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This paper studies the asymptotic behaviour of the solutions of the scalar
integro-differential equation

z'(t) = —az(t) + ./0 k(t —s)z(s)ds.

The kernel k is assumed to be positive, continuous and integrable. If

oo
(1>/ k(s)ds,

it is known that all solutions x are integrable and z(¢) — 0 as ¢ — oo, but also that
z = 0 cannot be exponentially asymptotically stable unless there is some v > 0 such

that
oo
/ k(s)e?*ds < oo.
Jo

Here, we restrict the kernel to be in a class of subexponential functions in which
k(t) — 0 as t — oo so slowly that the above condition is violated. It is proved here
that the rate of convergence of z(¢t) — 0 as t — oo is given by

.ox(t) :1:(0)

i )

100 k1) (a — [T k(s)ds)?

The result is proved by determining the asymptotic behaviour of the solution of the
transient renewal equation

t (o)
r(t) = h(t) + / h(t —s)r(s)ds, / h(s)ds < 1.
Jo J0
If the kernel h is subexponential, then

t 1
TG N
t—oo h(t) (1 — J7° h(s)ds)?

1. Introduction

There is a considerable literature (cf. [4-7,11,14]) devoted to the study of the asymp-
totic behaviour of solutions to the scalar convolution integro-differential equation

2 (t) = —ax(t) —|—/O k(t — s)x(s)ds. (1.1)
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We suppose that a > 0 and that k is continuous, integrable and positive on [0, 00),
in which case z is continuously differentiable and does not change sign. If

a>/0 k(s)ds, (1.2)

it is proved in [7] that the following all hold.

(i) Every solution z(t) of (1.1) converges to 0 as t — oo.
(ii) Every solution x of (1.1) is in L]0, c0).

(iii) The zero solution of (1.1) is asymptotically stable.

(iv) The zero solution of (1.1) is uniformly asymptotically stable.

Brauer [4] established that 0 is uniformly asymptotically stable if

a> /OOO k(s) ds.

a</ k(s)ds,
0

then z(t) — oo exponentially fast as ¢ — oco. The case

az/oook:(s)ds

is more subtle: if s — sk(s) is integrable, then the zero solution is uniformly stable,
but not asymptotically stable; if s — sk(s) is not integrable, the zero solution
is asymptotically stable, but not uniformly asymptotically stable. Corduneanu and
Lakshmikantham [11] posed the interesting question of whether uniform asymptotic
stability of the zero solution of (1.1) always implies its exponential asymptotic
stability. This was answered by Murakami [14], who showed that a necessary and
sufficient condition for the exponential stability of the zero solution of (1.1) is that
there be a number v > 0 such that

It is shown in [13] that if

/OO k(s)e7®ds < oo. (1.3)
0

The question arises of how quickly z(t) — 0 as t — oo if the kernel violates (1.3).

In this paper, a class of suberponential functions is introduced. The definition
of this class is closely related to the hypothesis of a theorem in [9]. The idea of
subexponential functions is a development of the definition of subexponential dis-
tributions introduced by Chistyakov [8]. It turns out that subexponential kernels
satisfy k(t)e’® — oo as t — oo for every v > 0. Hence (1.3) cannot hold, and
solutions of (1.1) cannot decay to zero exponentially.

Our method is to represent the solutions of (1.1) in terms of the solution r of

r(t) = h(t) —|—/0 h(t —s)r(s)ds, (1.4)
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/Oooh(s)ds < 1.

If (1.4) is integrated, we obtain a transient renewal equation. In [2] it is proved that
if

where

B ft h(s)ds
70 =76

is a subexponential distribution, then

. ftoo r(s)ds 1
lim == = = . 1.5
t—oo [Fh(s)ds (1— fo h(s)ds)? (1.5)

It is proved here in theorem 5.2 that if A is a subexponential function, then the rate
of decay of r(t) to 0 as t — oo is given by
r(t) 1

lim —= =

t=oo h(t) (1 — Jo° h(s)ds)?’

The idea of proving the existence of solutions of an integral equation in a space of
functions weighted by subexponential functions was used by Chover et al. [10].
Theorem 6.2 states that the rate of convergence z(t) — 0 as t — oo for solutions
of (1.1) is given by
x(t) z(0)

/
t
m— = limx()

tl—i>oo k() (a— fooo k(s)ds)?’ t—oo x(t)

=0 (1.6)

if k is subexponential. Under the weaker hypothesis that

t
k(s)d
K(t) = w
Jo K(s)ds
be a subexponential distribution function, we find in theorem 6.5 that
(t)

S a(s)ds z(0) m _
A [ k(s)ds — (a— [T k(s)ds)?’ L, S a(s)ds e

This complements the theorem of Burton [6] that if k(¢) > 0, k is integrable and x
is a non-vanishing integrable solution of (6.1), there is a constant 3 > 0 such that

ftoo z(s)ds
ftoo k(s)ds z

for all ¢ > 1. Wong and Wong [18] is an interesting paper that considers a different
class of linear convolution equations and determines precisely the regularly varying
asymptotic behaviour of the solution at infinity for a regularly varying kernel. This
is another example of the asymptotic behaviour solution of the kernel determining
that of the solution.

Teugels [16] proves a converse to the result (1.5); namely, if (1.5) holds, then
H must be a subexponential distribution. We establish converse results for both
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theorems 6.2 and 6.5. If (1.6) holds, & must be a subexponential function, and
if (1.7) holds, K must be a subexponential distribution.

Our results on the transient renewal equation (1.4) are given in §5 and those on
the integrodifferential equation (1.1) in §6. The proofs are given therein. For ease
of reading, the demonstrations of preparatory and technical lemmata are collected
together in §7.

2. Some notation and subexponential distributions

Firstly, we introduce some notation. RT is the set [0, 00). If F is integrable and G
has bounded variation, we put

(F*G)(t) = /OtF(t — 5)dG(s), t>0.

We set G*! = G and G*("t1) = G*" x G. Similarly for integrable functions f and g
on RT, the convolution of f with g is defined to be

(f * 9)(t) = /0 F(t— $)gls)ds, 3 0.

The n-fold convolution f*" is given by f*! = f and f*"+t1) = fx f** for n > 1.
The two convolutions x and * are related by

(F+)(0) = [ (7+a)(s)ds.
if . )
F(t)z/0 f(s)ds and G(t)z/0 g(s)ds.

Chistyakov [8] introduced the class of subexponential distribution functions. An
excellent account with applications to age-dependent processes can be found in [2,
ch. IV].

DEFINITION 2.1. Let G be a distribution function on R. Then G is subexponential
if G(0+) = 0 and
1—(G+xG)(t) 5
im ——————= =2.
t—oc 1 —G(t)
The class of subexponential distribution functions is denoted by S.
Chistyakov [8] showed that if G is a subexponential distribution function, then

lim 1-G(t—s)

uniformly for s in compact intervals of RT. Chistyakov [8] demonstrated that a
consequence of (2.1) is that subexponential distribution functions have ‘heavy tails’
that decay more slowly than any exponential functions.
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LEMMA 2.2. Let G be in S. Then, for all v > 0,

lim (1 — G(t))e"" = .

t—o0

We record some properties of subexponential distributions, which are used in
later proofs. It is important that S is closed under asymptotic equivalence. The
following result, which is alluded to in [9], is theorem 3 of [16].

LEMMA 2.3. Let G be in S, and F a distribution function satisfying F(0+) = 0
and

1-F(t)
lim ————= > 0.
oo 1 — G(1)
Then F is also in S.
Next we state lemma 2.5.2 of [15].

LEMMA 2.4. Let G be in S and F a distribution function satisfying

. 1—-F@®)
tlingol—G(t) A=0
Then
1= (FxG)(t)
A 1-G() =1+A

and F %G isin S.

The following lemma is useful in demonstrating a converse to our result on the
convergence of the tails of solutions of the integrodifferential equation (1.1). Its
proof is given in §7.

LEMMA 2.5. Let F and G be distribution functions such that F(0+) = 0 and G
satisfies (2.1). If

O 1-F(t) 1 (FQ)(1)
lim ———2 — lim —— W)
oo 1T — G(1) A>0, im —— G() Y
then
il G2 O

i
o 1 F(1)

3. Subexponential functions

3.1. Definition of subexponential functions

Our definition of subexponential functions is a based on the hypotheses of theorem 3
of [9].
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DEFINITION 3.1. A subezponential function is a continuous mapping h : RT — R,
with h(t) > 0 for all t > 0, h in L}(RT) and

A ey 0 (US0)
h*2(t) /Oo
li =2 1
Jim ) | h(s)ds, (US1)
. h(t—s)
tlirgo TORE 1 for each fixed s > 0. (US2)

A positive subexponential function is a subexponential function that satisfies
h(t) > 0 for all ¢ > 0. The class of subexponential functions is denoted by U.

DEFINITION 3.2. A continuously differentiable subexponential function h : RT —

R, which, in addition, satisfies the condition
h(t

lim ®)

=0, (US2b)

is called a smooth subexponential function.

Some facets of definition 3.1 should be further discussed. Condition (US2) is
equivalent to t — h(logt) being slowly varying. Due to Karamata’s uniform con-
vergence theorem, equation (US2) implies the condition

h(t—s) B
MO 1’ =0 (US2a)

lim sup
t—o0o 0<s< A

for each A > 0. Thus (US2) and (US2a) are equivalent.
Chover et al. [9] use complicated Banach algebra techniques to show that if
h :RT — R is a positive continuous function in L*(R*), satisfying (US2) and

h*Q(t)
li = 1
Jim o) ¢, (US1a)

c:2/oooh(s)ds.

However, we prefer to require condition (US1) in definition 3.1 rather than (USla).
Equation (US0) is included because we do not only consider positive subexponen-
tial functions but allow h(0) = 0: for continuous h with h(0) > 0, equation (US0)
is always satisfied. If h is C! at 0, h(0) = 0 and h’(0) > 0, then (US0) is satisfied.
For convenience, we set h*"(0)/h(0) = 0. By (US0) and (US1), t — h*2(t)/h(t) is
a bounded continuous function on R¥.
If h satisfies (US2b), it follows from the identity

h(lz(f)s> . Xp{/_ I;w(:)) dT} -

that h satisfies (US2a). Thus (US2b) is a stronger condition than (US2).

then
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Our nomenclature of a subexponential function is justified by the fact that if h
satisfies (US2),
lim h(t)e" = oo, for all 4 > 0. (3.1)

t—o0

3.2. Criteria for functions to be subexponential

Next we consider conditions that can help determine whether a function belongs

to U.
Recall that a measurable function h is said to be regularly varying at infinity if
h
o PO«
)

for some finite v and all v > 0 (cf. [3]). Examples of members of this class include
functions h with h(t) ~ t°, or h(t) ~ t?logt, both as t — co. We say that a function
h is of dominated variation at infinity if

h(vt
limsup sup (—7)<oo.

t—oo ~e[1/2,1] h(t)
This definition is motivated by the notion of distribution functions with tails of
dominated variation (cf. [3, Appendix 4]). A distribution function F' is said to have
tails of dominated variation if

1 F()2)
1 - 7 7
P TT o F(

We elucidate the relationships between U and functions with these properties.
The proof is relegated to § 7.

PROPOSITION 3.3. If h is a positive continuous integrable function that is reqularly
varying at infinity, then it is also subexponential. Furthermore, a positive continu-
ous integrable function that is of dominated variation at infinity, and, in addition,
satisfies (US2), is subexponential.

This result has parallels for distribution functions. In [17, §8, ch. VIII], Feller
shows that if the tail of a distribution function F' is regularly varying, then F' is
subexponential, while Goldie [12] proves that if a distribution function F supported
on RT satisfies (2.1) and has tails of dominated variation, then F is a subexponential
distribution.

Note that the class of continuous, positive and integrable regularly varying func-
tions is a strictly smaller class than the class of positive subexponential functions.
For example, the positive continuous integrable functions that behave according as
h(t) ~ e~t" for a € (0,1), or h(t) ~e~t/1°8"t both as t — oo, are subexponential,
but neither are of regular, nor dominated, variation.

Note also that if A has all the properties of subexponential functions except (US2)
and is decreasing, then it must a fortiori satisfy (US2). The proof is similar to [8,
theorem 1] or [2, lemma 3].

Chover et al. provide in [9, remark 1] a condition for a non-negative continu-
ous integrable function h on R™ to satisfy (US1). Here we present another that
corresponds to [16, theorem 2].
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PROPOSITION 3.4. Let h be a non-negative continuous integrable function on RT.
Suppose that

(1) limy oo h(t) = 0 and t — —logh(t) is asymptotically concave;
(i) there is a function g such that 0 < g(t) — oo and t — g(t) — o0 ast — oo

" )
Jim = =
(iii) th(g(t)) — 0 as t — oo.
Then h satisfies (US1).

This can be used to show that positive continuous functions h with h(t) ~ e t”

as t — oo are subexponential for o € (0,1) (put g(t) =t P for 0 < g < 1 —a).

3.3. Some important lemmata

We end this section with some remarks and technical lemmata.
REMARK 3.5. If h is subexponential, there is a constant 0 < M}, < co such that

su h*3(t)
t?IO) h(t)

= M. (3.2)

Athreya and Ney [2, lemma 7, § 4, ch. IV] include a result of Kesten’s, providing
a uniform bound for
1—-G*(¢t)
0 1-G(1)
where G is a subexponential distribution function. It allows the use of the dominated
convergence theorem to obtain limits. The following lemma is the generalization of

Kesten’s result for subexponential functions.

LEMMA 3.6. Let h be subexponential. For each ¢ > 0, there is a constant k > 0,
independent of n, such that, for all n > 2,

0
o0 h(t)

S w146,

where -
0= / h(s)ds. (3.3)
0
The next lemma is also needed, and is used in the proof of the above vital result.

LEMMA 3.7. Let h be subexponential. For each n > 0, there is a B > 0, independent
of n, such that, for allm > 2,

n—1

h*"(t
sup 0

<
o<t<B h(t) S
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We later establish converses of our main results, proving that the kernel % in the
integro-differential equation (1.1) is subexponential. The following lemma is used.

LEMMA 3.8. Let f and g be positive continuous functions on RT. Suppose further
that g is integrable, satisfies (US2) and

lim&=A>0, lim(f*—g)(t)zy.
A g(0) e gl
Then f is integrable, satisfies (US2) and
(N - B
gim LB~ [ 05) = o) s

4. Spaces of functions weighted by subexponential functions

We now establish some properties of subexponential functions and spaces of
bounded continuous functions weighted by subexponential functions. Proofs are
collected together in §7.

Let h be a subexponential function on R*. Then BC}(RT) is defined to be the
space of functions f on R such that f = ¢h for some bounded continuous function
¢ on RT. By convention, we write ¢ = f/h and understand f(0)/h(0) = ¢(0).
BCy(RT) is usually abbreviated to BC, here. It is a Banach space if equipped
with the norm

@

h(t) |

[ flln = Mpsup
>0

where M), is defined in (3.2). We denote by BC}, the closed subspace of functions
in BC), for which
Lpf:= lim Lt)
25 ()

exists. L : BC, — R is a bounded linear operator on BC!. BCY is defined to
be the closed subspace of functions in BC! for which L, f = 0. By definition 3.1,
hxh = h*?isin BC! and

Ly(h*?) = 2/ h(s)ds.
0
The following result is partly based on [9, lemma 1].

THEOREM 4.1. Suppose that h is a subexponential function. Then BC}, is a com-
mutative Banach algebra with the convolution as product, and BC! and BCY are
subalgebras. If f and g are both in BC!,

Ly(fxg)= th/ g(s)ds + th/ f(s)ds. (4.1)
0 0
A simple induction argument using theorem 4.1 establishes the following result.

COROLLARY 4.2. Let h be subezponential. Then h*" is in BC} for everyn > 2 and
Lp(h*™) = nu™~, where u is defined as in (3.3).
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It is important later to prove that the resolvents of subexponential functions are
subexponential. The following lemma is employed. It is an analogue of lemma 2.3
for subexponential functions.

LEMMA 4.3. If f is in BCL and Ly f # 0, then f satisfies (US1) and (US2). More-
over, if, in addition, f is positive and limy_o4 f(t)/h(t) > 0, then f is subexponen-
tial.

A corollary of this lemma is the following observation, which corresponds to
lemma 2.4.

PROPOSITION 4.4. Let h be in U. Suppose that f is in C(RT) N LY(RT), positive

on (0,00) and
lim & >0, lim &

0.
) A h)

Then f is also in U.

5. Subexponential solutions of transient renewal equations

This section considers solutions of the linear scalar convolution equation
r(t) = h(t) + /t h(t —s)r(s)ds, t>=0, (5.1)
0
with A subexponential and
W= /OOO h(s)ds < 1. (5.2)
Then r is positive on (0, 00), continuous, integrable and

>~ p
r(s)ds = ——.
| s = =

It can also be represented by the Neumann series

oo

r(t) =Y htm(1). (5.3)

n=1

r is called the resolvent of h, since every solution of

y(t) = f(t) —|—/0 y(t —s)h(s)ds, t=0, (5.4)

can be represented as

y(t) = f(t) —|—/0 r(t —s)f(s)ds. (5.5)

Integration of (5.1) yields the renewal equation

U(t) = uH(t) +u/0 Ut —s)dH(s), (5.6)
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where
H(t) = —/0 h(s)ds, U(t) :/0 r(s)ds. (5.7)

If (5.2) holds, equation (5.6) is a transient remewal equation. Clearly, U(co) =
p(l—p)~t

A sharp result is known on the convergence of the tails of the distributions in (5.6).
The fact that (i) implies (iii) follows from [2, theorem 3, §4, ch. 4]; the rest of the
result follows from [16, theorem 4].

THEOREM 5.1. Let H be a distribution function with H(04+) = 0. Suppose that
0 < pu < 1. Let U be the solution of (5.6). Then the following statements are
equivalent.

(i) Hisin S.
(il) U/U(0) is in S.
(iii) The rate of convergence of U(t) — U(oc0) as t — 00 is given by

U -UW) s
RO 58

For solutions r of (5.1), equation (5.8) is equivalent to

lim ftoo r(s)ds _ 1

o [ R(s)ds (- @2

Here we establish a result on the convergence of the densities of the distributions,
rather than their tails. The only other theorem of this kind that we know of is
theorem 2’ of [10].

THEOREM 5.2. Let h be a subexponential function satisfying (5.2). Then the resol-
vent r defined by (5.1) is in BC! and
1

LhT‘ = m (59)

Also, r is subexponential.
Moreover, if f is in BCy, the solution y of (5.4) is also in BCy,. If f is in BC},,
then y is in BC! and

Lpy = 1iluth—|— (1_1M)2/O f(s)ds. (5.10)

Proof. By the representation (5.3) for r, corollary 4.2 and the uniform convergence
implied by lemma 3.6,

(I L () I S (1 (O I N |
E&W—tli%oz:l h(?) =2 Jim h(t) =2 B

n= n=1
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To prove that r is subexponential, we show that r(¢)/h(t) — 1 as t — 0+. It
follows that r is in BC}L. Since Lpr > 0, lemma 4.3 then asserts that r is subexpo-
nential. Choose 0 < 7 < 1. By lemma 3.7 and (5.3),

1
GO
o<s<B h(s) ~1—n
where B is the number whose existence is asserted in lemma 3.7. For 0 < t < B,
(r*h)(t) < 1 Rh*2(t)
h(t) ~ 1—n h(t)

Because r = h + 1 * h, we immediately see that r(¢t)/h(t) — 1 as t — 0+.
The properties of the solution y of (5.4) follow from the representation (5.5) and
theorem 4.1. A simple calculation using (4.1) establishes (5.10). O

6. Linear integro-differential equations

In this section we consider the asymptotic stability of the scalar linear Volterra
integro-differential equation

2’ (t) = —ax(t) —|—/O E(t—s)x(s)ds+ f(t), x(0)= xo, (6.1)

under the assumption that & > 0 on RT, k is in C(RT)NLY(R™) and f is in C(R™T).
It is convenient to introduce the differential resolvent z, which is the solution of

t
2'(t) = —az(t) —|—/ k(t—s)z(s)ds, =2(0)=1. (6.2)

0
It is easily shown that z(¢) > 0 for all ¢t > 0. If k is in C(RT) N L'(RT), £ > 0 on

R* and -
a >/ k(s)ds,
0

theorem 1 of [7] says that z is in L'(RT) and z(t) — 0 as t — oo. The significance
of the differential resolvent is that the solution of (6.1) can be expressed as

z(t) = z(t)xo + /0 z(t — s)f(s)ds. (6.3)

We represent the differential resolvent z solving (6.2) in terms of the resolvent of a
transient renewal equation.

PROPOSITION 6.1. Let k be in C(RT). The unique continuous solution of (6.2)
satisfies
z=e+exr, (6.4)

where e(t) = e~ for t >0, h = exk and r is the resolvent given by (5.1).
Proof. See the beginning of the proof of theorem 2 of [1]. O

The next result is the main result of this section.
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THEOREM 6.2. Let k be a positive subexponential function. Suppose that

a> /OOO k(s) ds.

Then the differential resolvent z, given by (6.2), is in BCL and satisfies

1 /
lim ﬂ = lim 7 ()

t—oo k(t)  (a— fooo k(s)ds)?’ t—oo 2(t)

=0. (6.5)

Moreover, z is subexponential.

Proof. Firstly, it is proved that h = e * k is subexponential. Clearly, h(t) > 0 on
(0,00), h is continuous and (5.2) holds, where

uzllmuﬁw.

a
By hypothesis, p < 1. By (3.1),

ﬂ = _1 — 0 ast— oo.
0~ Hoe
Since also e(t)/k(t) — 1/k(0) > 0 as t — 0+, e is in BCy. By theorem 4.1, h = exk
is in BC! and
o0 o0 1
Lih = Lke/ k:(s)ds—|—/ e(s)ds = —. (6.6)
0 0 a
By lemma 4.3, h has the properties (US1) and (US2). Clearly, h is continuous.
For each € > 0, there is a number 0 < § < 1 such that 0 < ¢t < § implies that
k*2(t)/k(t) < e Let 0 <t < 4. Since e*?(t) = te~ %

3

h*2(t) fot E*2(t — s)se™ % ds - fot k(t — s)se™** ds
= €
h(t) fot k(t — s)e—as ds fot k(t — s)e—as ds

<et<ed e

This shows that h satisfies (US0). Hence h is subexponential. Theorem 4.1 can now
be applied.
To complete the proof, observe that by (4.1), (5.9), (6.4) and (6.6),
Lyz = Lige+ Li(r xe)
= LyhLp(r *e)

- é(Lhr /OOO o(s)ds + Lhe/ooo r(s) ds>

1
a?(1— p)?’

because Lie = Lpe = 0. This result, equation (4.1) and the observation that

e 1
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together imply

Lyz' = Lg(—az + k*z) = —aLgz + Lkz/ k(s)ds+ / z(s)ds = 0.
0 0

Since limy o4 2(t)/k(t) = k(0)™! > 0 and Liz > 0, lemma 4.3 implies that z is
subexponential. Clearly, z is in BC!. O

COROLLARY 6.3. Let k be a positive subexponential function. Suppose that

a> /OOO k(s) ds.

For every f in BCL, the solution x of (6.1) is in BC} and

= L T - s)ds b
ka_(a—foook:(s)ds)2<0+/0 f()d>+a—foook:(s)ds'

Proof. Tt has been proved that z is in BC! and that (6.7) holds. Hence theorem 4.1
can be applied to the representation (6.3) to infer that x is in BC}L and obtain the
above formula for L. O

There is a converse to theorem 6.2, which shows that the hypothesis that k& be
subexponential is required for the conclusion to hold.

THEOREM 6.4. Let k be a continuous positive function in L*(RY) and z the differ-
ential resolvent defined in (6.2). Suppose that

a> /OOO k(s) ds.

Then
(i) k is subexponential;
(ii) z satisfies the conditions (6.5),
are equivalent, and either implies that z is a smooth subexponential function.

Proof. Theorem 6.2 asserts that if k£ is subexponential, then z has the properties
n (6.5). We suppose now that z obeys (6.5).

It has been observed that lim;_ . 2'(¢)/2(t) = 0 implies that z has the prop-
erty (US2). Since lim; .o 2(t)/k(t) > 0, k must also satisfy (US2). It follows
from (6.2) and (6.5) that

im FFAE
AT )
Since z(t) — 0 as t — oo and z is positive, the integration of (6.2) leads to (6.7).
By applying lemma 3.8, we see that
(k* k)(t) a®(1 — p)?

=a+ap—
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We can characterize for solutions of (6.2) the decay rate of the tail of the integral

/ z(s)ds ast — oo.
t

Let
B ftk:(s)ds B ftz(s)ds
K(t) = m, Z(t) = m, t>0. (6.8)

We also use the notation in (5.7).

THEOREM 6.5. Let k be a positive integrable function on (0,00). Suppose that

a> / k(s)ds.
0
If K defined in (6.8) is in S, the differential resolvent z given by (6.2) satisfies
> 2(s)d 1
lim ffoo 2s)ds _ _ Com ==Y o (69
t=oo [T k(s)ds  (a— [y k(s)ds)? t—oo [ 2(s)ds
Moreover, Z given in (6.8) is in S.
Proof. Firstly, we note that (6.8) implies that
o0 d _
ftoo z(s)ds _ 1 1 Z(t). (6.10)
[ k(s)ds  a?u(l —p) 1 — K(t)
Also, it is a consequence of (6.4) that
1-Z(t) 1—E(t) U(oo) — (ExU)(t)
— =1 - )/ = 1-— 6.11
= K() ( “)1—K(t)+( 1) = K@) : (6.11)

where E(t) = 1 — e . The limit on the right-hand side of (6.10) is evaluated by
considering each of the terms

1—-FE@{) U(co)—(ExU)(t) U(oco)—-Ul(t) and 1—H(t)
1-K(t)’ U(co)=U(t) 1—H(t) 1-K(t)
as t — o0.
Integration of h = e * k leads to the formula H = E x K for the distribution
defined in (5.7). We infer from lemma 2.2 that
1-Et) 1

—K@)  o(1-K@) " (6.12)

as t — 00. Therefore, from lemma 2.4,
1 — _

(FE * K)(t) ~ lim 1 H(t)’
t—oo 1 — K(t) t—oo 1 — K(t)

and H is in S. By theorem 5.1, U(-)/U(oc0) is in S and (5.8) holds. Therefore, it
follows from lemma 2.2 that

(6.13)

1-F
lim *)

AT - Um

https://doi.org/10.1017/50308210500001761 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001761

536 J. A. D. Appleby and D. W. Reynolds

Lemma 2.4 implies that

| U0 = (BxU)(®)
= U(00) — U (D)

(6.14)

It follows from (6.11), (6.12), (6.13), (5.8) and (6.14) that

lim L= Z() 0
1m =
tooo 1 —K(t) 1—p’

and hence (6.9), with the aid of (6.10). Also, we can infer from this limit and
lemma 2.4 that

1= (K*2)(%) 1—p 1
lim ———— =14 —=—. 6.15
0] T I (6.15)
Manipulation of (6.2) gives
(1= p)2(t) =1 - 2(t) — p(1 = (K * Z2)(1))- (6.16)
Due to (6.15), this implies the second equation in (6.9). O

THEOREM 6.6. Let k be a continuous positive function in L*(R*) and z the differ-
ential resolvent defined in (6.2). Suppose that

a> /OOO k(s) ds.

Then the following are equivalent.
(i) K is a subexponential distribution.
(ii) z satisfies the conditions (6.9).
Moreover, either implies that Z is in S.

Proof. The fact that (i) implies (ii) has been established in theorem 6.5. Assume
now that (ii) is true. By hypothesis,

1—-Z2(t) 7

tlirga1_K(t):1_M’ tlirgu_—z(t)zo'
Therefore, since (6.16) holds,
im A Ex @) 1
t—oo 1 —Z(t) 7
It follows from lemma 2.5 that K is a subexponential distribution. O

7. Some proofs

In this section we gather the proofs of some lemmata from previous sections.
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7.1. Proof of lemma 2.5
We consider
t

LTQ%6%2:1+1;LT§%®2dF@y

It can be shown from the identity
1-F(t—s) 1-Ft—-s)1-G({t—s5)1-G(t)
1—-F(t) 1-Gt—s) 1-G(t) 1-F(t)

that F(t—s)/F(t) — 1 as t — oo uniformly for s in compact subsets of R*. Hence,

for any A > 0,

L 1—F(t—s) F(t)—F(t—A) 1-F(t—A)

L o < g = S e
as t — 00. Also,

fA1—F@—s AL F(t—s)1—G(t —s)
A 1—F(t Gi—s 1-F@p G

SR
.

{1—F@—s)_k}1—G@—shﬂw@

1-G(t—s) 1— F(t)
A Gt —s)
(7.2)
But
A Gt —s)
/0 T —Fm F dF(s)
C1=(Fx)®) . [f 1=G(t—s) v
TT1-FO) 1‘[A —ra FE oyl

as t — 00, because, by (7.1),

L 1-G(t—s)
L R

1-G(r) [* 1-F(t—s) .
\offi’Al—Fm/t_A —r FW 0

as t — oo. Also, given € > 0, there is A > 0 such that

’1—Fﬁ)

1——G(7')_)\ <€

if 7 > A. Hence, for t > A,
t—A
1-F(t—s) 1-G(t—s)
it AR/ W Gl S A
| {1—G<t—s> A} —rp 7

Se/ot_Alzf—(;(;)s)dF(s)He(%—l) as t — 00.
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Since € is arbitrarily small, it follows from (7.1) and (7.2) that

AL F(t—s)
/0 1_—F(t)dF(S)—>I/—)\

as t — 00, completing the proof.

7.2. Proof of proposition 3.3

Clearly, if h is regularly varying at infinity, it is also of dominated variation. By
positivity, equation (US0) is automatic. Equation (US2) is true by hypothesis. Next

we note that

lim =

0
is equivalent to (US1). Define

t/2 —s)h(s)ds o
LMl _ 7,
0

h(yt
C =limsup sup L)
t—oo ~e[1/2,1] (1)
For every € > 0, there exists A > 0 such that
e €
h(s)ds < — < 3e.
[ s < o < e

Consider, for t > 2A, the identity

1 t/2 0o
m/o h(t —s)h(s)ds _/0 h(s)ds

(7.4)

= [ s [ an [T has

From (7.3), (7.4), (US2) and the fact that h is of dominated variation

1 t/2 0o
m/o h(t — s)h(s)ds _/0 h(s)ds

Since € > 0 is arbitrary, we conclude the proof.

lim sup <€

t—o00

Note that if h is regularly varying, the representation theorem yields (US2)

directly. See [3, theorem 1.3.1] for slowly varying functions.

7.3. Proof of lemma 3.6
Let € > 0. We define

= su i 0)
"0 TR
The idea of the proof is to infer from
t
h*™(s)h(t — s)
pi1 < SU / — -~ ds
i ogth 0 h(t)
A t

R (s)h(t — s) / h*™(s)h(t — s)

+ su / ——  ~ds+su ———2ds

) erJa bl
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an inequality of the form
ani1 <+ (14 epuay,, n=2. (7.5)

The result then easily follows.
Due to (US1) and (US2), there are numbers 0 < A < T such that

/Otwds—/oAh(s)ds

h(t)
h(t—s)
h(t)

<p(l+3e), t=A,

sup 1| < %e, t>T.

0<s<A

Since

/At bt — s)h(s) ;(?)h(s) ds = /O st—/f h(s)ds—/OA h<s>{ h(fb(;)s) —1} s,

it easily follows that

sup ds < (14 €)p,

t=T

/t h(t — s)h(s)
A h(t)
and hence that

L (s)h(t — s)
f;g/A Tds < (14 e)pay,. (7.6)

Let 0 < 7 < 1 and 0 < B < A be the corresponding number mentioned in
lemma 3.7. Then, for 0 < t < B,

L (s)h(t — s) B LR (s) h(s)h(t — s)
/ = [

n—1 h‘*Q(t)

ds <n

Similarly for B <t < T,

LR (s)h(t — s) B B pxn(s) h(t — s)h(s) L (s)h(t — s)
I i A e a b o

*2 o h(t) [*
< n—lh (t) méx0§t< ( ) / h*n(s) ds
h(t) ming<i<7 h(t) Jp
Maxog t<oo N(t)
< My, + —20steo W) ()
h ming<i<r h(t) “
Hence .
h*™(s)h(t — s)
—— ~ds <.
OE?ET/O 0 '
Similarly,
A
h*™(s)h(t — s)
— 7 T ds< e,
up || e <

where cg is independent of n. Equation (7.5) has been established with ¢ = ¢; + ¢a,
completing the proof.
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7.4. Proof of lemma 3.7
The result follows from the inequality

M _ /t h*™(s) h(t — s)h(s) ds < W (s
0

7D s ) 0cece h(s) h(t)

~
>
*
N
—
~+
~—

and by choosing B such that

sup h*2(t)/h(t) < 1.

0<t<B

7.5. Proof of lemma 3.8
The fact that limy_o f(¢)/g(t) > 0 implies that f is in L'. Also, it follows from

ft=s) . ft—s)/glt—s) (glt—s) ft=s)/glt—s)
T fwie0 (g(t) 1)*( 70/9(0) 1)

that f has the property (US2). The remainder of the proof involves the identity

G000 O [ o D Y e
DO DO [t -ratonas = [ (L) is-rgtsn as

We demonstrate that the right-hand side tends to 0 as t — 0o, thus establishing
the lemma. Let € > 0. There is a number T > 0 such that |f(t)/g(t) — A| < € for all

t>T. Hence fort > T
<. L
T

r\ f(t)
TR 9(s)

ds

Also, because f satisfies (US2a),

[ (X5 1) v -satona 7O
which tends to zero as t — c0. It has been proved that
/;(f(;(;)s) - 1>(f(s) ~Xg(s))ds| < e<§ + /OOO g(s)ds>.

Since € is arbitrarily small, the proof of the lemma is complete.

< sup
0<s<T

lim sup

t—o0
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7.6. Proof of theorem 4.1
Let f and g be in BC}. Then

YRLEALIGI U ) 4 <
(7.7)

Hence (3.2) implies that [|f * g[ln < [[f[lnllglla-
Suppose that g € BCY. Clearly, g is in L*(R™). Let € > 0. There is a number

A > 0 such that

> t

[ late)las < ]ﬂ
A

<e forallt> A.

Suppose that t > A. Since

(PO [ e L [T
L, sea =g [, Rghena s

+ /0A<h(2(;)5) _ 1>g(s)ds — /AOO g(s)ds,

we see that

e

(s)| 1 h(t — s) /A
< — | — h(s)h(t —s)ds + -1 ds +
o il pome—ae e mp [H ] [Miacoras
t A
€ h(t —s) /
<e—|——/h5ht—sds—|— sup |———= —1 s)| ds.
h(t) Jo () ) ogsgA h(t) 0 l9(s)|

By taking the limit superior of each side as ¢ — o0, it is seen that (US1) and (US2)

o G [
CRIDID N S
| atsra

lim sup
h(t)

t—o00

establishing that

< 26/ h(s)ds + €,
0

Ly(gxh)= /000 g(s)ds (7.8)

for all g € BCY. If f € BCL, then f(t) = (Lnf)h(t) + f(t) for some f € BCY. The
linearity of L implies that

Lu(f *h) = (Lnf)Ln(h*h) + Ly(f  h)

_2th/ s)ds + Oof(s)ds
_2th/ ds+/ooof(s)ds—th/Oooh(s)ds

= th/o h(s)ds—!—/ooo f(s)ds. (7.9)
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We now prove Ly, (g*g) = 0 for all g € BCY. Let € > 0. There is a number 4 > 0
such that ¢t > A implies

(t)
m <€
Observe that if ¢t > A,
I L ["g(s)
5 [ att=sa(as] < g7 [ 2Bt = )lhis)as
SO / lg(t
Mgl =m)(0)
= h(t)
Hence, by (7.8),
) 1 t o]
hirisolip W/A g(t —s)g(s)ds| < 6/0 lg(s)| ds. (7.10)

Next we note that, for ¢t > 2A4,

’ﬁ /OA g(t = s)g(s) ds| =

[ () o
|

(v [t ) [ e
(e o [ 1) [

By (US2), we have

A
,% | att =)0

< 6/0 lg(s)]ds. (7.11)

)
1) together, we see that
Ln(g+*g) =0. (7.12)

If f and g are both in BCY, this result can be applied to Ly ((f + g) * (f + g)) to
infer that Lj,(f * g) = 0 and hence that BCY is a subalgebra. This fact and (7.9)
imply that BC} is also a subalgebra.

Finally, to establish (4.1), consider two functions f and g in BC} and express
them in the form

f=Enhh+f g=(Luh+3g
The formula (4.1) is derived by applying (7.8) and (7.12) to Ly (f * g).

7.7. Proof of lemma 4.3

Since

flt=5) flt=s) ht—=s) h(t)

fO T h(t—s)  h(t)  f(t)
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and h satisfies (US2), f must also satisfy (US2). Put A = Lj f. By writing

frf=(f—An)*(f— M)+ 2\f xh — X2h % h,

and noting that Lph =1 and Ly (f — Ah) = 0, we see that theorem 4.1 implies

Ly(f=f)= 2)\/000 f(s)ds.

Because A # 0, f then satisfies (US1). It follows from (7.7) that (f* f)(¢)/h(t) — 0
as t — 0+. Since lim; o, f(¢)/h(t) > 0, f satisfies (US0), as claimed.
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