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We revisit the classic problem of the stability of drops and jets held by surface tension,
while regarding the compressibility of bulk fluids and spatial dimensions as free
parameters. By mode analysis, it is shown that there exists a critical compressibility
above which the drops (and discs) become unstable for a spherical perturbation.
For a given value of compressibility (and of the surface tension and the density at
equilibrium), this instability criterion provides a minimal radius below which the drop
cannot be in stable equilibrium. According to the existence of the above unstable mode
of the drop, which corresponds to a homogeneous perturbation of a cylindrical jet, the
dispersion relation of Rayleigh—Plateau instability for cylinders drastically changes. In
particular, we identify another critical compressibility above which the homogeneous
unstable mode is predominant. The analysis is carried out for non-relativistic and
relativistic perfect fluids, the self-gravity of which is ignored.
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1. Introduction

The free oscillations of liquid droplets were studied by Kelvin (1890) and Rayleigh
(1894) more than a hundred years ago. Later, Lamb (1932), Chandrasekhar (1959),
Reid (1960) and others generalized the analysis to take into account the effects of
an outer fluid, viscosity and so on — see e.g. the introduction of Becker, Hiller &
Kowalewski (1991) for a brief but nice review and a more complete list of references.
In the simplest case of an inviscid droplet in vacuum (or approximately in air),
the droplet with unperturbed radius r and constant density p oscillates with angular
frequency given by

92=%(z— e +2), (1.1)

where £ =0,1,2,... denotes the mode number and o is the surface tension
responsible for the oscillation.

Another important phenomenon associated with surface tension is the drop
formation resulting from an instability of cylindrical jets. Theoretical studies date
back to the early investigations by Plateau (1873) and Rayleigh (1879), and later by
Chandrasekhar (1961) — see Eggers (1997) for a comprehensive review. For example,
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for an inviscid cylinder with non-perturbed radius r, the sinusoidal perturbation with
wavenumber k evolves in time, with the growth rate given by

5 o kr(l — (kr)z)Il(kr)
w=— ,
or’ Io(kr)

where I is the modified Bessel function of the first kind. This dispersion relation tells
us that any cylinder that is longer than 2mr is unstable, and the most unstable mode,
which roughly determines the size of droplets forming, appears at wavelength A ~ 9r.

The above two phenomena, the oscillations of droplets and the instability of
cylinders, are not only of fundamental importance in theoretical fluid mechanics but
also important from industrial points of view. Therefore, they have been studied
theoretically and experimentally in a considerable variety of physical situations.
However, the effect of the non-zero compressibility or finite sound velocity of fluids
has not been well studied, to the present author’s knowledge. The reason is that the
compressibility of liquids in many non-extreme situations is expected to be negligible
and to give rise to no perceivable effects.

Notwithstanding the above general expectation, in this paper we reinvestigate the
two classic problems, while allowing the bulk fluids to have non-zero compressibility
or finite sound velocity. Our analysis reproduces the results (1.1) and (1.2) in the
incompressible limit. The results are a little surprising and intriguing, at least, at
the theoretical level. The stability structure of droplets and cylinders with finite
compressibility is rather richer than expected. It will be shown that there exists a
critical compressibility above which the droplet (or a disc in the two-dimensional case)
becomes unstable for a spherically symmetric perturbation. According to the existence
of such an instability for a disc, a cylinder (whose cross-section is a disc) becomes
unstable above the critical compressibility. These instability criteria can be interpreted
as follows. For given parameters of the fluid and surface, namely the sound velocity
¢z =dp/dp, surface tension and density at equilibrium, there exists a minimum radius
of droplet and cylinder below which they cannot be in stable equilibrium. Such a
minimum radius is identified to be

(1.2)

n o

= 1.3
n+1pc? (1.3)

Vinin =
where n =1 for cylinders and n =2 for droplets. When the fluid is relativistic (e.g.
when the pressure is comparable to the energy density €),

n o

me62(1 — (n+ ed), (1.4)

Vinin =

where ¢? = dp/de in this case.

Fortunately (or to the author’s regret), in many non-extreme systems, such as water
in air at room temperature, r,,, is extremely small (7,,;, ~ 10~'! m), and instability will
not play a crucial role in the dynamics. (The author confesses that he cannot say for
certain whether or not there are systems where r,,;, is macroscopic. See appendix A
for a discussion on the values of r,;.) From the theoretical or mathematical point
of view, however, the existence of a minimal radius is significant in proving that
the Euler equation supplemented by the Young—Laplace stress balance relation at the
surface, which governs the perfect fluid systems considered in this paper, is not well
defined for arbitrary values of (o, ¢, p), while these parameters are usually supposed
to take any positive finite values.
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Here, let us give some notes on the analyses and results in this paper. The first is
this. If one is familiar with the theories of stellar structure, the result (the instability of
droplets) may not be totally surprising. That is, a self-gravitating fluid ball is unstable
if the heat capacity ratio (or adiabatic index), denoted by y conventionally, exceeds
4/3 in Newtonian gravitational theory (see e.g. Shapiro & Teukolsky 1983). This
critical value is changed to a higher value in general relativity (see e.g. Shapiro &
Teukolsky 1983). Furthermore, if y is slightly larger than 4/3, then the spherical fluid
ball is unstable to radial perturbation provided that the radius is less than a critical
radius, which is much larger than the Schwarzschild radius (Chandrasekhar 1964). The
author thanks an anonymous referee for pointing out these points.

The second note is the following. We will consider axially symmetric fluids in
arbitrary dimensions, by leaving n as a free parameter. The reasons for doing so are
twofold. By leaving the spatial dimension as a free parameter, one can treat discs,
drops and cylinders at the same time. The other reason is related to the so-called
Sfluid—gravity correspondence (Bhattacharyya et al. 2008) — see also Rangamani (2009)
for a review and a complete list of references — which was found in the context of
string/M theories and relates the fluid mechanics in d dimensions to a gravitational
theory in (d + 1) dimensions. In this context, the spatial dimension often has to
be treated as a free parameter, and some phenomena such as the Rayleigh—Plateau
instability and its subsequent dynamics have been known to depend crucially on the
dimension (Caldarelli et al. 2009; Maeda & Miyamoto 2009). However, it should
be added that, within the analysis in this paper, we could not find any qualitative
difference originating from the difference of dimension.

The organization of this paper is as follows. In § 2 we review the Euler equation and
Young—Laplace relation for non-relativistic fluids, and then we derive the dispersion
relation for the perturbations of spherical and cylindrical equilibria. In § 3, we analyse
the dispersion relation to obtain the stability criteria for droplets (§ 3.1) and cylinders
(§3.2). We generalize the analysis to the relativistic fluids in §§4 and 5. Section 6
is devoted to a summary and discussion. The stability of droplets for non-spherical
(€ # 0) perturbations is shown in appendix B.

2. Non-relativistic perfect fluid with boundary
2.1. Euler equation and Young-Laplace relation

We consider compressible inviscid fluids in d-dimensional (d > 3) flat spacetime
R%4-1, Denoting the density, pressure and velocity field by p, p and v/ (I,J =
1,2,...,d — 1), respectively, the continuity equation and Euler equations (Landau &
Lifshitz 1987) are

30 + Vi(pv') =0, (2.1)
3, (pv") + V,(pv'v' 4+ pg’) =0, 2.2)
where V; is the covariant derivative compatible with a flat metric g;; (Wald 1984).

We assume that a lump of fluid is supported by a constant surface tension o > 0.
Then, the Young-Laplace relation (Landau & Lifshitz 1987), describing the normal-
stress balance at the surface, is given by

P =GK|f:0. (23)

Here, f is a scalar function with which the surface is identified by f =0, and « is
(d — 2) times the mean curvature of the surface, given as the divergence of the unit
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FIGURE 1. An axially symmetric fluid and the cylindrical coordinates in an
(n + 3)-dimensional spacetime R'"*2. The fluid surface at z = const. is an n-sphere S".

normal vector n! (or as the trace of extrinsic curvature),

__Yr
Vv

Furthermore, we assume that the surface is convected with the fluid, which is
expressed as

k=Vil, mn (2.4)

(8 + 'V )f =0l . (2.5)

Since we are interested in axially symmetric fluids, it is convenient to work in
cylindrical coordinates. Writing the spacetime dimensions as d=n+3 (n=1,2,...),
the line element is written as

g dd! dY) = d? 4 dr? 4 17 ds? = 8, dx® dx” + r2y;(0) d6' d¢Y, (2.6)

where x“ := (z,r) and y;(0)d0'd¢/ (i,j=1,2,...,n) is the line element on the unit
n-sphere. For d =3 we just discard the z-coordinate, and the cylindrical coordinates
reduce to polar coordinates. Now, we assume that the fluid and its surface have
SO(n + 1) symmetry around the z-coordinate. Then, the coordinate dependences of
fluid quantities are given by

p=pt,z,r), v =v(zr), v=0 f(tzr) =r—R{z2), 2.7)

where R(t,z) is a function representing the local radius of the fluid surface (see
figure 1).

With the above ansatz, the continuity equation (2.1) and the Euler equation (2.2) can
be written as

n
@+ vd: + v8)p + p (Bev: + 0y, + ;v,) ~0, 2.8)
p(at +v.0, + V,0,)v, = _aap- (2.9)

The mean curvature of the surface, appearing in the Young-Laplace relation (2.3), is
given by

k= z ___ 4R (2.10)
RI1+ @R [+ @.R7"
Finally, the kinematic boundary condition (2.5) is reduced to
R+ v,0.R =v,|,_g. 2.11)
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2.2. Linear perturbation of cylinders

The above system obviously allows the static cylinder as an equilibrium solution,
where the constant pressure p, and the radius of the cylinder R = ry satisfy
n
po=0—. (2.12)
o
Now, we perturb this equilibrium solution. We can assume that the perturbation
results from a sinusoidal disturbance of the local radius given by
R(t,2) = ro[1 + e cos(kz)], (2.13)

where || < 1 is a small parameter. Such a disturbance leads to the disturbance of both
pressure and velocity, where the disturbed pressure at O(e) may take form
p(t, z,r) = poll + ee” P(r) cos(kz)]. (2.14)
In general, from the perturbations of the continuity equation (2.1) and the Euler
equation (2.2), the pressure perturbation has to satisfy the wave equation
(8} — V'V )sp =0, (2.15)

where cf :=dpo/dpg (po is the density at equilibrium and 0 < ¢; < 00) is the squared
sound velocity of the bulk fluid, and we denote the O(¢) perturbation of any quantity
X by 8X hereafter. Plugging expression (2.14) into (2.15), we obtain

d?P ndP ,  w?
P K+ — | P=0. (2.16)

With the regularity at the axis (r = 0), this equation is solved by the modified Bessel
function of the first kind

1/2
o2 (Kr) 2 w?

s

where C is an integration constant. The perturbation of the Young—Laplace relation
(2.3), 8p = 08k ,_, fixes the integration constant as

_ [n— k)1
nl—1y2(Kro)
The perturbation of the Euler equation in the r-direction (2.9) is pgd,6v, = —9,0p.
On the other hand, the velocity in the r-direction at the surface is given by
dv, = 0;6R|,_g from the kinetic boundary condition (2.11). The combination of these
two yields

(2.18)

3,8p = —pod SR ,_p. (2.19)

Plugging equations (2.13), (2.14), (2.17) and (2.18) into (2.19), and eliminating the
derivative of the modified Bessel function, we finally obtain the dispersion relation of
perturbations for the compressible cylinder:

Lt 1y2 (K.
o = 2 [n — (kro) 1K rp L2010 w02 K70),
Poly Liu—1)2(Krp)

In the incompressible limit (¢, — 00), this dispersion relation reduces to (1.2) for
n =1 and to the equation derived in Cardoso & Gualtieri (2006) for general n.

(2.20)
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To simplify the dispersion relation, we introduce here the following dimensionless

quantities:
R e 172 o 1/2
k:=rok, o:= ('000> w, B:= <> c;l > 0. 2.21)
o PoTo
Here, B, being basically the reciprocal of the sound velocity, serves as the parameter
representing the (adiabatic) compressibility of the bulk fluid. In terms of these
dimensionless quantities, the dispersion relation (2.20) is equivalent to the relation

between k and &, for which the following function vanishes:
* 2 T I n k 2 2 ~
F(@, k) =& — (n— kz)KI‘“)/Z(A), R=®+p0H)". (2.22)
(n—1)/2

3. Analysis of dispersion relation for the non-relativistic fluid

We have derived dispersion relation (2.20) for the perturbation of cylinders in R'"*2,
However, since the cross-section of a cylinder is a disc, (2.20) with k = 0 provides the
oscillation frequency (or the growth rate of a possible instability) of droplets in R!"*!
(i.e. without the z-direction). Thus, we divide this section into two parts, §§3.1 and
3.2. In the former, we investigate the dispersion relation with k = 0, which corresponds
to both a spherically symmetric perturbation of droplets and homogeneous (in the
z-direction) perturbation of cylinders. Then, in the latter, we investigate the dispersion
relation for general modes with k > 0.

3.1. Instability of drops (k =0 mode)
Setting k = 0 in (2.20), we have

I A
F@,0) =& — npao 2P
Iy 2(Bw)

It is noted that, in the incompressible limit (8 — 0), the zero of F(w,0) identically
vanishes (@ = 0). This just says that the incompressible droplets cannot oscillate nor
collapse (nor expand) while keeping the spherical symmetry.

Let us see the behaviour of F(®, 0) for small &. Expanding (3.1) around ® = 0, one
has

3.1)

F(@,0) = (1 - ,62> S+ B+ 0. (3.2)
n+1 (n+D*n+3)

From this, one can see that F(®, 0)|;_o = 0,F(®,0)|;_o = 0. On the other hand, it
is easy to see that lim,_, F(®, 0) = 400 from (3.1). Therefore, if 3;F(®, 0)|;_o <O
holds, then F(w, 0) must have at least one positive zero from continuity. From (3.2) it
is clear that 9F (@, 0)| ;_¢ < 0 holds if B is larger than a critical value,

1/2
B> Be1 = (”: 1) . (3.3)

In this case, from (3.2) the behaviour of @ near 8, is

N <4n3 (n+3)°

1/4
=~ ) B = B> OB — Be)?). (3.4
n+1
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FIGURE 2. (a) Compressibility parameter 8 versus dimensionless growth rate @ of the radial
perturbation of non-relativistic droplets in R'""*! for several n: n =1, 2, 3, 4 from bottom to
top. (b) The radial eigenfunction P(r) in the n = 2 case for several values of compressibility
parameter: 8/B.; = 1.04, 1.13, 1.30, 3.00 from bottom to top. Negative P(r) corresponds to
a decrease in pressure, resulting from an increase in the radius of the droplet.

The global B-dependence of @ obtained from (3.1) is shown in figure 2(a). One can
see that, in the large-8 limit, & increases linearly with B. This asymptotic behaviour,
that is in fact @ >~ nf, can be derived from (3.1) by using a property of the modified
Bessel function, limg_, o Lii1y/2(B®)/In—1)2(B&) = 1. The radial function P(r) in the
n =2 case for several values of B is shown in figure 2(b). One can observe the
non-uniform (in the r-direction) decrease in the pressure, resulting from the increase
in the droplet radius. The non-uniformity of the pressure perturbation is amplified as
the compressibility increases, the interpretation of which is that the compressibility
reduces the propagation speed of density fluctuations generated near the surface.

Using (2.12) and (2.21), the instability criterion (3.3) can be written in several
forms, namely cf < po/l(n+ 1)pg] or equivalently

n o
n+1pyc2

ry < Ipmin := (35)
Inequality (3.5) is striking, as it means that there exists a minimum radius r,,;, only
above which the droplet and cylinder can exist stably. The critical radius is determined
by three parameters (oo, 0, c;), which do not restrict each other, at least from a
macroscopic point of view, although they should be correlated microscopically.

The value of r,,, for water in air at 25 °C is around 2.13 x 10~!! m (estimated with
n=2 06=720x103Tm2, py=1.00 x 10> kg m™>, and ¢, = 1.50 x 10° m s7};
Weast 1978), where the fluid-mechanical description has already broken down. Thus,
the instability found plays no central role for such a fluid. It would be interesting to
look for a system in which 7,;, is larger than or comparable with the length scale
where the fluid approximation breaks down. See also appendix A.

One could consider non-spherical perturbations of the drop by allowing a 6-
dependence of R in (2.13). As in the incompressible case, however, the non-spherical
modes turn out to be oscillatory for compressible fluids too, proving that the droplets
are stable for such perturbations. See § B.1 for a proof.

3.2. Rayleigh-Plateau instability (k > 0 modes)

We proceed to the dispersion relation (2.20) for general values of k > 0. Since
the homogeneous (k = 0) mode becomes unstable (w > 0) above a critical
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FIGURE 3. Dimensionless wavenumber k versus dimensionless growth rate ® of the
instability of a non-relativistic cylinder in R!?® (n = 1) for several values of compressibility:
B =0.00, 1.41 (=pB.1), 1.45, 1.49 (=8B.,), 1.53 from bottom to top.

n 1 2 3 4 5 6 7 8 9 10

B 1414 1225 1155 1118 1.095 1080 1069 1061 1054 1.049
k.1 04388 0.6252 0.7596 0.8672 0.9580 1.037 1107 1171 1229 1282
&, 05244 0.8504 1115 1.345 1552 1742 1919 2.086 2.244 2.394
B 1489 1293 1215 1172 1.144 1124 1110 1.098 1.089 1.081
®., 0.6388 1.039 1358 1632 1875 2.097 2301 2492 2671 2.840

TABLE 1. Critical values of the compressibility parameter, 8.; and B.,, and characteristic
dimensionless wavenumber and growth rate: B.; is the compressibility above which the

cylinder is unstable for the homogeneous (k = 0) perturbation; k,; and &, respectively
are the wavenumber and growth rate of the most unstable mode when 8 = f.1; B., is the
compressibility above which the homogeneous (k = 0) mode becomes the most unstable
one; and @, , is the largest growth rate at 8 = B.,.

compressibility f.;, one can expect the behaviour of the dispersion relation for k > 0
to change at the critical compressibility.

The dispersion relation (2.20) for n =1 is shown in figure 3 for several values
of B. The qualitative behaviours are independent of n. For 0 < B < B.;, the
dispersion relation is qualitatively the same as the usual dispersion relation of the
Rayleigh—Plateau instability (for an incompressible inviscid fluid), although the growth
rate for all k € (0, \/n) increases somewhat with 8. The wavenumber and growth rate
of the most unstable mode at B = §.; obtained numerically are given in table 1. As
B exceeds f.;, the homogeneous (k= 0) mode begins to have positive growth rate,
as shown in § 3.1. Incidentally, the dispersion relation deviates from that of the usual
Rayleigh—Plateau instability. Note that, even if 8 exceeds B.; only slightly, the most
unstable mode is still in k > 0. However, there exists another critical value of 8 (we
call it B., > B.1) above which the homogeneous mode becomes the most unstable one.
The values of f., and the growth rate of the most unstable mode therein, which we
denote by @, ,, are also given in table 1. They can be obtained by solving numerically
the following coupled algebraic equations for 8 and &:

F@,0)liy=0, F(®.k)|i_=0. (3.6)
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We note that 8., is of course larger than f.;, but only slightly. Thus, we can say
that, for generic values of B larger than f.;, the homogeneous unstable mode is
predominant.

4. Relativistic perfect fluid with boundary

The argument in the preceding sections can be generalized to relativistic fluids. We
consider relativistic fluids in the d-dimensional flat spacetime R'~! (d > 3) with the
spacetime coordinates x* = (ct, x') (u,v=0,1,2,...,d—1;1,J=1,2,...,d—1), and
denoting the flat metric by g,, (with the so-called almost-plus notation (—, +, ..., +)).
The speed of light is set to unity (c = 1). Symbols appearing hereafter have the same
meanings as in the non-relativistic case, unless otherwise noted.

4.1. Euler equation and Young-Laplace relation

The energy—momentum tensor of a relativistic perfect fluid held by surface tension
(see e.g. Misner, Thorne & Wheeler 1974; Lahiri & Minwalla 2008) is given by

T = (eu'u’ + pP"™)O(—f) — o | VIS (f). @.1)

Here, € is the energy density, u* is the normalized d-velocity field (u*u, = —1),
® 1is the Heaviside step function, § is the delta function, P*’ := g*’ 4 u"u’ and
h = gt — n*n” are the projection tensors, n* is the unit normal of the surface
defined by n, = V,f/ (VYFV,)'?, and u* and n* are orthogonal each other at the
surface u"n, =0l ,_.

Projecting the energy—momentum conservation V, 7%’ =0 onto #* and P"*", we
obtain the relativistic continuity and Euler equations as

u*Vye + (e + p)Vou® =0, 4.2)
(e + p)u*V,u" = —P**V p. 4.3)
The Young-Laplace relation, obtained by projecting the surface contribution of the
energy—momentum conservation onto n*, takes the same form as in the non-relativistic

case (2.3), but the mean curvature in this case is given by the d-dimensional
divergence,

k =V, n". 4.4
The kinematic boundary condition is given by
Mavmf == Olf:()' (45)

As in the non-relativistic case, we introduce cylindrical coordinates, in which the
line element of flat spacetime is given by

g ' dx” = —dF* +d2? + dr* + P ds? = 1, dx* dx” + Py (0) o' deY,  (4.6)

where x* = (t,z,r) and n,, = diag(—1, 1, 1) is the three-dimensional flat Lorentzian
metric. For d =3 we just discard the z-coordinate as in the non-relativistic argument.
Assuming that the fluid and surface are axially symmetric around the z-axis, the
coordinate dependences of the pressure, velocity field and surface are

p=ptzr), u'=u'ltzr), u=0, f=r—R({2). 4.7)
The continuity equation (4.2) and Euler equation (4.3) can be written as
wdue + (e +p) (B + ~u) =0, 4.8)
r
(€ + p)u dyity = —Pi0,p, (4.9)
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where the indices (a,b,...) are raised and lowered by n* and 7., respectively.
In order to derive the above equations, it is useful to use the Riemann geometry
techniques. For example, in the present coordinates, the non-vanishing components of
the Christoffel symbol are I}/ = —rély;, I}, =r"'88; and I;=""T}, where I}
is the Christoffel symbol with respect to y;. Using these, the vector derivatives are
calculated, that is, V u, = d,uy, Viu; = ru’y; and Vou® = d,u® + nr-'u’.

The mean curvature (4.4), appearing in the Young—Laplace relation (2.3), is given by

n

T RU— R+ OR

[ = @R)’12R — [1 + (3R)’197R + 2(3:R) (3:3:R)3.R

172

(4.10)
[1 - 3R+ @R
Finally, the kinetic boundary condition (4.5) reads
WoR+ ur.R=u'|, _pg. 4.11)

4.2. Linear perturbation of cylinders

In general, perturbing the relativistic continuity equation (4.2) and Euler equation (4.3)
around a static equilibrium where (p, €, u*) = (po, €9, §/*), we have

3,8p + c(€y + po) Vo du® =0, 4.12)
(€0 + po)ddu" + P,V 8p =0, (4.13)

where P :=g"" + §8/'6) and ¢ :=dpy/de is the sound velocity squared (note that
¢; < 1 from the causality). Eliminating Su* from these two equations, one obtains a
wave equation for the pressure perturbation,

(2 — 2PV V)sp = 0. (4.14)

As in the non-relativistic case in §2.2, the axially symmetric relativistic system
in §4.1 allows the cylinder as a static equilibrium, where constant pressure p, and
radius R = ry satisfy (2.12). Plugging ansatz (2.14) into wave equation (4.14) and
using the perturbation of the Young-Laplace relation §p = odk|,_;, we obtain the
radial function in the relativistic case as

_ [n— (K + wz)”(z)]r(()n_l)/z Lo—1)/2(Kr) K= 12+ w2 (4.15)
I K n-n/2 "’ " 2 ' '
nl—1)2(Kro) r

P(r) =

N

The perturbation of the Euler equation (4.13) in the r-direction reads (€y+ po)d,06u” +
d,6p = 0. On the other hand, the perturbation of the kinetic boundary condition (4.11)
reads 0,6R = du’|,_g. Eliminating §u” from these two equations, we obtain

(€0 + P0)37SR = —8,p|,_p. (4.16)

Plugging (2.13), (2.14) and (4.15) into (4.16), we obtain the dispersion relation for the
perturbation of a relativistic compressible cylinder as

In K
0)2 = %[n — (kz + a)z)r(z)]KrOM'
(€0 + P01y Liu—1y2(Krp)

It is noted that a similar result for a relativistic compressible fluid with a particular
equation of state was obtained in Caldarelli et al. (2009).

4.17)
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We introduce the following dimensionless quantities (remember that we have already
set the speed of light to unity):

ki=rok, &:=row, 6:=(cr) ‘o, B:i= ' > 1. (4.18)

Then, the dispersion relation (4.17) is the relation between k and & for which the
following function vanishes:

A
~

Fob) mat — —0 - (@ +oonkiene® g e gopran)?
1 +no Lo1)2(K)

(4.19)

Function F(&, k) depends not only on the dimensionless compressibility 8 but also
on the dimensionless surface tension &. This is contrast to the non-relativistic
counterpart (2.22), which depends only on the compressibility 8.

5. Analysis of dispersion relation for the relativistic fluid

As explained at the beginning of § 3.1, the homogeneous (k = 0) mode has special
meaning in that it corresponds to both the homogeneous perturbation of cylinders
in R'"*2 and the spherical perturbation of droplets in R'"*!. In the first subsection
below we look into the k = 0 mode, then we proceed to the analysis of general k > 0
perturbations in the second subsection.

5.1. Instability of drops (k = 0 mode)
Setting k =0 in (4.19), we have

. I, .
F(6,0) =&+ —2 (& — n)ﬂ@M. 5.1
14+no L1y 2(Bw)
Let us see the behaviour of F(®, 0) for small & by expanding it around & = O:
A no 2\ A2
F@,0)=(1-———f |0
(n+ 1A 4+ no)
2 1 3
hr A DOAD) s g 1 000, (5.2)

(n+1*(n+3)(1 + n6)
From this, one can see that F (@, 0)|,_, = 0,F(®, 0)| ;o = 0. On the other hand, one
can see lim;_, o F(®, 0) = +oo from (5.1). Thus, if 32F(®, 0)] 4, < 0 holds, F(&, 0)
must have at least one positive zero from continuity. From (5.2), one can see that
32F(®,0)|;—0 < 0 holds if the compressibility parameter is greater than a critical
value,

AN 172

no

ﬁ > ﬂc,l = (
In this case, the B-dependence of the growth rate near 8 = . can be read from (5.2),

. ( 4n® (n + 3)* 63 )
n+ DA +n6)[1+ 2n+3)6T

The global behaviour of @(B) for several values of ¢ is shown in figure 4(a). In
the present relativistic case, in contrast to the non-relativistic case, the growth rate

1/2

(B = Be)? +0((B = Be)?). (5.4)
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0 02 04 06 08 10
B r/rg

FIGURE 4. (a) Compressibility parameter 8 versus dimensionless growth rate of the radial
perturbation of droplets in R!3 (n = 2) for several values of dimensionless surface tension:
6 = 0.100 (thick solid), 0.300 (thick dashed), 1.00 (thin solid) and 20.0 (thin dashed).
(b) Radial function P(r) for the same set of & as in panel (a). The dimension and
compressibility are set, respectively, asn =2 and /8.1 = 1.50.

asymptotes to a constant in the large-8 limit, that is, @ =~ /n in fact. This can be
derived from (4.19). The radial function P(r) is shown in figure 4(b).

Getting back to dimensionful quantities with (4.18), the instability criterion (5.3) can
be rewritten as
n o

n+ 1 €2

7o < Fpin i= (1—m+ l)c?). (5.5)
Namely, there exists a minimum radius #,; below which the drops and cylinders
become unstable. See § B.2 for the proof of stability for non-spherical perturbations.

5.2. Rayleigh-Plateau instability (k > 0 modes)

The behaviour of dispersion relation ok) is quite similar to the non-relativistic case,
except that the critical values of compressibility, B.; and B.,, depend on &. A

numerical plot of @ = 6)(7() for several values of B is shown in figure 5(a). The
value of & does not affect the qualitative behaviour of the dispersion relation. In order
to see that the second critical compressibility 8. ,, above which the kK =0 mode is the
most unstable one, is only slightly larger than the first critical value B.; in all the
range of &, we numerically plot B.; and B., for n =1 in figure 5(b).

6. Conclusion

We have investigated the stability of spherical drops and cylindrical jets held by
the surface tension, in particular, the dependence on the compressibility g8 or sound
velocity ¢, of the bulk fluids. For simplicity, we have focused on perfect fluids (i.e.
inviscid fluids with no heat transfer) immersed in vacuum, while we consider both the
non-relativistic and relativistic fluids in general dimensions, which allows us to treat
discs, droplets and cylindrical jets simultaneously in a systematic way.

As the main result, we have shown that there exists a critical compressibility S, ;
for both non-relativistic and relativistic fluids, (3.3) and (5.3), above which spherical
drops are unstable for a spherical perturbation. For given parameters of the fluid and
surface, i.e. surface tension o, sound velocity ¢, and density at equilibrium p, (or €
in the relativistic case), the instability criterion poses a lower limit on the droplet size,
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(a) 03 (b) 4T
0A4f . ‘
0.3 3
0.2
/ 2
0.1}/
1
0 02 04 06 08 10 0 1 2 3 4

k 6

FIGURE 5. (a) Dimensionless wavenumber k versus dimensionless growth rate @ of the
perturbation of a relativistic cylinder in R"* (n = 1) for several values of compressibility:
B =1.00, 2.00 (=B.1), 2.13, 2.27 (=B.,), 2.45 from bottom to top. The dimensionless
surface tension is fixed to ¢ = 1. (b) The &-dependence of the critical compressibility, 8. ;
(solid) and ., (dashed), for n = 1.

Viin ™~ cr/(pocf) (see (3.5) and (5.5)), below which any droplets cannot be in stable
equilibrium.

We have shown also that, according to the instability of discs and droplets,
which corresponds to the instability of cylinders for homogeneous perturbations,
the dispersion relation of Rayleigh—Plateau instability exhibits a significant change.
Namely, for 8 > . cylinders are unstable for perturbations that are homogeneous in
the axial direction. Furthermore, such a mode becomes the most unstable one above
the second critical compressibility 8., which is slightly larger than B, ;, in general.

Here, let us stress the significance of the minimum radius r,,;,. In the framework of
fluid mechanics, it has been assumed or simply believed that any positive finite values
can be given to the three quantities o, ¢, and p, (although they should be correlated
with each other if one pursues their origins from a microscopic point of view).
We have shown, however, that spherical droplets, which are the most fundamental
equilibrium state of localized fluids, exhibit instability for ry < 7, ~ o/ (,oocf).
Therefore, one cannot give values to the three parameters freely in order to describe
arbitrarily small-scale dynamics successfully. In other words, the systems defined by
the Euler equation and the Young—Laplace relation intrinsically contain the instability,
and are not well defined in certain regimes of parameter space.

We have adopted several assumptions for simplicity, such as the absence of viscosity,
heat transfer and outer fluids, the constancy of surface tension, and so on. In
addition, the instability discovered is just the result of mode analysis, which can
never predict the following dynamics. Therefore, there are many directions to proceed
by generalizing the analysis in this paper. It would be interesting to see how the
viscosity affects the instability. The nonlinear dynamics would be interesting, too, even
within the perfect-fluid approximation.
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Appendix A. Comments on r,,,

After submitting the draft of this paper, the anonymous referees gave the author
several useful comments and suggestions about the values of r,; in actual physical
systems. Here, some of these suggestions are noted for further studies.

A.1. General order estimate

On a dimensional basis, one can argue that the critical radius r,,;, is of the order of a
microscopic length scale as follows. Let us consider the relativistic case for simplicity.
In many physical systems, it would be possible to assume that ¢ = dpy/dey ~ 1,
which is equivalent to assuming that the compressibility is proportional to the inverse
of the energy density, €, dey/dpy ~ € ' In this case, r;, in (5.5) is reduced to
Tmin ~ 0/€9. Here, let us assume further that the surface tension is microscopically
proportional to the energy density in the bulk as o ~ ley, where [ is a microscopic
length scale. Such a length scale / could be a mean intermolecular distance. This
expectation should be justified in a molecular theory of capillary force (see e.g.
Rowlinson & Widom 2002). With these assumptions, one obtains r,;, ~ [, which
suggests that the instability is irrelevant since the hydrodynamic description itself
breaks down at the scale of /.

A.2. Liguid-drop model of the nucleus

It is widely known that many features of the nucleus, such as the global behaviour
of binding energy, surface oscillations and nuclear fission, can be understood with
the liquid-drop model, in which the nucleus is modelled by a liquid drop of an
incompressible (at leading order) fluid (Bohr & Mottelson 1969, 1975). However,
compressibility, which allows radial oscillations of a drop (i.e. the so-called breathing
mode), is important, since it is directly related to the equation of state of nuclear
matter, and necessary to the accurate estimate of nuclear properties (radii, masses,
giant resonances, etc.). Though the order estimate in § A.1 seems to suggest that
the instability found in this paper is irrelevant to nuclei, it would be interesting to
compare systematically the parameters in the liquid-drop model and those in this
paper. Incidentally, the confine—deconfine phase transition in quantum chromodynamics
(QCD) is expected to be of the first order, and so the deconfined phase, i.e. the
quark—gluon plasma (QGP), could exist as a drop of fluid around the critical
temperature. Thus, it would also be interesting to consider the effect of compressibility
on the QGP balls.

A.3. Granular matter

Recently, it was reported that a kind of granular matter such as glass beads of tiny
radius exhibit effective compressibility (Boudet, Amarouchene & Kellay 2008) and
surface tension (Prado, Amarouchene & Kellay 2011). The existence of surface tension
(capillarity) in granular matter might be surprising, since the attractive force between
grains is much smaller than other forces at play (gravity, friction, inelasticity). In
fact, the surface tension of the granular matter (glass beads) in the experiment (Prado
et al. 2011) stems not from the attractive forces between the beads but from a strong
interaction between the beads and the surrounding air. The dynamics of granular
matter cannot be described by hydrodynamics in general, and furthermore the origin
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of the surface tension is different from that in fluids. Therefore, one cannot apply
the result in this paper as is to granular matter. It would be interesting, however, to
examine whether or not the possibility that the new capillary instability found in this
paper or its analogue is effective in granular matter. To the author’s knowledge, the
sound velocity of granular matter could be relatively small (e.g. ¢, ~ 1 ms~! in an
experiment; Amarouchene & Kellay 2006). Thus, there remains the possibility that
Fonin & ¢ % could be large.

Appendix B. Stability of drops for non-spherical perturbations

B.1. Non-relativistic case
We show the stability of non-relativistic droplets in R'"*! (n > 1) for non-spherical
perturbations (and the stability of cylinder in R!'"*> for homogeneous (in the r-

direction) but non-spherical perturbations).
We work in polar coordinates in which the line element of the flat space is given by

g A = dr? + rPy;(0) do' de’. (B 1)

In these coordinates, the continuity equation (2.1) and Euler equation (2.2) in the r-
and 6'-directions are

@, + 00, +v')p+p (arv’ + Hv’ + D,-zf) =0, B2)
r
p((0 4 V"0, + V0V — ry;p'v)) = —d,p, (B3)
v , A i
0 (a, +v9, + —+ v’D]) v = —’;—zajp, (B4)

where D; is the covariant derivative compatible with y;;. If we parametrize the scalar
function f as

f, r,0)=r—R(t0,,0,,...,0,), (BS)
the mean curvature, appearing in the Young—Laplace relation equation (2.3), reads
B n R’D’R + (D’R — R) (DR)* —(D'R)(D'R)D;D;R
T RO+R2ORTT R*[1+R2 (DR
Here, (DR)” := y¥(D;R)D;R and DR := y/D,D;R. Kinetic boundary condition (2.5) is

. (B6)

R+ V'R =0"|,_g. (B7)

Obviously, equations of motion (B2)-(B4) and boundary conditions (2.3) (with
(B6)) and (B7) allow the spherical drop as a static equilibrium, where the constant
pressure po and radius of the sphere R = ry satisfy (2.12). Now, we consider linear
perturbations of this equilibrium resulting from the disturbance of the surface,

R(t,0) =ry[1 + €e”'Y(0)]. (B8)
Here, Y (61, 6,, ..., 6,) is the harmonic function on the unit n-sphere,
D>+l +n—1]YO)=0, £=0,1,2,.... (B9)

The perturbed pressure to O(¢) may be written as

pt,r,0) =poll + ee”P(r)Y (9)]. (B 10)
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Substituting expression (B 10) into wave equation (2.15), we obtain

&eP  ndp > 4 n—1
. (w +(+”)>P=0. B11)

dr2  rdr 2 r2

With the regularity at the origin and the perturbed Young-Laplace formula §p =
08k |,_g, one finds that the following solves (B 11):

=D+ oy plor/e)

P B12
) Loy )2 (wro/cy) rin=b/2 ( )
Substituting (2.12), (B 8), (B 10) and (B 12) into (2.19), we obtain
I n N
T L R B13)
Poly ¢s Lronyp(wro/cy)

If one takes n =2, ¢, — oo, and writes w — i2 (i =+/—1) in this relation, one
reproduces the classic formula (1.1), i.e. the angular frequency of oscillations for the
incompressible inviscid droplet immersed in the three-dimensional vacuum (Rayleigh
1894).

If (B13) has a positive root for a given £ (=0), the spherical droplet is unstable
for the perturbation labelled by £. Introducing the dimensionless quantities as in (2.21),
the problem is equivalent to finding a positive zero of the following function:

Lttty 2 (BD)
Lit-1)2(B®)

Note that Fy(®) is nothing but F(®, 0) in § 3.1, which was shown to have the positive
zero. Taking into account the positivity of the modified Bessel function, one can easily
see

Fi(®) =&+ (L — DEeE +n) + (£ — 1)(£ +n)Béd (B 14)

Fy(@)>0 forf£>1and &> 0. (B 15)

Thus, there is no positive zero of F,(®) for £ > 1, proving the stability of the droplet
for non-spherical perturbations.

B.2. Relativistic case

We show the stability of relativistic droplets in R!"*!' (n > 1) for non-spherical
perturbations (and that of relativistic cylinders in R!"*2 for non-spherical but
homogeneous (k = 0) perturbations).

We write the flat metric as

g dx dx” = —dF* + dr* + Py; d6" 4o’ (B 16)

Then, we perturb the spherically symmetric static equilibrium, where the constant

pressure poy and radius R = r satisfy (2.12), with the same ansatz (B 8) and (B 10) as

in the non-relativistic case. The mean curvature (4.4) reads
n 1

= 2 27172 + 2 2

R[1—(3:R)"+R*(DR)’] R*[1 = (8,R)” +R* (DR)’]

—[1 — (3,R)*IR’D’R + (R — D’R) (DR)* +(D'R)(D'R)D,D;R}. (B 17)

Substituting expression (B 10) into wave equation (4.14), one finds that the radial
function P(r) satisfies the same form of equation as (B 11). With the perturbed kinetic

7 {[R* + (DR’ IR*3’R
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boundary condition, one can fix the integration constant to obtain

[(@ro)® +(€ — D+ " Tpp oy p(@r/cy)

P(r) = B 18
" nlyy ui—1y2(wro/cy) rin=/2 B18)
Substituting (B 8), (B 10) and (B 18) into (4.16), one obtains
2 o 2 ro Lyt ginp(@ro/cs)
w=————[(wry) "+« — 1) + n)] (E—i— . (B19)
(€0 +P0)7”(3) ° ¢s Loy p(wry/cy)

In terms of the dimensionless quantities in (4.18), to find a positive root of the
above equation is equivalent to finding a positive zero of the following function:

A

6 Lt 2(BD)
1 +no Lot 1y 2(BD)
Observe that Fy(®) is nothing but F(®,0) in §5.1, which was shown to have

a positive zero. One can easily show using the positivity of the modified Bessel
functions that

Fi (&) = &* +

[ + (€ = D¢ +n)] <€ + B ) . (B20)

Fy(®)>0 fore>1, 6 >0, and & > 0. B21)

Thus, Fy(®) for £ > 1 has no positive root, proving the stability of relativistic droplets
for non-spherical perturbations.
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