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Plane shock waves and Haff’s law in a
granular gas
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The Riemann problem of planar shock waves is analysed for a dilute granular gas
by solving Euler- and Navier–Stokes-order equations numerically. The density and
temperature profiles are found to be asymmetric, with the maxima of both density
and temperature occurring within the shock layer. The density peak increases with
increasing Mach number and inelasticity, and is found to propagate at a steady speed
at late times. The granular temperature at the upstream end of the shock decays
according to Haff’s law (θ(t) ∼ t−2), but the downstream temperature decays faster
than its upstream counterpart. Haff’s law seems to hold inside the shock up to
a certain time for weak shocks, but deviations occur for strong shocks. The time
at which the maximum temperature deviates from Haff’s law follows a power-law
scaling with the upstream Mach number and the restitution coefficient. The origin
of the continual build-up of density with time is discussed, and it is shown that the
granular energy equation must be ‘regularized’ to arrest the maximum density.
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1. Introduction

During the last few decades, the microscopic and macroscopic properties of granular
materials have been studied under different physical conditions (Goldhirsch 2003;
Forterre & Pouliquen 2008). One extreme state of driven granular materials is a
granular gas (Pöschel & Luding 2001), which can be realized under strong external
driving (such as shaking), but it differs from a molecular gas in that the macroscopic
particles collide inelastically, resulting in a loss of kinetic energy (∼(1− α2), where
0 6 α 6 1 is the coefficient of restitution). Granular gases fall under the category
of rapid flows, which are well described by hydrodynamic-like equations. The
coarse-graining of the pertinent ‘inelastic’ Boltzmann equation results in Euler-
and Navier–Stokes-type equations, modified to account for inelastic dissipation that
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appears as an extra term in the energy equation. Such hydrodynamic equations
have been employed to understand the dynamics of granular fluids in different flow
configurations (vibrated bed, Couette flow, Chute flow, etc.) up to a moderate density.
One noteworthy feature of rapid granular flows is that they can be supersonic (Haff
1983), and shock waves form even under normal conditions (e.g. flow around obstacles
(Buchholtz & Pöschel 1998; Rericha et al. 2002; Amarouchene & Kellay 2006;
Boudet, Amarouchene & Kellay 2008), strong shaking (Bougie et al. 2002; Carrillo,
Pöschel & Saluena 2008) and shallow free-surface flows (Gray, Tai & Noelle 2003)).

A plane shock wave is generated when a supersonic gas flows into a subsonic gas;
mathematically, this is nothing but a discontinuity across which the hydrodynamic
fields undergo discontinuous jumps (Courant & Friedrichs 1948). The simplest
nonlinear equation that admits shock solutions is the inviscid Burger equation,
which represents a nonlinear ‘hyperbolic’ equation; a hyperbolic system in an
infinite domain (−∞ < x < −∞) with discontinuous initial conditions constitutes
the ‘Riemann problem’ of shock waves (Courant & Friedrichs 1948; Prasad 2001).
From an experimental viewpoint, the Riemann problem can be mimicked by the
one-dimensional version of the shock-tube problem, which comprises a gas-filled long
tube separated into two chambers by a membrane. The gases in the two chambers
are in equilibrium, but differ in pressure and density. After the membrane is burst,
a shock wave and a contact discontinuity travel into the low-pressure region of the
tube at supersonic speeds and a rarefaction wave travels in the opposite direction.
Apart from its interesting physical properties, the shock-tube problem also serves
as a standard benchmark to check (i) the accuracy of gas dynamics models as well
as (ii) the robustness of the numerical scheme to reproduce the shock profiles. The
analogous Riemann problem of ‘granular’ shock waves is interesting in its own right
and might be helpful for a better understanding of macroscopic properties of granular
gases as well as to check the validity of adopted hydrodynamic equations (Haff 1983;
Jenkins & Savage 1983; Goldshtein & Shapiro 1995; Esipov & Pöschel 1997; Sela
& Goldhirsch 1998; Garzo, Santos & Montanero 2007; Saha & Alam 2014).

In previous works on plane shock waves in granular gases (Goldshtein et al. 1995;
Kamenetsky et al. 2000), the Euler-level hydrodynamic equations, with dense-gas
corrections for pressure and inelastic dissipation, were employed to analyse the
well-known ‘piston’ problem: a rigid piston moves through an undisturbed granular
gas with a constant velocity, resulting in a steadily propagating shock front. Specific
assumptions were made on the state of the gas adjacent to the piston, yielding a
‘solid’ region (with maximum density and zero granular temperature) next to the
piston that coexisted with a non-uniform region having a propagating shock front at
the downstream end. The primary motivation of these works was to understand a
possible relation between the transport of mass and energy in a vertically vibrated
bed of granular material and the shock-wave propagation through the bed. Later
works (Bougie et al. 2002; Carrillo et al. 2008) investigated the role of shock-wave
propagation on the ‘pattern-formation’ scenario in a vertically vibrated bed by
solving the Navier–Stokes-order equations but supplemented with boundary conditions.
Derivation/postulation of the correct forms of boundary conditions still remains an
active field of research (Nott 2011) in rapid granular flows.

Leaving aside boundary effects, here we analyse the plane shock waves propagating
in an unbounded granular gas, which, to the best of our knowledge, have not been
studied before. The supersonic and subsonic granular gases are taken as the left
and right states, separated by a discontinuity whose time evolution is analysed (§ 2).
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Shock waves and Haff’s law in a granular gas

We solve the Euler and Navier–Stokes equations of a dilute granular gas using a
relaxation-type numerical scheme (§ 3). Our primary focus is to identify the structural
features of the granular shock profiles (of density, temperature and velocity, § 4) and
contrast them with those of an ideal molecular gas. In addition, the validity of Haff’s
law (Haff 1983) is critically assessed in the presence of a shock wave, and certain
scaling relations are uncovered. The large-time evolution of the shock profiles is
briefly discussed in § 4.2.3.

2. Hydrodynamic equations for a granular gas and plane shock waves

We consider a dilute granular gas of smooth inelastic spheres of mass m and
diameter d that interact via binary collisions. The macroscopic variables, namely the
mass density ρ, the hydrodynamic velocity u and the granular/kinetic temperature θ ,
are obtained via a coarse-graining procedure over the distribution function f (v, x, t):

ρ =
∫

mf dv ≡mn, ρui =
∫

mvi f dv, θ = 1
3n

∫
C2f dv, (2.1a−c)

where C = (v − u) is the peculiar velocity and n is the number density. At Navier–
Stokes (NS) order, other relevant moments are the pressure tensor pij and the heat flux
vector qi:

pij =
∫

mCiCj f dv ≡ pδij + σij, qi =
∫

m
2

C2Ci f dv. (2.2a,b)

The pressure tensor is decomposed such that p = ρθ is the pressure and σij is its
deviatoric part.

The hydrodynamic balance equations for the mass, momentum and energy can be
written as

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.3)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
+ ∂p
∂xi
+ ∂σij

∂xj
= 0, (2.4)

3
2
∂p
∂t
+ 3

2
∂(pui)

∂xi
+ ∂qi

∂xi
+ p

∂ui

∂xi
+ σij

∂ui

∂xj
=−3

2
D . (2.5)

The term on the right-hand side of (2.5) represents the rate of energy dissipation per
unit volume,

D = 4
3

nd2√π(1− α2)

(
1+ 3

16
a2

)
ρθ 3/2, with a2 = 16(1− α)(1− 2α2)

30α2(1− α)+ 81− 17α
(2.6)

representing the contracted fourth moment of the distribution function. The set of
balance equations (2.3)–(2.5) is made closed by providing constitutive relations for
σij and qi:

σij =−2µ
(

1
2

(
∂ui

∂xj
+ ∂ui

∂xi

)
− 1

3
∂ui

∂xi

)
and qi =−κ ∂θ

∂xi
− κh

∂ρ

∂xi
. (2.7a,b)
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The simplified expressions for the shear viscosity µ, the thermal conductivity κ and
the higher-order thermal conductivity κh are given by (Garzo et al. 2007; Kremer &
Marques 2011)

µ= 5
4

m
d2

√
θ

π

1

(1+ α)(3− α)
[
1− a2

32

] , (2.8)

κ = 75
2

m
d2

√
θ

π

(1+ 2a2)

(1+ α)
[
49− 33α + (19− 3α)

a2

32

] , (2.9)

κh = 75
2ρ

m
d2
θ

√
θ

π

a2

(1+ α)
[
49− 33α + (19− 3α)

a2

32

] . (2.10)

For the Euler model too, the balance equations are (2.3)–(2.5), but with constitutive
relations

σij = 0= qi. (2.11)

It may be noted that the hydrodynamic equations for a molecular gas remain the same
as (2.3)–(2.5), but the restitution coefficient is set to α = 1 such that the collisional
dissipation (2.6) in the energy (2.5) vanishes identically (i.e. D = 0= a2). Moreover,
the transport coefficients (2.8)–(2.10) are also taken as those for perfectly elastic
collisions, µ ≡ µ(α = 1), κ ≡ κ(α = 1) and κh ≡ 0; these are used to calculate the
shock profiles in a molecular gas, as discussed in § 4.1.

2.1. Equations for plane shock waves: Navier–Stokes and Euler models
For planar shock waves propagating along the x-direction, all variables are functions of
a single spatial coordinate x and time t; the system is assumed to be uniform (having
no gradients) and infinite along the y- and z-directions. The flow velocity and heat flux
in the x-direction are denoted by u(x, t) and q(x, t) respectively, and they are zero
in the two remaining (y and z) orthogonal directions. It is straightforward to verify
that the deviatoric stress tensor has one non-zero component, the ‘longitudinal’ stress,
which can be expressed as

σxx =−4
3
µ
∂u
∂x
≡ σ . (2.12)

With the above definitions, the one-dimensional balance equations for the Navier–
Stokes (NS) model can be written in ‘quasiconservation’ form,

∂ρ

∂t
+ ∂

∂x
(ρu)= 0, (2.13)

∂

∂t
(ρu)+ ∂

∂x
(ρu2 + ρθ + σ)= 0, (2.14)

∂

∂t
(ρu2 + 3ρθ)+ ∂

∂x
(ρu3 + 5ρθu+ 2uσ + 2q)=−3D, (2.15)

with a non-conservative term D in the energy equation (2.15). The constitutive relation
for the heat flux is

q=−κ ∂θ
∂x
− κh

∂ρ

∂x
; (2.16)
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the longitudinal stress σ and the dissipation rate D are given by (2.12) and (2.6)
respectively. The one-dimensional Euler system is obtained by setting σ = 0 and q= 0
in (2.13)–(2.15).

2.2. Rankine–Hugoniot conditions of a granular gas and the end states
Let us denote the upstream (x→−∞) and downstream (x→∞) states of a shock,
located at x = 0, by (ρ1, u1, θ1) and (ρ2, u2, θ2) respectively. The finite jump in
each state variable across a shock is given by the so-called Rankine–Hugoniot (RH)
relations (Courant & Friedrichs 1948), which connect the upstream and downstream
states of a shock. These relations can be obtained from the balance laws (2.13)–(2.15)
by using the fact that the terms that are independent of the gradients of the
hydrodynamic fields do not contribute (see § 63 in Courant & Friedrichs 1948):

ρ1v1 = ρ2v2, (2.17)
ρ1v

2
1 + ρ1θ1 + σ1 = ρ2v

2
2 + ρ2θ2 + σ2, (2.18)

ρ1v
3
1 + 5ρ1θ1v1 + 2σ1v1 + 2q1 = ρ2v

3
2 + 5ρ2θ2v2 + 2σ2v2 + 2q2, (2.19)

where vi = ui − vsh, with vsh being the shock speed. An additional ansatz is now
made: the upstream and downstream states are spatially uniform (which, along with a
temporally decaying temperature field, represents the ‘local’ equilibrium of a granular
gas (Haff 1983), known as the homogeneous cooling state, see (4.3) in § 4.2.2). The
spatial homogeneity (i.e. ∇(ρ, u, θ) = 0) of end states implies that the flux terms
σ , (2.12), and q, (2.16), vanish at x→±∞. Therefore, putting σ = 0= q into (2.17)–
(2.19) we arrive at the RH conditions for a granular gas. It may be noted that the
resulting RH conditions are identical for both molecular and ‘smooth’ granular gases
(Goldshtein et al. 1995) at the Euler/NS order of hydrodynamics.

The local Mach number Ma is defined as the ratio of the velocity of the gas to the
speed of sound through the granular gas,

Ma= |u|
c
≡ |u|√

γ θ
, (2.20)

where γ = 5/3 is the adiabatic index (the ratio between two specific heats),
whose numerical value for a monatomic granular gas (Goldshtein & Shapiro 1995;
Amarouchene & Kellay 2006) is the same as for a molecular gas, and c=√γ θ is the
adiabatic sound speed, which is also the characteristic slope (Courant & Friedrichs
1948) obtained from the Euler equations.

The initial (t= 0) shock profiles are given by (ρ1, u1, θ1) for x 6 0 and (ρ2, u2, θ2)
for x> 0, and the shock speed is zero at t = 0. Assuming that the flow is adiabatic
and solving the RH relations (2.17)–(2.19) for a stationary shock, the downstream
quantities can be expressed in terms of their upstream counterparts,

ρ2

ρ1
= (γ + 1)Ma2

1

2+ (γ − 1)Ma2
1
≡ u1

u2
,

θ2

θ1
= (2γMa2

1 − (γ − 1))((γ − 1)Ma2
1 + 2)

(γ + 1)2Ma2
1

, (2.21a,b)

where Ma1 = |u1|/√γ θ1 is the upstream Mach number.
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3. Dimensionless equations and the numerical scheme

3.1. Reference scales and dimensionless equations
One should be careful in choosing the reference scales for non-dimensionalization,
since, unlike in an equilibrium molecular gas, the hydrodynamic fields in a granular
gas can vary with time. We use all ‘upstream’ state quantities evaluated at t = 0 as
reference scales for non-dimensionalization. The dimensionless variables are therefore
given by

ρ̂ = ρ

ρ1(0)
, û= u√

θ1(0)
, θ̂ = θ

θ1(0)
, σ̂ = σ

ρ1θ1(0)
, x̂= x

l1
, t̂= t

√
θ1(0)
l1

,

(3.1a−f )
where the length scale used is the mean free path, l= 16µ/5

√
2πρ
√
θ , with the shear

viscosity µ being given by (2.8).
The one-dimensional balance equations in dimensionless form have the same form

as in (2.13)–(2.15), which can be written in operator form (removing the hat from
dimensionless quantities)

∂

∂t
U+ ∂

∂x
F(U)=G(U), (3.2)

where U = (ρ, ρu, ρu2 + 3ρθ)T is the vector of variables, F(U) = (ρu, ρu2 + ρθ,
ρu3 + 5ρθu)T is the vector of flux and G(U) is the vector of source terms (i.e. the
remaining terms of (2.13)–(2.15)). The system (3.2) is called hyperbolic in U and t
if the eigenvalues of the Jacobian matrix, ∂F(U)/∂U, are real and distinct (Courant
& Friedrichs 1948), and hence the characteristic speeds are finite.

3.2. Relaxation-type numerical scheme
An appropriate shock-capturing scheme (LeVeque 2002) needs to be employed to
solve (3.2) along with Rankine–Hugoniot conditions (2.21). We adapt the relaxation
scheme of Jin & Xin (1995) to the present problem. The solution of (3.2) involves a
‘two-stage’ procedure: in the first stage, the homogeneous equation

∂Uh

∂t
+ ∂F(Uh)

∂x
= 0, with Uh(x, t= 0)=U(x, t= 0), (3.3)

is solved, and in the second stage, the solution of the homogeneous part (3.3) is used
to solve

∂U
∂t
=G(U), with U(x, t= 0)=Uh(x, t= 0), (3.4)

and thereby construct the full solution.
The homogeneous system (3.3) is solved by finding the solution of an equivalent

relaxation system (Jin & Xin 1995)

∂U
∂t
+ ∂V
∂x
= 0, (3.5)

∂V
∂t
+ A

∂U
∂x
=−1

ε
(V −F(U)), (3.6)
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Shock waves and Haff’s law in a granular gas

where U ∈ Rn, V ∈ Rn, (x, t) ∈ R × R+ and ε is a small positive parameter called
the relaxation rate. Putting ε→ 0 in (3.6), we obtain the local equilibrium solution
V =F(U), which, along with (3.5), retrieves the original equation (3.3). In (3.6),

A= diag{a1, a2, . . . , an}, am > 0 (1 6 m 6 n), (3.7a,b)

is a diagonal matrix that must be appropriately chosen. The Jacobian matrix of flux
F(U) constitutes a ‘complete’ eigensystem (λ1, λ2, . . . , λn), and we choose a1= · · · =
an =max(sup |λ1|, . . . , sup |λn|) to construct the diagonal matrix (3.7a,b).

For spatial discretization, uniform grid points with a step size of 1x are used; the
time discretization is also taken as uniform with a time step of 1t. A first-order
accurate upwind scheme for spatial discretization and a second-order TVD (total
variation diminishing) Runge–Kutta time-splitting scheme (which consists of a
sequence of implicit–explicit time steps) are applied to the system (3.5)–(3.6); the
specific details of the algorithm can be found in Jin & Xin (1995). Once the solution
of the homogeneous part U(h)

i is known, we can find the solution Ui of (3.4),

Ui =U(h)
i +1t G(U(h)

i ). (3.8)

The spatial (1x) and temporal (1t) steps must be chosen such that the Courant–
Friedrichs–Lewy (CFL) condition, C =max(ai1t/1x) < 1, is satisfied. In comparison
to traditional shock-capturing schemes (LeVeque 2002), the main advantages of the
relaxation-type numerical schemes (Jin & Xin 1995) are that they neither use spatial
Riemann solvers nor use the solution of nonlinear algebraic equations temporally. Such
relaxation schemes have subsequently been used to analyse different types of flows,
like free-surface flows (Delis & Katsaounis 2003), two-phase flows (Evje & Fjelde
2002), etc.

It must be noted that the original relaxation scheme of Jin & Xin (1995) was
developed to solve a hyperbolic system of the form (3.3), which does not contain
any source term (i.e. G(U) = 0). In the present numerical scheme, the source terms
are incorporated via the well-known splitting technique for inhomogeneous partial
differential equations: (3.2) is solved by solving (3.3) and (3.4) sequentially in two
stages as described above. This procedure is verified by solving the Navier–Stokes
equations (whose viscous terms make the source term G(U) in (3.2) non-zero) for
a molecular gas as described in § 4.1 (see figure 1c). To further verify the present
results, we have also implemented another scheme (Delis & Katsaounis 2003) that
incorporates the source terms in the relaxation scheme itself by modifying the
right-hand side of (3.6) – the numerical results from the two schemes agree well, see
figure 2(d) in § 4.2. The interested reader is referred to Delis & Katsaounis (2003)
for related details on the algorithm.

4. Results and discussion: granular versus molecular shock waves

4.1. Shock waves in a molecular gas and validation of the numerical scheme
Here, we consider normal shock waves propagating in a molecular gas (i.e. the
restitution coefficient is α = 1, see § 2) and validate the present numerical scheme.
The upstream boundary conditions are taken as

ρ1 = 1, u1 =Ma1
√
γ , θ1 = 1, (4.1a−c)

where Ma1 is the upstream Mach number (2.20), while the downstream boundary
conditions are provided by the RH conditions (2.21). The initial discontinuity is placed
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FIGURE 1. Shock-wave profiles for a molecular gas: (a) velocity and (b) density; the
parameter values are Ma1= 1.2 (blue line) and 2.0 (red line). The temperature profile (not
shown) looks similar to the density profile. (c) Variation of the inverse shock width, l1/δ,
with Ma1. The triangles show the present solution of the NS equations and the circles
show the NS solution of Torrilhon & Struchtrup (2004). The inset in (c) illustrates the
definition of the shock width δ.
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FIGURE 2. Predictions of the Euler model (a–c) and the Navier–Stokes model (d–f ) for
shock profiles of (a,d) density, (b,e) granular temperature and (c,f ) velocity at different
times (t= 0, 2, 4, 10) for Ma1 = 1.2 and α = 0.9. The circles in (d) represent the density
profile at t = 10 obtained from a different numerical scheme (see the text in the last
paragraph in § 3.2).

at x= 0 and the numerical experiments are carried out over a domain of length L= 50
covering (−L/2, L/2) with 2000 grid points, with a time step of 1t= (C1x/max ai).
For all calculations we set the CFL number to C = 0.01; the relaxation rate in (3.6)
is set to ε= 10−8 as this provides converged results. The computations are carried out
over a long time (t> 100) such that the hydrodynamic profiles attain a time-invariant
state as expected for shocks propagating in an ideal gas.
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Shock waves and Haff’s law in a granular gas

The velocity and density profiles, predicted by the Navier–Stokes model, are
displayed in figure 1(a,b); it should be noted that the profiles have been normalized
such that uN = (u − u2)/(u1 − u2) and ρN = (ρ − ρ1)/(ρ2 − ρ1). In each panel, the
blue and red lines represent data for upstream Mach numbers of Ma1 = 1.2 and
2 respectively. It is seen that there are strong gradients across the ‘shock layer’
for each hydrodynamic field, and the width/thickness of this layer decreases with
increasing Ma1.

As in previous works (Gilbarg & Paolucci 1953; Torrilhon & Struchtrup 2004), a
characteristic width of the density profile is chosen to define the ‘thickness’ of the
shock:

δ = (ρ2 − ρ1)/max(∂ρ/∂x), (4.2)

which is schematically depicted in the inset of figure 1(c). The variation of the inverse
of the shock thickness (l1/δ) with upstream Mach number (Ma1) is shown in the main
panel of figure 1(c); the solutions of the present numerical scheme are denoted by blue
triangles which almost overlap with black circles which represent data of Torrilhon
& Struchtrup (2004) using a different numerical scheme. On the whole, figure 1(c)
confirms the accuracy of our numerical scheme.

4.2. Shock structures in a granular gas and Haff’s law
For shocks in a granular gas, all computations were carried out in a larger domain of
length 4000 covering (−2000, 2000) with a varying number of grid points; a spatial
step size of 1x= 0.05 was found to be sufficient for the early time evolution of the
shock, but the results at late times (figure 6) were obtained with 1x= 0.01. Results
are presented as functions of the restitution coefficient (α) and the ‘initial’ upstream
Mach number Ma1=u1/

√
γ θ1(t= 0), see (2.20), where θ1(t=0) is the initial upstream

temperature. In the following, the ‘granular’ shock is defined as a layer over which
all hydrodynamic quantities undergo changes from upstream to downstream values.

The early time dynamics (up to t = 10) of the density ρ(x, t), the granular
temperature θ(x, t) and the gas velocity u(x, t) are shown in figure 2 for Ma1 = 1.2
and α = 0.9. The profiles obtained from the Euler and Navier–Stokes models are
contrasted in panels (a–c) and (d–f ) respectively. It is seen that while the initial
discontinuity of the hydrodynamic fields seems to persist at all times for the Euler
model, all profiles become smoother with time due to the diffusive action of viscosity
for the NS model. We observe that the density profile (a,d) develops an ‘overshoot’
within the shock in the sense that the maximum density (ρmax) is larger than its
downstream value and this overshoot (= ρmax − ρ2) increases as time progresses; this
will be discussed in detail in § 4.2.1. Panels (b,e) indicate that both the upstream
and downstream temperatures decay with time, and the maximum temperature (θmax)
occurs within the shock layer; this will be discussed in detail in § 4.2.2. The velocity
profiles in (c,f ) indicate that the local Mach number is maximum in the upstream state
and decreases through the shock, reaching its minimum value in the downstream state.
The qualitative nature of the hydrodynamic profiles at higher Ma1 remains similar to
that in figure 2, and is not shown for the sake of brevity.

4.2.1. Density overshoot and its propagation speed
The time evolution of the density overshoot, 1ρ ≡ (ρmax − ρ2), for an upstream

Mach number of Ma1 = 1.2 and a restitution coefficient of α = 0.9 is shown in
figure 3(a) – the red dashed and blue solid lines denote the predictions of the Euler
and NS models respectively. While 1ρ= 0 for a molecular gas (figure 1b and Gilbarg
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FIGURE 3. (a) Temporal evolution of the density overshoot, 1ρ ≡ (ρmax− ρ2), for Ma1=
1.2 and α = 0.9. The inset shows the variation of the spatial location of ρmax with time.
(b) Evolution of the normalized shock speed, ṽs = vs/c, where vs = x(ρ = ρmax)/t is the
speed of the density peak and c = √γ θ1 is the adiabatic sound speed, for Ma1 = 1.2
(main panel) and Ma1 = 2 (inset), with α = 0.9. (c) Variation of the asymptotic shock
speed ṽ∞s (extracted from the numerical solution of the granular Navier–Stokes equations,
dubbed ‘NS solution’) with Ma1 (inset) and inelasticity (main panel): Ma = 1.2 q;
Ma= 1.5p; Ma= 2.0f; Ma= 3.0u.

& Paolucci 1953; Torrilhon & Struchtrup 2004), we find that 1ρ>0 in a granular gas,
and its magnitude increases with time; it should be noted that (1ρ)NS < (1ρ)Euler,
except for very short early times. We also found (not shown) that 1ρ increases
with increase in the Mach number and/or the dissipation. The occurrence of density
overshoot is a novel feature of ‘granular’ shock waves, and its large-time behaviour
is discussed in § 4.2.3.

The inset of figure 3(a) indicates that the spatial position of ρmax shifts to the right
with time, from which a shock speed can be estimated. The speed of propagation of
the density maximum is defined as vs = x(ρ = ρmax)/t, and its temporal variations
for Ma1 = 1.2 and 2 are displayed in the main panel and the inset of figure 3(b)
respectively, with α= 0.9. It is seen that the normalized shock speed, ṽs= vs/c (where
c is the adiabatic sound speed, (2.20)), reaches a steady asymptotic value at large
times for both the Euler (red curve) and the NS (blue curve) models. Comparing the
inset with the main panel, we find that ṽ∞s ≡ ṽs(t→∞) is higher at higher Ma1. This
is further evident from figure 3(c), which shows the variation of ṽ∞s with (1− α) for
a range of Ma1. While ṽ∞s does not depend on the restitution coefficient, it increases
linearly with increasing Ma1 (see the inset of 3c). Overall, we may conclude from
figure 3(b,c) that the density peak travels with a steady constant speed at sufficiently
late times; this conclusion is similar to that found for a piston-driven shock wave
(Kamenetsky et al. 2000).

4.2.2. Temperature profiles: Haff’s law and scaling relations
For an undriven granular gas with initial temperature θ(0), the hydrodynamic

equations admit a spatially homogeneous solution (∇(ρ, u, θ) = 0) with a time-
dependent temperature (θ(x, t)≡ θ(t)) such that the gas cools according to Haff’s law
(Haff 1983):

θ(t)= θ(0)
(1+ t/τH)2

, where τH = 3
2nd2
√

π(1− α2)(1+ 3a2/16)
(4.3)

is the relaxation time. Equation (4.3) represents the well-known ‘homogeneous
cooling state’ (HCS) of a granular gas. A departure from (4.3) occurs when the
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FIGURE 4. (a,b) Comparison of Haff’s law (red curve) with the numerical solution of the
NS equations for Ma1= 1.2: (a) upstream temperature θ1 and (b) downstream temperature
θ2. (c) Dependence of the time lag (tlag, between the downstream temperature θ2 and that
obtained from Haff’s law) on the inelasticity (main panel) and Ma1 (inset); see the text
for the definition of tlag: Ma= 1.2q; Ma= 1.5p; Ma= 2.0f; Ma= 3.0u; Ma= 5.0s.
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FIGURE 5. (a) Temporal evolution of the maximum granular temperature θmax for
Ma1= 1.2; Haff’s law is denoted by the red curve and the blue curves represent numerical
solutions for α= 0.9 and 0.7; the inset shows a zoomed part of the same figure (see text).
(b) The same as (a) but for Ma1 = 2. (c) Variation of the critical time tc (at which the
numerical solution θmax crosses/overtakes Haff’s solution) with (1−α) for different values
of Ma1; the inset shows the scaling (4.4) for data collapse, see the text: Ma = 1.2 q;
Ma= 1.5p; Ma= 2.0f; Ma= 3.0u; Ma= 5.0s.

system becomes inhomogeneous with cluster formation, called the ‘inhomogeneous
cooling state’ (ICS, Luding & Herrmann 1999). From here onwards, all results are
presented for the Navier–Stokes model of a granular gas.

We recall from figure 2(b,e) that the temperatures at the upstream (θ1≡ θ(x=−L/2))
and downstream (θ1 ≡ θ(x = L/2)) ends decay as time progresses. The temporal
evolutions of θ1 and θ2 are compared with (4.3) in figure 4(a,b) respectively. It is
clear that the upstream temperature closely follows Haff’s law for all α; however, the
downstream temperature lags (4.3) in time. We calculate this time lag, defined via
tlag = [tHaff (θ̃2 = 0.01) − tNS(θ̃2 = 0.01)], such that θ̃2 ≡ θ2(t)/θ2(0) = 0.01. It is seen
from figure 4(c) that tlag decreases with increasing dissipation, tlag ∼ (1 − α)−19/20,
but follows a non-monotonic variation with the upstream Mach number Ma1. We
speculate that the ‘finite’ shock speed might be responsible for the earlier decay of
downstream temperature compared with that dictated by Haff’s law.
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FIGURE 6. Temporal evolution of (a) density and (b) pressure for Ma1 = 2 and α = 0.7.
(c) Arrest of the maximum density ρmax via a regularization procedure (see the text in
§ 4.2.3 for details).

The time evolution of the maximum granular temperature (θmax) is shown in
figure 5(a,b) for Ma1 = 1.2 and 2 respectively, with α = 0.9 (upper curve) and 0.7
(lower curve); Haff’s solution, denoted by the red line, is also superimposed for each
value of α. For the case of a weak shock (M= 1.2), θmax seems to follow Haff’s law
up to a critical time (marked by the vertical black line in the inset of figure 5a for
α = 0.9), but decays much slower thereafter. For a strong shock (M = 2), however,
θmax decays at a faster rate than Haff’s law for t < tc and at a slower rate for t > tc.
The gradients of the hydrodynamic fields in the shock layer (see figure 2) might
be responsible for the faster decay of θmax at early times. On the other hand, the
departure of θmax from Haff’s law beyond t > tc, leading to a near-saturation of θmax
at large times (see the blue curves for t > 200 in figure 5b), is reminiscent of the
temperature evolution in the inhomogeneous cooling state (Pöschel & Luding 2001).
(The weak and strong shocks correspond to Mach numbers of Ma ∼ 1 and Ma� 1
respectively. In the present work, we followed Grad’s moment theory (Torrilhon &
Struchtrup 2004), which gives a critical Mach number of Macr ≈ 1.65 above which
the 13-moment equations do not admit continuous solutions.)

The critical time (tc) at which the shock solution θmax crosses/overtakes Haff’s
solution (see figure 5a,b) decreases with increasing inelasticity (1− α) and upstream
Mach number Ma1, as is evident from the main panel of figure 5(c). Interestingly,
the data for all Ma1 can be collapsed via the following scaling relation:

tc ∼ (Ma1 − 1)−9/8(1− α)−17/20, (4.4)

denoted by the black line in the inset of figure 5(c). The exponents in (4.4) have
been determined via a least-square fitting of all data, with a standard deviation of less
than 2 %.

4.2.3. Large-time behaviour: density overshoot, pressure instability and regularization
Lastly, we address the issue of the large-time behaviour of granular shock profiles.

Figure 6(a,b) displays the density and pressure profiles at different times for parameter
values of Ma1= 2 and α= 0.7. In both panels, the abscissa, xs= x− x(ρmax), has been
scaled with respect to the location of the maximum density ρmax. For this parameter
set, the location of the density maximum (panel a) is found to coincide with that
of a local pressure minimum ploc

min (panel b) for t > 16 (which also coincides with
a local minimum of the granular temperature θmin ≡ θ(ρ = ρmax), not shown). These
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overall findings also hold for other parameter values of Ma1 and α. The higher
pressures on both sides of ρmax create pressure differences that drive the particles to
rush in from both sides, thereby enhancing ρmax with time (see the green line in c).
This mechanism is akin to the well-known pressure instability which drives cluster
formation due to collisional cooling in both (i) undriven (Goldhirsch & Zanetti 1993)
and (ii) driven (Alam & Nott 1998; Gayen & Alam 2006; Alam, Shukla & Luding
2008) granular gases.

Figure 6(c) confirms that ρmax keeps increasing with time, and hence the density
profile ρ(x, t) would keep changing as t → ∞. This points towards an apparent
deficiency of the inelastic hard-sphere model, and some important physics is missing
in it: within the denser/clustered region, the impact velocities are probably lower
compared with those in the dilute homogeneous region, and hence the collisional
dissipation would be lower in the denser regions. The latter point can be justified
by recalling the fact that the restitution coefficient (of real particles) approaches its
elastic limit (α→ 1) as the impact velocity decreases (Goldhirsch 2003). This can be
incorporated in the present model by rewriting the collisional dissipation rate as

Dreg =F (ξ)D ≡ (1+ ξ 2) exp(−ξ 2)D, (4.5)

where the ‘regularization’ factor F (ξ) has been exactly evaluated in Luding &
Goldshtein (2002), to which the reader is referred for related details on the collision
model with a ‘cutoff’ restitution coefficient. In (4.5),

ξ 2(x, t)= v
2
cut

v2
≡ θcut

θ(x, t)
(4.6)

is identified with the ratio between a critical/cutoff impact energy θcut and the local
fluctuation energy (granular temperature). It is clear that Dreg = D for ξ 2 = 0 = θcut,
recovering the original constitutive model of § 2, and Dreg <D for ξ 2 > 0. Lastly, we
set Dreg = 0 whenever F (ξ(x, t)) <Fcr � 1; as an illustration we have used Fcr =
0.05, which translates into a critical value of ξ 2

cr ≈ 4.75 (and hence θmin ≈ 0.21θcut)
below which the particle collisions are treated as elastic.

With the dissipation rate being given by (4.5) and assuming that other transport
coefficients (µ, p, κ and κh) remain unaffected, we have solved (2.13)–(2.15) for the
same shock-wave problem by specifying different values of θcut. As a proof of concept,
the results are shown in figure 6(c), which confirms that the continual increase of
ρmax can indeed be arrested, see the black and red lines for θcut = 0.01 and 0.05
respectively. The smaller the value of θcut is, the larger the time to reach the arrested
state of ρmax is. For a ‘dense’ granular gas, the arrested maximum density can be tied
with the random-packing limit, suggesting a ‘gas–solid’ transition, as in the work of
Kamenetsky et al. (2000) for piston-driven granular shock waves. The same transition
can also be addressed within the present regularized model (4.5) by employing the
transport coefficients for a dense granular gas. A detailed investigation of these issues
is relegated to a future work.

5. Conclusions

The Riemann problem of granular shock waves was analysed by numerically
solving the granular hydrodynamic equations. The density and temperature profiles
were found to be asymmetric, with the maxima of both density and temperature
occurring within the shock layer, which constitute two distinguishing features of the
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‘granular’ Riemann problem (compared with that for ideal gases). The fundamental
difference of the granular shock problem from its ideal-gas counterpart can be tied
to ‘inelastic dissipation’, since this makes the upstream and downstream states of
a granular shock live in non-equilibrium ‘decaying’ states (similar to HCS), which,
in turn, is responsible for the non-trivial shock structures uncovered here. Inside
the shock too, Haff’s law was found to hold for the maximum temperature, but
for weak shocks (Ma1 ∼ 1) only, and deviations occurred for strong shocks. A
scaling relation (4.4) was uncovered which expresses the critical time (at which the
maximum temperature deviates from Haff’s law) as a function of the Mach number
and inelasticity. The origin of asymmetric density profiles, leading to the continual
build-up of density inside the shock, seems to be tied to a pressure instability in
granular gases. A simple regularization procedure to arrest the maximum density has
been proposed. Future work on shock waves should employ the ‘regularized’ version
of the granular hydrodynamic equations.
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