1)j(j+1)/2
F ,
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c(pg, g′p′) = c(g, g′)(x(g), x(p))F (x(g′), x(p′))F (x(p), x(p′))F (x(gg′), x(pp′))F ,

c(g, p) = c(p, g) = (x(p), x(g))F .

Moreover, if gg′ = g′g, then

c(g, g′) = c(g′, g).

8.4 Proof of Proposition 8.1
Now we begin the proof of the first assertion of Proposition 8.1.

Proof. First, we need a certain representative of wM in W(TW ,Sp(W )). Take the representative
wT ∈W(TW ,Sp(W )) of wM such that wT maps the positive roots inside M into the positive
roots inside M and the positive roots outside M into the negative roots (not necessarily outside
M). Let si ∈W(TW , Sp(W )) be the simple reflection corresponding to αi ∈ Δ(BW ), and put

qi = sk−1sk−2 · · · si+1si for 1 ≤ i ≤ k − 1,

ri = sisi+1 · · · sn−1snsn−1 · · · si+1si for 1 ≤ i ≤ n.

Then
wT = rkq1rkq2rk · · · qk−2rkqk−1rk

gives a reduced decomposition of wT .
Second, let us consider the representative w̃P of wT in the symplectic group Sp(W ), following

Langlands and Shelstad [LS87]. Put

ωi = exp(Xαi) exp(−X−αi) exp(Xαi) for 1 ≤ i ≤ n,
ui = ωk−1 · · ·ωi+1ωi for 1 ≤ i ≤ k − 1,

vi = ωi · · ·ωn−1ωnωn−1 · · ·ωi for 1 ≤ i ≤ n,

which are representatives of si, qi, and ri, respectively. Then, by [LS87, § 2.1], we have the
representative w̃P in Sp(W ):

w̃P = vku1vku2 · · · vkuk−1vk.

In addition, put
zi = ω−1

k−1 · · ·ω
−1
i+1ω

−1
i for 1 ≤ i ≤ k − 1.

Then we obtain that vkui = zivi for 1 ≤ i ≤ k − 1. Moreover, one can calculate vi and zj by
descending induction on i = n, . . . , 1 and j = k − 1, . . . , 1 to obtain

vi = a{i+1,...,n}σ
2(n−i−1)+1
i ,

zj = mn

(
ιGL
j−1,k−j+1,n−k(κk−j+1)

)
,

where

κl =

⎛⎜⎜⎜⎝
0 −1

. . .
−1

1 0

⎞⎟⎟⎟⎠ ∈ GLl.

A straightforward calculation then shows that vizj = zjvi for 1 ≤ i < j ≤ k − 1. This implies
that w̃P = z1 · · · zk−1v1 · · · vk.

1580

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

Finally, let us take their representatives in Mp(W ) as follows. Put

ω̃i = w̃αi = (ωi, 1) for 1 ≤ i ≤ n,
ũi = ω̃k−1 · · · ω̃i+1ω̃i for 1 ≤ i ≤ k − 1,

ṽi = ω̃i · · · ω̃n−1ω̃nω̃n−1 · · · ω̃i for 1 ≤ i ≤ n,

and

z̃i = ω̃−1
k−1 · · · ω̃

−1
i+1ω̃

−1
i for 1 ≤ i ≤ k − 1.

Then the required element w̃P can be expressed as

w̃P = ṽkũ1ṽkũ2 · · · ṽkũk−1ṽk.

We have ṽkũi = z̃iṽi for 1 ≤ i ≤ k − 1. Also, for 1 ≤ i < j ≤ k − 1 we have ṽiz̃j = z̃j ṽi because
vizj = zjvi. Therefore,

w̃P = z̃1ṽ1z̃2ṽ2 · · · z̃k−1ṽk−1ṽk

= z̃1z̃2 · · · z̃k−1ṽ1ṽ2 · · · ṽk−1ṽk.

Since ω1, . . . , ωn−1 are elements of the Siegel parabolic subgroup Pn and have determinant 1 on
Yn, one has

ṽi = (vi, 1) for 1 ≤ i ≤ k,
z̃j = (zj , 1) for 1 ≤ j ≤ k − 1.

Now let us compute z̃1z̃2 · · · z̃k−1, ṽ1ṽ2 · · · ṽk−1ṽk, and w̃P . First, we consider z̃1z̃2 · · · z̃k−1.
Since each zj belongs to the Siegel parabolic subgroup and has determinant 1 on Yn,
we have z̃1 · · · z̃k−1 = (z1 · · · zk−1, 1). Additionally, by calculating its action on the basis
{y1, . . . , yn, y

∗
1, . . . , y

∗
n}, we can compute the product z1 · · · zk−1:

z1 · · · zk−1 = mn

(
ιGL
0,k,n−k((−1)n+kJ)

)
.

Second, by descending induction, we can compute ṽi · · · ṽk for i = k, . . . , 1. Note that Ranga
Rao’s normalized cocycle may not be trivial. By descending induction, one has

vi · · · vk = σ{i,...,k}p
′
i,

where

p′i = (a{i,...,k})
n−i+1(a{k+1,...,n})

k−i+1.

We also have

vi = piσi,

where

pi = (a{i})
n−i+1a{i+1,...,n}.
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Since p′i and pi are elements of the Siegel parabolic subgroup,

c(vi, vi+1 · · · vk) = c(piσi, σ{i+1,...,k}p
′
i+1)

= (x(pi), x(p′i+1))F

=
(
(−1)(n−i+1)+(n−i), (−1)(n−i)(k−i)+(k−i)(n−k))

F

= (−1,−1)k+iF .

Hence,

ṽ1 · · · ṽk = (v1 · · · vk,
k−1∏
i=1

c(vi, vi+1 · · · vk))

= ((σ{1,...,k})
2n+1(a{k+1,...,n})

k, (−1,−1)k(k−1)/2
F ).

Finally, since z1 · · · zk−1 belongs to the Siegel parabolic subgroup and has determinant 1 on
Yn, we have w̃P = (w̃P , ε

LS) and w̃P = z1 · · · zk−1v1 · · · vk = (−1)kmn(ιGL
0,k,n−k(J))σ{1,...,k}. This

proves the first assertion of the proposition. �

8.5 Haar measures
In order to study the intertwining operators in more detail, or to describe some explicit formulas
for the Weil representations, we need to take Haar measures appropriately and explicitly. Put

e = x1 ⊗ y∗1 + · · ·+ xk ⊗ y∗k ∈ X ⊗ Y ∗,

e∗ = x∗1 ⊗ y1 + · · ·+ x∗k ⊗ yk ∈ X∗ ⊗ Y,
e∗∗ = x∗1 ⊗ y∗1 + · · ·+ x∗k ⊗ y∗k ∈ X∗ ⊗ Y ∗.

These vectors belong to the symplectic space W = V ⊗F W .
Let us define measures on each of the groups and vector spaces.

(i) Take the self-dual Haar measure dMk
x on Mk(F ) with respect to the pairing

Mk(F )×Mk(F ) � (x, y) �→ ψ(tr(xy)) ∈ C1.

In particular, write dψx when k = 1.
(ii) Take the Haar measure dx on GLk(F ) defined by dx = |detx|−kF dMk

x, and transfer it to
GL(Y ) and GL(X) via the identification.

(iii) Define the self-dual Haar measures on V ⊗ Y ∗, X∗ ⊗ Y , X ⊗ Y ∗, Vn0 ⊗ Y ∗, X∗ ⊗Wn0 ,
Hom(Vn0 , X), Hom(Wn0 , Y ), Hom(X,X), and Hom(Y, Y ) in a similar way to [GI16, § 7.2].

(iv) Take the self-dual Haar measures on Alt(X∗, X) and Sym(Y ∗, Y ) with respect to the pairings

Alt(X∗, X)×Alt(X∗, X) � (c, c′) �→ ψ(〈IY ce∗∗, I−1
X c′e∗∗〉) ∈ C1,

Sym(Y ∗, Y )× Sym(Y ∗, Y ) � (c, c′) �→ ψ(〈IXce∗∗, I−1
Y c′e∗∗〉) ∈ C1,

respectively.
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(v) Take the Haar measures du on U for u = ub(b)uc(c) and dn on N for n = nb(b)nc(c) as
follows:

du = |2|−k/2F db · |2|−k(k−1)/4
F dc, b ∈ Hom(Vn0 , X), c ∈ Alt(X∗, X),

dn = |2|−k/2F db · |2|−k(k−1)/4
F dc, b ∈ Hom(Wn0 , Y ), c ∈ Sym(Y ∗, Y ).

(vi) Let us take measures on Q and P . For q = lu ∈ Q = LU and p = mn ∈ P = MN , define

dq = dl du, dp = dmdn.

We have the modulus function δQ(l(a)h0) = |det a|2ρQF for a ∈ GL(X) and h0 ∈ SO(Vn0) and
the modulus function δP (m(a)g0) = |det a|2ρPF for a ∈ GL(Y ) and g0 ∈ Sp(Wn0).

One can then check that the measures du on U and dn on N coincide with the Haar measures
that we took in § 7.2 by using the splittings splSO(V +) and splSp(W ), respectively (see [Ato18,
§ 6.3] for explicit calculations).

8.6 Big symplectic spaces and a mixed model
In this subsection we shall take a mixed model, which is a realization of the Weil representation,
following Gan and Ichino [GI16, § 7.4].

Put W0 = V ⊗Wn0 ⊂W and W00 = Vn0 ⊗Wn0 ⊂W0 ⊂W. These are symplectic subspaces
of W. Fix a polarization Wn0 = W01 ⊕W02, where W01 = spanF (yk+1, . . . , yn) and W02 =
spanF (y∗k+1, . . . , y

∗
n). We have the following natural complete polarizations of W, W0, and W00:

W = (V ⊗ Yn)⊕ (V ⊗ Y ∗
n ),

W0 = (V ⊗W01)⊕ (V ⊗W02),

W00 = (Vn0 ⊗W01)⊕ (Vn0 ⊗W02).

Let ω, ω0, and ω00 be the realizations of the Weil representations ωV,W,ψ, ωV,Wn0 ,ψ
, and

ωVn0 ,Wn0 ,ψ
of O(V )×Mp(W ), O(V )×Mp(Wn0), and O(Vn0)×Mp(Wn0), respectively, on a

mixed Schrödinger model

S00 = S(Vn0 ⊗W02),

S0 = S(X∗ ⊗W0)⊗ S00,

S = S(V ⊗ Y ∗)⊗ S0,

as in [GI16, § 7.4] or [Ato18, § 6.2]. We construct these models by using the following elements:

– the ordinary Schrödinger models

(ωor,Sor = S(V ⊗ (Y ∗ ⊕W02))), (ωor
0 ,Sor

0 = S(V ⊗W02)), (ωor
00,Sor

00 = S(Vn0 ⊗W02))

of ωV,W,ψ, ωV,Wn0 ,ψ
, and ωVn0 ,Wn0 ,ψ

, respectively;
– canonical linear isomorphisms

S(V ⊗ (Y ∗ ⊕W02)) ∼= S(V ⊗ Y ∗)⊗ S(V ⊗W02),

S(V ⊗W02) ∼= S((X ⊕X∗)⊗W02)⊗ S(Vn0 ⊗W02);
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– an isomorphism given by the partial inverse Fourier transform

S((X ⊕X∗)⊗W02)→ S(X∗ ⊗W0), ϕ �→ ϕ̂

defined by

ϕ̂

(
x1

x2

)
=
∫
y∈X⊗W02

ϕ

(
y

x2

)
ψ(−〈x1, y〉) dy for x1 ∈ X∗ ⊗W01, x2 ∈ X∗ ⊗W02,

where the Haar measure dy on X ⊗W02 is defined by

dy =
∏

1≤i≤k
k+1≤j≤n

dψci,j for y =
∑

1≤i≤k
k+1≤j≤n

ci,jxi ⊗ y∗j ∈ X ⊗W02.

Let H0 = W0 ⊕ F and H00 = W00 ⊕ F be the Heisenberg groups. Let ρ0 and ρ00 be their Heisen-
berg representations associated with the Weil representations (ω0,S0) and (ω00,S00), respectively.
We regard Sp(W ) = Sp(W )× {1} ⊂ Sp(W )× {±1} = Mp(W ) as sets. Referring to [Ran93] or
[Kud94, Theorem 3.1], we obtain some explicit formulas for the Weil representations.

For ϕ ∈ S and x ∈ V ⊗ Y ∗,

[ω(h)ϕ](x) = ω0(h)ϕ(h−1x), h ∈ SO(V ),

[ω(m(a))ϕ](x) = γF (det a, ψ)−1|det a|(2n+1)/2
F ϕ(a∗x), a ∈ GL(Y ),

[ω(g0)ϕ](x) = ω0(g0)ϕ(x), g0 ∈ Sp(Wn0),

[ω(nb(b))ϕ](x) = ρ0((b∗x, 0))ϕ(x), b ∈ Hom(Wn0 , Y ),

[ω(nc(c))ϕ](x) = ψ(1
2〈n

c(c)x, x〉)ϕ(x), c ∈ Sym(Y ∗, Y ),

[ω(w−1
Y )ϕ](x) = γF (ψ ◦ qV )−kω0((−1Wn0

)k)
∫
Y ∗⊗V

ψ(〈x′, IY x〉)ϕ(x′) dx′.

For ϕ0 ∈ S0 = S(X∗ ⊗Wn0)⊗ S00 and y ∈ X∗ ⊗Wn0 ,

[ω0(g0)ϕ0](y) = ω00(g0)ϕ0(g−1
0 y), g0 ∈ Sp(Wn0),

[ω0(l(a))ϕ0](y) = |det a|n−kF ϕ0(a∗y), a ∈ GL(X),

[ω0(h0)ϕ0](y) = ω00(h0)ϕ0(y), h0 ∈ SO(Vn0),

[ω0(ub(b))ϕ0](y) = ρ00((b∗y, 0))ϕ0(y), b ∈ Hom(Vn0 , X),

[ω0(uc(c))ϕ0](y) = ψ(1
2〈u

c(c)y, y〉)ϕ0(y), c ∈ Alt(X∗, X),

[ω0(wX)ϕ0](y) = ω00((−1Vn0
)k)

∫
X∗⊗Wn0

ψ(−〈y′, IXy〉)ϕ0(y′) dy′.

For ϕ00 ∈ S00 = S(Vn0 ⊗W02) and x ∈ Vn0 ⊗W02,

[ω00((−1Wn0
)k)ϕ00](x) = γF ((−1)k(n−k), ψ)−1ϕ00((−1)kx),

[ω00((−1Vn0
)k)ϕ00](x) = ϕ00((−1)kx).

1584

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

8.7 Gan and Ichino’s equivariant maps
Next, we construct equivariant maps which realize the theta correspondence. Put

fS(ϕ)(gh) = [[ω(gh)ϕ](e)](0),

f̂S(ϕ)(gh) =
[∫

X⊗Y ∗
[ω(gh)ϕ](x)ψ(−〈e∗, x〉) dx

]
(0)

for ϕ ∈ S = S(V ⊗ Y ∗)⊗ S(X∗ ⊗Wn0)⊗ S00, g ∈ Mp(W ), and h ∈ O(V ). If f = fS(ϕ) or
f̂S(ϕ), then by the explicit formulas for the mixed Schrödinger model, we have

f(nugh) = f(gh), n ∈ N, u ∈ U,
f(g0h0gh) = ω00(g0h0)f(gh), g0 ∈ Sp(Wn0), h0 ∈ O(V ),

f(m(a)l(a)gh) = γF (det a, ψ)−1|det a|ρQ+ρP
F f(gh), a ∈ GLk(F ) ∼= GL(X) ∼= GL(Y ), (8.1)

for any g ∈ Mp(W ) and h ∈ O(V ). In the rest of this section we shall drop the subscript S for
simplicity.

In this subsection, we shall write τ = τ1 and assume that σ0 and π0 may be direct sums
of irreducible tempered representations, whose summands have the same L-parameter φ0 and
correspond bijectively via Θψ. For ρ = τ , π0, or σ0, let (ρ∨,Vρ∨) be the contragredient repre-
sentation of (ρ,Vρ) and 〈−,−〉 the invariant non-degenerate bilinear form on Vρ × Vρ∨ . We fix a
nonzero Mp(Wn0)× SO(Vn0)-equivariant map

T00 : ω00 ⊗ σ∨0 −→ π0. (8.2)

For any ϕ ∈ S, Fs ∈ IndSO(V )
Q (τs ⊗ σ∨0 ), g ∈ Mp(W ), v̌ ∈ Vτ∨ , and v̌0 ∈ Vπ∨

0
, put

I(s, ϕ⊗Fs, v̌ ⊗ v̌0, g) =
1

L(s+ 1
2 , τ)

∫
USO(Vn0 )\SO(V )

〈T00(f̂(ϕ)(gh)⊗ 〈Fs(h), v̌〉), v̌0〉 dh

if the right-hand side converges absolutely. Here, s ∈ C is a complex variable.

Lemma 8.3. The following hold.

(1) The integral I(s, ϕ⊗Fs, v̌ ⊗ v̌0, g) converges absolutely for Re(s) > −1
2 and admits a

holomorphic continuation to s ∈ C.

(2) For Re(s) < 1
2 , we have that I(s, ϕ⊗Fs, v̌ ⊗ v̌0, g) is equal to

L

(
s+

1
2
, τ

)−1

γ

(
s+

1
2
, τ, ψ

)−1 ∫
USO(Vn0 )\SO(V )

〈T00(f(ϕ)(gh)⊗ 〈Fs(h), v̌〉), v̌0〉 dh.

(3) By virtue of (1.1), we define a vector Ts(ϕ⊗Fs)(g) of Vτ ⊗ Vπ0 by

〈Ts(ϕ⊗Fs)(g), v̌ ⊗ v̌0〉 = I(s, ϕ⊗Fs, v̌ ⊗ v̌0, g).

Then, for any 0 �= F ∈ IndSO(V )
Q (τ ⊗ σ∨0 ), there exists ϕ ∈ S such that

Ts=0(ϕ⊗F ) �= 0.

Proof. The proof is similar to those of Lemmas 8.1, 8.2, and 8.3 in [GI16]. �
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When s = 0 the assignment ϕ⊗F �→ T0(ϕ⊗F ) gives an Mp(W )× SO(V )-equivariant map
ω ⊗ IndSO(V )

Q (τ ⊗ σ∨0 )→ IndMp(W )
P (τ̃ ⊗ π0). We shall write T (k, T00) for this map.

Now, we note the functorialities of the equivariant map T (k, T00) here. We have the following
two lemmas, which easily follow from the definition of T (k, T00).

Lemma 8.4. Let (τ ′,Vτ ′) be a representation of GLk that is isomorphic to τ , and letA : (τ,Vτ )→
(τ ′,Vτ ′) be an isomorphism of representations of GLk. Then the diagram

ω ⊗ IndSO(V )
Q (τ ⊗ σ∨0 )

T (k,T00)−−−−−→ IndMp(W )
P (τ̃ ⊗ π0)

1⊗Ind(A)

⏐⏐� ⏐⏐�Ind(A)

ω ⊗ IndSO(V )
Q (τ ′ ⊗ σ∨0 ) −−−−−→

T (k,T00)
IndMp(W )

P (τ̃ ′ ⊗ π0)

commutes. Here, Ind(A) denotes an operator defined by [Ind(A)F ](x) = A(F (x)).

Lemma 8.5. Let (σ′0,Vσ′
0
) (respectively (π′0,Vπ′

0
)) be a representation of SO(Vn0) (respectively

Mp(Wn0)) that is isomorphic to σ0 (respectively π0), and let B : (σ∨0 ,Vσ∨
0
)→ (σ′0

∨,Vσ′
0
∨) (respec-

tively C : (π0,Vπ0)→ (π′0,Vπ′
0
)) be an isomorphism. Choose an Mp(Wn0)× SO(Vn0)-equivariant

map T ′
00 : ω00 ⊗ σ′0

∨ → π0 such that the diagram

ω00 ⊗ σ∨0
T00−−−−→ π0

1⊗B
⏐⏐� ⏐⏐�C

ω00 ⊗ σ′0
∨ −−−−→

T ′
00

π′0

commutes. Then the diagram

ω ⊗ IndSO(V )
Q (τ ⊗ σ∨0 )

T (k,T00)−−−−−→ IndMp(W )
P (τ̃ ⊗ π0)

1⊗Ind(B)

⏐⏐� ⏐⏐�Ind(C)

ω ⊗ IndSO(V )
Q (τ ⊗ σ′0

∨) −−−−−→
T (k,T ′

00)
IndMp(W )

P (τ̃ ⊗ π′0)

also commutes.

Finally, we note a key property of the assignment Ts.

Proposition 8.6. For ϕ ∈ S and Fs ∈ IndSO(V )
Q (τs ⊗ σ∨0 ), we have

RP (wM , τ̃s ⊗ π0)Ts(ϕ⊗Fs) = β(s) · T−s(ϕ⊗RQ(wL, τs ⊗ σ∨0 )Fs),

where

β(s) = |2|2ksF ·
L(−s+ 1

2 , τ
∨)

L(s+ 1
2 , τ)

·
γ(−s+ 1

2 , τ
∨, ψ)

γ(s+ 1
2 , τ, ψ)

.

Proof. Noting that φ∨0 ∼= φ0 and γF (ψ ◦ qV ) = ε(V )γF (ψ), one can prove this proposition using
a similar argument to the proof of [GI16, Corollary 8.5]. �

1586

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

9. Proof of Proposition 7.3

Now we can define the equivariant map T desired in Proposition 7.3 and give our proof of the
proposition. We will define this map T to be the map T (k, T00) constructed in § 8.7 when P is
maximal, and by induction in stages when P is not maximal. We shall use the same notation as
in § 7. and assume that σ0 = Θψ(π0).

9.1 An equivariant map T
In this subsection we define an Mp(W )× SO(V )-equivariant map

T : ωV,W,ψ ⊗ IndSO(V )
Q (σ̆L) −→ IndMp(W )

P (πM )

that will satisfy Proposition 7.3. For a fixed 1 ≤ m′ ≤ m, we put k′ = (k1, . . . , km′), k′ = k1 +
· · ·+ km′ , k′′ = (km′+1, . . . , km), k′′ = km′+1 + · · ·+ km, and n′ = n− k′. As in §§ 8.1 and 8.6, we
take X = Xk, X∗ = X∗

k , Y = Yk, and Y ∗ = Y ∗
k . Put W02 = spanF (y∗k+1, . . . , y

∗
n). Also, let us put

X ′ = Xk′ = spanF (x1, . . . , xk′), X ′∗ = X∗
k′ = spanF (x∗1, . . . , x

∗
k′),

Y ′ = Yk′ = spanF (y1, . . . , yk′), Y ′∗ = Y ∗
k′ = spanF (y∗1, . . . , y

∗
k′),

X ′′ = spanF (xk′+1, . . . , xk), X ′′∗ = spanF (x∗k′+1, . . . , x
∗
k),

Y ′′ = spanF (yk′+1, . . . , yk), Y ′′∗ = spanF (y∗k′+1, . . . , y
∗
k),

V ′ = Vn′ , and W ′ = Wn′ , so that

V = X ′ ⊕ V ′ ⊕X ′∗, V ′ = X ′′ ⊕ Vn0 ⊕X ′′∗,

W = Y ′ ⊕W ′ ⊕ Y ′∗, W ′ = Y ′′ ⊕Wn0 ⊕ Y ′′∗,

and we shall write Q′ = L′ � U ′ and P ′ = M ′ �N ′ for the maximal parabolic subgroups of
SO(V ′) and Mp(W ′) stabilizing X ′′ and Y ′′, respectively.

Let (ω,S), (ω0,S0), and (ω00,S00) be the models of the Weil representations constructed in
§ 8.6. Additionally, let ω′′ be the realization of the Weil representation ωV ′,W ′,ψ of O(V ′)×
Mp(W ′) on a mixed model

S ′′ = S(V ′ ⊗ Y ′′∗)⊗ S(X ′′∗ ⊗Wn0)⊗ S00,

and let ω′ = ωV,W,ψ be the realization of the Weil representation of O(V )×Mp(W ) on a mixed
model

S ′ = S(V ⊗ Y ′∗)⊗ S(X ′∗ ⊗W ′)⊗ S ′′.

As in § 8.6, fix isomorphisms

(ω,S) ∼= (ωor,Sor) ∼= (ω′,S ′) (9.1)

of the three realizations of ωV,W,ψ and identify them.
Let PGL

k be the standard parabolic subgroup of GLk ∼= GL(Y ) stabilizing the flag

Yk1 ⊂ Yk1+k2 ⊂ · · · ⊂ Yk1+···+km .

Similarly, we define the standard parabolic subgroups PGL
k′ of GLk′ and PGL

k′′ of GLk′′ . Put
τ = IndGLk

PGL
k

(τ1 ⊗ · · · ⊗ τm), τ ′ = IndGLk′
PGL
k′

(τ1 ⊗ · · · ⊗ τm′), and τ ′′ = IndGLk′′
PGL
k′′

(τm′+1 ⊗ · · · ⊗ τm).
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These representations are irreducible, since τ1, . . . , τm are tempered. Define canonical iso-
morphisms

Φ : IndSO(V )
Q (τ1 ⊗ · · · ⊗ τm ⊗ σ∨0 ) −→ IndSO(V )

Qk
(τ ⊗ σ∨0 ),

Ψ : IndSO(V )
Q (τ1 ⊗ · · · ⊗ τm ⊗ σ∨0 ) −→ IndSO(V )

Qk′
(
τ ′ ⊗ IndSO(V ′)

Q′ (τ ′ ⊗ σ∨0 )
)

by

ΦF (h)(x) = δQk(l(x))
−1/2F (l(x)h),

ΨF (h)(x′, h′) = δQk′ (l
′(x′))−1/2F (l′(x′)h′h),

where l and l′ are the canonical embeddings GLk ↪→ Lk and GLk′ ↪→ Lk′ , respectively, as in
§ 8.1.

Similarly, with an abuse of notation, we take canonical isomorphisms

Φ : IndMp(W )
P (τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0) −→ IndMp(W )

Pk
(τ̃ ⊗ π0),

Ψ : IndMp(W )
P (τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0) −→ IndMp(W )

Pk′
(
τ̃ ′ ⊗ IndMp(W ′)

P ′ (τ̃ ′′ ⊗ π0)
)

and the canonical embeddings m : GLk ↪→Mk and m′ : GLk′ ↪→Mk′ .
Next, following § 8.7, we put T a = T (k, T00) and T r = T (k′, T (k′′, T00)), which are Mp(W )×

SO(V )-equivariant maps

ω ⊗ IndSO(V )
Q (τ ⊗ σ∨0 ) −→ IndMp(W )

P (τ̃ ⊗ π0)

and

ω′ ⊗ IndSO(V )
Qk′

(τ ′ ⊗ IndSO(V ′)
Q′ (τ ′ ⊗ σ∨0 )) −→ IndMp(W )

Pk′
(τ̃ ′ ⊗ IndMp(W ′)

P ′ (τ̃ ′′ ⊗ π0)),

respectively. Here T00 is the fixed map (8.2).

Lemma 9.1. The diagram

ω ⊗ IndSO(V )
Qk

(τ ⊗ σ∨0 ) T a−−−−→ IndMp(W )
Pk

(τ̃ ⊗ π0)

1⊗Φ

�⏐⏐ �⏐⏐Φ

ωV,W,ψ ⊗ IndSO(V )
Q (τ1 ⊗ · · · ⊗ τm ⊗ σ∨0 ) IndMp(W )

P (τ̃1 ⊗ · · · ⊗ τ̃m ⊗ π0)

1⊗Ψ

⏐⏐� ⏐⏐�Ψ

ω′ ⊗ IndSO(V )
Qk′

(τ ′ ⊗ IndSO(V ′)
Q′ (τ ′ ⊗ σ∨0 )) −−−−→

T r
IndMp(W )

Pk′
(τ̃ ′ ⊗ IndMp(W ′)

P ′ (τ̃ ′′ ⊗ π0))

commutes.

Lemma 9.1 lets us define an Mp(W )× SO(V )-equivariant map

T : ωV,W,ψ ⊗ IndSO(V )
Q (σ̆L) −→ IndMp(W )

P (πM ),

so that the diagram will remain commutative if we insert T into the middle horizontal space. In
other words,

T = Φ−1 ◦ T a ◦ (1⊗ Φ) = Ψ−1 ◦ T r ◦ (1⊗Ψ).
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9.2 Proof of Lemma 9.1
Let ϕ ∈ S ∼= S ′ and F ∈ IndSO(V )

Q (τ1 ⊗ · · · ⊗ τm ⊗ σ∨0 ). It suffices to show that

〈T r(ϕ⊗ΨF )(g)(1, 1), v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0〉 = 〈T a(ϕ⊗ ΦF )(g)(1), v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0〉 (9.2)

for any v̌i ∈ Vτ∨i , v̌0 ∈ Vπ∨
0
, and g ∈ Mp(W ).

Fix v̌i ∈ Vτ∨i , v̌0 ∈ Vπ∨
0
, and g ∈ Mp(W ). Choose an element K = K ⊗K ′ of

IndGLk′
PGL
k′

(τ∨1 ⊗ · · · ⊗ τ∨m′)⊗ IndMp(W ′)
P ′ (τ̃ ′′

∨ ⊗ π∨0 ) ∼= τ ′∨ ⊗ IndMp(W ′)
P ′ (τ̃ ′′ ⊗ π0)∨

such that

supp(K ) ⊂ (PGL
k′ × P ′) ·K ′,

K (x) = v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0

for any x ∈ K ′, where K ′ = K ′
G ×K ′

M ⊂ GLk′ ×Mp(W ′) is a compact open subgroup such
that:

– ((GLk1 × · · · ×GLkm′′ )×Mp(W ′)) ∩K ′ stabilizes v̌1, . . . , v̌m, v̌0;
– K ′ stabilizes ω′(g)ϕ, i.e.ω′(m′(a′)g′0g)ϕ = ω′(g)ϕ for any (a′, g′0) ∈ K ′.

Since K ′ stabilizes T r(ϕ⊗ΨF )(g) = T r(ω′(g)ϕ⊗ΨF )(1), we have

〈T r(ϕ⊗ΨF )(g),K 〉 =
∫

(PGL
k′ ×Pk′′)\(GLk′×Mp(W ′))

〈T r(ϕ⊗ΨF )(g)(x),K (x)〉 dx

=
∫

(PGL
k′ ×Pk′′)\(PGL

k′ ×Pk′′)K′
〈T r(ϕ⊗ΨF )(g)(x),K (x)〉 dx

= vol(K ′)〈T r(ϕ⊗ΨF )(g)(1, 1), v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0〉. (9.3)

On the other hand, by the definition of T r and Lemma 8.3, we see that 〈T r(ϕ⊗ΨF )(g),K 〉
equals

L

(
1
2
, τ ′

)−1

γ

(
1
2
, τ ′, ψ

)−1 ∫
Uk′SO(Vn′ )\SO(V )

〈T ′(fS′(ϕ)(gh)⊗ 〈ΨF (h),K〉),K ′〉 dh,

where

T ′ = T (k′′, T00) : ω′ ⊗ IndSO(V ′)
Q′ (τ ′ ⊗ σ∨0 ) −→ IndMp(W ′)

P ′ (τ̃ ′′ ⊗ π0).

The last integral is equal to∫
Uk′SO(Vn′ )\SO(V )

〈
T ′
(
fS′(ϕ)(gh)⊗

∫
PGL
k′ \GLk′

〈ΨF (h)(a′, •),K(a′)〉 da′
)
,K ′

〉
dh

=
∫
Uk′SO(Vn′ )\SO(V )

〈
T ′
(
fS′(ϕ)(gh)⊗

∫
K′

G

〈ΨF (l′(a′)h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉 da′
)
,K ′

〉
dh

=
∫
K′

G

∫
Uk′SO(Vn′ )\SO(V )

〈
T ′(fS′(ϕ)(gl′(a′)h)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉

)
,K ′〉 dh da′.
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Thus we have that 〈T r(ϕ⊗ΨF )(g),K 〉 is equal to the product of L(1
2 , τ

′)−1γ(1
2 , τ

′, ψ)−1 and∫
K′

G

∫
Uk′SO(Vn′ )\SO(V )

〈
T ′ (fS′(ϕ)(gl′(a′)h)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉

)
,K ′〉 dh da′. (9.4)

Moreover,∫
K′

G

〈
T ′ (fS′(ϕ)(gl′(a′)h)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉

)
,K ′〉 da′

=
∫
K′

G

∫
K′

M

〈
T ′ (fS′(ϕ)(gl′(a′)h)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉

)
(g′0),K

′(g′0)
〉
dg′0 da

′

=
∫
K′

〈
T ′ (fS′(ϕ)(g′0gl

′(a′)h)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉
)
(1), v̌m′+1 ⊗ · · · ⊗ v̌0

〉
d(a′, g′0).

(9.5)

Then (9.4) and (9.5) imply that 〈T r(ϕ⊗ΨF )(g),K 〉 is

L

(
1
2
, τ ′

)−1

γ

(
1
2
, τ ′, ψ

)−1 ∫
Uk′SO(Vn′ )\SO(V )

∫
K′〈

T ′ (fS′(ϕ)(g′0gl
′(a′)h)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉

)
(1), v̌m′+1 ⊗ · · · ⊗ v̌0

〉
d(a′, g′0) dh.

(9.6)

Now, by the formula (8.1) and the choice of K ′, we have

fS′(ϕ)(g′0gl
′(a′)uh) = fS′(ϕ)(guh).

Therefore, (9.3) and (9.6) imply that

〈T r(ϕ⊗ΨF )(g)(1, 1), v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0〉

= L

(
1
2
, τ ′

)−1

γ

(
1
2
, τ ′, ψ

)−1 ∫
Uk′SO(Vn′ )\SO(V )〈

T ′ (fS′(ϕ)(gh)⊗ 〈ΨF (h)(1, •), v̌1 ⊗ · · · ⊗ v̌m′〉) (1), v̌m′+1 ⊗ · · · ⊗ v̌0
〉
dh. (9.7)

Now, the definition of T ′ gives that the last integral is equal to

L

(
1
2
, τ ′′

)−1

γ

(
1
2
, τ ′′, ψ

)−1 ∫
Uk′SO(Vn′ )\SO(V )

∫
U ′SO(Vn0 )\SO(V ′)〈

T00

(
fS′′ (fS′(ϕ)(gh)) (h′)⊗ 〈〈ΨF (h)(1, h′), v̌1 ⊗ · · · ⊗ v̌m′〉, v̌m′+1 ⊗ · · · ⊗ v̌m〉

)
, v̌0
〉
dh′ dh

= L

(
1
2
, τ ′′

)−1

γ

(
1
2
, τ ′′, ψ

)−1 ∫
USO(Vn0 )\SO(V )

∫
Uk′U ′\U〈

T00 (fS′′ (fS′(ϕ)(guh)) (1)⊗ 〈F (h), v̌1 ⊗ · · · ⊗ v̌m〉) , v̌0
〉
du dh. (9.8)
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By (9.7) and (9.8), we have

〈T r(ϕ⊗ΨF )(g)(1, 1), v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0〉

= L

(
1
2
, τ

)−1

γ

(
1
2
, τ, ψ

)−1 ∫
USO(Vn0 )\SO(V )

〈
T00

(
f ′′(ϕ)(gh)⊗F0(h)

)
, v̌0

〉
dh, (9.9)

where

f ′′(ϕ)(gh) =
∫
Uk′U ′\U

fS′′ (fS′(ϕ)(ugh)) (1) du,

F0(h) = 〈F (h), v̌1 ⊗ · · · ⊗ v̌m〉.

Similarly, we can obtain

〈T a(ϕ⊗ ΦF )(g)(1), v̌1 ⊗ · · · ⊗ v̌m ⊗ v̌0〉

= L

(
1
2
, τ

)−1

γ

(
1
2
, τ, ψ

)−1 ∫
USO(Vn0 )\SO(V )

〈
T00(f ′(ϕ)(gh)⊗F0(h)), v̌0

〉
dh, (9.10)

where

f ′(ϕ)(gh) =
∫
Uk\U

fS(ϕ)(ugh) du.

Now (9.9) and (9.10) tell us that it suffices to show that f ′′(ϕ) = f ′(ϕ), which will follow
from Lemma 9.2 below. �

Lemma 9.2. Under the identification (9.1), for any ϕ ∈ Sor we have∫
Uk′U ′\U

fS′′ (fS′(ϕ)(u)) (1) du =
∫
Uk\U

fS(ϕ)(u) du.

Proof. Put

e′ = x1 ⊗ y∗1 + · · ·+ xk′ ⊗ y∗k′ ∈ X ′ ⊗ Y ′∗,

e′′ = xk′+1 ⊗ y∗k′+1 + · · ·+ xk ⊗ y∗k ∈ X ′′ ⊗ Y ′′∗,

and let ϕ ∈ Sor. Because

Sor ∼= S(V ⊗ Y ′∗) ⊗ S((X ′ ⊕X ′∗)⊗ (Y ′′∗ ⊕W02))

⊗ S(V ′ ⊗ Y ′′∗) ⊗ S((X ′′ ⊕X ′′∗)⊗W02) ⊗ S00,

we shall write

ϕ

[
x,

(
y1

y2

)
, x′,

(
y′1
y′2

)]
= ϕ

[
x,

(
y1

y2

)][
x′,

(
y′1
y′2

)]
for the evaluation of ϕ at x ∈ V ⊗ Y ′∗, y1 ∈ X ′ ⊗ (Y ′′∗ ⊕W02), y2 ∈ X ′∗ ⊗ (Y ′′∗ ⊕W02),
x′ ∈ V ′ ⊗ Y ′′∗, y′1 ∈ X ′′ ⊗W02, and y′2 ∈ X ′′∗ ⊗W02, which is an element of S00. Then
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we have

fS′′ (fS′(ϕ)(u)) (1) =
∫
y′∈X′′⊗W02

[fS′(ϕ)(u)]
[
e′′,

(
y′

0

)]
dy′

=
∫
y′∈X′′⊗W02

∫
y′∈X′⊗(Y ′′∗⊕W02)

ωor(u)ϕ
[
e′,

(
y

0

)
, e′,

(
y′

0

)]
dy′

=
∫
y′∈X′′⊗W02

∫
y′∈X′⊗(Y ′′∗⊕W02)

ϕ

[
u−1e′,

(
y

0

)
, e′′,

(
y′

0

)]
dy′

for any u ∈ Uk′U ′\U . Thus, if we regard ϕ as an element of

Sor ∼= S((V ⊗ Y ∗)⊕ ((X ⊕X∗)⊗W02))⊗ S00,

then we have∫
Uk′U ′\U

fS′′(fS′(ϕ)(u))(1) du =
∫
c=(ci,j)∈C

ϕ

( k∑
i=1

xi ⊗ y∗i +
∑
i,j

ci,jxi ⊗ y∗j
)∏

i,j

dψci,j , (9.11)

where the integration region C is a direct product C = C1 × · · · × Cm of sets

Cl =
{

(ci,j)
∣∣∣∣ ci,j ∈ F, i = k0 + · · ·+ kl−1 + 1, . . . , k0 + · · ·+ kl,

j = k0 + · · ·+ kl + 1, . . . , n

}
of kl × (kl+1 + · · ·+ km) matrices with certain shifted indices. Similarly, we have∫

Uk\U
fS(ϕ)(u) du =

∫
c=(ci,j)∈C

ϕ

( k∑
i=1

xi ⊗ y∗i +
∑
i,j

ci,jxi ⊗ y∗j
)∏

i,j

dψci,j . (9.12)

Now the lemma follows from (9.11) and (9.12). �

9.3 Proof of Proposition 7.3
Let us finish the proof of Proposition 7.3. This follows from the propositions above and induction
in stages. Assume that w ∈Wφ(M,Mp(W )), and let

w = w1 · · ·wl

be a reduced decomposition of w in W(M̂,Sp2n(C)). Then it can be seen that

RP (w, πM , ψ) = RP (w1, πM , ψ) ◦ · · · ◦ RP (wl, πM , ψ),

RQ(w, σL) = RQ(w1, σL) ◦ · · · ◦ RQ(wl, σL).

Thus, it suffices to show that the following diagram commutes for any simple reflection w ∈
W(M̂,Sp2n(C)):

ωV,W,ψ ⊗ IndSO(V )
Q (σ̆L) T−−−−→ IndMp(W )

P (πM )

1⊗RQ(w,σ̆L)

⏐⏐� ⏐⏐�RP (w,πM ,ψ)

ωV,W,ψ ⊗ IndSO(V )
Q (wσ̆L) T−−−−→ IndMp(W )

P (wπM ).

1592

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

Recall the realization W(M̂,Sp2n(C)) ↪→ Sm � (Z/2Z)m. The commutativity follows from
Lemma 8.4 and the equation T = Φ−1 ◦ T a ◦ (1⊗ Φ) when w ∈ Sm, and from Lemma 8.5, Propo-
sition 8.6, and the equation T = Ψ−1 ◦ T r ◦ (1⊗Ψ) applied repeatedly when w ∈ (Z/2Z)m. Then
we have completed the proof of Proposition 7.3.

Acknowledgments

I would like to thank my supervisor A. Ichino for much advice.

References

Art89a J. Arthur, Intertwining operators and residues I. Weighted characters, J. Funct. Anal. 84
(1989), 19–84.

Art89b J. Arthur, Unipotent automorphic representations: conjectures, Astérisque 171–172 (1989),
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346 (2012), 1–109.

GI14 W. T. Gan and A. Ichino, Formal degrees and local theta correspondence, Invent. Math. 195
(2014), 509–672.

GI16 W. T. Gan and A. Ichino, The Gross-Prasad conjecture and local theta correspondence, Invent.
Math. 206 (2016), 705–799.

GL18 W. T. Gan and W. W. Li, The Shimura-Waldspurger correspondence for Mp(2n), in Geo-
metric aspects of the trace formula, SSTF 2016, Simons Symposia, eds. W. Müller, S. Shin
and N. Templier (Springer, Cham, 2018), 183–210.

GS12 W. T. Gan and G. Savin, Representations of metaplectic groups I: epsilon dichotomy and
local Langlands correspondence, Compos. Math. 148 (2012), 1655–1694.

GT16 W. T. Gan and S. Takeda, A proof of the Howe duality conjecture, J. Amer. Math. Soc. 29
(2016), 473–493.

Han19 M. Hanzer, R-groups for metaplectic groups, Israel J. Math. 231 (2019), 467–488.
Kal16 T. Kaletha, The local Langlands conjectures for non-quasi-split groups, in Families of auto-

morphic forms and the trace formula, Simons Symposia, eds. W. Müller, S. Shin and
N. Templier (Springer, Cham, 2016), 217–257.

KMSW14 T. Kaletha, A. Mı́nguez, S. W. Shin and P.-J. White, Endoscopic classification of represen-
tations: inner forms of unitary groups, Preprint (2014), arXiv:1409.3731.

Kot83 R. Kottwitz, Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math.
Soc. 278 (1983), 289–297.

Kud94 S. S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994),
361–401.

LS87 R. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987),
219–271.

1593

https://doi.org/10.1112/S0010437X20007253 Published online by Cambridge University Press

https://arxiv.org/abs/1409.3731
https://doi.org/10.1112/S0010437X20007253


Local intertwining relation for metaplectic groups

Mok15 C. P. Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem.
Amer. Math. Soc. 235 (2015),1–248.

MR18 C. Mœglin and D. Renard, Sur les paquets d’Arthur des groupes classiques et unitaires
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