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Abstract. If (M, F) is a C4 compact Finsler surface of genus at least two without conjugate
points, we show that the first integrals of the geodesic flow are constant. Using this fact, we
show that if (M, F) is also of Landsberg type then (M, F) is Riemannian. The connection
between the absence of conjugate points and the Riemannian character of the Finsler metric
has some remarkable consequences concerning rigidity.

1. Introduction
Finsler spaces are natural generalizations of Riemannian spaces: a Finsler metric in a
smooth manifold is essentially a convex, non-degenerate function defined in the tangent
space of the manifold with values in R (see below for a rigorous definition). However,
Finsler spaces include a class of spaces that is much wider than Riemannian ones. In
fact, the Hamiltonian flow at a suitably high energy level of a smooth, convex, superlinear
Hamiltonian can be reparametrized in a way that it becomes the geodesic flow of a Finsler
metric [6]. So the study of the geodesic flow of Finsler spaces is relevant in classical
mechanics; it is just a Hamiltonian flow at a supercritical energy level of the Hamiltonian.

The main motivation of this paper is a rigidity result [15, 17] concerning Riemannian
geodesic flows and magnetic flows in surfaces which preserve C2,1 codimension-one
foliations (C2,1 means C2 with Lipschitz C2 derivatives). Under such a hypothesis in
the dynamics of the flows it is proved in [17] that the magnetic flow has constant, non-
positive curvature and Lorentz force of constant norm. In particular, the magnetic flow
is an algebraic model: either the surface is a torus and the flow is a flat, Riemannian
geodesic flow, or the surface is hyperbolic and the magnetic flow is either Anosov or
a horocycle flow. The relationship between rigidity and a dynamical system preserving
smooth foliations goes back to the work of Ghys [13] and Hurder and Katok [18], who
studied the rigidity of Anosov flows under such assumptions. The main result of the paper
is closely related to the subject.
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THEOREM 1. Let (M, F) be a C4 Finsler metric in a compact surface of genus greater
than one, without conjugate points. Then every first integral of the Finsler geodesic flow is
constant.

Applying Theorem 1 and Finsler geometry we get the following theorem.

THEOREM 2. Let (M, F) be a C4 Finsler metric in a compact surface of genus greater
than one, without conjugate points. If (M, F) is a Landsberg metric then (M, F) is
Riemannian.

The link between Theorems 1, 2, and the rigidity results mentioned above is made
by a beautiful theorem proved by Mañé [21]: geodesic flows which preserve continuous,
Lagrangian bundles have no conjugate points. So if we assume that the geodesic flow of
the compact surface preserves a smooth, codimension-one foliation, the tangent space of
the leaves is automatically an invariant, Lagrangian subbundle and, therefore, the metric
has no conjugate points (see [17] for details).

The proof of Theorem 1 is essentially the content of the paper. Let us give a brief
summary of results. A good starting point to motivate the relevance of Theorem 1 is
that it is already known for Riemannian surfaces of higher genus. Indeed, the geodesic
flow of compact Riemannian surfaces without conjugate points and genus at least two is
transitive. This important feature of two-dimensional geometry without conjugate points
was proved by Eberlein [9] as a part of his beautiful work about visibility manifolds. So
the first integrals of the geodesic flow are obviously constant in this case. A close look
in Eberlein’s proof shows the crucial role of the reversibility of the Riemannian metric:
the fact that a minimizing geodesic with reversed parametrization is also minimizing is
essential in many steps of the proof. This is obviously not the case for a general Finsler
metric; the non-reversibility issue is behind many subtle arguments in the paper.

Section 2 contains some preliminaries about Finsler geometry: the Chern–Rund
connection, Jacobi fields and Cartan’s structural equations. Section 3 deals with a problem
that is of interest in its own right: the divergence of Jacobi vector fields and geodesic
rays in the universal covering of a surface without conjugate points. The divergence of
such objects is well known in the universal covering of Riemannian compact surfaces
without conjugate points, but in higher dimensions there are still many interesting open
problems concerning divergence. For instance, Jacobi fields diverge in geodesics without
conjugate points, but if the dimension of the manifold is at least three the divergence is not
uniform; it might depend on the geodesic (we give more details in §3). This was observed
by Eberlein [9] for Riemannian manifolds and by Contreras and Iturriaga [5] for regular
energy levels of convex Hamiltonians. So in §3 we show that both Jacobi fields vanishing at
one point and geodesic rays diverge uniformly, as in the Riemannian case, in the universal
covering of a compact Finsler surface without conjugate points.

Section 4 is the core of the paper: we are not able to show the transitivity of the geodesic
flow of compact Finsler surfaces without conjugate points and higher genus because
reversibility is crucial in Eberlein’s work. To get around this difficulty we generalize the
construction by [16] of central stable sets for Riemannian surfaces without conjugate points
and higher genus, and show that the collection of such sets forms a minimal foliation of
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the unit tangent bundle. The proof of this fact relies strongly on the divergence properties
of geodesic rays (§3) and on Morse’s work about globally minimizing geodesics [23]. By
the way, we think that the transitivity of the geodesic flow of compact reversible Finsler
surfaces without conjugate points and genus at least two follows from the results of §4
(see, for instance, Egloff [10] for a treatment of reversible Finsler surfaces of non-positive
curvature).

In §5 we show that a first integral of the geodesic flow is constant in the central stable
leaf of a hyperbolic closed orbit. This feature, together with the existence of closed
hyperbolic orbits of geodesic flows of compact surfaces of higher genus (Katok) and the
density of any central leaf, concludes the proof of Theorem 1. Section 6 is the proof of
Theorem 2, and §7 contains some further applications of Theorem 1 regarding the work of
Ikeda and Foulon about Finsler metrics.

We would like to make some remarks to frame Theorem 2 in the context of Finsler
geometry. There is a long-standing problem in the theory of Finsler metrics considered
by some authors as one of the main questions in the theory: are there Landsberg metrics
which are not Berwald metrics (see [4] for the definitions)? Berwald metrics are Landsberg
metrics, but the converse of this assertion is an open problem. Since it is known (see [4], for
instance) that Berwald compact surfaces are either locally Minkowskian (and the surface
is the torus) or Riemannian ([26], Theorem 2.4), this problem in the case of surfaces of
higher genus amounts to one of whether there are Landsberg compact surfaces that are
not Riemannian. Paternain showed that analytic Landsberg metrics in compact surfaces of
higher genus are Riemannian [24].

This problem has proved to be very hard (recently Szabó [27] claimed that C4

Landsberg metrics were Berwald, but Matveev [22] found a gap in the proof), and
R. Bryant found some non-smooth examples of what he calls generalized Finsler surfaces,
which are Landsberg and not Riemannian (see [2]). Such examples are called unicorns
by many specialists in the theory, because they are not true Finsler metrics. Nevertheless,
these examples have become relevant in the theory as long as there are no available true
Landsberg, non-Riemannian surfaces of higher genus. Our contribution to the subject is
the following consequence of Theorem 2: if there exists a Landsberg compact surface of
higher genus that is not Riemannian, then it must have conjugate points.

The main idea of the proof of Theorem 2 is to use the characterization of Landsberg
metrics in terms of the Cartan structural equations. From the three generalized curvatures
appearing in Cartan equations, the so-called Cartan tensor or I -curvature (see §2) has
special properties. In the case of Landsberg metrics it is a first integral of the geodesic
flow. Using Theorem 1, this yields Theorem 2, since the I -curvature must vanish when it
is constant and this characterizes Riemannian metrics.

2. Preliminaries
2.1. Finsler spaces, Landsberg metrics. In this section we follow [4] as our main
reference.

Let M be an n-dimensional, C∞ manifold, let Tp M be the tangent space at p ∈ M , and
let T M be its tangent bundle. In local coordinates, an element of Tx M can be expressed
as a pair (x, y), where y is a vector tangent to x . Let T M0 = {(x, y) ∈ T M; y 6= 0} be
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the complement of the zero section. A Ck (k ≥ 2) Finsler structure on M is a function
F : T M→ [0,+∞) with the following properties:
(i) F is Ck on T M0;
(ii) F is positively homogeneous of degree one in y, where (x, y) ∈ T M , that is,

F(x, λy)= λF(x, y) for all λ > 0;

(iii) the Hessian matrix of F2
= F · F ,

gi j =
1
2

∂2

∂yi∂y j F2,

is positive definite on T M0.
A Ck Finsler manifold (or just a Finsler manifold) is a pair (M, F) consisting of a C∞

manifold M and a Ck Finsler structure F on M .
Given a Lipschitz continuous curve c : [a, b] → M on a Finsler manifold (M, F), we

define the Finsler length of c as

L F (c) :=
∫ b

a
F

(
c(t),

dc

dt
(t)

)
dt,

L F gives rise to a function d = dF : M × M −→ [0,∞) by

dF (p, q) := inf
c

L F (c)= inf
c

∫ b

a
F

(
c(t),

dc

dt
(t)

)
dt,

where the infimum is taken over all Lipschitz continuous curves c : [0, 1] → M with
c(0)= p and c(1)= q. It is clear that

dF (p, q)≤ dF (p, r)+ dF (r, q)

and
dF (p, q)= 0⇔ p = q,

but since F is not absolutely homogeneous or reversible, dF (p, q) might not be equal to
dF (q, p), and therefore dF might not be a distance. If M is compact, there exists C > 0
such that (1/C)dF (p, q)≤ dF (q, p)≤ CdF (p, q) for every p, q ∈ M . There are many
natural ways to get a true distance from dF , all of them equivalent when the manifold M is
compact due to the above assertion [4].

Therefore, throughout this paper we shall use dF as a true distance without loss of
generality. The non-reversibility of the Finsler metric does not pose relevant obstructions
to obtaining Finsler versions of many well-known results about the global geometry of
Riemannian geodesics.

The local theory of geodesics is just the local theory of existence and uniqueness of
solutions of the Euler–Lagrange equation. We shall assume throughout this paper that
geodesics have unit speed.

The Finsler manifold (M, F) naturally induces a Finsler structure in the universal
covering M̃ of M , just by pulling back the Finsler structure F to the tangent space of
M̃ by the covering map. Let us denote this Finsler manifold by (M̃, F̃).
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A geodesic σ : [a, b] −→ M̃ is called forward minimizing, or simply minimizing, if
L F̃ (σ )≤ L F̃ (c) for all rectifiable curves c : [a, b] −→ M̃ such that c(a)= σ(a), c(b)=
σ(b) (this implies that σ : [s, t] −→ M̃ is also minimizing for every a ≤ s ≤ t ≤ b). Notice
that, in general, a minimizing geodesic σ might fail to be minimizing if one reverses its
orientation, because the Finsler metric might not be reversible. That is the meaning of the
word ‘forward’ in the term ‘forward minimizing’; the minimization property is attached to
an orientation of the geodesic.

Let (M, F) be a positively complete Finsler manifold and let x ∈ M . For a non-
vanishing vector y ∈ Tx M , we shall denote by σ(x,y)(t) the geodesic with initial conditions
σ(x,y)(0)= x and σ ′(x,y)(0)= y. The exponential map at x , expx : Tx M→ M , is defined
as usual: expx (y) := σ(x,y)(1).

2.2. Chern–Rund connection (or Chern connection) and Jacobi fields. Let T ∗x M be the
cotangent space at x , and let T ∗M be the cotangent bundle of M . Take local coordinates
(x1, x2, . . . , xn) for M , and let bi = ∂/∂x i , dxi , i = 1, 2, . . . , n, be the corresponding
basis for T M and T ∗M , respectively. The so-called fundamental tensor of the Finsler
metric is given by

gi j (x,y) dx i
⊗ dx j

where gi j (x,y) = (
1
2 F2)i j (x, y), that is, gi j is the i j-entry of the Hessian of 1

2 F2.
The fundamental tensor is very convenient to study Finsler Jacobi fields: vector fields

defined along a geodesic obtained by differentiating C2 variations of the geodesic. The
second variation formula for the Finsler length gives the Jacobi equation of the metric,
whose solutions are just the Jacobi fields. This equation is more complicated than the
Riemannian Jacobi equation in general (see, for instance, [5] for a Hamiltonian expression
of the Jacobi equation). Using the fundamental tensor, it is possible to define a sort of
covariant differentiation along geodesics that is ‘almost compatible’ with the fundamental
tensor (see [4] for details), such that the Jacobi equation of the geodesic acquires a
Riemannian form. In the next lemma, suitable for the applications in the present paper,
we summarize some basic properties of this connection (see [4, 25] for details).

LEMMA 2.1. Let (M, F) be a C4 Finsler manifold, let σ(t) be a C∞ curve, and

σ(t, u) : 4 = {(t, u); 0≤ t ≤ r,−ε < u < ε} −→ M

be a C2 variation of σ(t, 0)= σ(t) by C∞ curves. Then, in the tangent space Tσ(t,u)M,
the inner product

gT := gi j (σ (t,u),T (t,u)) dx i
⊗ dx j ,

where

T = T (t, u) := σ∗
∂

∂t
=
∂σ

∂t
,

satisfies the following properties.
(1) gT (T, T )= F2(T ).
(2) σ(t) is a Finslerian geodesic if and only if

d

dt
gT (V, W )= gT (DT V, W )+ gT (V, DT W )
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where V and W are two arbitrary vector fields along σ . The operator DT = d/dt is
called covariant differentiation with reference vector T.

(3) In particular, Finslerian geodesics satisfy

DT

[
T

F(T )

]
= 0.

The constant speed Finslerian geodesics F(v)= c are the solutions of

DT T = 0,

(4) Assume that σ(t) is a unit speed geodesic. Then a Jacobi field J (t)= (∂σ/∂u)(t, 0)
along σ(t) satisfies

DT DT J + R(J, T )T = 0,

where R is the Jacobi tensor of the Finsler metric (we shall denote as usual
J ′′ = DT DT J , J ′ = DT J ). When dim(M)= 2,

R(y, u)u = K (y)[gy(y, y)u − gy(y, u)y], y, u ∈ Tx M\{0}

where K (y) is the Gaussian curvature, which coincides as well with the flag
curvature.

(5) Let σ(t) be a unit speed geodesic. Then, if J (t) is a Jacobi field along σ(t), the
component J⊥(t) of J (t) that is perpendicular to σ ′(t) with respect to gT satisfies
the scalar Jacobi equation

J ′′
⊥
+ K J⊥ = 0.

Moreover, if gT (T, J (t0))= gT (T, J ′(t0))= 0 at some point t0, then gT (T, J )= 0
at every point.

Throughout this paper, all covariant differentiations will be carried out with reference
vector T . Lemma 2.1 reduces many Finsler problems concerning Jacobi fields to
Riemannian ones. We shall often call the inner product gT the adapted Riemannian metric.

Definition 2.1. A Finsler space (M, F) is said to be of Landsberg type if for every smooth
curve c : [a, b] −→ M the parallel transport along c with respect to the Chern–Rund
connection is a linear isometry between (Tc(a)M, gc′(a)) and (Tc(b)M, gc′(b)).

2.3. Conjugate points. We say that q is conjugate to p along a geodesic σ if there exists
a non-zero Jacobi field J along σ which vanishes at p and q . We say that (M, F) has no
conjugate points if no geodesic has conjugate points. The following result taken from [4]
(Proposition 7.1.1) has a similar, well-known counterpart in Riemannian geometry.

PROPOSITION 2.2. Let σ(t)= expp(tv), 0≤ t ≤ r , be a unit speed geodesic. Then the
following statements are all equivalent.
(1) The point q = σ(r) is not conjugate to p = σ(0) along σ .
(2) Any Jacobi field defined along σ that vanishes at p and q must be identically zero.
(3) Given any V ∈ Tp M and W ∈ Tq M, there exists a unique Jacobi field J : [0, r ] −→

T M defined along σ such that J (0)= V , J (r)=W .
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(4) The derivative (expp)∗ of the exponential map expp is non-sigular at rv.

(5) Each geodesic γ : R−→ M̃ is minimizing.

In Tx M , we define the tangent spheres

Sx (r) := {y ∈ Tx M; F(x, y)= r}

of radius r . For r small enough, expx [Sx (r)] is diffeomorphic to Sx (r). The image set
expx [Sx (r)] is called a geodesic sphere in M centred at x . A natural generalization of
Gauss’s lemma is available for Finsler spheres (see, for instance, [4]).

2.4. Cartan’s structural equations. Here we recall briefly Cartan’s structural equations
for Finsler metrics because they give us a shortcut to define all Finsler curvature tensors
(for details we refer to [4]). The tangent bundle of T1 M has a natural oriented frame of
vectors e1, e2, e3, where e2 is the unit vector tangent to the geodesic flow and e3 is tangent
to the vertical bundle. The vectors e1, e2 are chosen in a way that they are orthonormal
in each Tp M with respect to the adapted Riemannian metric gT := gi j dx i

⊗ dx j already
defined in the previous subsection. The partial derivatives of a function f : T1 M −→ R
with respect to the vectors fields ei will be denoted by fi . The structural equations of the
Finsler metric are written in terms of a dual basis of the vectors ei , a frame of 1-forms ωi ,
i = 1, 2, 3, in the following way:

dω1
=−Iω1

∧ ω3
+ ω2

∧ ω3, (S1)

dω2
=−ω1

∧ ω3, (S2)

dω3
= Kω1

∧ ω2
− Jω1

∧ ω3. (S3)

The scalar K is the Gaussian curvature of the Finsler surface, J is called the Landsberg
scalar and I the Cartan scalar. The three scalars I, J, K are all functions on T1 M .

It is possible to characterize Finsler metrics which are Riemannian in terms of the above
functions. Indeed, I vanishes everywhere if and only if the Finsler structure is Riemannian.
Moreover, a Finsler surface (M, F) is Landsberg if J = 0.

Is possible to show, using the Bianchi identities, that J = 0 if and only if I is constant
along the orbits of the geodesic flow. The vectors ei give rise to smooth local vector fields,
also denoted by ei .

3. Divergence of Jacobi fields and of geodesic rays
The purpose of this section is to show that geodesic rays in the universal covering of
a Finsler compact surface without conjugate points diverge as in the Riemannian case.
The divergence of geodesic rays for Riemannian surfaces is a well-known result due to
Green [14]. We shall show that Green’s ideas can be adapted to the Finsler case.

We recall Green’s proof step by step. First of all, the absence of conjugate points in a
geodesic allows the construction of asymptotic Jacobi fields. More precisely, let γ (t) be
a geodesic without conjugate points where the norm of the curvature operator is bounded
from below by a constant K0. Let V ∈ Tγ (0)M be linearly independent of γ ′(0), and let
Jr (t) be the Jacobi field whose boundary conditions are

Jr (0)= V, Jr (r)= 0.
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Since there are no conjugate points in γ , Jr exists and is unique. Moreover, the following
lemma holds.

LEMMA 3.1. There exists the limit

lim
r→+∞

Jr (t)= J+V (t)

which is a Jacobi field that never vanishes if V 6= 0.

This lemma is a Finsler version [11] of a well-known result of E. Hopf.
Such asymptotic Jacobi fields will be called Green Jacobi fields. Their natural lifts to

the tangent space of the unit tangent bundle will be referred to as Green subspaces (see §5).
Those obtained as limits when r→+∞ are often called stable Jacobi fields (respectively,
stable subspaces). Those obtained as limits when r→−∞ are usually called unstable
Jacobi fields.

Asymptotic Jacobi fields give rise to solutions of the Riccati equation

u′(t)+ u2(t)+ Kγ ′(t)= 0

defined for every t ∈ R (see Foulon [11], for instance). So the theory of the Riccati equation
holds for Finsler asymptotic Jacobi fields, and this is enough to show the divergence of
Jacobi fields vanishing at just one point. Our next statement is not exactly as in Green’s
paper, but it is a straightforward consequence of Green’s lemma about the divergence of
Jacobi fields for Riemannian surfaces.

PROPOSITION 3.2. Let L > 0, and let K : R−→ R be a continuous function such that
‖ K ‖∞≤ L. Suppose that the Jacobi equation

J ′′ + K J = 0 (1)

has no conjugate points. Then the solutions J (t) with J (0)= 0, J ′(0) 6= 0 diverge: given
ε > 0, R > 0, there exists r = r(L , ε, R) > 0 such that for every solution of (1) with
‖J ′(0)‖ ≥ ε,

‖J (t)‖ ≥ R for all t ≥ r.

COROLLARY 3.3. Let (M, F) be a compact Finsler space without conjugate points. Then
Jacobi fields which vanish at just one point diverge in the sense of Proposition 3.2.

Proof. Let γ be a geodesic of (M, F). As already observed in Lemma 2.1(5), the
Jacobi equation along γ in the adapted Riemannian metric gγ ′(t) takes the form J ′′(t)+
Kγ ′(t)J (t)= 0, where Kγ ′(t) is a function depending on the Gaussian curvature of (M, F)
along γ . Then, the relevant Jacobi fields are those which are perpendicular (in the adapted
metric) to γ ′(t). Since the surface M is compact, the curvature is bounded, and hence the
functions Kγ (t) are uniformly bounded in R. So we can apply Proposition 3.2 and the
corollary holds. 2

Remark. In higher dimensions, Jacobi fields which vanish somewhere in compact Finsler
metrics with no conjugate points diverge too [5]. However, the divergence might not be
uniform as in Proposition 3.2. That is, the number r might depend on the geodesic.
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LEMMA 3.4. St = {expp(tc(s)); t ≥ 0, s ∈ [0, a]} has bounded geometry for t ≥ 2, that
is, the normal curvatures (with respect to the adapted metric) of large spheres are bounded
by a uniform constant.

Proof. The proof of the lemma reduces to the Riemannian proof. In fact, since M is
compact the Gaussian curvature K is bounded. Therefore, the following claim implies
the lemma.

CLAIM. The second fundamental form of Sr (x) at the point expx (rv) is the Riccati
equation solution at t = r .

For the proof of the claim, see [25, Lemma 14.4.2]. 2

PROPOSITION 3.5. (Divergence of geodesic rays) Let (M, F) be a C4 closed Finsler
surface without conjugate points, (M̃, F̃) the lift of F to the universal covering. Then
geodesic rays diverge uniformly in (M̃, F̃). That is, given ε > 0, R > 0, there exists r > 0
such that, for every pair of geodesic rays γθ : [0,+∞)−→ M̃, γη : [0,+∞)−→ M̃, with
γ (0)= β(0), parametrized by arc length, and F̃(θ, η)≥ ε,

inf{dF̃ (γθ (t), γη(t)), dF̃ (γη(t), γθ (t))} ≥ R

for every t ≥ r .

Proof. The proof reduces to Green’s argument [14]. Suppose by contradiction that we have
p ∈ M̃ , and two geodesics γ(p,v), γ(p,w), such that

dF̃ (γ(p,v)(t), γ(p,w)(t))≤ C for all t ≥ 0

and
dF̃ (γ(p,w)(t), γ(p,v)(t))≤ C for all t ≥ 0. (2)

Let us assume that the pair (v, w) has the canonical orientation of M̃ .
The set

{γ(p,v)(t); t ≥ 0} ∪ {γ(p,w)(t); t ≥ 0}

bounds a geodesic cone

S = {expp(tc(s)); t ≥ 0, s ∈ [0, a]} ∈ M̃,

where c : [0, a] → Tp M̃ , of normal vectors c(s) such that c(0)= v, c(a)= w, and
‖c′(s)‖ = 1 for every s ∈ [0, a].

The set St = {expp(tc(s)); s ∈ [0, a]} is an arc of the sphere St (p). Assumption (2) and
Lemma 3.4 imply that there exists a constant L0 such that∫ a

0
‖S′t (s)‖ ds ≤ L0 for all t ≥ 0.

But ∫ a

0
‖S′t (s)‖ ds =

∫ a

0

∥∥∥∥ d

ds
expp(tc(s))

∥∥∥∥ds =
∫ a

0
‖Js(t)‖ ds,
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where Js(t)= (d/ds) expp(tc(s)) is a Jacobi field because it is a variation ft (s) by
geodesics. This Jacobi field vanishes at t = 0, and ‖J ′s(0)‖ = ‖c

′(s)‖ = 1. Therefore,∫ a

0
‖Js(t)‖ ds ≤ L0 for all t ≥ 0.

Applying the mean value theorem for integrals, given t > 0, there exists st ∈ [0, a] such
that

‖Jst (t)‖ ≤ a · L0.

This contradicts Proposition 3.2. 2

4. Global geometry of geodesics and central foliations
The goal of this section is to show that the geodesic flow of every compact Finsler surface
without conjugate points has central stable and central unstable foliations. We shall follow
the ideas in [16] applied to study Riemannian surfaces; in particular, we shall show that
each central foliation is C0 conjugated to a hyperbolic central foliation.

4.1. Morse’s work and shadowing of geodesics by hyperbolic geodesics. In this
subsection we recall briefly some applications of the celebrated work of Morse [23] about
quasi-geodesics in surfaces to Finsler geodesics.

We say that a Lipschitz continuous curve c : [a, b] → M̃ is a forward (A, B)-quasi-
geodesic or just quasi-geodesic if

1
A
· dF̃ (c(s), c(t))− B ≤ L F̃ (c|[s,t])≤ A · dF̃ (c(s), c(t))+ B for all s ≤ t ∈ [a, b].

The word ‘forward’ appears here for the same reason it appeared in the notion of
minimizing geodesics: Finsler metrics might not be reversible. Observe that a geodesic
γ : I −→ M is forward minimizing if it is a (1, 0)-forward quasi-geodesic. From the work
of Morse [23] about minimizing geodesics in surfaces we have the following theorem.

THEOREM 4.1. (Morse) Let (M, g) be a Riemannian metric in a compact surface M of
genus greater than one. Let (M̃, g̃) be the pullback of a Riemannian metric g in M to the
universal covering M̃. Given A ≥ 1, B ≥ 0, there exists D > 0 such that every forward
(A, B)-quasi-geodesic c : [t1, t2] −→ M̃ of (M̃, g̃) is within a hyperbolic distance D from
the hyperbolic geodesic joining c(t1) to c(t2) in the hyperbolic plane (M̃, g0).

Let us define

d̄ : M̃ × M̃→ R, d̄(p, q)= 1
2 [dF̃ (p, q)+ dF̃ (q, p)],

which is a distance in M̃ .
The compactness of M implies the following corollary.

COROLLARY 4.2. Let (M, F) be a compact C2 Finsler surface. There exists λ≥ 1 such
that every forward minimizing geodesic c : I −→ M̃ is a (λ, 0)-quasi-geodesic of (M̃, d̄).

So in combination with Morse’s theorem we get the following proposition.
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PROPOSITION 4.3. Given a C2 Finsler metric (M, F) in a compact surface of genus
greater than one, there exists Q > 0 such that every minimizing geodesic c : [a, b] −→ M̃
is in a Q-tubular neighbourhood of a hyperbolic geodesic.

Notice that Proposition 4.3 applies to the geodesics cp,q (from p to q) and cq,p (from q
to p) for every p, q ∈ M̃ . In particular, both geodesics (if different from each other) are in
the Q-tubular neighbourhood of the hyperbolic geodesic joining p to q .

4.2. Central foliations for Finsler surfaces without conjugate points. Let (M, F) be a
complete C2 Finsler surface with no conjugate points. Two Finsler geodesics γ (t), β(t)
in M̃ are called (forward) asymptotic if there exists C > 0 such that

dF̃ (γ (t), β(t))≤ C for all t ≥ 0

and
dF̃ (β(t), γ (t))≤ C for all t ≥ 0.

Analogously, γ (t), β(t) are called (backward) asymptotic if there exists C > 0 such that

dF̃ (γ (t), β(t))≤ C for all t ≤ 0

and
dF̃ (β(t), γ (t))≤ C for all t ≤ 0.

Combining Proposition 4.3 and the divergence of geodesic rays (Proposition 3.5), we
get the following proposition.

PROPOSITION 4.4. Let (M, F) be a C4 Finsler compact surface of genus greater than
one, without conjugate points. There exists Q > 0 such that given (p, v) ∈ T1 M̃, x ∈ M̃,
there exists a unique minimizing geodesic γ(x,w(x,v)) : [0,∞)→ M̃ such that:
(1) γ(x,w(x,v))(0)= x;
(2) if γ 0

(p,v) is the hyperbolic geodesic in M̃ that satisfies γ 0
(p,v)(0)= p and γ 0

(p,v)
′(0)=

v, then
d0(γ(x,w(x,v))(t), γ

0
(p,v))≤ Q

for every t ≥ 0, where d0 is the hyperbolic distance and d0(γ (t), β) is the hyperbolic
distance from γ (t) to the geodesic β;

(3) the map x 7→ w(x, v) is continuous for every (p, v) ∈ T1 M̃;
(4) the geodesic γ(x,w(x,v)) extends to a unique geodesic γ̃(x,w(x,v)) : (−∞,∞)→ M̃

(i.e., γ(x,w(x,v))(t)= γ̃(x,w(x,v))(t) for every t ≥ 0) that is forward minimizing.

Proof. Take a sequence of minimizing geodesics cx,t : [0, rp] → M̃, t > 0, for the Finsler
metric, where cx,t (0)= x and cx,t (rp)= γ

0
p,v(t). Since they are all in a Q-tubular

neighbourhood of γ 0
(p,v) they have a convergent subsequence. A limit γ(x,w(x,v)) is a

minimizing geodesic for F too, and it has to be the only geodesic starting at x and
asymptotic to γ 0

(p,v) by the divergence of geodesic rays of F . This immediately implies

the continuity of x→ w(x, v) for each (p, v) ∈ T1 M̃ . Now, if we consider an exhausting
sequence of compact balls Bn(x) of hyperbolic radius n ∈ N, the geodesics γ(y,w(y,v))
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for y ∈ Bm(x) must extend the geodesics γ(y,w(y,v)) for y ∈ Bn(x) and every n < m. This
follows from the divergence of geodesic rays once more. Thus, item (4) in the statement
holds and we conclude the proof of the proposition. 2

Using Proposition 4.4 we can define a compactification M̃(∞) of M̃ as in the
Riemannian case. Indeed, Morse’s work allows us to define asymptotic classes [γ ]
of geodesics γ in M̃ , whose collection will be denoted by ∂ M̃(∞). Then, the
compactification

M̃(∞)= M̃ ∪ ∂ M̃(∞)

is a topological space endowed with the Finsler version of the cone topology: given p ∈ M̃
and T 1

p M̃ = {F̃(p, v)= 1}, the open sets of ∂ M̃(∞) are generated by the asymptotic

classes of geodesics whose initial conditions are contained in open subsets of T 1
p M̃ . That

is, V ⊂ T 1
p M̃ is open if and only if [V ] = {[γ (p, v)], (p, v) ∈ V } is open in ∂ M̃(∞). By

Proposition 4.4, given an asymptotic class [γ ], we have continuous dependence on p ∈ M̃
of the geodesic rays starting at p with the same asymptotic class. This yields that the
topology we have just defined in ∂ M̃(∞) does not depend on the point p ∈ M̃ .

For each θ = (q, v) ∈ T1 M̃ , ‖v‖ = 1, if β is the geodesic through p ∈ M̃ , say β(0)= p
that is asymptotic to γθ , let us denote the unit vector β ′(0) by X cs

θ (p). The centre stable
set of θ = (q, v) ∈ T1 M̃ is defined by

F̃ cs(θ)= {(p, X cs
θ (p)); p ∈ M̃}.

We shall denote by F̃ cs the collection of centre stable sets in the space T1 M̃ .
The centre stable set of θ = (q, v) ∈ T1 M is defined by F cs(θ)= π̂(F̃ cs(θ̃)), where

π̂(θ̃ )= θ .
We list in the next lemma some of the most important basic properties of centre stable

sets. Since we are considering just forward minimizing geodesics, the proof of the lemma
is completely analogous to [16, Proof of Lemma 2.1] and we leave the details to the reader.

LEMMA 4.5. Let (M, F) be a C4 closed, oriented C4 Finsler surface without conjugate
points. Then the following assertions hold.
(1) The family of sets F̃ cs

=
⋃
θ∈T1 M̃ F̃ cs(θ) is a collection of C0 submanifolds which

are either disjoint or coincident.
(2) The sets F̃ cs(θ), θ ∈ T1 M̃, depend continuously on θ , uniformly on compact subsets

of T1 M̃, and hence the collection F cs
=
⋃
θ∈T1 M F cs(θ) is a continuous foliation

by C0 leaves of T1 M̃.
(3) Given p ∈ M̃, there exists a homeomorphism

9p : M̃ × Ṽp −→ T1 M̃

such that

9p(M̃ × {(p, v)})= F̃ cs(p, v).

In particular, the collections F cs , F̃ cs , are continuous foliations, and the space of
leaves of F̃ cs(θ) is homeomorphic to the vertical fibre Ṽp for any p ∈ M̃.
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(4) There exists a homeomorphism

9∞ : T1 M̃ −→ M̃ × ∂ M̃(∞)

such that
9∞(F̃

cs
ω )= M̃ × {ω},

where F̃ cs
ω is the centre stable leaf such that all the orbits in the leaf project into

geodesics of M̃ whose ω-limit is ω ∈ ∂ M̃(∞).

LEMMA 4.6. [23] Let F be the central leaf of a lift γ̃ of a closed geodesic γ . Then we
have two possibilities:
(1) either γ is unique in its homotopy class and hence every orbit in F cs is strongly

asymptotic to the orbit (γ (t), γ ′(t)) of γ : limt→+∞ d(γ̃ (t), β̃(t))= 0 (up to a
reparametrization of β) for every geodesic β asymptotic to γ ;

(2) or there exists an invariant annulus in F bounded by two orbits homotopic to γ with
the same period.

4.3. A fibre preserving C0 conjugacy between central foliations on K =−1 and central
foliations. We recall that if K =−1 then the Finsler metric is a Riemannian metric (a
result due to Akbar-Zadeh [1]). The central foliations of a metric of constant negative
curvature will be called hyperbolic central foliations.

The main result of this subsection is a generalization for Finsler surfaces of [16,
Proposition 3.1].

PROPOSITION 4.7. Let M = (M, F) be a closed C4 Finsler surface without conjugate
points and genus greater than one. Then there exist a hyperbolic metric g0 in M and a
fibre preserving homeomorphism H : T1 M −→ T1 M0, such that the image of each centre
stable leaf of T1 M is a centre stable leaf of T1 M0.

We shall briefly recall the construction of the conjugacy since the argument in [16]
carried over to the Finsler case with no major changes. Let us use the notation M̃ and
M̃0 to designate the universal covering of M and M0 endowed with the metrics F̃ and
g̃0, respectively. We can assume that the universal covering of M is the unit disc D. We
determine the constant curvature structure M0 by lifting the fundamental group of M to
a discrete group of isometries of the hyperbolic disc and then considering the hyperbolic
metric in M obtained by the quotient of D by the action of this group of isometries. In
this way, the fundamental groups of M and M0 will coincide with just one discrete group
acting in D, and the boundaries at infinity of M̃ and M̃0 will be the same via the natural
identification induced by the work of Morse.

According to the previous subsection, we can parametrize central leaves by their
endpoints at infinity. So for ease of notation in this section we shall denote by F , F̃ the
central foliations of the geodesic flows of (M, F) and its covering (D, M̃) respectively,
and by F 0, F̃ 0 the central foliations of the geodesic flows of (M, F0) and its covering
(D, F̃0) respectively.

The central vector fields in M̃ , M̃0 defined in the previous subsection will be denoted
by Xω(θ), X0

ω(σ) respectively, where θ ∈ T1 M̃ , σ ∈ T1 M̃0, and ω(θ), ω(σ ) ∈ ∂D(∞) are
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respectively the F̃-ω-limit of θ and the F̃0-ω-limit of σ . We shall assign to each leaf F̃ (θ),
for θ ∈ T1 M̃ , the notation

F̃ (θ)= F̃ω(θ).

As in [16], for the construction of the conjugacy between the central foliations we construct
first a fibre preserving conjugacy between the lifts of these foliations in T1 M̃ , T1 M̃0. Let

H̃ : T1 M̃ −→ T1 M̃0

be the map given by

H̃ = (90
∞)
−1
◦9∞.

This map is a fibred map, that is, H̃(x, v) ∈ V 0
x for every x ∈ D, and observe that the

F̃-ω-limit of (x, v) and the F̃0-ω-limit of H̃(x, v) are the same. Notice that the restriction
of H̃ to the fibre Ṽx is given by

H̃ |Ṽx
(v)= (P0

x )
−1
◦ Px (v),

where P0
x : Ṽ

0
x −→ ∂D(∞) associates to v ∈ Ṽ 0

x the F̃0-ω-limit of (x, v). The following
result is a summary of properties of the above construction, whose proofs in the
Riemannian case can be found in [16]. The proofs in the Finsler case can be transposed
from the Riemannian case without any changes.

LEMMA 4.8. The map H̃ is a homeomorphism which preserves the lifted central
foliations. Moreover, H̃ is equivariant by the action of the fundamental group of M in
the spaces T1 M̃, T1 M̃0.

The existence of a continuous conjugacy between the central foliations of T1 M and
T1 M0 follows from the previous lemma, because the equivariance of H̃ by the action of the
fundamental group allows us to push forward H̃ by the covering map π̃ : T1 M̃ −→ T1 M .
In this way we get a homeomorphism from T1 M to T1 M0 preserving the central foliation
of the geodesic flow. For details we refer the reader to [16].

5. First integrals of the Finsler geodesic flow
From now on we assume that the Finsler surface (M, F) is closed and C4. In this section
we show Theorem 1.

THEOREM 1. Let (M, F) be a C4 Finsler metric in a compact surface of genus greater
than one, without conjugate points. Then every first integral of the Finsler geodesic flow is
constant.

Our approach is dynamical and inspired by a paper by Paternain [24]: we shall show
that every first integral of the geodesic flow is constant. This is done by Paternain for
analytic Landsberg metrics in compact surfaces of genus greater than one, but we show
that the same holds in our setting. For the proof of Theorem 1 we shall need to introduce
the so-called Green bundles. We devote the next subsection to the subject for the sake of
completeness.
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5.1. Green bundles. A remarkable property of geodesics without conjugate points is
the existence of the so-called Green bundles, which were defined by Hopf and Green
for Riemannian metrics in terms of the solutions of the Riccati equation (§3), and by
Foulon [11] for Finsler metrics in surfaces (see, for instance, [5] for a Hamiltonian
definition).

PROPOSITION 5.1. (Green bundles) Let (M, F) be a Finsler surface without conjugate
points. Then there exist, for each θ ∈ T1 M, two invariant subspaces E s(θ) and Eu(θ) of
T T1 M, defined by

E s(θ)= lim
τ→+∞

Dϕ−t (Vϕt (θ)),

Eu(θ)= lim
τ→−∞

Dϕ−t (Vϕt (θ)),

where Dϕt is the differential of the geodesic flow, and Vθ is the vertical subspace at θ . The
distributions E s(θ) and Eu(θ) are measurable, transverse to the vertical subbundle V ,
and transverse to the geodesic vector field.

Green bundles are always transversal to the vertical subspace in T T1 M and have
dimension n − 1, where n = dim(M). They are invariant Lagrangian subbundles defined in
the set of globally (forward) minimizing orbits (see [5], for instance). Moreover, the Green
subbundles E s(θ), Eu(θ) are given as graphs of linear operators given by two distinguished
solutions us

θ , uu
θ of the Riccati equation (§3), as in the Riemannian case (see [11]). Such

solutions are defined for every t ∈ R along the geodesic γθ .
The next lemma establishes a link between the centre stable sets constructed in the

previous section and the dynamical centre stable set of a hyperbolic closed orbit.

LEMMA 5.2. Let (M, F) be a C2 compact Finsler manifold. Let φt (θ) be a closed
hyperbolic orbit of the geodesic flow of (M, F) without conjugate points (that is, the
subjacent geodesic γθ has no conjugate points). Then:

(1) the Green subspaces E s(θ), Eu(θ) are respectively the dynamical stable and
unstable invariant subspaces of θ ;

(2) the dynamical centre stable and centre unstable submanifolds of θ are local
Lagrangian graphs of the canonical projection;

(3) if (M, F) is a compact surface without conjugate points, the centre stable set of θ
coincides with the dynamical centre stable set of θ .

The proof of item (1) is not difficult and can be found in [11] or [5], for instance. Item
(2) follows from the fact that invariant submanifolds of θ are tangent along the orbit of θ
to a subbundle that is transversal to the vertical subspace, so by continuity this holds in a
neighbourhood of the orbit of θ . Therefore, the invariant submanifolds of the orbit of θ
are transversal to the vertical fibres of T1 M as well, and hence they are local graphs of the
canonical projection. The proof of item (3) follows from Proposition 3.5 and the existence
of centre stable sets. Indeed, the hyperbolicity of the orbit of θ implies that the orbits in
the dynamical centre stable set of θ correspond to geodesics which are strongly asymptotic
to γθ . Then such geodesics are in the centre stable set of θ , F (θ), as we claimed.
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5.2. A first integral is constant on the centre stable leaf of a hyperbolic orbit. The
purpose of this subsection is to show a preliminary version of Theorem 1, namely, the
following proposition.

PROPOSITION 5.3. Let f : T M −→ R be a first integral of the geodesic flow of a C4

Finsler compact surface without conjugate points and genus greater than 1. Let θ be a
hyperbolic periodic point of the geodesic flow. Then f is constant in F cs

θ .

We shall subdivide the proof into several lemmas. The main issue of the proof is the
existence or not of an annulus in F cs

θ bounded by two different bi-asymptotic geodesics.

LEMMA 5.4. Suppose that (M, F) is a Finsler surface without conjugate points. Let
θ ∈ T1 M be a periodic point in a hyperbolic closed orbit. Then there is no annulus in
M bounded by bi-asymptotic orbits in the central stable leaf F cs

θ of θ . That is, every pair
of orbits in F cs(θ) is strongly forward asymptotic.

Proof. In the case of Riemannian surfaces, the lemma follows from the fact that an annulus
of bi-asymptotic orbits containing a closed orbit is foliated by closed orbits of the same
period in the same homotopy class. This is proved by Morse [23], and the argument
extends to reversible Finsler metrics. If the metric is not reversible, there are some technical
problems in showing this result, posed by the ‘orientation’ of the minimizing properties of
geodesics. Although we think this should be true in the non-reversible Finsler case as well,
we prefer to give a more direct proof of the lemma, using the hyperbolicity of the closed
orbit, instead of involving ourselves with a generalization of Morse’s work for Finsler
surfaces.

So let γθ be a closed hyperbolic geodesic that is forward minimizing, let θ̃ be a lift of θ
in T1 M̃ , and let us suppose that there exists a closed, forward minimizing geodesic β in M
such that the orbit of β is in the centre stable manifold of θ . So β is homotopic to γθ and
the no conjugate points condition implies that they have the same period (see Morse [23]).
Let β̃ be a lift of β that is bi-asymptotic to γθ̃ .

Let Ã be the strip in M̃ bounded by γθ̃ and β̃. The dynamical centre stable and centre
unstable manifolds of the hyperbolic orbit O(θ) of θ induce dynamical centre stable and
centre unstable manifolds for the orbit of θ̃ . Since the surface has no conjugate points,
the strongly asymptotic orbits in the centre stable manifold of θ̃ project, by the canonical
projection, onto strongly asymptotic geodesics of γθ̃ (Lemma 5.2). By the results in the
previous section, the strip Ã contains a strip of strongly asymptotic geodesics of γθ̃ coming
from the canonical projections of the orbits in the centre stable manifold of θ̃ . In fact, by
Proposition 3.5, the minimizing geodesics in M̃ which are strongly (forward) asymptotic
to γθ̃ cannot meet the geodesic β̃. If the metric were reversible, we could claim the same
above statement for the projections in Ã of the geodesics in the centre unstable manifold
of θ̃ (because such geodesics would be backward minimizing too, and hence they cannot
meet η̃(t)= β̃(−t) which would be backward minimizing as well). So we have to work a
little more to deal with the projections of centre unstable orbits of θ̃ in Ã.

By Lemma 5.2, the dynamical centre unstable set of the orbit of θ is a smooth
submanifold that is a local Lagrangian graph of the canonical projection. That is, the
canonical projection of the centre unstable manifold of θ gives rise to a local flow whose
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(  )

FIGURE 1. Strip of geodesics, shortcut argument, and Morse’s lemma.

orbits are backward asymptotic geodesics of γθ . This implies that in M̃ , the canonical
projection of the centre unstable manifold of the orbit of γθ̃ is a flow by backward
asymptotic, forward minimizing geodesics. Since this flow projects into an open subset
W ⊂ M̃ containing γθ̃ in its interior, Ã contains an open subset W ′ ⊂W ∩ Ã foliated by
unstable geodesics: there exists a collection 0 of (forward minimizing) geodesics which
are backward asymptotic to γθ̃ such that

W ′ =
⋃
α∈0

α(−∞, t (α)),

where t (α) is the supremum of t ∈ R such that α(t) ∈ Ã for every t ≤ t (α).

CLAIM. If α ∈ 0, then α(−∞,∞) is contained in the strip Ã. In other words, t (α)=∞
if α ∈ 0.

The claim is a consequence of the next result, whose proof essentially follows from the
work of Morse [23].

SUBLEMMA. If α : R−→ M̃ is a minimizing geodesic such that:
(1) α(−∞, 0] is contained in the substrip of Ã bounded by γθ̃ and β̃; and
(2) limt→−∞ dF̃ (γθ̃ (t), α(t))= 0,
then α(t) ∈ Ã for every t ∈ R.

By contradiction, assume that α is not totally contained in the strip bounded by γθ̃
and β̃. Assume that α(0)= β̃(0) ∈ β̃ and that α(t) is contained in the strip bounded by
γθ̃ and β̃ for every t < 0. Take any Riemannian metric in the surface M and lift it to
M̃ . If the angle between α′(0) and β̃ ′(0) is not zero in this Riemannian metric, then a
shortcut argument (see Figure 1) shows that α(−∞, 0] is not minimizing for the Finsler
metric. This contradicts the absence of conjugate points in the Finsler surface, so α must
be contained in the strip Ã as we claimed.

In Figure 1, T is a deck transformation preserving γθ̃ and β̃. Notice that in the figure we
represent a transversal intersection of the geodesics α and β̃, but since the Finsler metric
might not be reversible, they might have a non-transversal intersection: α′(0) might be
tangent to −β̃ ′(0). Nevertheless, a shortcut argument proceeds as well as in the case of
transversal intersection, as shown in [7, Proof of Lemma 2.1]. The sublemma implies that
the projections of the orbits in the dynamical centre unstable manifold of θ̃ which meet
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the strip Ã are bi-asymptotic to γθ̃ . And by the divergence of geodesic rays such orbits
must be subsets of the centre stable leaf of θ̃ . We thus obtain a strip Â ⊂ Ã bounded by
γθ̃ containing an open subset where the strongly forward asymptotic geodesics of γθ̃ are
backward strongly asymptotic to γθ̃ , proving the claim.

To finish the proof of the lemma, observe that the claim contradicts the hyperbolicity
of θ unless the strip Ã reduces to γθ̃ . Indeed, the transversality of dynamical stable and
unstable manifolds of hyperbolic orbits implies that the canonical projections of forward
asymptotic orbits of θ are always transversal to the projections of backward asymptotic
orbits of θ . 2

Proof of Proposition 5.3. By Lemma 5.4 every pair of orbits in the centre stable leaf of
a hyperbolic closed orbit is strongly asymptotic, so the distance between any two such
orbits tends to zero as time goes to +∞. Let θ be a periodic point, and η ∈F cs

θ . If f
is a continuous first integral of the geodesic flow, its value in the orbit of η is a constant
c(η), which, by continuity, approaches the constant c(θ)= f (θ) attained at the orbit of θ .
Hence, c(η)= c(θ) for every η ∈F cs

θ , thus proving the proposition. 2

5.3. Proof of Theorem 1. The proof of Theorem 1 is a consequence of the results of §4,
Proposition 5.3, and the following well-known result due to Katok [20].

KATOK’S THEOREM. A C1+α , α > 0, flow on a three-dimensional manifold, with positive
topological entropy, has a hyperbolic closed orbit with a transverse homoclinic point.

Applied to geodesic flows of compact surfaces of genus greater than one, Katok’s
theorem gives us the existence of a hyperbolic closed orbit. Indeed, the exponential
growth of the fundamental group of M implies that the topological entropy of the geodesic
flow is positive (this was shown by Dinaburg [8] for Riemannian metrics but the proof
extends to Finsler surfaces as observed, for instance, in [24]). By Katok’s theorem, there
is always a periodic hyperbolic orbit, and the conjugacy of the central foliation with a
hyperbolic central one (Proposition 4.7) yields that each central leaf is dense in T1 M . By
Proposition 5.3, every first integral is constant in T1 M .

6. Landsberg metrics without conjugate points are Riemannian
In this section we show Theorem 2.

THEOREM 2. Let (M, F) be a C4 Finsler metric in a compact surface of genus greater
than one, without conjugate points. If (M, F) is a Landsberg metric then (M, F) is
Riemannian.

Let I be the function defined in §2.4. We recall that, (M, F) is of Landsberg type if and
only if I2 = 0. In the notation of §2.4, I2 is the derivative of I with respect to the geodesic
vector field, so I2 = 0 if and only if I is a first integral of the geodesic flow. Therefore,
using Theorem 1 we get the following corollary.

COROLLARY 6.1. Let (M, F) be a C4 Finsler metric in a compact surface of genus
greater than one, without conjugate points. Then I2 = 0 if and only if the invariant I
is constant in T1 M.
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Therefore, assuming that (M, F) is of Landsberg type, we conclude that I is constant.
The following lemma implies that this constant is zero (see [4]).

LEMMA 6.2. Let (M, F) be a Landsberg surface. Let us suppose that I is constant in
T1 M. Then, this constant is equal to zero.

Since I = 0 if and only if (M, F) is a Riemannian surface, we get Theorem 2.

7. Further applications: around the works of Foulon and Ikeda
In this section we give some further applications of our results on C4 Finsler metrics
without conjugate points, motivated by some papers by Foulon [12] and Ikeda [19]. In
these papers, the condition K2 = 0, that is, K is constant in the direction of the geodesic
flow, is considered.

First of all, let us recall from Foulon [12] (see also [3]) that K2 = 0 if the Finsler
structure satisfies the following three conditions:
(1) reversibility;
(2) C3 differentiability away from the zero section of T M ;
(3) it is locally symmetric, that is, geodesic reflection at any point is a local isometry.

PROPOSITION 7.1. Let (M, F) be a C4 compact Finsler surface of genus greater than
one, without conjugate points. If K2 = 0 then K is constant.

Proof. By our assumptions, K is a continuous first integral of the geodesic flow, so, from
Theorem 1, K is a constant. 2

Next, let us recall the following theorem due to Ikeda [19].

THEOREM 7.2. Let (M, F) be a connected Landsberg surface. Suppose that

K2 = 0.

Then:
(i) K is constant;
(ii) (M, F) must be Riemannian whenever that constant is non-zero.

Our results lead to the following lemma.

LEMMA 7.3. Let (M, F) be a compact Finsler surface of genus greater than one, without
conjugate points. If K2 = 0, J2 = 0, then K is constant and F must be Riemannian
whenever that constant is non-zero.

Proof. As J2 = 0 the Bianchi identity (obtained from (S3))

K3 + K I + J2 = 0,

where K3 is the derivative with respect to the vertical direction, becomes

K3 + K I = 0.

Since K2 = 0, the previous proposition implies that K is constant, so

K I = 0.

Therefore, if the constant curvature K is non-zero, we conclude that I = 0 and (M, F)
must be Riemannian. 2
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