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We investigate the dynamics of a self-rewetting drop placed on a substrate with a constant
temperature gradient via three-dimensional numerical simulations using a conservative
level-set approach to track the interface of the drop. The surface tension of a so-called
self-rewetting fluid exhibits a parabolic dependence on temperature with a well-defined
minimum. Two distinct drop behaviours, namely deformation and elongation, are observed
when it is placed at the location of the minimum surface tension. The drop spreads
slightly and reaches a pseudo-steady state in the deformation regime, while it continuously
spreads until breakup in the elongation regime. Theoretical models based on the forces
exerted on the drop have been developed to predict the critical condition at which the
drop undergoes the transition between the two regimes, and the predictions are in good
agreement with the numerical results. We also investigate the effect of the initial position
of the drop with respect to the location of the minimum surface tension on the spreading
and migration dynamics. It is found that, at early times, the migration of the drop obeys an
exponential function with time, but it diverges at the later stage due to an increase in the
drop deformation.

Key words: drops, thermocapillarity, contact lines

1. Introduction

The study of sessile droplet dynamics on solid substrates has received considerable
attention in the literature due to its numerous practical applications and scientific
challenges (de Gennes 1985; Renardy, Renardy & Li 2001; Bonn et al. 2009; Gurrala
et al. 2019). Controlled external forcing and imposed temperature/chemical gradients have
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been frequently used in many industrial applications involving coating processes and
microfluidic devices to vary the surface wettability of different substrates (Randive et al.
2015; Kumar, Bhardwaj & Sahu 2020). Several experimental (Chen et al. 2005; Pratap,
Moumen & Subramanian 2008), numerical (Yi 2014; Fath & Bothe 2015) and theoretical
(Brochard 1989; Ford & Nadim 1994) studies have shown that the thermocapillary
mechanism is an effective way of manipulating the motion of sessile drops on a
non-isothermal substrate. Tryggvason, Scardovelli & Zaleski (2011) also discussed the
challenges associated with the numerical simulations of isothermal and non-isothermal
gas–liquid systems.

The surface tension of a normal fluid (e.g. water, oil, etc.) with respect to air decreases
monotonically with temperature. In this case, the surface tension gradient drives liquid
flow from warmer (low surface tension) to colder (high surface tension) regions. Using
this concept, Bouasse (1924) has shown that a drop can climb up a tilted wire with its
lower end maintained at a higher temperature than its upper end. Brzoska, Brochard-Wyart
& Rondelez (1993) demonstrated that by controlling the imposed temperature gradient
on a substrate, it was possible to obtain a steady migration of an undeformed sessile
droplet. By using a lubrication theory, Karapetsas, Sahu & Matar (2013) demonstrated
that the thermocapillary effect enhances the spreading rate and the ‘stick–slip’ behaviour
of a sessile drop of a normal fluid placed on an inclined substrate. Brochard (1989)
theoretically studied the motion of a two-dimensional drop on a solid substrate with a
chemical/thermal gradient and observed that the drop migrates towards the region of
high surface energy. This theory was generalized for various drop shapes by Ford &
Nadim (1994), who studied the migration velocity of a two-dimensional drop of different
shapes on a substrate with a temperature gradient. Later, theoretical predictions of Ford
& Nadim (1994) were validated by Chen et al. (2005) (experimentally) and Yi (2014)
(numerically). Pratap et al. (2008) extended the two-dimensional theory of Ford & Nadim
(1994) to three-dimensional systems and compared the theoretical predictions with their
own experimental results. Gomba & Homsy (2010) reconciled the contact line singularity,
which is a common problem in the theoretical modelling of sessile drops, with a precursor
model. They studied the effect of contact angle on the spreading and migration of a sessile
droplet of a normal fluid due to the temperature gradient on the substrate. They found
that a droplet with a small contact angle spreads on the substrate, whereas it migrates
with a fixed shape for large contact angles. Increasing the disjoining–conjoining pressure
due to contact angle was found to be the mechanism behind the differences observed
in the droplet dynamics for different contact angles. A spreading scaling law, given by
Lw ∝ t1/2, was also deduced, in which Lw is the wetted length of drop and t denotes
time. A similar scaling was also observed by Chaudhury & Chakraborty (2015). As this
literature review shows, the dynamics of sessile drops of normal fluids on a non-uniformly
heated substrate has been studied extensively and the basic understanding of the observed
phenomena has been well established. However, all the above-mentioned studies (except
that of Pratap et al. (2008)) considered two-dimensional situations. Moreover, as in the
case of a sessile droplet of a normal fluid (Pratap et al. 2008), a question that arises is
whether the assumption of two-dimensional lubrication in a three-dimensional situation
is sufficiently appropriate as we have noticed that the theory has not achieved a perfect
agreement with experiment.

Unlike normal liquids, a so-called ‘self-rewetting’ fluid (e.g. non-azeotropic,
high-carbon alcohol solutions) exhibits a parabolic surface tension–temperature
relationship with a well-defined minimum (Vochten & Petre 1973) with its parabolicity
increasing with increasing alcohol concentration. Due to this peculiar behaviour,
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self-rewetting fluids were shown to provide high critical heat fluxes as compared to
normal fluids in various cooling systems, including heat pipe (Savino et al. 2007;
Wu 2015) and spray cooling (Tsang et al. 2018). However, the underlying physics in
configurations involving self-rewetting fluids is still poorly understood. Although a few
researchers (Tripathi et al. 2015; Balla et al. 2019) have studied the migration of an
air bubble in a self-rewetting liquid, the dynamics of a sessile droplet of self-rewetting
fluids on a non-uniformly heated substrate has received far less attention, as highlighted
below. Karapetsas et al. (2014) developed a two-dimensional lubrication model to study
the spreading dynamics of a sessile self-rewetting drop on a surface with a constant
temperature gradient and demonstrated its thermally induced ‘super-spreading’ behaviour.
Chaudhury & Chakraborty (2015) compared the spreading dynamics of normal and
self-rewetting drops using a two-dimensional lubrication theory and found that while
a normal drop spreads as Lw ∝ t1/2, a self-rewetting drop follows a linear spreading
behaviour, i.e. obeys an Lw ∝ t scaling law. Both these studies used the precursor model
proposed by Gomba & Homsy (2010). Also, note that most of the previous theoretical
investigations involving normal and self-rewetting fluids considered only a small contact
angle of sessile droplet due to the limitation associated with the lubrication approximation.

Thus, in the present study, we focus on the three-dimensional spreading and migration
of a self-rewetting sessile drop on a substrate with a constant temperature gradient.
Three-dimensional numerical simulations of the complete Navier–Stokes equations have
been conducted to study the dynamics of sessile drops with contact angle (θ) varying
from 15◦ to 60◦. A conservative level-set method (Olsson & Kreiss 2005) for capturing
the interface and the geometrical contact line model (Ding & Spelt 2007) are used. The
surface tension model used in our simulations includes both the normal and tangential
components in the same way as that of Liu et al. (2013). We consider small drops such
that the flow dynamics is dominated only by the surface tension and the viscosity. We
found that the droplet does not undergo ‘super-spreading’ behaviour because of the finite
contact angle. A self-rewetting drop placed at the location of the minimum surface tension
exhibits two distinct behaviours, namely deformation and elongation. We also investigate
the migration and spreading dynamics of the self-rewetting drop when it is placed slightly
away from the location of the minimum surface tension.

The rest of the paper is organized as follows. The problem is formulated in § 2. The
results from the numerical simulations are discussed in § 3. The two distinct flow regimes
when the drop is placed at the location of the minimum surface tension are discussed
in § 3.1. In § 3.2, various forces exerted on a quarter of the drop are demonstrated. The
critical condition for the transition between the two regimes is derived by conducting a
force balance in § 3.3. In § 3.4, we demonstrate the migration and spreading of the drop
with its initial location slightly away from the location of the minimum surface tension.
Finally, conclusions are given in § 4.

2. Formulation

We investigate the thermocapillary migration of a sessile self-rewetting drop of
initial wetted radius R on a substrate with a temperature gradient by conducting
three-dimensional numerical simulations. A schematic diagram depicting the initial
configuration is shown in figure 1(a). The droplet dynamics is caused by the surface
tension variation due to the inhomogeneity in temperature. A Cartesian coordinate system
(x, y, z) is used to describe the drop dynamics, where x, y and z are the horizontal, spanwise
and vertical directions, respectively, as shown in figure 1(a). A linear temperature variation

915 A116-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.130


Z.-L. Xu, J.-Y. Chen, H.-R. Liu, K.C. Sahu and H. Ding

–3

1.00

0.75

0.50

0.25

0
–2 –1 0

6R

R

Lw

y

x

3R

HotCold

x
1 2 3

M
1
 = 0.4

M
1
 = 0.8

M
1
 = 1.2

θ

γ

(b)

(a)

Figure 1. (a) A schematic diagram showing the initial configuration of a self-rewetting sessile drop on a
substrate with linear temperature variation. The x and y axes are shown, while the z axis is vertical to the
substrate. The length and width of the substrate are 6R (or 12R in § 3.4) and 3R, respectively. (b) Typical
variations of the dimensionless surface tension coefficient γ along the substrate for different values of M1,
with the centre of the drop being placed at x = 0.

is imposed on the substrate with a constant temperature gradient, Tx, which is given by

T = Txx + Tm. (2.1)

The dimensional form of the surface tension (γ )–temperature (T) relationship of the
self-rewetting liquid is given by

γ = γ1 − β1(T − T1) + β2(T − T1)
2, (2.2)

where T1 denotes the temperature at x = −3R (i.e. the location where the temperature
is minimum), γ1 represents the surface tension at T1, β1 = −dγ /dT|T1 and β2 =
1
2 (d2γ /dT2)|T1 . The surface tension is minimum at x = 0 where the temperature Tm =
β1/(2β2) + T1. A similar surface tension–temperature relationship was also used by Balla
et al. (2019). In the present study, a substrate of width 3R and length 6R is considered,
except in § 3.4 where a computational domain of length 12R is used to study the migration
of the drop for a relatively long time. The height of the computational domain is 0.8R.

In our study, R and γ1 have scales of 100 μm and 10 mN m−1, respectively. Given
the drop density ρd ∼ 103 kg m−3 and the gravitational acceleration g = 9.8 m s−2, the
drop size is far smaller than the capillary length scale (= √

γ1/(ρdg) ≈ 1 mm). Therefore,
the gravitational force is negligibly small as compared to the surface tension force. The
drop viscosity μd ∼ 10−3 Pa s is assumed to be constant for the range of temperature
considered, and the thermal diffusivity of the drop is 1.4 × 10−6 m2 s−1. The temperature
gradient at the substrate is 1 ◦C mm−1.

2.1. Governing equations
The conservative level-set method (Olsson & Kreiss 2005) is adopted to capture the
interfacial dynamics. We use the volume fraction of the drop (C) as the conservative
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level-set function, and C = 1 and C = 0 represent the liquid and gas bulk phases,
respectively. This method belongs to diffuse interface models, in which the interface
separating the liquid and gas phases (here represented by 0 < C < 1) is assumed to have a
finite thickness. More precisely, the interface profile for a flat interface at equilibrium has
a distribution of C(z) = 0.5 + 0.5 tanh(z/(2

√
2ε)) in the conservative level-set method,

where z is the direction normal to the interface and ε is a measure of the interface thickness
(Ding, Spelt & Shu 2007), such that the distance between the contours C = 0.1 and 0.9 is
approximately 8.26ε. The interface evolution can be modelled by the time variation of C
field, which for incompressible flows is governed by

∂C
∂t

+ ∇ · (Cu) = 0. (2.3)

For the convenience of visualization, the contour C = 0.5 is used to represent the interface
unless stated otherwise.

The density (ρ), viscosity (μ) and thermal diffusivity (k) are assumed to be constant
for the drop and the surrounding medium, and are given by

ρ = ρa(1 − C) + ρdC, (2.4)

μ = μa(1 − C) + μdC, (2.5)

k = ka(1 − C) + kdC, (2.6)

respectively. Here, the subscripts a and d represent the physical quantities associated with
surrounding medium (air) and drop, respectively.

We employ the following scaling to render the governing equations dimensionless:

(x, y, z) = R (̃x, ỹ, z̃) , u = Vũ, t = R
V

t̃, p = γ1

R
p̃,

μ = μdμ̃, ρ = ρdρ̃, k = kd̃k, T = T̃(Tm − T1) + T1, κ = κ̃/R, ε = ε̃R,

γ = γ1γ̃ , β1 = γ1

Tm − T1
M1, β2 = γ1

(Tm − T1)2 M2,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.7)

where the tilde denotes dimensionless quantities and the characteristic velocity is defined
as V (= μd/(ρdR)).

The dynamics of spreading and migration of a sessile drop on a heated substrate with a
temperature gradient is governed by the Navier–Stokes, continuity and energy equations,
which are given by (after suppressing tilde notations)

ρ

(
∂u
∂t

+ u · ∇u
)

= − 1
We

∇p + 1
Re

∇ · [μ(∇u + ∇uT)] + 1
We

f s, (2.8)

∇ · u = 0, (2.9)

∂T
∂t

+ u · ∇T = 1
Ma

∇ · (k∇T). (2.10)

Here, u = (u, v, w) represents the dimensionless velocity field, where u, v and w are
the components of velocity in the x, y and z directions, respectively; t denotes time;
and p and T denote the pressure and the temperature fields, respectively. The various
dimensionless numbers are the Reynolds number Re (= ρdVR/μd), the Weber number
We (= ρdV2R/γ1) and the Marangoni number Ma (= VR/kd). Note that the Reynolds
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number is fixed at 1 with the present definition of V . We also refer to the capillary number
Ca (= μdV/γ1 = We/Re). The dimensionless density, viscosity and thermal diffusivity
are given by ρ = ρr(1 − C) + C, μ = μr(1 − C) + C and k = kr(1 − C) + C, where ρr
(= ρa/ρd), μr (= μa/μd) and kr (= ka/kd) are the density ratio, the viscosity ratio and
the thermal diffusivity ratio, respectively.

The relationship between the dimensionless surface tension and temperature of the
self-rewetting fluid is given by

γ = 1 − M1T + M2T2, (2.11)

where M1 and M2 are the dimensionless β1 and β2, respectively. In the present study,
we assume M2 = M1/2 to fix the location of the minimum surface tension at x = 0. We
found that M1, which denotes the magnitude of the linear component of the surface tension
variation, plays an important role in the drop migration and spreading dynamics. The
typical variations of the surface tension for different values of M1 are shown in figure 1(b).
The minimum value of the dimensionless surface tension (γ0) is related to M1 as γ0 =
1 − M1/2. The initial surface tension variation in the x direction can be written as γ =
γ0 + x2/18. Therefore, the maximum value of M1 that can be taken for the computational
domain considered in the present study is equal to 2. The non-dimensionalization used
here is similar to that of Balla et al. (2019).

The wettability of the solid substrate is represented by static contact angle θ . For
simplicity of modelling, it is assumed that the substrate is perfectly smooth and chemically
homogeneous so that there is no contact angle hysteresis, and that the contact angle
remains unchanged within the range of temperature considered.

The calculation of the surface tension force, f s in (2.8), is similar to that given in Liu
et al. (2013) and Kim (2005). Specifically, f s can be expressed as

f s = 6
√

2ε|∇C|2(−γ κn + ∇sγ ), (2.12)

where the curvature (κ) and the normal unit vector (n) can be computed by κ =
−∇ · (∇C/|∇C|) and n = ∇C/|∇C|, respectively, and ∇s(≡ ∇ − (∇ · n)n) represents
the surface gradient operator.

The boundary conditions used are as follows: the no-slip boundary condition is enforced
for the velocity components at the solid substrate. The geometric wetting condition (Ding
& Spelt 2007) is imposed for the C field at the solid substrate (z = 0) to allow for the
presence of moving contact lines. More specifically, it is equivalent to implementing

∂C
∂z

= − tan
(π

2
− θ

)√(∂C
∂x

)2

+
(

∂C
∂y

)2

, (2.13)

where θ is the contact angle. In practice, the geometry wetting condition (2.13) serves
as the boundary condition for (2.3) by changing the value of C at ghost cells below the
substrate (Ding & Spelt 2007). The isothermal temperature boundary condition T|z=0 =
1 + x/3 is enforced at the solid substrate and the adiabatic condition for the temperature
is implemented at the rest of the boundaries.

2.2. Numerical procedure and validation
Implementation of the conservative level-set method (Olsson & Kreiss 2005) consists of
two steps: (i) the advective step to evolve the interface (2.3) and (ii) the relaxation step to
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make the diffuse-interface profile at equilibrium. The second step is performed by solving
∂C
∂τ

+ ∇ · (C(1 − C)n) = ∇ · (
√

2ε∇C), (2.14)

where τ denotes the artificial time. At equilibrium (i.e. ∂C/∂τ = 0), the solution of (2.14)
across a flat interface in its normal direction (z) is C(z) = 0.5 + 0.5 tanh(z/(2

√
2ε)),

which is essentially the same as that of the phase-field method (Chiu & Lin 2011). To
maintain the conservation of the volume fraction in the relaxation step, ∇C · nw = 0 is
enforced at the boundaries when solving (2.14), where nw is the unit vector normal to the
solid surface.

A three-dimensional uniform staggered grid is used for the second-order-accurate
finite-volume discretization of the dimensionless governing equations, with the scalar
variables, e.g. the pressure ( p), the temperature (T) and the level-set function (C), being
defined at the centre of each cell and the velocity components being defined at the centroid
of cell faces. The advection term in (2.3) is temporally discretized by the Adams–Bashforth
method and spatially discretized by a fifth-order weighted essentially non-oscillatory
scheme (Ding et al. 2007). For the temporal discretization of momentum equation (2.8)
and energy equation (2.10), the Adams–Bashforth and the Crank–Nicolson schemes are
employed to discretize the advection and diffusion terms, respectively. For the spatial
discretization of (2.10) and (2.8), a third-order upwind scheme is employed to interpolate
the flow variables at the centroid of cell faces of a computational cell for the advection
term, while essentially a central difference scheme is used for the diffusion term. To solve
the Navier–Stokes equations in the form of primitive variables (i.e. u and p), a standard
projection method is implemented to couple the velocity with the pressure field, so as to
obtain the divergence-free velocity (Ding et al. 2007). An explicit Euler method and the
central difference scheme are adopted for the temporal and spatial discretization of the
interface relaxation (2.14), respectively.

The steps followed in the numerical procedure are: (i) update the level-set function C by
the interface advection and relaxation with the velocity field from time step n to n + 1; (ii)
update the temperature field from time step n to n + 1; (iii) calculate the interface tension
at time step n + 1/2 using (2.11) and the viscosity, density and thermal diffusivity are
calculated by averaging the values of the level-set function C and temperature T at time
steps n and n + 1; and (iv) advance the velocity field by solving (2.8) and (2.9) for time
step n + 1. The numerical procedure used in the present study is similar to that of Ding
et al. (2007).

A grid-independent test is performed with three different mesh sizes (Δx = 1/40,
1/80 and 1/160) for a sessile drop with its initial location xmi = 0. The rest of the
parameters are M1 = 1.0, θ = 60◦, Re = 1, We = 10−3, Ma = 0.7, ρr = 10−3, μr = 10−2

and kr = 4 × 10−2. Figure 2(a) demonstrates the temporal evolution of the wetted length
of the drop Lw (defined in figure 1) obtained using three different mesh sizes. It can be
observed that the maximum deviation between the results obtained using Δx = 1/80 and
1/160 is much smaller than that obtained using Δx = 1/40 and 1/80. In particular, the
maximum deviation in the former is 0.058, suggesting that the difference in the contact
line position is only about two mesh sizes. Figure 2(b) shows the shapes of the contact
line of the drop at time t = 0.2 obtained using these mesh sizes. It can be seen that the
results are practically indistinguishable between Δx = 1/80 and 1/160. Thus, the mesh
size Δx = 1/80 is sufficiently fine to resolve the interface curvature and flow structures.
Therefore, we choose Δx = 1/80 to generate the rest of the results presented in this study.
Unless stated otherwise, the time step Δt = 5 × 10−5 and ε = 0.75Δx are used in all the
simulations.

915 A116-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.130


Z.-L. Xu, J.-Y. Chen, H.-R. Liu, K.C. Sahu and H. Ding

0

2.0

2.1

2.2

2.3

2.4

2.5

0.05 0.10 0.15 0.20

t

x

y

Lw

0.25 0.30

�x = 1/40

�x = 1/80
�x = 1/160

(b)(a)

Figure 2. Grid-independent test for a self-wetting drop for mesh sizes of Δx = 1/40, 1/80, 1/160, with
M1 = 1.0, θ = 60◦, Re = 1, We = 10−3, Ma = 0.7, ρr = 10−3, μr = 10−2 and kr = 4 × 10−2. (a) Temporal
evolution of the wetted length of the drop Lw and (b) the contact line of the drop at time t = 0.2.

3. Results and discussion

In the present study, the following parameters are fixed: Re = 1, We = 10−3, Ma =
0.7, ρr = 10−3, μr = 10−2 and kr = 4 × 10−2, unless otherwise stated. The dynamic
behaviours of self-wetting drops are investigated by varying θ and M1.

More specifically, θ ranges from 15◦ to 60◦ and M1 ranges from 0.1 to 1.6
(corresponding to β1 varying from 3 to 48 mN m−1 ◦C−1).

3.1. Flow regimes
We begin the presentation of our results by demonstrating two distinct behaviours, namely
deformation and elongation, observed in a sessile self-rewetting drop placed on a substrate
with a temperature gradient.

In the deformation regime, the drop spreads slightly and eventually reaches a
pseudo-steady state, such that the wetted length of the drop Lw (see figure 3c) does not
change with time. By contrast, the drop continuously spreads in the elongation regime,
leading to a growing Lw with time. Figures 3(a), 3(c) and 3(e) show a drop in the
deformation regime at M1 = 0.8 and θ = 45◦ with respect to the interface and streamlines,
three-dimensional shape and temporal evolution of Lw. In this case, the drop spreads in the
x direction and ends up resting on the substrate with slight deformation. The symmetric
flows inside the drop are driven by the Marangoni stresses. In particular, we observe that
the instantaneous streamlines do not cross the drop interface (figure 3a), suggesting that
the interface of the drop stops evolving and reaches an equilibrium state. The equilibrium
state can also be confirmed from the temporal evolution of the wetted length of the drop
Lw in figure 3(e). It can be seen that the value of Lw becomes constant after the initial
spreading stage. It is noteworthy that such a state is not stable, and in the presence of small
asymmetry, e.g. due to discretization errors, the drop tends to move towards one end. This
kind of drop migration is particularly more obvious when the initial position of the drop
centre does not precisely coincide with the location with minimum surface tension (i.e.
x = 0), which is discussed in further detail in § 3.4.

Figures 3(b), 3(d) and 3( f ) demonstrate the dynamics of the sessile drop in the
elongation regime at M1 = 1.0 and θ = 45◦. In this case, because of the increase in
surface tension in the positive and negative x directions, the drop experiences a continuous
symmetric spreading about its initial centre (x = 0) (see figure 1b). In fact, the elongation
of the drop continues due to the positive feedback from the variation in surface tension (i.e.
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Motion of sessile self-rewetting drop

(a) (b)

(c) (d)

(e) ( f )
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1 2
0
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1.5
t

x x
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t

Figure 3. Illustration of different behaviours (deformation for M1 = 0.8 and elongation for M1 = 1.0) of a
self-rewetting drop placed at xmi = 0 with θ = 45◦. The interface and contour of streamlines at y = 0 when the
droplet exhibits (a) deformation and (b) elongation behaviours. In each panel, the blue dashed line shows the
initial interface and the red line represents the interface at a later time. (c,d) The three-dimensional shapes of
the drop interface at t = 1.0 and 0.6 in (a,b), respectively. Temporal evolution of the wetted length (Lw) of the
drop exhibiting (e) deformation and ( f ) elongation behaviours.

the longer the drop along the direction of x, the greater the variation in surface tension
it encounters). In this case, the streamlines (figure 3b) always cross the interface in the
vicinity of the contact line. The streamlines are symmetric about the y–z plane at x = 0
due to the initially symmetric geometry of the droplet with its centre at x = 0. Figure 3( f )
shows that Lw increases as time progresses indicating that the spreading becomes faster
and faster with time. It can be reasonably anticipated that the drop would break up sooner
or later.

The behaviours of a self-wetting sessile drop also depend on θ for a given set of
other parameters. Figure 4 shows the phase diagram of the deformation and elongation
behaviours of the drop in M1 and θ space. It can be seen that the larger the contact
angle of the drop, the higher the surface tension gradient for the elongation behaviour to
exhibit. This can be easily understood as increasing the value of θ decreases the horizontal
component of the Marangoni stresses. As a result, a large variation of the surface tension
is needed to elongate the drop with a relatively large contact angle. In order to predict the
boundary separating the deformation and elongation regimes, it is necessary to analyse the
force exerted on the drop, which is performed in the next section.

3.2. Forces exerted on the drop: theoretical modelling
We investigate the mechanism that causes the deformation and elongation of the sessile
drop by examining the forces acting on it at the onset of regime transition. It is reasonable
to assume that the drop deforms symmetrically about the planes AOC and BOC (figure 5a)
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θ
15

0

0.5

1.0

M1

1.5
Elongation

Deformation

30 45 60

Figure 4. Phase diagram showing the deformation and elongation regimes in terms of M1 verses θ (in degrees).
The values of (M1, θ) exhibiting the regimes of drop deformation and elongation are designated by triangles
and squares, respectively. The theoretical prediction of the boundary separating the two regimes is demonstrated
by black solid line, and details can be found in § 3.3.

because of the symmetric initial and boundary conditions of the droplet interface,
temperature and velocity fields. Thus, we analyse the force balance by considering only
a quarter of the drop. The forces acting on the drop in the x direction are the surface
tension force in the y–z symmetric plane (Fs1), the pressure contribution (Fp) on SBOC in
the y–z symmetric plane and on the curved surface SABC and the capillary (at the contact
line, Fs2) and viscous (Fμ) forces exerted by the substrate, wherein A, B, C and O denote
the points on the quarter drop (figure 5a). Here, the inertial force can be neglected as the
flow inside the drop induced by the Marangoni stresses (Re = 1) is close to the Stokes flow
regime.

Clearly, the geometry information of the drop is essential for evaluating these forces. In
the following analysis, only relatively small contact angles are considered, and thus the
drop shape is represented by a function h(x, y). We make two assumptions regarding the
shape of the deformed drop:

(i) The arcs ÂC and B̂C are circular due to the relatively small surface tension variation
across the interface. Thus, the arcs ÂC and B̂C can be expressed in terms of their
radius of curvature, denoted by rx and ry, respectively:

h(x, 0) =
√

r2
x − x2−rx+H (3.1)

and

h(0, y) =
√

r2
y − y2−ry+H, (3.2)

where H is the height of the drop (figure 5c).
(ii) The intersection of the interface and the x–y plane is always an ellipse.

Mathematically, the ellipse at z = h can be expressed as(
x

x0(h)

)2

+
(

y
y0(h)

)2

= 1, (3.3)
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Motion of sessile self-rewetting drop

Fs1

Fs2

Fp

Fμ

z

x
y

rx

O

A

C

B

dy

L

HA
O

θ1

dx

dy p tan θ1dxdy

τzx dxdy

C

(γ + γTTxdx) cos θ1dy

γ cos θ1dy

θ

θ

α

x

r

s

dr

ds τCL

ϕ

(b)(a)

(c) (d )

Figure 5. (a) Different forces acting on a quarter of the drop in the positive quadrant. The drop encounters the
surface tension force (Fs1) from the y–z symmetric plane, the force due to the contact line (Fs2), the capillary
pressure (Fp) at the y–z symmetric plane and the viscous force (Fμ) from the substrate. We choose the slice
between the dashed line and plane AOC as the control volume to analyse the viscous stress at the centreline OA.
(b) The micro control volume for the analysis of viscous stress near the contact line. The thick line represents
the contact line. (c) A geometric sketch of a slice of the drop at the symmetric plane AOC of length L and
height H. Here, rx denotes the radius of curvature of the arc ÂC. (d) The micro control volume at the interface
for the analysis of stress boundary conditions.

where the major diameter x0 = √
r2

x − (h + H − rx)2 and the minor diameter y0 =√
r2

y − (h + H − ry)2 can be derived from (3.1) and (3.2), respectively.

With these assumptions and taking y0|h=0 = ry sin θ into account, it is straightforward
to obtain

rx = L2 + H2

2H
and ry = H

1 − cos θ
, (3.4a,b)

where L = x0|h=0 is the half-wetted length of the drop. Accordingly, the volume of the
drop at any instant can be calculated as

V =
∫ H

0
(πx0y0) dz. (3.5)

Therefore, the geometry of the drop can be described by H, L and θ . For a drop with
volume V0 and θ , it would enter the regime of drop deformation if a force balance could
be reached. In such cases, the geometric parameters H and L can be uniquely determined,
along with the volume constraint (3.5).

In order to justify our assumptions of the drop geometry in the deformation regime, the
drop shapes and the curvature at the top of the drop in the x–z and y–z planes obtained
theoretically and from our numerical simulations are compared in figure 6 for different
values of θ and M1. It can be seen that good agreements have been achieved.

Thus, with the geometrical information of the drop, the forces acting on it can
be estimated. The pressure contribution Fp can be expressed as

∫
SBOC

( p − p∞) dS by
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(b)(a)

15

0

0.2

0.4

0.6 Theoretical
Numerical

0

0.8

0.6

0.4

0.2

1.0

30 45 60
θ

κ

15 30 45 60
θ

Figure 6. Comparison of the numerically and theoretically obtained curvature at the top point of the interface
and drop shapes in the (a) x–z and (b) y–z planes. Four sets of parameters are considered: θ = 15◦ and M1 =
0.1; θ = 30◦ and M1 = 0.3; θ = 45◦ and M1 = 0.8; and θ = 60◦ and M1 = 1.2. Numerically and theoretically
obtained drop shapes are represented by solid and dashed lines, respectively.

projecting the curved surface onto the y–z plane, where the pressure outside the drop p∞
is assumed to be uniform, i.e. the ambient pressure, and the drop pressure p on the BOC
plane is assumed to be constant due to the weak flow in the symmetric plane BOC. As a
result, we can obtain the approximation of p − p∞ = γ |x=0 (1/rx + 1/ry). Here Fs1 and
Fs2 can be expressed as Fs1 = ∫

B̂C γ dl and Fs2 = ∫
ÂB γ cos θ sin α dl, respectively, where

α is the angle at which the tangent at the contact line intersects with the x axis as shown
in figure 5(b). Furthermore, the heat transfer inside the drop is mainly dominated by the
thermal conduction, because of small Ma (= 0.7) and small aspect ratio (H/L) of the
drop. It is reasonably expected that the temperature distribution in the drop is uniform in
the vertical direction, i.e. T(x, y, z) = T(x, y, 0), and thus the surface tension coefficient γ

can be calculated by substituting the corresponding substrate temperature into (2.11). For
a given value of γ and drop geometry, Fp, Fs1 and Fs2 can be obtained analytically as

Fs1 = ryθ

(
1 − M1

2

)
, (3.6)

Fs2 =
(

1 − M1

2
+ M1L2

27

)
ry sin θ cos θ, (3.7)

Fp =
(

1 − M1

2

)(
1
rx

+ 1
ry

)(r2
yθ

2
− ry(ry − H) sin θ

2

)
. (3.8)

The calculation of the viscous force Fμ is more complicated than that of the other forces,
owing to the complex velocity field inside the drop. If the viscous stress at the centreline
τOA (figure 5a) and contact line τCL (figure 5b) can be estimated, the variation of the
viscous stress at the wetted area can be approximated accordingly. Therefore, we establish
a local cylindrical coordinate system (s, r, ϕ) at the contact line to analyse the local viscous
stress, with s and r denoting the directions parallel to and normal to the contact line,
respectively, and ϕ the angle between the r axis and the substrate (figure 5b). As the term
∂/∂s vanishes for r → 0 and the flows in the vicinity of the contact line are essentially in
the Stokes flow regime, the three-dimensional momentum equation (2.8) can be simplified
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Motion of sessile self-rewetting drop

into two-dimensional equations:

1
r

∂

∂r

(
r
∂us

∂r

)
+ 1

r2
∂2us

∂ϕ2 = 0, (3.9)

∂p
∂r

+ 1
r

∂

∂r

(
r
∂ur

∂r

)
+ 1

r2
∂2ur

∂ϕ2 − ur

r2 − 2
r2

∂uϕ

∂ϕ
= 0, (3.10)

1
r

∂p
∂ϕ

+ 1
r

∂

∂r

(
r
∂uϕ

∂r

)
+ 1

r2
∂2uϕ

∂ϕ2 − uϕ

r2 + 2
r2

∂ur

∂ϕ
= 0, (3.11)

where us, ur and uϕ are the velocity components in the s, r and ϕ directions, respectively.
Accordingly, the viscous stress of the substrate near the contact line can be expressed as

τrϕ|ϕ=0 = 1
r

(
∂us

∂ϕ
es + ∂ur

∂ϕ
er

)
, (3.12)

where es and er are the unit vectors in the s and r directions, respectively.
We assume that the solution of the velocity component in the s direction takes the

form us = f (ϕ)rn, where f (ϕ) is an undetermined function. Its boundary conditions at
the interface and substrate yield

us|ϕ=0 = 0 and
1
r

∂us

∂ϕ

∣∣∣∣
ϕ=θ

= γTTx

Ca cos α
, (3.13a,b)

where γT = ∂γ /∂T . Substituting us = f (ϕ)rn in (3.9), we get

n2f (ϕ) + f ′′(ϕ) = 0, (3.14)

and the boundary conditions (3.13a,b) can be rewritten as

f (0) = 0 and f ′(θ) = γTTx

Ca cos αrn−1 . (3.15a,b)

It is easy to deduce that n = 1 in (3.15a,b) as f (ϕ) is not a function of r. Now, integrating
(3.14), we get

us = rγTTx sin ϕ

Ca cos θ cos α
. (3.16)

To solve the velocity components ur and uϕ , we use the stream function Ψ and vorticity ω

to represent the Navier–Stokes and continuity equations (also, note that ∂us/∂s = 0) (Huh
& Scriven 1971) as

ur = 1
r

∂Ψ

∂ϕ
and uϕ = ∂Ψ

∂r
. (3.17a,b)

Taking the curl of (3.10) and (3.11) and given that ω = ∇rϕ × u = ∇2
rϕΨ , a

two-dimensional biharmonic equation of Ψ can be obtained as

∇4
rϕΨ = 0. (3.18)

The boundary conditions for Ψ are the following.

(i) No penetration at the interface:

uϕ|ϕ=θ = ∂Ψ

∂r

∣∣∣∣
ϕ=θ

= 0. (3.19)
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(ii) No-slip condition at the substrate:

ur|ϕ=0 = 1
r

∂Ψ

∂ϕ

∣∣∣∣
ϕ=0

= 0 and uϕ|ϕ=0 = ∂Ψ

∂r

∣∣∣∣
ϕ=0

= 0. (3.20a,b)

(iii) The balance of shear stress arising from the Marangoni effect at the interface:

τrϕ|ϕ=θ = 1
r2

∂2Ψ

∂ϕ2

∣∣∣∣
ϕ=θ

= Δτr, (3.21)

where Δτr = γTTr/Ca.

It can be assumed that the solution of Ψ has a form of Ψ = g(ϕ)r2, which ensures
consistency with the boundary condition (iii). Substituting Ψ = g(ϕ)r2 into (3.18), we get

g(4)(ϕ) + 4g′′(ϕ) = 0. (3.22)

The general solution of g(ϕ) can be expressed as g(ϕ) = a + bϕ + c sin(2ϕ) + d cos(2ϕ),
where a, b, c and d are unknowns which are determined by solving the following set of
equations: ⎡⎢⎣1 0 0 1

1 t sin(2θ) cos(2θ)

0 1 2 0
0 0 −4 sin(2θ) −4 cos(2θ)

⎤⎥⎦
⎡⎢⎣a

b
c
d

⎤⎥⎦ =

⎡⎢⎣ 0
0
0

Δτr

⎤⎥⎦ . (3.23)

Thus, we can obtain the solution of ur near the contact line as

1
r

∂ur

∂ϕ

∣∣∣∣
ϕ=0

= g′′(0) = − Δτr(sin(2θ) − 2θ)

(sin(2θ) − 2θ cos(2θ))
. (3.24)

Substituting (3.16) and (3.24) into (3.12), we get the expression of viscous stress near the
contact line. Accordingly, the viscous stress exerted by the substrate on the drop at the
contact line in the x direction is given by

τzx|CL = −γTTx cos2 α

cos θ
+ γTTx sin2 α

(2θ − sin(2θ))

(sin(2θ) − 2θ cos(2θ))
. (3.25)

The theoretical prediction of the viscous stress τzx at the contact line obtained from
(3.25) is compared with that obtained from the numerical simulation in figure 7(a) for
θ = 30◦ and M1 = 0.4. It can be seen that theoretical prediction and numerical simulation
are similar, with respect to the trends in the variation of τzx|CL versus x.

Next, we analyse the viscous stress exerted by the substrate close to the line OA by
choosing a thin slice containing the symmetry plane AOC as the control volume (figure 5c).
The lubrication approximation (Karapetsas et al. 2014) is adopted to model the flows inside
the control volume, thereby reducing the momentum equation in the x direction to

Ca
∂2u
∂z2 = ∂p

∂x
. (3.26)

The interfacial stress balance condition can be written as τzx|z=h = −γTTx cos θ1 − ( p −
p∞) tan θ1, where θ1 is the local angle between the interface and the x axis. As the contact
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Figure 7. Comparison of the viscous stress τzx obtained from theoretical prediction and numerical simulation.
(a) At the contact line for (θ, M1) = (30◦, 0.4) and (b) at the centreline OA for different values of the contact
angle θ and M1, specifically θ = 45◦ and M1 =0.8, θ = 30◦ and M1 = 0.4, θ = 15◦ and M1 = 0.1.

angle is small, we can assume θ1 � 1, and thus the interfacial stress balance condition can
be simplified as

τzx|z=h = −γTTx. (3.27)

Also, we can assume that the temperature inside the drop T(x, y, z) is independent of z
and equal to the temperature of the substrate for small values of the contact angle, i.e.
T(x, y, z) = Ts(x, y, 0). Taking account of the symmetry condition at the centreline OA,
we get τzx|z=h = −Ca(∂u/∂z)(x, 0, h) by definition. Substituting this into (3.27), we obtain
the boundary condition for the velocity component u at the interface:

∂u
∂z

(x, 0, h) = 1
Ca

γTTx. (3.28)

The no-slip condition is imposed at the substrate (z = 0) such that

u(x, 0, 0) = 0. (3.29)

Integrating (3.26) and using the two boundary conditions discussed above, we can obtain
the solution of u under the lubrication approximation in the symmetry plane AOC as

u(x, 0, z) = 1
Ca

[
h2

2
∂p
∂x

(
z2

h2 − 2z
h

)
+ γTTxz

]
. (3.30)

On the other hand, the drop in the deformation regime is supposed to experience a
pseudo-steady state. In other words, there is no net flux across any vertical plane, i.e.∫ h

0 u dz = 0. Substituting (3.30) into this constraint, we obtain

∂p
∂x

= 3γTTx

2h
. (3.31)

Therefore, the shear stress τzx at the centreline OA, denoted by τOA, can be obtained as

τOA = −Ca
∂u
∂z

= γTTx

2
. (3.32)

The theoretical predictions of the shear stress at the centreline OA and the corresponding
numerical results obtained for different values of M1 and θ are presented in figure 7(b).
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Figure 8. (a) Typical variations of the viscous stress profiles for n = 1, 2, 4, 8 and 16. (b) Comparison of the
distribution of the viscous stress τzx between theory (lines) and numerical result (symbols) at x = −0.2 (red
dashed line with square symbols), −0.5 (black solid line with circle symbols) and −0.8 (blue dash-dotted line
with triangle symbols) for θ = 30◦ and M1 = 0.4. The top-right inset shows the contour of the viscous stress
τzx at the half-wetted area of the substrate, wherein the vertical lines represent the three typical positions chosen
to demonstrate the τzx profiles.

It can be seen that theoretical predictions generally agree well with the numerical
results for θ ≤ 45◦, especially in the region away from the contact line. The theoretical
predictions for larger contact angles are not reliable, because in principle the lubrication
approximation is only valid for small contact angles.

Given the theoretical prediction of τzx at the contact line and the symmetry boundary
OA, we approximate the distribution of shear stress in the y direction in the wetted area by
the following interpolation:

τzx = τOA + (τCL − τOA)
yn

W(x)n , (3.33)

where W(x) = (H sin θ/(1 − cos θ))
√

1 − x2/L2 is a half of the wetted width and n is a
fitting parameter. Figure 8(a) shows the variation of τzx for different values of n. Clearly,
n = 1 corresponds to a linear interpolation in the y direction, while n → ∞ is equivalent
to setting τzx = τOA as adopted by Pratap et al. (2008). Figure 8(b) shows a comparison of
τzx obtained using (3.33) with n = 4 and the numerical result for θ ≤ 30◦ and M1 = 0.4 at
x = −0.2, −0.5 and −0.8. Thus, it can be concluded that (3.33) can predict the distribution
of τzx along the y direction on the substrate quite satisfactorily. Therefore, we use (3.33)
with n = 4 to approximate the shear stress exerted at the wetted area in the following
sections.

3.3. Critical conditions for regime transition
For a given drop volume V0, the drop geometry can be described by L and θ . Such a shape
would represent the drop at equilibrium if the force balance could be reached, i.e. the net
force acting on the drop, Fe = Fs1 + Fs2 + Fp + Fμ = 0. Otherwise, the drop would be
elongated when Fe > 0 or become shorter when Fe < 0. Fortunately, all the forces can be
theoretically predicted as discussed in § 3.2 for a known drop geometry. Accordingly, we
can determine whether the drop reaches the equilibrium state (i.e. falling into the regime
of drop deformation) by analysing the variation of the net force with drop deformation.
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Figure 9. The variations of the theoretically obtained dimensionless net external force Fe as a function of L at
θ = 30◦ for different values of M1. The grey dashed line indicates Fe = 0, i.e. all the forces are balanced. Here
Fe < 0 and Fe > 0 denote the drop retracting and spreading regions, respectively.

Figure 9 shows the theoretical prediction of Fe as a function of L at θ = 30◦ for different
values of M1. It can be seen that with an increase of L, Fe decreases first and then increases
for all values of M1. For a relatively small value of M1, e.g. M1 = 0.4, the drop tends to
spread initially with Fe > 0. Then, it is supposed to reach an equilibrium state in the
regime of drop deformation, at which Fe becomes zero and the corresponding drop length
Leq ≈ 1.15. Note that this state is very stable, because the drop will go back to this point
even if L happens to be larger than Leq. We also find that the theoretical prediction of
Leq is rather close to the numerical results under the same conditions (Leq = 1.17), which
justifies the theoretical analysis. On the other hand, for a relatively large value of M1, e.g.
M1 = 0.6, Fe is found to be always greater than zero, implying that the drop would not
stop spreading until it breaks up. Therefore, it is reasonable to expect that the drop would
fall into the elongation regime, and it does in the numerical simulations. Under certain
conditions (M1 = 0.51 and θ = 30◦ here), the equilibrium state corresponds to the lowest
point of the Fe–L curve. In this case, it represents the critical condition of regime transition
between drop deformation and drop elongation.

Thus, the critical condition of regime transition can be determined by

min(Fe(L, θ, M1)|L∈(0,∞)) = 0. (3.34)

We can predict the boundary separating the deformation and elongation regimes based on
(3.34), and the obtained result is superimposed onto the numerical data in figure 4. It is
clear that the theoretical prediction agrees well with the numerical results.

3.4. Drop migration and spreading
So far we have discussed the conditions associated with the deformation and elongation
regimes for xmi = 0, i.e. when the initial location of the centre of the drop coincides
with the location associated with the minimum surface tension (x = 0). In this section,
we investigate the dynamics when the drop is initially placed slightly away from x = 0.
When xmi /= 0, the drop experiences an asymmetric surface tension distribution along the
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Figure 10. Temporal evolutions of (a,b) the drop and (c,d) the wetted area when the initial location is xmi = 0.1
and the value of the contact angle is θ = 30◦: (a,c) M1 = 0.3 and (b,d) M1 = 0.6. In (c,d), the shapes of the
wetted area of the drop are shown at time intervals of 0.2 starting from t = 0.1.

x direction. Figures 10(a,c) and 10(b,d) depict the drop dynamics for initial placement at
xmi = 0.1 with θ = 30◦ for M1 = 0.3 and 0.6, respectively. Figure 10(a,c) corresponds
to the deformation regime for M1 = 0.3. It can be seen that the shape of the drop almost
remains a spherical cap, but it migrates significantly in the x direction. In contrast, the drop
dynamics depicted in figure 10(b,d) for M1 = 0.6 is markedly different. In this case, the
drop exhibits an elongation behaviour. It can be seen in figure 10(b,d) that the drop deforms
significantly and spreads much faster than that observed for M1 = 0.3 (figure 10a,c). The
drop for M1 = 0.6 also migrates in the positive x direction due to the asymmetric surface
tension distribution (resulting in unbalanced Marangoni stresses) because of the initial
location of the drop (xmi /= 0). This elongation behaviour of the drop (in figure 10b,d) is
different from that observed in figure 3(b) for xmi = 0.

Figure 11(a) depicts the variations of the x coordinate of the centre of mass of the drop
xm with t for different values of M1. Here, a logarithmic coordinate of t is adopted to
facilitate easy comparison between the results for different values of M1. It can be seen
that the larger the value of M1, the faster the drop spreads, due to the increase of the
surface tension gradient in the x direction at x = xm, i.e. ∂γ /∂x|x=xm . If the height of
the drop is small, the temperature can be assumed to be constant in the z direction, and
thus ∂γ /∂x|x=xm is proportional to M1xm. The variations of M1xm with the velocity of
the centre of mass of the drop Um (= ∂xm/∂t) for different values of M1 are shown in
figure 11(b). It can be seen that all the curves collapse to a single line with a slope equal
to one, i.e. Um ∝ M1xm at the early stage of drop migration. However, at the later stage,
this scaling does not hold good due to the deformation of the drop. A similar conclusion
was previously proposed for two-dimensional (Ford & Nadim 1994; Gomba & Homsy
2010) and three-dimensional (Pratap et al. 2008) sessile drops of a normal fluid (i.e.
when surface tension decreases linearly with temperature). Integrating ∂xm/∂t ∝ M1xm
and applying the initial condition xm|t=0 = xmi, we get xm = xmi exp(A × M1t), wherein
A is the fitting constant, whose value lies in the range [5.20, 5.65]. It is interesting to
note that this relation also works well even for the case when the drop is placed at the
location of the minimum surface tension. For the result presented by the thick grey line
in figure 11(b), xmi = 3.06 × 10−7 and A = 5.40, which are obtained by fitting the xm–t
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Figure 11. Variations of the numerically obtained (a) centre of mass of the drop xm with t and (b) M1xm with
the velocity of the centre of mass of the drop (Um) for different values of M1 for θ = 30◦. Here, xmi = 0.1 for
all cases except the results presented by the thick grey dashed line in (b) for which xmi = 0 and M1 = 0.4.

curve with the exponential function. The negligible deviation of xmi from zero (which is
set in our numerical simulation) is due to the discretization errors. Nevertheless, as the
value of the fitting parameter A is close to those for the other cases with xmi /= 0, it can be
concluded that the theory discussed is quite general for predicting the behaviour of drop
migration.

Next, we investigate the spreading behaviour of the drop. Figures 12(a) and 12(b) show
the variations of the wetted length of the drop Lw versus t for different values of θ and
M1 exhibiting deformation and elongation dynamics, respectively. Let us take the case of
θ = 30◦ and M1 = 0.3 (solid red line in figure 12a) as an example to explain the behaviour
of the drop with xmi = 0.1 in the deformation regime. It can be seen that the drop exhibits
three distinct spreading behaviours during the early, intermediate and late stages. At the
early stage (t < 0.5 approximately), the drop undergoes spreading due to the self-rewetting
nature of the drop liquid. At the intermediate stage (0.5 < t < 1.0 approximately), the
wetted length of the drop becomes almost constant (i.e. the drop stops spreading) while
it migrates aside. At the late stage (t > 1.0 approximately), the drop again spreads and
migrates towards one side as the surface tension increases as it moves away from x = 0.
Close inspection of figure 12(a) also reveals that the duration of the intermediate stable
stage of the drop increases as the value of M1 decreases. It can be seen that for M1 = 0.2
and θ = 30◦, the drop almost remains stable (no deformation) for the entire duration. On
the other hand, in figure 12(b), the drop continues to elongate all the time. It can be seen
that, for a fixed value of θ , increasing the surface tension gradient (increasing the value
of M1) increases the deformation of the drop. To summarize, in figure 12, we demonstrate
the deformation and elongation behaviours of the drop for the same initial condition for
different values of θ and M1 and found that the intermediate region disappears when θ and
M1 are close to the critical condition.

Finally, we present the variation of the wetted length Lw of the drop (i.e. spreading
behaviour) with the motion of the x coordinate of its centre of mass xm (migration
behaviour) for different values of xmi. For this purpose, we choose M1 = 0.3 and 0.6 in
figures 13(a) and 13(b), respectively. Interestingly in the deformation regime (M1 = 0.3),
it can be observed that the Lw versus xm curves for different values of xmi collapse to a
linear line after the initial spreading stage. On the other hand, in the elongation regime
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Figure 12. Variations of the wetted length of the drop Lw versus t for different values of θ and M1 in the
(a) deformation and (b) elongation regimes. Here, xmi = 0.1.
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Figure 13. Variations of the wetted length Lw with the x coordinate of the centre of mass of the drop xm
started from different initial locations on the substrate: (a) M1 = 0.3 and xmi = 0.1, 0.2, 0.4, 0.6, 1.0 and 1.5;
(b) M1 = 0.6 and xmi = 0.1, 0.2, 0.4, 0.6. The values of M1t are at the points shown by the black dots. Here,
θ = 30◦.

(M1 = 0.6), the spreading rate of the drop at a given location increases as the value of xmi
decreases (i.e. when the drop starts from a location closer to the location of the minimum
surface tension).
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4. Conclusions

The dynamics of sessile drops of self-rewetting liquids whose surface tension exhibits
a parabolic dependency with temperature has been investigated via three-dimensional
numerical simulations. The substrate is maintained at an isothermal condition with its
temperature increasing linearly in the horizontal direction. First, we investigate the drop
dynamics when it is placed at the location of the minimum surface tension. In this case,
two distinct regimes, where the drop undergoes deformation and elongation behaviours,
are observed. In the deformation regime, the drop experiences a short initial spreading
stage, and then enters a pseudo-steady stage. On the other hand, in the elongation regime,
the drop spreads about its initial location due to the increase in the surface tension of the
self-rewetting liquid in both positive and negative x directions. The gradient of surface
tension (characterized by M1) and the contact angle of the drop (θ) are found to influence
these regimes for a fixed set of other parameters. It is observed that the deformation and
the elongation regimes are associated with low and high values of M1 for a fixed value of
θ . A phase diagram showing the deformation and the elongation regimes is also plotted in
the M1–θ plane.

To understand the underlying mechanism of these distinct drop dynamics, we analyse
different forces acting on a quarter of the drop, namely the viscous force (Fμ), the surface
tension force acting at the symmetric plane (Fs1), the force due to the contact line (Fs2) and
the capillary pressure force (Fp). Forces Fs1, Fs2 and Fp are obtained using the geometric
assumptions which have been validated by our numerical simulations. We derive the
theoretical expression of the viscous stresses at the centreline and near the contact line.
The theoretically obtained viscous stress exerted by the substrate on the drop is in good
agreement with numerical simulation, when a fitted parameter (n = 4) is used. Using
these viscous stresses, the viscous force (Fμ) acting on the drop is calculated. The critical
condition demarcating the deformation and elongation regimes is obtained by balancing
the theoretically obtained forces acting on the drop.

In the theoretical calculations, the initial location of the drop coincides with the location
of the minimum surface tension of the self-rewetting liquid. Thus, to draw a more general
conclusion, we numerically investigate the drop dynamics with its initial location slightly
away from the point of the minimum surface tension. The migration and spreading
dynamics are studied separately. It is observed that the x coordinate of the centre of mass of
the drop evolves initially as xm = xmi exp(A × M1t), where A is a fitting parameter related
to the contact angle θ . At the later stage, the spreading of the drop makes the dynamics
more complex and does not obey the initial trend. We also demonstrate the spreading
behaviour of the drop with xmi /= 0 for the parameters associated with the deformation and
elongation regions. It is observed that in the deformation regime, the drop spreads slightly
and then experiences a pseudo-steady state, which increases with decreasing value of M1
and finally spreads again. For a set of parameters associated with the elongation regime,
the drop continues to spread all the time. Finally, we also investigate the dependency of the
wetted length of the drop on the location of its centre of mass and observe that while the
curves for different values of xmi collapse to a single linear curve after the initial spreading
stage in the deformation regime, the spreading rate of the drop increases as the value of
xmi decreases in the elongation regime.

It is to be noted that numerical slip is introduced to remove the stress singularity at
moving contact lines. The numerical slip in the diffuse interface model can be measured
by the slip length (Ding & Spelt 2007), and could affect the spreading dynamics of a drop
in the elongation regime. Thus, it can be expected that the larger the slip length, the faster
the spreading of the drop, and the more significant the Marangoni stresses exerted on the
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drop. The effect of the slip length on the dynamic behaviour of elongated drops is beyond
the scope of the present study but will be a focus of our future research.
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