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WELL ORDERING PRINCIPLES AND Π14-STATEMENTS:

A PILOT STUDY

ANTON FREUND

Abstract. In previous work, the author has shown that Π11-induction along N is equivalent to a

suitable formalization of the statement that every normal function on the ordinals has a fixed point. More

precisely, this was proved for a representation of normal functions in terms of Girard’s dilators, which are

particularly uniform transformations of well orders. The present paper works on the next type level and

considers uniform transformations of dilators, which are called 2-ptykes. We show that Π12-induction along

N is equivalent to the existence of fixed points for all 2-ptykes that satisfy a certain normality condition.

Beyond this specific result, the paper paves the way for the analysis of further Π14-statements in terms of

well ordering principles.

§1. Introduction. A classical result of Girard [14] and Hirst [18] shows that the
following are equivalent over the usual base theory RCA0 of reverse mathematics
(see [29] for an introduction to the latter):

(i) arithmetical comprehension (i.e., the principal axiom of ACA0) and
(ii) when (X, ≤X ) is a (countable) well order, then so is

ùX := {〈x0, ...,xn–1〉 |x0, ...,xn–1 ∈ X and xn–1 ≤X ··· ≤X x0}

with the lexicographic order.

If we think of 〈x0, ...,xn–1〉 ∈ ù
X as the Cantor normal form ùx0 + ···+ùxn–1 , we

see that X 7→ ùX represents the familiar operation from ordinal arithmetic. Note
that the base theory RCA0 proves that ù

X exists and is a linear order (whenever the
same holds for X). A statement such as (ii), which asserts that some computable
transformation preserves well foundedness, is called a well ordering principle.
Many important principles of reverse mathematics (about iterated arithmetical

comprehension [21, 27] and the existence of ù-models [24–26, 30]) have been
characterized in terms of well ordering principles. At least in principle, there is
no limitation on the consistency strength of statements that can be characterized
in this way. There is, however, a limitation in terms of logical complexity: For
any computable transformation of orders, the statement that this transformation
preserves well foundedness has complexity Π12. Hence a genuine Π

1
3-statement—

such as the principle of Π11-comprehension—cannot be equivalent to a well ordering
principle of this form.
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710 ANTON FREUND

In order to characterize statements of higher logical complexity, one needs
to consider transformations of higher type. Recall that the usual notion of
computability on the natural numbers extends to higher types if one restricts to
functionals that are continuous in a suitable sense. In the present context, the
continuous transformations between well orders are the dilators of Girard [13] (see
below for details). Girard has sketched a proof that Π11-comprehension is equivalent
to the statement that his functor Λ preserves dilators [15]. As far as the present
author is aware, the details of this proof have not been worked out. However, the
present author [4–6] has shown thatΠ11-comprehension is equivalent to the following
different well ordering principle: For every dilator D there is a well order X and a
collapse ϑ :D(X )→ X that is almost order preserving in a suitable sense. Here the
order X and the function ϑ can be computed from a representation of D. Only the
fact that X is well founded cannot be proved in RCA0.
Well ordering principles are relevant because they allow to apply methods from

ordinal analysis to questions of reverse mathematics. Together with Rathjen and
Weiermann, the present author has used his result on a collapse ϑ : D(X )→ X
to show that Π11-comprehension is equivalent to a uniform version of Kruskal’s
tree theorem [12]. This implies that the uniform Kruskal theorem exhausts the
full strength of Nash-Williams’s famous “minimal bad sequence argument” [22],
in contrast to the usual Kruskal theorem. The present author has also shown
that iterated applications of the uniform Kruskal theorem yield a systematic
reconstruction of H. Friedman’s gap condition [8].
Much of reverse mathematics concerns statements of complexity Π12 and Π

1
3. In

some applications, however, Π14-statements play a central role. An example is the
principle of Π12-bar induction, which is used in the proof of the graphminor theorem
[19]. The strongest ordinal analysis due to Rathjen [23] is also concerned with a Π14-
statement, namely with the principle of Π12-comprehension. For these reasons it
seems particularly relevant to extend well ordering principles to the level of Π14-
statements, which requires another step in the type structure. As far as the author is
aware, the present paper is the first to make this step. Since the paper is intended as a
pilot study, wewill consider a particularly simpleΠ14-statement, namely the principle
of Π12-induction along N. Even though the latter was chosen for its simplicity, it is
of independent foundational interest: over Π11– CA0, the principle of Π

1
2-induction

along N is needed to show that the finite trees with Friedman’s gap condition form
a well quasi order [28].
To state our result, we need some terminology; full details of the following can

be found in §2–§4. A predilator is an endofunctor of linear orders that preserves
direct limits, pullbacks and the order on morphisms (pointwise domination). If
it preserves well foundedness, then it is called a dilator. By a morphism between
(pre-)dilators D and E we mean a natural transformation ì : D ⇒ E of functors.
Such a transformation consists of an order embedding ìX :D(X )→E(X ) for each
linear order X. If the image of each embedding ìX is an initial segment of the order
E(X ), then we call ì a segment. A 2-preptyx is an endofunctor of predilators that
preserves direct limits and pullbacks. If it preserves dilators, then it is called a 2-ptyx
(plural: ptykes). The number 2 indicates the type level, where we think of well orders
and dilators as objects of type zero and one, respectively; it will be omitted where
the context allows it. We say that a 2-(pre-)ptyx P is normal if P(ì) : P(D)⇒ P(E)
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WELL ORDERING PRINCIPLES AND Π14-STATEMENTS: A PILOT STUDY 711

is a segment for any segment ì :D⇒E. Preservation of direct limits is a continuity
property, which allows us to represent predilators and preptykes in second order
arithmetic. Based on such a representation, we will show that the following are
equivalent over ACA0 (cf. Theorem 6.7 below):

(i) the principle of Π12-induction along N and
(ii) for any normal 2-ptyx P there is a dilator D ∼= P(D).

Since P preserves direct limits, a predilator DP ∼= P(DP) can be constructed as the
direct limit of the diagram

D0P
í0

=⇒D1P := P(D
0
P)

í1:=P(í0)
=====⇒D2P := P(D

1
P)

í2:=P(í1)
=====⇒ ...,

where D0P is the constant dilator with value 0 (the empty order). In §6 we will see
that this construction can be implemented inACA0 (and presumably also inRCA0).
Hence the strength of (ii) does not lie in the existence of D ∼= P(D), but rather
in the assertion that D is a dilator (i.e., preserves well foundedness). In order to
prove that (i) implies (ii), one uses Π12-induction to show that each predilator D

n
P

in the above diagram is a dilator. The assumption that P is normal is needed to
conclude that the same holds for the direct limit (by Example 4.4, which shows that
P(D)(X ) := (D+1)(X ) :=D(X )+1 defines a 2-ptyx that is not normal and cannot
have a dilator as a fixed point).
In order to explain the proof that (ii) implies (i), we recall another result on the

level of Π13-statements. A function f on the ordinals is called normal if it is strictly
increasing and continuous at limits (i.e., we demand f(ë) = supα<ëf(α) for any
limit ordinal ë). It is well known that any normal function f has a proper class of
fixed points. These are enumerated by another normal function f′, which is called
the derivative of f. Together with Rathjen, the present author has shown that Π11-bar
induction is equivalent to a suitable formalization of the statement that every normal
function has a derivative [7, 11]. Furthermore, Π11-induction along N is equivalent
to the statement that each normal function has at least one fixed point [9]. In the
following, we recall the intuition behind this result.
Given a linear order X and an ordinal α, we write X � α to express that X is

well founded with order type at most α. On an intuitive level, the fact that well
foundedness is Π11-complete allows us to write any instance of Π

1
1-induction as

X0 � α0∧∀n∈N(∃αXn � α→∃â Xn+1 � â)→∀n∈N∃ãXn � ã,

for some family of linear ordersXn. Assume that the second conjunct of the premise
is witnessed by a function h0 such that Xn � α implies Xn+1 � h0(n,α). If we set
h(α) := supn∈N

h0(n,α), then we obtain

∀n∈N∀α(Xn � α→ Xn+1 � h(α)).

As h may not be normal, we consider the normal function g with

g(α) =
∑

ã<α

h(ã)+1.
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712 ANTON FREUND

More formally, this function can be defined by the recursive clauses g(0) = 0,
g(α+1) = g(α)+h(α)+1 and g(ë) = supã<ëg(ã) for ë limit. We observe

ã+1≤ α ⇒ h(ã)+1≤ g(α).

To incorporate the premiseX0 � α0 of our induction statement, we transform g into
another normal function f with f(α) := α0+1+g(α). If α =f(α) is a fixed point,
then a straightforward induction over n ∈ N yields

∀n∈N∃ã(Xn � ã ∧ ã+1≤ α).

In particular we have ∀n∈NXn � α, which entails the conclusion of the induction
statement above. As shown in [9], the given argument can be formalized in terms of
dilators. In that setting, the induction at the end of the argument is not needed: it
can be replaced by a construction that builds embeddings Xn+1 →֒ α by primitive
recursionover elements ofXn, simultaneously for alln ∈N. The formalized argument
deduces Π11-induction along N from the assumption that every normal function
(represented by a dilator) has a fixed point.
In order to deduce Π12-induction, we will lift the previous argument to the next

type level. This relies, first of all, on Girard’s result [15] that the notion of dilator is
Π12-complete. Given an arbitrary Π

1
2-formula ø, one can thus construct a family of

predilatorsDnø such that induction for ø is equivalent to the following statement: If

D0ø is a dilator and D
n+1
ø is a dilator whenever the same holds for Dnø, then D

n
ø is a

dilator for every n ∈ N. Assuming the premise of this implication, we will be able to
construct a 2-ptyx P that admits a morphism

Dn+1ø ⇒ P(Dnø)

for each n ∈N. Note that P corresponds to the function h from the argument above.
Next, we need to transform P into a normal 2-ptyx P∗ that corresponds to the
normal function g. In the author’s opinion, it is somewhat surprising that this is
possible: The construction of g relies on the fact that each α has a well ordered set
of predecessors. A priori, this fact seems specific to the ordinals. However, Girard
has discovered an analogous result on the next type level: Let us temporarily write
D≪E to indicate that there is a segment ì :D⇒E that is not an isomorphism. If
E is a predilator, then the isomorphism classes of predilators D≪ E form a set on
which≪ is linear (see [16, Lemma2.11]). It is straightforward to define a pointwise
sum of predilators. On an informal level, this allows us to set

P∗(E) :=
∑

D≪E

P(D)+1,

where 1 refers to the constant dilator with that value. In view of D ≪ D+1, we
obtain a morphism

P(D)+1⇒ P∗(D+1)

for each predilator D. This completes the reconstruction of g on the next type level.
To define a normal 2-ptyx P+ that corresponds to the normal function f, it suffices
to set P+(E) := D0ø +1+P

∗(E). Given a dilator E ∼= P+(E), one can construct

morphisms Dnø+1⇒ E by (effective) recursion on n ∈ N, as on the previous type
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level. These ensure that the predilators Dnø are dilators, which is the conclusion of

Π12-induction. The given argument is made precise in §4 and §5.

§2. The category of dilators. In this section we recall the definition and basic
theory of dilators, both of which are due to Girard [13]. As the latter has observed,
the continuity properties of dilators allow to represent them in second order
arithmetic. Details of such a representation have been worked out in [6, Section 2]
and will also be recalled. Even though the material is known, this section plays a
crucial role in the context of our paper: it fixes an efficient formalism upon which
we can base our investigation of ptykes. The section also ensures that our paper is
reasonably self contained.
Let LO be the category of linear orders, with the order embeddings (strictly

increasing functions) as morphisms. For morphisms f,g : X → Y we abbreviate

f ≤ g :⇔ f(x)≤Y g(x) for all x ∈ X.

We say that a functor D : LO→ LO is monotone if f ≤ g implies D(f) ≤ D(g).
The forgetful functor to the underlying set of an order will be omitted; conversely,
subsets of the underlying set will often be considered as suborders. Given a set X,
we write [X ]<ù for the set of its finite subsets. In order to obtain a functor, we define
[f]<ù(a) := {f(x) |x ∈ a} ∈ [Y ]<ù for f :X →Y and a ∈ [X ]<ù . Let us also write
rng(f) := {f(x) |x ∈ X} ⊆ Y for the range of a function f : X → Y .

Definition 2.1. A predilator consists of

(i) a monotone functor D : LO→ LO and
(ii) a natural transformation supp :D⇒ [·]<ù such that we have

{ó ∈D(Y ) |suppY (ó)⊆ rng(f)} ⊆ rng(D(f))

for any morphism f : X → Y .

If D(X ) is well founded for every well order X, then D = (D,supp) is a dilator.

The inclusion in part (ii) of Definition 2.1 will be called the support condition. Its
converse is automatic by naturality. If we take f to be an inclusion éYb : X = b →֒ Y
with rng(éYb ) = b ⊆ Y , then we see that suppY (ó) is determined as the smallest set
b ∈ [Y ]<ù with ó ∈ rng(D(éYb )). The fact that there is always a smallest finite set
with this property implies that D preserves direct limits and pullbacks; conversely,
if D : LO→ LO preserves direct limits and pullbacks, there is a unique natural
transformation supp :D⇒ [·]<ù that satisfies the support condition (essentially by
Girard’s normal form theorem [13]; see also [3, Remark 2.2.2]). This shows that
the given definition of dilator is equivalent to the original one by Girard. The
condition that D must be monotone is automatic when X 7→ D(X ) preserves well
foundedness (by [13, Proposition 2.3.10]; see [12, Lemma5.3] for a proof that uses
our terminology). It has been omitted in previous work by the present author but
will be important in this paper (see the proof of Lemma 4.9).
The present paper considers dilators in second order arithmetic. When we speak

of predilators in the sense of Definition 2.1, we will always assume that they are
given by ∆01-definitions of the relations

ó ∈D(X ), ó <D(X ) ô, D(f)(ó) = ô, suppX (ó) = a.
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714 ANTON FREUND

Here ó,ô and a (which codes a finite set) range over natural numbers, while X and
f :X →Y are represented by subsets ofN. In particular, thismeans that we interpret
LO as the category of countable linear orders (with underlying sets contained inN).
We can use number and set parameters to quantify over families of predilators. In
fact, we will see that there is a single ∆01-definable family that is universal in the sense
that any predilator is isomorphic to one in this family. Our universal family will be
parameterized by subsets of N, which are called coded predilators. The existence
of such a universal family will be essential for our approach to ptykes, which are
supposed to take arbitrary predilators as arguments. As explained after Proposition
2.8 below, the restriction to ∆01-definable predilators is inessential in a certain sense.
In order to construct a universal family of predilators, one exploits the fact that

these are essentially determined by their restrictions to a small category LO0. The
objects of LO0 are the finite sets {0, ...,n – 1} =: n with the usual linear order; the
morphisms are the strictly increasing functions between them.

Definition 2.2. A coded predilator is a pair that consists of a monotone functor
D :LO0⇒LO and a natural transformation supp :D⇒ [·]<ù , such that the support
condition from part (ii) of Definition 2.1 is satisfied for all morphisms in LO0.

Let us recall that we work with countable linear orders only. In this situation it
is straightforward to represent coded predilators by subsets of N. From now on we
speak of class-sized predilators when we want to refer to predilators in the sense
of Definition 2.1. Recall that any class-sized dilator D is given by a ∆01-formula.
Working over RCA0, this ensures that the restriction D ↾LO0 exists as a set.

Lemma 2.3. If D is a class-sized predilator, then D ↾LO0 is a coded predilator.

Conversely, we will now extend coded predilators into class-sized ones.

Definition 2.4. The trace of a coded predilator D is given by

Tr(D) := {(n,ó) |ó ∈D(n) and suppn(ó) = n}.

A class-sized predilator D has trace Tr(D) := Tr(D ↾LO0).

The equation suppn(ó) = n in the definition of the trace is called the minimality
condition: it states that the set n = {0, ...,n – 1} is minimal in the sense that ó
depends on all its elements. This can also be understood as a uniqueness property
(see, e.g., the proof of [6, Proposition 2.1]). Given a finite order a, we write |a| for
its cardinality and ena : |a|= {0, ...,|a| – 1} → a for the increasing enumeration. If
f : a → b is an embedding between finite orders, then |f| : |a| → |b| is defined as
the unique morphism in LO0 that satisfies enb ◦|f|=f ◦ena . Given sets X ⊆Y , we
write éYX : X →֒ Y for the inclusion.

Definition 2.5. Consider a coded predilator D. For each linear order X we set

D(X ) := {(a,ó) |a ∈ [X ]<ù and (|a|,ó) ∈ Tr(D)},

(a,ó)<D(X ) (b,ô) :⇔ D(|éa∪ba |)(ó)<D(|a∪b|) D(|é
a∪b
b |)(ô),

where a ∪b is ordered as a subset of X. Given an embedding f : X → Y , we define
D(f) :D(X )→D(Y ) by D(f)(a,ó) := ([f]<ù(a),ó), relying on |[f]<ù(a)|= |a|.
To define a family of functions suppX :D(X )→ [X ]

<ù , we set suppX (a,ó) := a.
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Note that the relations (a,ó)<D(X ) (b,ô), (a,ó) ∈D(X ), D(f)(a,ó) = (b,ô) and

suppX (a,ó) = b are ∆
0
1-definable with parameterD ⊆N. By [6, Lemma2.2] and [12,

Lemma5.2] we have the following:

Proposition 2.6. If D is a coded predilator, then D is a class-sized predilator.

Starting with a class-sized predilator D, we can first form the restriction D ↾LO0
and then the extension according to Definition 2.5. In the following, we show that
we essentially recover D in this way.

Definition 2.7. Consider a class-sized predilatorD. For each order X, we define
a function çDX :D ↾LO0(X )→D(X ) by setting ç

D
X (a,ó) :=D(é

X
a ◦ ena)(ó).

By our standing assumption on class-sized predilators, the relation D(f)(ó) = ô
has a ∆01-definition, in which f occurs as a set variable. To obtain a ∆

0
1-definition of

çD , one replaces each occurrence of (k,x) ∈ f by the ∆01-formula ena(k) = x (note
that the finite enumeration ena : |a| → a ⊆X can be computed with X as an oracle,
and that we have éXa (x) = x). Let us recall [6, Proposition 2.1]:

Proposition 2.8. If D is a class-sized predilator, then çD :D ↾LO0⇒D is a natural
isomorphism of functors.

We point out that çD respects the supports that come with D and D ↾LO0, by a
straightforward computation or by the general result of Lemma 2.12. Let us write

ó =NF D(é
X
a ◦ ena)(ó0)

and call the right side a normal form of ó ∈ D(X ) if the equation holds and we
have (|a|,ó0) ∈ Tr(D), where a ∈ [X ]

<ù . These conditions amount to çDX (a,ó0) = ó.
Hence the proposition shows existence and uniqueness of the given normal forms.
Proposition 2.8 is important since it reveals that Definition 2.5 yields a universal

∆01-definable family of class-sized predilators, in which coded predilators serve as set
parameters. As promised, the previous considerations also show that the restriction
to ∆01-definitions is inessential to a certain extent: It was only needed to ensure that

the set D ↾LO0 and the components ç
D
X : D ↾LO0(X )→ D(X ) can be formed in

RCA0. In a sufficiently strong base theory, the same argument shows that a class-
sized predilatorD of arbitrary complexity is equivalent to the ∆01-definable predilator

D ↾LO0. Let us now come back to questions of well foundedness.

Definition 2.9. Consider a coded predilatorD. IfD(X ) is well founded for every
well order X, then we say that D is a coded dilator.

The following holds since Proposition 2.8 ensures D ↾LO0(X )∼=D(X ).

Corollary 2.10. If D is a class-sized dilator, then D ↾LO0 is a coded dilator. If D
is a coded dilator, then D is a class-sized dilator.

In view of the close connection that we have established, we will omit
the specifications “class-sized” and “coded” when the context allows it. Many
constructions and results apply—mutatis mutandis—to both class-sized and coded
predilators.
To turn the collection of predilators into a category, we declare that themorphisms

between two predilators D = (D, suppD) and E = (E, suppE) are the natural

https://doi.org/10.1017/jsl.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.22


716 ANTON FREUND

transformations ì : D ⇒ E of functors. Note that the components of such a
transformation are morphisms in LO, i.e., order embeddings. In the coded case,
we assume that ì is given as the set {(n,ó,ô) |ìn(ó) = ô} ⊆ N; in the class-sized
case, we require that the relation ìX (ó) = ô is ∆

0
1-definable. The obvious restriction

ì↾LO0 will then exist as a set, and we have the following.

Lemma 2.11. Assume that ì : D ⇒ E is a morphism of class-sized dilators. Then
the restriction ì↾LO0 :D ↾LO0⇒ E ↾LO0 is a morphism of coded dilators.

In order to prove a converse, we will need the following fact, which applies
in the coded as well as in the class-sized case. The result is due to Girard
[13, Proposition 2.3.15]; a proof that uses our terminology can be found in [11,
Lemma2.19].

Lemma 2.12. We have suppE ◦ì = suppD for any morphism ì : D ⇒ E between
predilators D = (D, suppD) and E = (E, suppE).

The lemma ensures that (n,ó)∈Tr(D) implies (n,ìn(ó))∈Tr(E), which is needed
in order to justify the following construction.

Definition 2.13. Consider amorphismì :D⇒E of coded predilators. For each
order X we define ìX :D(X )→ E(X ) by setting ìX (a,ó) = (a,ì|a|(ó)).

The following has been verified in [11, Lemma2.21].

Lemma 2.14. If ì :D⇒ E is a morphism of coded predilators, then ì :D⇒ E is
a morphism of class-sized predilators.

It is straightforward to see that (·) ↾LO0 is a functor from the category of class-

sized predilators to the category of coded predilators, and that (·) is a functor in the
converse direction. Proposition 2.8 and the following result (which can be verified
by a straightforward computation) show that ç is a natural isomorphism between

the composition (·)↾LO0 and the identity on the category of class-sized predilators.

Proposition 2.15. We have çE ◦ ì↾LO0 = ì ◦ ç
D whenever ì : D ⇒ E is a

morphism of class-sized predilators.

One can also start with a coded predilator D, form the class-sized extension D,
and then revert to the coded restriction D ↾LO0. By mapping (a,ó) ∈ D(n) to the
element D(éXa ◦ ena)(ó) ∈ D(n), we get a natural isomorphism D ↾LO0 ∼= D, as
verified in [11, Lemma2.6]. Analogous to the proof of Proposition 2.15, one can
show that the construction is natural in D. Together, these considerations show
that the category of class-sized predilators is equivalent to the category of coded
predilators (in the sense of [20, Section IV.4]).
In the following, we show that the trace of a predilator plays an analogous role to

the underlying set of a linear order. The following is justified by Lemma 2.12.

Definition 2.16. Given a morphism ì : D ⇒ E of predilators, we define an
injective function Tr(ì) : Tr(D)→ Tr(E) by setting

Tr(ì)(n,ó) = (n,ìn(ó)).

The range of ì is defined as the set rng(ì) := rng(Tr(ì))⊆ Tr(E).
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Girard [13, Theorem4.2.5] has shown that any subset A ⊆ Tr(D) gives rise to
a predilator D[A] and a morphism é[A] : D[A]⇒ D with rng(é[A]) = A. In the
following we recover this result in our terminology. As preparation, we consider an
order embedding f :X → Y and an element ó =NF D(é

X
a ◦ ena)(ó0) ∈D(X ), using

the normal formnotationdiscussed after Proposition 2.8. For b := [f]<ù(a)∈ [Y ]<ù

we have |b|= |a| and f ◦ éXa ◦ ena = é
Y
b ◦ enb , as both functions enumerate the finite

order b. Hence D(f)(ó) =NF D(é
Y
b ◦ enb)(ó0) ∈ D(Y ) depends on the same trace

element (|b|,ó0) = (|a|,ó0) ∈ Tr(D). In the context of the following construction,
this justifies the definition of D[A](f).

Definition 2.17. Consider a predilator D = (D,suppD) and a set A ⊆ Tr(D).
For each order X (with X ∈ LO in the class-sized and X ∈ LO0 in the coded case)
we define a suborder D[A](X )⊆D(X ) by stipulating

ó ∈D[A](X ) :⇔ (|a|,ó0) ∈ A for ó =NF D(é
X
a ◦ ena)(ó0).

For amorphismf :X →Y , letD[A](f) :D[A](X )→D[A](Y ) be the restriction of
the embeddingD(f) :D(X )→D(Y ). We also define suppD[A]X :D[A](X )→ [X ]<ù

as the restriction of the support function suppDX :D(X )→ [X ]
<ù .

Note that the relation ó ∈D[A](X ) is ∆01-definable with set parameter A, by the
discussion that precedes Proposition 2.8.

Lemma 2.18. If D is a (pre-)dilator, then so is D[A], for any A⊆ Tr(D).

Proof. We only verify the support condition from part (ii) of Definition 2.1,
since all other properties are immediate. Consider an embedding f :X →Y and an
element ô ∈D[A](Y )with rng(f)⊇ suppD[A]Y (ô) = suppDY (ô). The support condition
for D yields ô = D(f)(ó) for some ó ∈ D(X ). Write ó =NF D(é

X
a ◦ ena)(ó0), and

argue as above to get ô =NF D(é
Y
b ◦ enb)(ó0) with b = [f]

<ù(a). In view of ô ∈
D[A](Y ) we can conclude (|a|,ó0) = (|b|,ó0) ∈A and then ó ∈D[A](X ). It follows
that we have ô =D(f)(ó) =D[A](f)(ó) ∈ rng(D[A](f)), as needed. ⊣

One readily checks that the following yields a morphism of predilators.

Definition 2.19. Consider a predilator D and a set A ⊆ Tr(D). To define a
morphism é[A] :D[A]⇒D, declare that each component é[A]X :D[A](X ) →֒D(X )
is the inclusion map.

Let us verify the promised property:

Lemma 2.20. We have rng(é[A]) =A for each predilator D and each A⊆ Tr(D).

Proof. To establish the first inclusion, we consider (n,ó) ∈ rng(é[A]) ⊆ Tr(D).
Since é[A]n : D[A](n) →֒ D(n) is the inclusion, we must have (n,ó) ∈ Tr(D[A]),
which entails ó ∈ D[A](n). Due to (n,ó) ∈ Tr(D) we have ó =NF D(é

n
n ◦ enn)(ó),

where both énn and enn is the identity on n = {0, ...,n – 1}. Now (n,ó) ∈ A follows
by the equivalence that defines D[A](n). For the converse inclusion, we consider
an arbitrary element (n,ó) ∈A⊆ Tr(D). Once again we have ó =NF D(é

n
n ◦enn)(ó),

so that we get ó ∈ D[A](n). Together with suppD[A]n (ó) = suppDn (ó) = n we obtain
(n,ó) ∈ Tr(D[A]) and then (n,ó) = (n,é[A]n(ó)) = Tr(é[A])(n,ó) ∈ rng(é[A]). ⊣
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One can characterize D[A] and é[A] by a universal property:

Proposition 2.21. For all morphisms ì : D ⇒ E and ì′ : D′ ⇒ E of predilators,
the following are equivalent:

(i) we have rng(ì)⊆ rng(ì′) and
(ii) there is a (necessarily unique) morphism í :D⇒D′ with ì′ ◦ í = ì.

Proof. To establish the crucial direction from (i) to (ii), we consider an element
ó =NF D(é

X
a ◦ ena)(ó0) ∈ D(X ) and note (|a|,ì|a|(ó0)) = Tr(ì)(|a|,ó0) ∈ rng(ì).

Assuming rng(ì)⊆ rng(ì′), there is a unique ô0 ∈D
′(|a|) with ì|a|(ó0) = ì

′
|a|(ô0).

For the latter we set íX (ó) = D
′(éXa ◦ ena)(ô0). The required properties are readily

verified. Essentially, this is the uniqueness part of [13, Theorem4.2.5]. ⊣

Using this characterization ofD[A] and é[A], it is straightforward to establish the
following result, which is due to Girard [13, Theorem4.2.7].

Proposition 2.22. In the category of predilators, any two morphisms ìi : Ei ⇒ E
with i = 0,1 have a pullback. Two morphisms í i :D⇒ Ei with ì

0 ◦ í0 = ì1 ◦ í1 form
a pullback of ì0 and ì1 if, and only if, we have rng(ì0)∩ rng(ì1)⊆ rng(ì0 ◦ í0).

Proof. For existencewe setA := rng(ì0)∩rng(ì1) and consider é[A] :E[A]⇒E.
In view of rng(é[A]) =A⊆ rng(ìi), we get morphisms îi : E[A]⇒ Ei with

ì0 ◦î0 = é[A] = ì1 ◦î1.

One readily checks that these form a pullback. Formissing details and the remaining
claim we refer to the cited paper by Girard. ⊣

Girard [13, Theorem4.4.4] has shown that any direct system in the category of
predilators has a limit. However, the limit of a system of dilators does not need to
be a dilator itself (i.e., it may not preserve well foundedness). In the next section
we will define ptykes in terms of a support condition (analogous to Definition 2.1),
which is motivated by the following result (see [13, Proposition 4.2.6]).

Proposition 2.23. In the category of predilators, consider a direct system of objects
Di and morphisms ì

ij : Di ⇒ Dj , indexed by a directed set I. For a collection of
morphisms í i :Di ⇒D with í

j ◦ìij = í i , the following are equivalent:

(i) the morphisms í i :Di ⇒D form a direct limit of the given system and
(ii) we have Tr(D) =

⋃

{rng(í i) | i ∈ I }.

§3. Ptykes in second order arithmetic. If we consider (well founded) linear orders
as objects of ground type, then (pre-) dilators form the first level in a hierarchy of
countinuous functionals of finite type. The functionals in this hierarchy are called
(pre-)ptykes (singular ptyx; see [17]). On the second level of this hierarchy, we
have transformations that take predilators as input. The output can be a linear
order, a predilator, or even another functional from the second level—at least
intuitively, these possibilities are equivalent modulo Currying.We will only consider
transformations of predilators into predilators, and the term 2-ptyx will be reserved
for these. The number 2 indicates the type level and will often be omitted. In
the present section, we define 2-ptykes in terms of a support condition, which is
analogous to part (ii) ofDefinition 2.1;we show that the givendefinition is equivalent
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to the original definition by Girard, which invokes direct limits and pullbacks; and
we discuss an example.
In the previous section we have discussed the category of predilators.We have seen

that the trace Tr(D) of a predilator D plays an analogous role to the underlying set
of a linear order. Given a morphism í :D⇒ E of predilators, we have constructed
a function Tr(í) : Tr(D)→ Tr(E) with range rng(í) := rng(Tr(í)) ⊆ Tr(E). One
readily checks that this yields a functor Tr(·) from the category of predilators to
the category of sets, as presupposed in part (ii) of the following definition. The
formalization of the definition in second order arithmetic will be discussed below.

Definition 3.1. A 2-preptyx consists of

(i) a functor P from predilators to predilators and
(ii) a natural transformation Supp : Tr(P(·))→ [Tr(·)]<ù such that we have

{ó ∈ Tr(P(E)) |SuppE(ó)⊆ rng(ì)} ⊆ rng(P(ì))

for any morphism ì :D⇒ E of predilators.

If P(D) is a dilator for every dilator D, then P = (P,Supp) is called a 2-ptyx.

As in the case of dilators, we will refer to the inclusion in part (ii) as the support
condition. The converse inclusion is, once again, automatic: given an arbitrary
element ó = Tr(P(ì))(ó0) ∈ rng(P(ì)), we can invoke naturality to get

SuppE(ó) = SuppE(Tr(P(ì))(ó0)) = [Tr(ì)]
<ù(SuppD(ó0))⊆ rng(ì).

Clause (i) of Definition 3.1 is not completely precise, because we have distinguished
between coded and class-sized predilators—even though the two notions give rise
to equivalent categories (cf. the discussion after Proposition 2.15). We can and
will consider preptykes as classes-sized functions. However, the arguments of these
functions should certainly be set-sized. This means that the arguments of a preptyx
must be coded predilators in the sense of Definition 2.2. We agree that the values
of our preptykes are coded predilators as well, even though this is less essential. To
define P(D) as a coded predilator, it suffices to specify its values on finite orders
n = {0, ...,n – 1} ∈ LO0 and morphisms between them. In practice, we often define
the action of P(D) on (morphisms of) infinite linear orders as well; this means that
we describe a class-sized predilator of which P(D) is the coded restriction.
Whenever we speak of a preptyx, we assume that it is given by ∆01-definitions of

the following relations, possibly with additional number and set parameters: First,
we have the relations

ó ∈ P(D)(X ), ó <P(D)(X ) ô, P(D)(f)(ó) = ô, supp
P(D)
X (ó) = a

that define the predilator P(D) = (P(D),suppP(D)) relative to the coded predilator
D ⊆ N. As before, these ∆01-definitions ensure that the coded predilator P(D) exists
as a set, overRCA0. Secondly, we require a ∆

0
1-formulaP(ì)X (ó) = ô that defines the

morphism P(ì) relative to the morphism ì⊆N (cf. the discussion before Definition
2.11). Finally, we demand a ∆01-definition of the relation SuppD(ó) = a, where a
refers to the numerical code of a finite subset of Tr(D).
By using parameters, one can quantify over ∆01-definable families of preptykes. In

the following, all general definitions and results should be read as schemas, with one
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instance for each ∆01-definable family. We will not construct a universal family of
2-preptykes in detail, as this is quite technical and not strictly necessary for the
present paper. Let us, nevertheless, sketch the construction: Given a predilator D
and a finite set a ∈ [Tr(D)]<ù , the constructions from the previous section yield a
predilator D[a] and a morphism é[a] : D[a]⇒ D with rng(é[a]) = a. For a ⊆ b,
Proposition 2.21 ensures that there is a unique morphism íab : D[a]⇒ D[b] with
é[b]◦ íab = é[a]. This turns the collection of predilators D[a] into a directed system
indexed by a ∈ [Tr(D)]<ù . Invoking Proposition 2.23, we learn that the morphisms
é[a] :D[a]⇒D form a direct limit. Given a preptyx P, Proposition 3.2 below entails
that P(D) is the (essentially unique) limit of the system of predilators P(D[a]) and
morphismsP(íab) :P(D[a])⇒P(D[b]). In other words,P is essentially determined
by its action on (morphisms between) predilators with finite trace. The latter
are determined by a finite amount of information (by [13, Proposition 4.3.7] or,
implicitly, Definition 2.5 above). By restricting to arguments with finite trace, one
can thus define a notion of coded preptyx, analogous toDefinition 2.2. The following
result is the main ingredient of the construction that we have sketched. It also shows
that our definition of 2-ptykes coincides with Girard’s original one.

Proposition 3.2. The following are equivalent for an endofunctor P of predilators:

(i) The functor P preserves direct limits and pullbacks.
(ii) There is a natural transformation Supp : Tr(P(·))→ [Tr(·)]<ù that satisfies the
support condition from part (ii) of Definition 3.1.

If a natural transformation as in (ii) exists, then it is unique.

Proof. The argument is very similar to the corresponding proof for dilators (see
[13, Propositions 4.2.6 and 4.2.7] or also [3, Remark 2.2.2]), so we only sketch it. In
order to show that (ii) implies (i), consider a direct system of predilators Di and
morphisms ìij : Di ⇒ Dj . Assume that the morphisms í

i : Di ⇒ D form a direct
limit. By Proposition 2.23 we have Tr(D) =

⋃

{rng(í i) | i ∈ I }. To confirm that
P preserves direct limits, we need to establish Tr(P(D)) =

⋃

{rng(P(í i)) | i ∈ I }.
This is straightforward, given that the supports from (ii) are finite. Preservation of
pullbacks is shown similarly, based on the characterization from Proposition 2.22.
For the other direction and the uniqueness result, we point out that the support
of ñ ∈ Tr(P(D)) is determined as the smallest set a ∈ [Tr(D)]<ù such that we
have ñ ∈ rng(P(é[a])), where é[a] : D[a]⇒ D is the morphism from Lemma 2.20.
Preservation of direct limits (applied to D as a limit of the D[a]) ensures that there
is a finite set with this property. The fact that there is a smallest one follows from
preservation of pullbacks. A detailed verification can be found in a first version of
this paper, which is available as arXiv:2006.12111v1 . ⊣

The following variant of the support functions is convenient, because it does not
force us to consider the trace of P(D), which can be hard to describe. We recall that
every element ó ∈ P(D)(X ) has a unique normal form ó =NF P(D)(é

X
a ◦ ena)(ó0)

with (|a|,ó0) ∈ Tr(P(D)), as explained after Proposition 2.8 above.

Definition 3.3. Consider a 2-preptyx P = (P, Supp). For each predilatorD and
each linear order X, we define a function

SuppD,X : P(D)(X )→ [Tr(D)]
<ù

by setting SuppD,X (ó) := SuppD(|a|,ó0) for ó =NF P(D)(é
X
a ◦ ena)(ó0).
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One readily checks that our modified support functions inherit the following
properties. Details can, once again, be found in arXiv:2006.12111v1.

Lemma 3.4. For any preptyx P, the functions SuppD,X are natural in D and X, in
the sense that we have

SuppE,X ◦P(ì)X = [Tr(ì)]
<ù ◦SuppD,X and SuppD,Y ◦P(D)(f) = SuppD,X ,

for any morphism ì : D ⇒ E of predilators and any order embedding f : X → Y .
Furthermore, the support condition

{ó ∈ P(E)(X ) |SuppE,X (ó)⊆ rng(ì)} ⊆ rng(P(ì)X )

is satisfied for any morphism ì :D⇒ E and any linear order X.

For the following converse, we recall that elements of Tr(P(D)) have the form
(n,ó) with ó ∈ P(D)(n), where n = {0, ...,n – 1} is ordered as usual.

Lemma 3.5. Consider an endofunctor P of predilators and a family of functions
SuppD,X with the properties from Lemma 3.4. We obtain a preptyx (P,Supp) if we
define SuppD : Tr(P(D))→ [Tr(D)]

<ù by SuppD(n,ó) := SuppD,n(ó).

The functions SuppD : Tr(P(D))→ [Tr(D)]
<ù are unique by Proposition 3.2.

As in the proof of the latter, the value SuppD,X (ó) is uniquely determined as the
smallest a ⊆ Tr(D) with ó ∈ rng(P(é[a])X ). Due to uniqueness, the constructions
from the previous two lemmas must be inverse to each other. The proof of Lemma
3.5 does not use the assumption that the functions SuppD,X are natural in X. Hence
the latter is automatic when the other properties from Lemma 3.4 are satisfied.
The following example reveals a connection with a more familiar topic: it shows

that the transformation of a normal function into its derivative is related to the
notion of ptyx. A much simpler ptyx will be described in Example 4.4 below.

Example 3.6. A normal predilator consists of a predilator D = (D, suppD) and
a natural family of functions ìDX : X →D(X ) such that we have

ó <D(X ) ì
D
X (x) ⇔ suppDX (ó)⊆ {x′ ∈ X |x′ <X x},

for any linear order X and arbitrary elements x ∈X and ó ∈D(X ). IfD = (D,ìD)
is a normal dilator, then the induced function on the ordinals (which maps α to the
order type of D(α)) is normal in the usual sense, due to Aczel [1, 2]. The latter has
also shown that one can transform D into a normal (pre-)dilator ∂D that induces
the derivative of the normal function induced by D. Together with Rathjen, the
present author has established that the construction of ∂D can be implemented
in RCA0. Over the latter, the statement that ∂D is a dilator (i.e., preserves well
foundedness) when the same holds for D is equivalent to Π11-bar induction [7, 11].
The transformation of D into P(D) := ∂D is no 2-ptyx in the strict sense, since it
only acts on normal predilators. Nevertheless, it is instructive to observe that all
other conditions from Definition 3.1 are satisfied. For this purpose, we recall that
∂D(X ) is recursively generated by the following clauses (cf. [11, Definition 4.1]):

• For each element x ∈ X , there is a term ì∂Dx ∈ ∂D(X ).
• Given a finite set a ⊆ ∂D(X ), we get a term î〈a,ó〉 ∈ ∂D(X ) for each ó ∈D(|a|)
with (|a|,ó) ∈ Tr(D), except when 〈a,ó〉 = 〈{ì∂Dx },ìD1 (0)〉 for some x ∈ X

(where ìD1 : 1 = {0}→D(1) witnesses the normality of D).
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The map X 7→ ∂D(X ) can be turned into a normal (pre-)dilator, as shown in [11].
To turn D 7→ ∂D = P(D) into a functor, we consider a morphism í : D ⇒ E of
normal predilators (which requires í1(ì

D
1 (0)) = ì

E
1 (0), by [11, Definition 2.20]).

In order to obtain a morphism P(í) : P(D)⇒ P(E), we define the components
P(í)X : ∂D(X )→ ∂E(X ) by the recursive clauses P(í)X (ì

∂D
x ) = ì

∂E
x and

P(í)X (î〈a,ó〉) = î〈[P(í)X ]
<ù(a),í|a|(ó)〉.

To show that we have something like a 2-ptyx (except for the restriction to normal
predilators), we need to construct support functions

SuppD,X : P(D)(X ) = ∂D(X )→ [Tr(D)]
<ù

as in Lemma 3.4. We recursively define SuppD,X (ì
∂D
x ) = ∅ and

SuppD,X (î〈a,ó〉) = {(|a|,ó)}∪
⋃

{SuppD,X (ñ) |ñ ∈ a}.

The required properties are readily verified (see again arXiv:2006.12111v1).

§4. Normal 2-ptykes. The present section introduces a normality condition for
2-ptykes, which is related to the notion of normal function on the ordinals. We then
show that any 2-ptyx is bounded by a normal one; this amounts to the construction
of the ptyx P∗ from the argument that was sketched in the introduction.
InExample 3.6,we have recalled the notion of normal predilator. The crucial point

is that any normal predilator D preserves initial segments, which are determined by
the values ìDX (x) ∈ D(X ) (cf. Girard’s notion of flower [13]). We now introduce a
corresponding notion on the next type level.

Definition 4.1. A morphism í :D⇒ E is called a segment if the range of each
component íX :D(X )→ E(X ) is an initial segment of the linear order E(X ).

We point out that the definition applies to both coded and class-sized predilators.
In the coded case one only considers orders of the form X = n = {0, ...,n – 1}. As
the following lemma shows, the two variants of the definition are compatible with
the equivalence between coded and class-sized predilators (cf. Lemma 2.14). For a
detailed verification we refer to arXiv:2006.12111v1 .

Lemma 4.2. Consider a morphism í :D⇒E of coded predilators. If í is a segment,
then so is í :D⇒ E.

The following is similar to the corresponding notion for dilators, which is itself
related to the usual notion of normal function on the ordinals (cf. Example 3.6).

Definition 4.3. A 2-preptyx P is called normal if P(í) : P(D)⇒ P(E) is a
segment whenever the same holds for í :D⇒ E.

In §6 we will construct a minimal fixed point D ∼= P(D) of a given 2-preptyx P.
We will see that D is a dilator (rather than just a predilator) when P is a normal
2-ptyx. The following example shows that normality is essential. We provide full
details, because the construction will be needed later.

Example 4.4. Given a linear order X, we define X +1 = X ∪{⊤} as the order
with a new biggest element⊤. If D is a (pre-)dilator, we get a (pre-)dilatorD+1 by
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setting (D+1)(X ) :=D(X )+1 and

(D+1)(f)(ó) :=

{

D(f)(ó) if ó ∈D(X )⊆ (D+1)(X ),

⊤ if ó =⊤,

suppD+1X (ó) :=

{

suppDX (ó) if ó ∈D(X )⊆ (D+1)(X ),

∅ if ó =⊤,

where f :X →Y is an embedding. To turnD 7→D+1 into a functor, we transform
each morphism í :D⇒ E into the morphism í+1 :D+1⇒ E+1 with

(í+1)X (ó) :=

{

íX (ó) if ó ∈D(X )⊆ (D+1)(X ),

⊤ if ó =⊤.

By Lemma 3.5, we obtain a ptyx if we define SuppD,X :D(X )+1→ [Tr(D)]
<ù by

SuppD,X (ó) :=

{

{(|a|,ó0)} if ó =NF D(é
X
a ◦ ena)(ó0) ∈D(X ),

∅ if ó =⊤.

IfD ∼=D+1 is a fixed point, thenD(0)∼=D(0)+1 cannot be a well order, so thatD
is no dilator. To see thatD 7→D+1 is not normal, we consider the constant dilators
with valuesD(X ) = 0 and E(X ) = 1 = {0}. The unique morphism í :D⇒E (with
the empty function as components) is a segment. We have

0<(E+1)(0) ⊤= (í+1)0(⊤) ∈ rng((í+1)0)

but 0 /∈ rng((í+1)0), which shows that í+1 is no segment.

In the rest of this section, we show that each preptyx P can be majorized by a
normal preptyx P∗, in the sense that there is a morphism P(D)+1⇒P∗(D+1) for
each predilator D. Informally, the discussion in the introduction suggests

P∗(D) :=
∑

{P(D0)+1 | there is a “proper” segment D0⇒D}.

By a result of Girard (see e.g., [16, Lemma2.11]), we can hope to find a linear order
on the summands. In order to make precise sense of our informal definition, we
analyse the collection of segments D0⇒D in terms of the trace Tr(D).

Definition 4.5. Given a predilator D, we define a relation≪ on the trace Tr(D)
by stipulating that (m,ó)≪ (n,ô) holds if, and only if, we have

D(f)(ó)<D(X ) D(g)(ô)

for all embeddings f :m→ X and g : n→ X into a linear order X.

The following shows that the relation ≪ is ∆01-definable. It also shows that it
makes no difference whether we consider D as a class-sized or as a coded dilator.

Lemma 4.6. We already have (m,ó)≪ (n,ô) if the condition from Definition 4.5 is
satisfied for all embeddings into X =m+n = {0, ...,m+n – 1}.

Proof. Consider embeddings f :m→ X and g : n→ X into an arbitrary order
X. The idea is to factor through the inclusion rng(f)∪rng(g) →֒X , and to consider
an embedding rng(f)∪ rng(g)→m+n. ⊣
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Let us verify a basic property:

Lemma 4.7. The relation≪ on Tr(D) is irreflexive and transitive.

Proof. Given that the order on D(m) is irreflexive for all m ∈ N, it is
straightforward to show that the same holds for ≪. To establish transitivity
we consider inequalities (m,ó) ≪ (n,ô) and (n,ô) ≪ (k,ñ). Given embeddings
f :m→X and g : k→X , pick an orderY that is large enough to admit embeddings
h : X → Y and h′ : n→ Y . We get

D(h ◦f)(ó)<D(Y ) D(h
′)(ô)<D(Y ) D(h ◦g)(ñ),

which implies D(f)(ó)<D(X ) D(g)(ñ), as needed for (m,ó)≪ (k,ñ). ⊣

As promised, the relation≪ on the trace can be used to characterize segments:

Proposition 4.8. For any morphism í :D⇒ E between predilators D and E, the
following are equivalent:

(i) the morphism í :D⇒ E is a segment and
(ii) given (m,ó) ∈ rng(í) and (m,ó) 6≪ (n,ô) ∈ Tr(E), we get (n,ô) ∈ rng(í).

Proof. To show that (i) implies (ii), assume (m,ó) ∈ rng(í) and (m,ó) 6≪ (n,ô).
The former is witnessed by an element ó0 ∈D(m) with ó = ím(ó0), while the latter
yields embeddings f :m→ X and g : n→ X with

E(g)(ô)≤E(X ) E(f)(ó) = E(f)◦ ím(ó0) = íX ◦D(f)(ó0) ∈ rng(íX ).

Given that í is a segment, we obtain E(g)(ô) = íX (ñ) for some element ñ ∈D(X ).
Write ñ =NF D(é

X
a ◦ ena)(ñ0) and observe

E(g)(ô) = íX ◦D(éXa ◦ ena)(ñ0) = E(é
X
a ◦ ena)◦ í|a|(ñ0).

Recall that (n,ô) ∈ Tr(E) entails suppEn (ô) = n. Together with Lemma 2.12, this
means that (|a|,ñ0) ∈ Tr(D) yields supp

E
|a| ◦ í|a|(ñ0) = supp

D
|a|(ñ0) = |a|. We obtain

[g]<ù(n) = suppEX (E(g)(ô)) = supp
E
X (íX ◦D(éXa ◦ ena)(ñ0))

= suppEX (E(é
X
a ◦ ena)◦ í|a|(ñ0)) = [é

X
a ◦ ena ]

<ù(suppE|a| ◦ í|a|(ñ0)) = a,

so that n = |a| and g = éXa ◦ ena . By the above we get ô = í|a|(ñ0) and hence

(n,ô) = (|a|,í|a|(ñ0)) = Tr(í)((|a|,ñ0)) ∈ rng(í).

To show that (ii) implies (i), we considerE(X ) ∋ ô <E(X ) íX (ó) with ó ∈D(X ). Let
us write ô =NF E(é

X
b ◦ enb)(ô0) and ó =NF D(é

X
a ◦ ena)(ó0). Then

E(éXa ◦ ena)◦ í|a|(ó0) = íX (ó) 6<E(X ) ô = E(é
X
b ◦ enb)(ô0)

witnesses that we have

rng(í) ∋ Tr(í)((|a|,ó0)) = (|a|,í|a|(ó0)) 6≪ (|b|,ô0).

By (ii) we get (|b|,ô0) ∈ rng(í), say ô0 = í|b|(ô1) with ô1 ∈D(|b|). This yields

ô = E(éXb ◦ enb)◦ í|b|(ô1) = íX ◦D(éXb ◦ enb)(ô1) ∈ rng(íX ),

as needed to show that í is a segment. ⊣
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The following result implies that incomparability under ≪ is an equivalence
relation that is compatible with ≪. Hence one can linearize ≪ by identifying
incomparable elements.

Lemma 4.9. Assume that we have (m,ó)≪ (n,ô) in Tr(D).

(a) If we have (m,ó) 6≪ (m′,ó′), then we have (m′,ó′)≪ (n,ô).
(b) If we have (n′,ô′) 6≪ (n,ô), then we have (m,ó)≪ (n′,ô′).

Proof. First note that the contrapositive of (b) is an instance of (a). In order
to establish the latter, we deduce (m,ó) 6≪ (n,ô) from the assumption that we have
(m,ó) 6≪ (m′,ó′) and (m′,ó′) 6≪ (n,ô). The latter yields embeddings f : m → X ,
g :m′ → X , f′ :m′ → Y and g ′ : n→ Y with

D(g)(ó′)≤D(X ) D(f)(ó) and D(g ′)(ô)≤D(Y ) D(f
′)(ó′).

Consider a linear order Z that is large enough to admit embeddings h :X →Z and
h′ : Y → Z with h′(y)≤Z h(x) for all x ∈ X and y ∈ Y . This yields h

′ ◦f′ ≤ h ◦g,
in the notation from the beginning of §2. Since the predilator D is monotone (cf.
Definition 2.1), we obtain

D(h′ ◦g ′)(ô)≤D(Z) D(h
′ ◦f′)(ó′)≤D(Z) D(h ◦g)(ó

′)≤D(Z) D(h ◦f)(ó),

as needed to witness (m,ó) 6≪ (n,ô). ⊣

For technical reasons, we will not identify incomparable elements. Instead, we
linearize ≪ as follows (cf. [16, Lemma2.11]): Each order n = |n| = {0, ...,n – 1}
can be identified with a suborder of ù. In view of Definition 2.5, this identification
yields Tr(D)⊆D(ù), with D ↾LO0 at the place of D when the latter is class-sized.
For elements (m,ó) and (n,ô) of Tr(D) we set

(m,ó)<Tr(D) (n,ô) :⇔ (m,ó)<D(ù) (n,ô).

Let us observe the following:

Lemma 4.10. The relation <Tr(D) is a linear order. It is well founded if the same
holds for <D(ù). Furthermore, we have

(m,ó)≪ (n,ô) ⇒ (m,ó)<Tr(D) (n,ô)

for any elements (m,ó) and (n,ô) of Tr(D).

Proof. Proposition 2.6 entails that D(ù) is a linear order, which yields the first
part of the claim. The definition of≪ reveals that (m,ó)≪ (n,ô) implies

D(|ém∪nm |)(ó)<D(|m∪n|) D(|é
m∪n
n |)(ô).

By Definition 2.5 this amounts to (m,ó) <D(ù) (n,ô), as required for the last part
of the lemma. To avoid confusion, we point out that our general notation is unnec-
essarily complex for the present situation: the function |ém∪nm | = ém∪nm is simply the
inclusion of m = {0, ...,m – 1} into m∪n =max(m,n) = {0, ...,max(m,n) – 1}. ⊣

As the following shows, each “proper” segment í : D ⇒ E is determined (cf.
Proposition 2.21) by an element ñ = (k,ñ0) ∈ Tr(E). Usually, ñ is not unique: if
ñ and ñ′ are incomparable, then they determine the same subset of Tr(E), by
Lemma 4.9.
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Corollary 4.11. Consider a morphism í :D⇒ E of predilators and assume that
E(ù) is well founded. If we have rng(í) 6= Tr(E), then the following are equivalent:

(i) the morphism í is a segment and
(ii) we have rng(í) = {ó ∈ Tr(E) |ó≪ ñ} for some ñ ∈ Tr(E).

Proof. Due to rng(í) 6=Tr(E) and the previous lemma, wemay pick a ñ /∈ rng(í)
that is≪-minimal. Assuming (i), we show that any such ñ witnesses (ii). To see that
ó ≪ ñ implies ó ∈ rng(í), it suffices to invoke the minimality of ñ. Now assume
ó ∈ rng(í). If we had ó 6≪ ñ, then Proposition 4.8 would yield ñ ∈ rng(í), against
the choice of ñ. Hence we must have ó ≪ ñ. Let us now assume that (ii) holds for
some given ñ ∈ Tr(E). By Lemma 4.9, it follows that ó ∈ rng(í) and ó 6≪ ô imply
ô ∈ rng(í). Then Proposition 4.8 yields (i). ⊣

According to Definition 2.16, each morphism í : D ⇒ E of predilators yields a
function Tr(í) : Tr(D)→ Tr(E). We will need the following:

Lemma 4.12. Consider a morphism í :D⇒E. If we have ó <Tr(D) ô, then we have
Tr(í)(ó)<Tr(E) Tr(í)(ô).

Proof. In defining<Tr(D), we have identifiedTr(D) with a subset ofD(ù).Under
this identification, the value Tr(í)(n,ó0) = (n,ín(ó0)) fromDefinition 2.16 coincides
with the value íù(n,ó0) = (n,ín(ó0)) from Definition 2.13. From Lemma 2.14 we
know that the function íù :D(ù)→E(ù) is order preserving. Hence the same holds
for the function Tr(í). ⊣

Wenow have all ingredients tomake the definition ofP∗ official (cf. the discussion
before Definition 4.5). For ñ ∈ Tr(D) we abbreviate

D[ñ] :=D[{ó ∈ Tr(D) |ó≪ ñ}],

where the right side is explained by Definition 2.17. Together with the notation from
Example 4.4, this allows us to describe the action of P∗ on predilators:

Definition 4.13. Consider a 2-preptyx P. For each predilator D and each order
X, we consider the set

P∗(D)(X ) :=
∑

ñ∈Tr(D)

(P(D[ñ])+1)(X ),

which has elements (ñ,ó) with ñ ∈ Tr(D) and ó ∈ P(D[ñ])(X )∪{⊤}. We set

(ñ,ó)<P∗(D)(X ) (ñ
′,ó′) :⇔ ñ <Tr(D) ñ

′ or (ñ = ñ′ and ó <P(D[ñ])(X )+1 ó
′).

Given an embedding f :X →Y , we define P∗(D)(f) : P∗(D)(X )→ P∗(D)(Y ) by

P∗(D)(f)(ñ,ó) := (ñ,(P(D[ñ])+1)(f)(ó)).

Finally, we set

suppP
∗(D)
X (ñ,ó) := suppP(D[ñ])+1X (ó)

to define a family of functions suppP
∗(D)
X : P∗(D)(X )→ [X ]<ù .
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By the discussion after Definition 3.1, the preptyx P comes with ∆01-definitions
of ó ∈ P(D)(X ) and other relevant relations. These definitions refer to the coded
predilator D ⊆ N as a parameter, i.e., they may contain subformulas like ô ∈D(n).
As observed after Definition 2.17, the relation ô ∈D[A](X ) is ∆01-definable relative
to D ⊆ N and A ⊆ Tr(D). In order to turn the given definition of ó ∈ P(D) into
a ∆01-definition of ó ∈ P(D[ñ]), it suffices to replace subformulas like ô ∈ D(n) by
corresponding ∆01-formulas like ô ∈D[ñ](n). Once we have definitions for P(D[ñ]),
it is straightforward to construct ∆01-definitions of (ñ,ó) ∈ P

∗(D)(X ) and the other
relations that constitute P∗(D). The following results will allow us to define the
action of P∗ on morphisms of predilators.

Lemma 4.14. Consider a morphism í : D ⇒ E. We have ó ≪ ñ in Tr(D) if, and
only if, we have Tr(í)(ó)≪ Tr(í)(ñ) in Tr(E).

Proof. Write ó = (m,ó0) and ñ = (n,ñ0), which yields Tr(í)(ó) = (m,ím(ó0))
and Tr(í)(ñ) = (n,ín(ñ0)). In view of Definition 4.5, it suffices to observe that the
inequality D(f)(ó0)<D(X ) D(g)(ñ0) is equivalent to

E(f)◦ ím(ó0) = íX ◦D(f)(ó0)<E(X ) íX ◦D(g)(ñ0) = E(g)◦ ín(ñ0),

for arbitrary embeddings f :m→ X and g : n→ X . ⊣

For each element ñ ∈ Tr(D), Lemma 2.20 yields a morphism

é[ñ] := é[D,ñ] := é[{ó ∈ Tr(D) |ó≪ ñ}] :D[ñ]⇒D

with rng(é[ñ]) = {ó ∈ Tr(D) |ó≪ ñ}.

Corollary 4.15. For each morphism í :D⇒ E and each ñ ∈ Tr(D) we have

rng(í ◦ é[D,ñ])⊆ rng(é[E,Tr(í)(ñ)]).

If í is a segment, then the converse inclusion holds as well.

Proof. Any element of rng(í ◦ é[ñ]) has the form Tr(í)(ó) with ó ∈ rng(é[ñ])
and hence ó ≪ ñ. By the previous lemma we get Tr(í)(ó)≪ Tr(í)(ñ), as needed
for Tr(í)(ó) ∈ rng(é[Tr(í)(ñ)]). Now assume that í is a segment. For an arbitrary
element ô ∈ rng(é[Tr(í)(ñ)]) we have ô≪ Tr(í)(ñ) and hence

rng(í) ∋ Tr(í)(ñ) 6≪ ô.

By Proposition 4.8 we get ô ∈ rng(í), say ô = Tr(í)(ó). The previous lemma yields
ó≪ ñ and hence ó ∈ rng(é[ñ]), so that we get ô = Tr(í)(ó) ∈ rng(í ◦ é[ñ]). ⊣
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Together with Proposition 2.21, the corollary justifies the following:

Definition 4.16. For amorphism í :D⇒E and an element ñ ∈Tr(D), we define

íñ :D[ñ]⇒ E[Tr(í)(ñ)]

as the unique morphism with é[E,Tr(í)(ñ)]◦ íñ = í ◦ é[D,ñ].

Let us observe that íñ is ∆01-definable, given that the same holds for í: According
to Definition 2.19, the components of é[ñ] are inclusion maps. For ó ∈ D[ñ](X ),
this means that íñX (ó) = ô is equivalent to íX (ó) = ô. The following result will be
needed to verify the support condition for P∗. In view of Proposition 2.22, it tells
us that we are concerned with a pullback.

Corollary 4.17. We have rng(í)∩ rng(é[E,Tr(í)(ñ)])⊆ rng(í ◦ é[D,ñ]) for each
morphism í :D⇒ E and each element ñ ∈ Tr(D).

Proof. An arbitrary element of rng(í)∩ rng(é[Tr(í)(ñ)]) has the form Tr(í)(ó)
and satisfies Tr(í)(ó)≪ Tr(í)(ñ). By Lemma 4.14 we can conclude ó ≪ ñ. The
latter amounts to ó ∈ rng(é[ñ]), which implies Tr(í)(ó) ∈ rng(í ◦ é[ñ]). ⊣

Let us also record the following fact, which will be used to show that the preptyx
P∗ is normal (cf. Definition 4.3).

Corollary 4.18. If í : D ⇒ E is a segment, then íñ : D[ñ]⇒ E[Tr(í)(ñ)] is an
isomorphism, for each element ñ ∈ Tr(D).

Proof. Due to the second part of Corollary 4.15, we can invoke Proposition 2.21
to get a morphism ìñ : E[Tr(í)(ñ)]⇒D[ñ] with í ◦ é[ñ]◦ìñ = é[Tr(í)(ñ)]. In view
of

í ◦ é[ñ]◦ìñ ◦ íñ = é[Tr(í)(ñ)]◦ íñ = í ◦ é[ñ],

the uniqueness part of Proposition 2.21 implies that ìñ ◦ íñ is the identity on D[ñ].
An analogous argument shows that íñ ◦ìñ is the identity on E[Tr(í)(ñ)]. ⊣

In order to turn P∗ into a preptyx, we will define support functions Supp∗D,X as in
Lemma 3.5. By Lemma 3.4, we may assume that the preptyxP comes with functions
SuppD,X : P(D)(X )→ [Tr(D)]

<ù .

Definition 4.19. Consider a preptyx P. For each morphism í :D⇒E and each
linear order X, we define P∗(í)X : P

∗(D)(X )⇒ P∗(E)(X ) by

P∗(í)X (ñ,ó) :=

{

(Tr(í)(ñ),P(íñ)X (ó)) if ó ∈ P(D[ñ])(X ),

(Tr(í)(ñ),⊤) if ó =⊤.

In order to define functions Supp∗D,X : P
∗(D)(X )→ [Tr(D)]<ù , we set

Supp∗D,X (ñ,ó) :=

{

{ñ}∪SuppD,X (P(é[ñ])X (ó)) if ó ∈ P(D[ñ])(X ),

{ñ} if ó =⊤,

for each predilator D and each linear order X.

The relations P∗(í)X (ó) = ô and Supp
∗
D,X (ó) = a are ∆

0
1-definable, by the

discussion after Definition 4.13. Our constructions culminate in the following result:
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Theorem 4.20. For any 2-preptyx P we have the following:

(a) P∗ is a normal 2-preptyx,
(b) if P is a 2-ptyx (i.e., preserves dilators), then so is P∗, and
(c) there is a family of morphisms îD : P(D)+1⇒ P∗(D+1) that is natural in
the predilator D, in the sense that we have îE ◦ (P(í)+1) = P∗(í+1)◦îD for
any morphism í :D⇒ E.

Proof. (a) Given a predilator D, we can invoke Lemma 2.18 to learn that D[ñ]
is a predilator for each ñ ∈ Tr(D). Since P is a preptyx, it follows that P(D[ñ])
and P(D[ñ]) + 1 are predilators. It is straightforward to deduce that P∗(D) is a
predilator as well. Similarly, P∗(í) : P∗(D)⇒ P∗(E) is a morphism of predilators
when the same holds for í :D⇒ E. The claim that P∗ is functorial can be reduced
to the following facts: First, if í :D⇒D is the identity, then íñ :D[ñ]⇒D[ñ] is the
identity for each ñ ∈ Tr(D). Secondly, we have

(ì◦ í)ñ = ìTr(í)(ñ) ◦ íñ

for arbitrary morphisms í : D0 ⇒ D1 and ì : D1 ⇒ D2 and any ñ ∈ Tr(D0). Both
facts follow from the uniqueness part of Proposition 2.21. To show that the functions
Supp∗D,X :P

∗(D)(X )→ [Tr(D)]<ù are natural inD, consider a morphism í :D⇒E
and an element (ñ,ó) ∈ P∗(D)(X ). Since P is a preptyx, the support functions
SuppD,X : P(D)(X )→ [Tr(D)]

<ù are natural (cf. Lemma 3.4). In the more difficult
case of ó 6=⊤, we can deduce

Supp∗E,X (P
∗(í)X (ñ,ó)) = Supp

∗
E,X (Tr(í)(ñ),P(í

ñ)X (ó))

= {Tr(í)(ñ)}∪SuppE,X (P(é[Tr(í)(ñ)]◦ í
ñ)X (ó))

= {Tr(í)(ñ)}∪SuppE,X (P(í ◦ é[ñ])X (ó))

= {Tr(í)(ñ)}∪ [Tr(í)]<ù(SuppD,X (P(é[ñ])X (ó)))

= [Tr(í)]<ù(Supp∗D,X (ñ,ó)).

In order to conclude that P∗ is a preptyx, we verify the support condition from
Lemma 3.4 (which implies the one from Definition 3.1, by Lemma 3.5). For this
purpose, we consider a morphism í :D⇒E and an element (ñ,ó)∈P∗(E)(X ) with
Supp∗E,X (ñ,ó) ⊆ rng(í). The latter yields ñ ∈ rng(í), say ñ = Tr(í)(ñ0). In case of
ó 6=⊤, it also yields

SuppE,X (P(é[ñ])X (ó)) = [Tr(é[ñ])]
<ù(SuppD,X (ó))

⊆ rng(í)∩ rng(é[ñ])⊆ rng(í ◦ é[ñ0]),

where the last inclusion relies on Corollary 4.17. By the support condition for the
preptyx P, we get an element ó0 ∈ P(D[ñ0])(X ) with

P(é[ñ])X (ó) = P(í ◦ é[ñ0])X (ó0) = P(é[ñ]◦ í
ñ0)X (ó0).

Since P(é[ñ]) is a morphism of predilators, the component P(é[ñ])X is an order
embedding and in particular injective. We obtain ó = P(íñ0)X (ó0) and then

(ñ,ó) = (Tr(í)(ñ0),P(í
ñ0)X (ó0)) = P

∗(í)X (ñ0,ó0) ∈ rng(P
∗(í)X ),
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as required by the support condition for P∗. Finally, we show that the 2-preptyx P∗

is normal (cf. Definition 4.3). Consider a segment í :D⇒ E and an inequality

(ñ,ó)<P∗(E)(X ) P
∗(í)X (ñ

′,ó′) ∈ rng(P∗(í)X ).

The latter entails ñ ≤Tr(E) Tr(í)(ñ
′), so that Lemma 4.9 yields

rng(í) ∋ Tr(í)(ñ′) 6≪ ñ.

By Proposition 4.8 we get ñ ∈ rng(í), say ñ = Tr(í)(ñ0). Now Corollary 4.18 tells
us that íñ0 : D[ñ0]⇒ E[ñ] is an isomorphism. Since P is a functor, it follows that
the natural transformation P(íñ0) and its component P(íñ0)X are isomorphisms as
well. For ó 6=⊤ we get ó = P(íñ0)X (ó0) for some ó0 ∈ P(D[ñ0])X . This yields

(ñ,ó) = (Tr(í)(ñ0),P(í
ñ0)X (ó0)) = P

∗(í)X (ñ0,ó0) ∈ rng(P
∗(í)X ).

For ó =⊤ we have (ñ,ó) = (Tr(í)(ñ0),⊤) = P
∗(í)X (ñ0,⊤) ∈ rng(P

∗(í)X ).
(b) Consider a dilator D and a well order X. We need to show that P∗(D)(X ) is

well founded. The morphisms é[ñ] :D[ñ]⇒D ensure that D[ñ] is a dilator for each
ñ ∈ Tr(D). Given that P is a ptyx, it follows that each order P(D[ñ])(X )+1 is well
founded. Now consider a (not necessarily strictly) descending sequence

(ñ0,ó0),(ñ1,ó1), ...⊆ P
∗(D)(X ).

The first components form a descending sequence with respect to the order <Tr(D)
on the trace of D. Given that D is a dilator, we can invoke Lemma 4.9 to find an
N ∈ N with ñn = ñN for all n ≥N . Then óN ,óN+1, ... is a sequence in the well order
P(D[ñN ])(X )+1, and it is easy to conclude.
(c) The element ⊤ ∈ (D+1)(0) yields an element (0,⊤) ∈ Tr(D+1), which gives

rise to a morphism é[D+1,(0,⊤)] : (D+1)[(0,⊤)]⇒D+1 (cf. the discussion before
Corollary 4.15). We also have a morphism ðD :D⇒D+1, where each component
ðDX :D(X ) →֒D(X )∪{⊤}= (D+1)(X ) is the obvious inclusion map. Let us show
that we have

rng(ðD)⊆ rng(é[D+1,(0,⊤)]) = {ó ∈ Tr(D+1) |ó≪ (0,⊤)}.

An arbitrary element of rng(ðD) can be written as Tr(ðD)(m,ó0) = (m,ð
D
m(ó0)) for

some (m,ó0) ∈ Tr(D). To show that we have (m,ð
D
m(ó0))≪ (0,⊤) in Tr(D+1), we

consider arbitrary embeddings f : m → X and g : 0→ X into some order X (in
fact, g can only be the empty function). In view of ðDm(ó0) ∈D(m)⊆D(m)∪{⊤},
we have (D+1)(f)(ðDm(ó0)) =D(f)(ð

D
m(ó0)) ∈D(X )⊆D(X )∪{⊤}. This yields

(D+1)(f)(ðDm(ó0))<(D+1)(X ) ⊤= (D+1)(g)(⊤),

as needed for (m,ðDm(ó0))≪ (0,⊤). Now Proposition 2.21 yields a morphism

éD :D⇒ (D+1)[(0,⊤)] with é[D+1,(0,⊤)]◦ éD = ðD .

Since é[D+1,(0,⊤)] and ðD are ∆01-definable relative to D, the same holds for é
D .

As explained after Definition 4.13, we obtain a ∆01-definition of the morphism

P(éD) : P(D)⇒ P((D+1)[(0,⊤)]).
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The components of îD : P(D)+1⇒ P∗(D+1) can now be defined by

îDX (ó) :=

{

((0,⊤),P(éD)X (ó)) if ó ∈ P(D)(X )⊆ (P(D)+1)(X ),

((0,⊤),ó) if ó =⊤ ∈ (P(D)+1)(X ).

It is straightforward to verify that îDX is an embedding and natural in X, so that î
D

is a morphism of predilators. To establish naturality in D, we consider í : D ⇒ E.
Note Tr(í+1)(0,⊤) = (0,(í+1)0(⊤)) = (0,⊤) and invoke Definition 4.16 to get

é[E+1,(0,⊤)]◦ (í+1)(0,⊤) ◦ éD = (í+1)◦ é[D+1,(0,⊤)]◦ éD

= (í+1)◦ðD = ðE ◦ í = é[E+1,(0,⊤)]◦ éE ◦ í.

This entails (í +1)(0,⊤) ◦ éD = éE ◦ í, since the components of our morphisms are
embeddings. For an element ó ∈ P(D)(X )⊆ (P(D)+1)(X ) we can deduce

îEX ◦ (P(í)+1)X (ó) = î
E
X (P(í)X (ó)) = ((0,⊤),P(é

E)X ◦P(í)X (ó))

= (Tr(í+1)(0,⊤),P((í+1)(0,⊤))X ◦P(éD)X (ó))

= P∗(í+1)X ((0,⊤),P(é
D)X (ó)) = P

∗(í+1)X ◦îDX (ó).

The case of ó =⊤ ∈ (P(D)+1)(X ) is similar and easier. ⊣

§5. From fixed points of 2-ptykes to Π1
2
-induction. In this section, we deduce

Π12-induction along N from the assumption that every normal 2-ptyx has a fixed
point that is a dilator. For this purpose, we work out the details of the argument
that we have sketched in the introduction.
Consider a Π12-formula ø(n) with a distinguished number variable, possibly with

further number or set parameters. The Kleene normal form theorem (see e.g., [29,
LemmaV.1.4]) yields a ∆00-formula è such that ACA0 proves

ø(n)↔∀Z⊆N∃f:N→N∀m∈N è(Z[m],f[m],n).

Here f[m] = 〈f(0), ...,f(m – 1)〉 denotes the sequence of the first m values of
f, coded by a natural number; in writing Z[m], we identify the set Z ⊆ N with its
characteristic function. The formulasø and è will be fixed throughout the following.
We also fix ACA0 as base theory.
Let us introduce some notation: We write Y<ù for the set of finite sequences with

entries from the set Y. In order to refer to the entries of a sequence s ∈ Y<ù of
lengthm = len(s), we will often write it as s = 〈s(0), ...,s(m – 1)〉. For k ≤m we put
s[k] := 〈s(0), ...,s(k – 1)〉. If Y is linearly ordered, the Kleene–Brouwer order (also
called Lusin–Sierpiński order) on Y<ù is the linear order defined by

s <KB(Y ) t :⇔

{

either len(s)> len(t) and s[len(t)] = t,

or s[k] = t[k] and s(k)<Y t(k) for some k <min{len(s), len(t)}.

We say that a subset T ⊆ Y<ù is a tree if s ∈ T and k ≤ len(s) imply s[k] ∈ T .
Unless indicated otherwise, we assume that any tree T ⊆ Y<ù carries the Kleene–
Brouwer order <KB(Y ). Recall that a branch of T is given by a function f : N→ Y
such that f[m] ∈ T holds for all m ∈ T . If Y is a well order, then T ⊆ Y<ù (with
order relation <KB(Y )) is well founded if, and only if, it has no branch (by the proof
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of [29, LemmaV.1.3], which is formulated for Y = N). One can conclude that our
Π12-formula ø(n) fails for n ∈ N if, and only if, there is a Z ⊆ N such that the
Kleene–Brouwer order <KB(N) is well founded on the tree

T nZ := {t ∈ N
<ù |∀k≤len(t)¬è(Z[k],t[k],n)}.

In the following we construct predilators Dnø such that D
n
ø is a dilator if, and only

if, the instance ø(n) holds. This is a version of Girard’s result that the notion of
dilator is Π12-complete. The construction that we present is due toNormann (see [15,
Theorem8.E.1]). We recall it in full detail, because the rest of this section depends
on the construction itself, not just on the result. Given a linear order X, the idea is
to define Dnø(X ) as a subtree of (2×X )

<ù (recall m = {0, ...,m – 1} with the usual

linear order). Along each potential branch of Dnø(X ), we aim to construct a set

Z ⊆ N (determined by the characteristic function N→ 2 from the first component
of the branch) and, simultaneously, an embedding of T nZ into X. If D

n
ø fails to be a

dilator, then Dnø(X ) has a branch for some well order X. The resulting embedding

T nZ → X ensures that T nZ is a well order, so that ø(n) fails. Since Z is not given in
advance, we need to approximate T nZ by the trees

T ns := {t ∈ N
<ù | len(t)≤ len(s) and ∀k≤len(t)¬è(s[k],t[k],n)}

for s ∈ 2<ù . The relation t ∈ T ns is ∆
0
1-definable, as è is a ∆

0
0-formula. We observe

T ns[m] = {t ∈ T ns | len(t)≤m} for m ≤ len(s), as well as T nZ =
⋃

{T nZ[m] |m ∈ N}.
In order to describe the following constructions in an efficient way, we introduce

some notation in connection with products. First recall that the product of sets
Y0, ...,Yk–1 is given by

Y0×···×Yk–1 := {(y0, ...,yk–1) |yi ∈ Yi for each i < k}.

If Yi = (Yi, <i) is a linear order for each i < k, then we assume that the product
carries the lexicographic order, in which (y0, ...,yk–1) precedes (y

′
0, ...,y

′
k–1) if, and

only if, there is an index j < k with yj <j y
′
j and yi = y

′
i for all i < j. Given

sequences si = 〈si(0), ...,si(m – 1)〉 ∈ Y
<ù
i of the same length, we can construct a

sequence s0×···× sk–1 ∈ (Y0×···×Yk–1)
<ù by setting

s0×···× sk–1 := 〈(s0(0), ...,sk–1(0)), ...,(s0(m – 1), ...,sk–1(m – 1))〉.

Note that any sequence in (Y0×···×Yk–1)
<ù can be uniquely written in this form.

Analogously, we will combine functions gi : N→ Yi into a function

g0×···×gk–1 : N→ Y0×···×Yk–1

with (g0×···×gk–1)(l) := (g0(l), ...,gk–1(l)). For arbitrary m ∈ N, we can observe

(g0×···×gk–1)[m] = g0[m]×···×gk–1[m].

We use our product notation in a somewhat flexible way, for example by combining
s0 ∈Y

<ù
0 and t = s1×s2 ∈ (Y1×Y2)

<ù into s0× t := s0×s1×s2 ∈ (Y0×Y1×Y2)
<ù .

We can now officially define the predilators Dnø that were mentioned above.

Definition 5.1. For each linear order X, we define Dnø(X ) as the tree of all

sequences s× t ∈ (2×X )<ù with the following property: For all indices i,j < len(t)
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that are (numerical codes for) elements of T ns ⊆ N
<ù , we have

i <KB(N) j ⇒ t(i)<X t(j).

Given an embedding f : X → Y , we define Dnø(f) :D
n
ø(X )→D

n
ø(Y ) by

Dnø(f)(s×〈t(0), ...,t(m – 1)〉) := s×〈f(t(0)), ...,f(t(m – 1))〉.

Finally, we define functions suppnX :D
n
ø(X )→ [X ]

<ù by setting

suppnX (s×〈t(0), ...,t(m – 1)〉) := {t(0), ...,t(m – 1)}

for each linear order X.

As mentioned before, the following comes from Normann’s proof of Girard’s
result that the notion of dilator is Π12-complete (see [15, Theorem8.E.1]).

Proposition 5.2. For each n ∈ N, we have the following:

(a) the constructions from Definition 5.1 yield a predilator Dnø and

(b) the predilator Dnø is a dilator if, and only if, the Π
1
2-formula ø(n) holds.

Proof. Part (a) can be established by a straightforward verification. In (b), both
directions are established by contraposition. First assume that ø(n) fails. We can
then consider a set Z ⊆ N such that T nZ is well founded. Write g : N → 2 for the
characteristic function of Z, and put X := T nZ ∪{⊤} with a new maximal element
denoted by ⊤. Using the latter as a default value, we define h : N→ X by

h(i) :=

{

i if i codes an element of T nZ ⊆ X,

⊤ otherwise.

For i,j ∈ T nZ it is then trivial that i <KB(N) j implies h(i)<X h(j). One can conclude
that g×h :N→ 2×X is a branch ofDnø(X ). SinceX is well founded whileD

n
ø(X ) is

not, the predilator Dnø fails to be a dilator. To establish the converse, consider some

well order X such thatDnø(X ) is ill founded. We can then consider a branch g×h in

Dnø(X ). Let Z ⊆ N be the set with characteristic function g. To conclude that ø(n)
fails, we argue that T nZ is well founded because h restricts to an embedding of T

n
Z

into the well order X : Given sequences i,j ∈ T nZ , we observe that i,j ∈ T ng[m] holds

for sufficiently largem ∈N (above the length of i and j). Then g[m]×h[m] ∈Dnø(X )

ensures that i <KB(N) j implies h(i)<X h(j), as desired. ⊣

Next, we construct a family of 2-preptykes Pnø such that P
n
ø is a 2-ptyx (i.e.,

preserves dilators) precisely when the implication ø(n) → ø(n + 1) holds. The
construction is inspired by the one from Definition 5.1 (which is due to Normann).
It will be somewhat more technical, because we work at a higher type level; on
the other hand, the fact that we are concerned with an implication between Π12-
statements (and not with a general Π13-statement) allows for some simplifications.
Let us recall that the component t ∈X<ù of an element s× t ∈Dnø(X ) encodes a

partial embedding of T nZ (or rather of T
n
s ) into X. To discuss partial embeddings on

the next type level, we need some notation: For a predilator D we write

ΣD := {(m,ó) |m ∈ N and ó ∈D(m)},
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for m = {0, ...,m – 1} with the usual linear order. To get an order on ΣD, we put

(m,ó)<ΣD (k,ô) :⇔ m< k or (m = k and ó <D(m) ô).

As before, we write ΣD+1 for the extension of ΣD by a new maximal element ⊤
(which will, once again, serve as a default value).

Definition 5.3. Consider predilatorsD and E. By a partial morphism r :D
p
=⇒E

wemean a sequence r = 〈r(0), ...,r(len(r) – 1)〉 ∈ (ΣE+1)<ù for which the following
properties are satisfied:

(i) Whenever i < len(r) is (the numerical code of) an element (m,ó) ∈ ΣD, we
have r(i) = (m,ñ) for some ñ ∈ E(m), with the same first component m.

To formulate the other conditions, we assume that (i) holds. For (m,ó) ∈ ΣD with
code i < len(r), we then define írm(ó) ∈ E(m) by stipulating r(i) = (m,í

r
m(ó)). We

say that írm(ó) is undefined when (m,ó) does not lie in ΣD or has code i ≥ len(r).
(ii) When the values írm(ó) and í

r
m(ô) are defined, we demand

ó <D(m) ô ⇒ írm(ó)<E(m) í
r
m(ô).

(iii) If f :m = {0, ...,m – 1}→ {0, ...,k – 1}= k is an embedding, we require

E(f)(írm(ó)) = í
r
k(D(f)(ó))

whenever the values írm(ó) and í
r
k(D(f)(ó)) are defined.

To avoid confusion, we explicitly state that both r(i) ∈ ΣE and r(i) = ⊤ is
permitted when i < len(r) does not code an element of ΣD. Let us observe that
condition (iii) is void for all but finitely many functions f, since there are only
finitely many numbers m ∈ N such that írm(ó) is defined for some ó ∈ D(m). As
a consequence, the notion of partial morphism is ∆01-definable. The following is
straightforward but important:

Lemma 5.4. Consider a partial morphism r : D
p
=⇒ E. For k ≤ len(r), the initial

segment r[k] : D
p
=⇒ E is also a partial morphism, and we have ír[k]m (ó) = í

r
m(ó)

whenever ír[k]m (ó) is defined (note that í
r
m(ó) is also defined in this case).

In order to define the preptyx Pnø, we must specify an endofunctor of predilators
and a natural family of support functions. The following definition explains the
action of the endofunctor Pnø on objects, i.e., on predilators.

Definition 5.5. Consider a predilator E. For each order X, we define Pnø(E)(X )

as the tree of all sequences r× s× t ∈ ((ΣE+1)×2×X )<ù such that r :Dnø
p
=⇒E is

a partial morphism and we have s× t ∈Dn+1ø (X ). Given an embedding f :X →Y ,

we define Pnø(E)(f) : P
n
ø(E)(X )→ P

n
ø(E)(Y ) by

Pnø(E)(f)(r× s× t) := r×D
n+1
ø (f)(s× t).

To define functions suppn,EX : Pnø(E)(X )→ [X ]
<ù , we set

suppn,EX (r× s× t) := supp
n+1
X (s× t),

where suppn+1X :Dn+1ø (X )→ [X ]
<ù is the support function from Definition 5.1.

https://doi.org/10.1017/jsl.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.22


WELL ORDERING PRINCIPLES AND Π14-STATEMENTS: A PILOT STUDY 735

We recall that the arguments and values of our preptykes are coded predilators
in the sense of Definition 2.2, rather than class-sized predilators in the sense of
Definition 2.1. This is important for foundational reasons but has few practical
implications, as the two variants of predilators form equivalent categories (see the
first part of §2). In Definition 5.1 we have specifiedDnø(X ) for an arbitrary order X,
which means that we have defined Dnø as a class-sized predilator. We will also write

Dnø (rather than D
n
ø ↾LO0) for the coded restriction given by Lemma 2.3.

Assuming that Pnø preserves dilators, part (b) of the following proposition entails

that Dn+1ø is a dilator if the same holds for Dnø. In view of Proposition 5.2, this

amounts to the implication ø(n)→ ø(n+1).

Proposition 5.6. The following holds for any n ∈ N:

(a) if E is a predilator, then so is Pnø(E), and

(b) there is a morphism æn :Dn+1ø ⇒ Pnø(D
n
ø) of predilators.

Proof. It is straightforward to check part (a), based on the corresponding result
from Proposition 5.2. To establish part (b), we define g : N→ ΣDnø+1 by

g(i) :=

{

(m,ó) if i is the numerical code of (m,ó) ∈ ΣDnø,

⊤ if i does not code an element of ΣDnø.

Then g[k] : Dnø
p
=⇒ Dnø is a partial morphism for each k ∈ N (with íg[k]m (ó) = ó

whenever the value is defined). For each linear orderX, we can thus define a function
ænX :D

n+1
ø (X )→ P

n
ø(D

n
ø)(X ) by setting

ænX (s× t) := g[k]× s× t for k := len(s) = len(t).

It is straightforward to verify that this yields a natural family of order embeddings,
i.e., a morphism of predilators. ⊣

In order to extend Pnø into a functor, we need to define its action on a (total)

morphism ì : E0 ⇒ E1. For r × s × t ∈ P
n
ø(E0)(X ) with r : D

n
ø

p
=⇒ E0, the first

component of Pnø(ì)X (r× s× t) ∈ P
n
ø(E1)(X ) should be a partial morphism from

Dnø to E1. To obtain such a morphism, we compose r and ì in the following way.

Definition 5.7. Consider a (total) morphism ì : E0⇒ E1 of predilators and a
sequence r = 〈r(0), ...,r(k – 1)〉 ∈ (ΣE0+1)

<ù . For i < k we define

ì◦ r(i) :=

{

(m,ìm(ô)) if r(i) = (m,ô) ∈ ΣE0,

⊤ if r(i) =⊤.

We then set ì◦ r := 〈ì◦ r(0), ...,ì◦ r(k – 1)〉 ∈ (ΣE1+1)
<ù .

Let us verify basic properties of our construction:

Lemma 5.8. Consider a predilatorD, a (total )morphismì :E0⇒E1 of predilators,

and a sequence r ∈ (ΣE0+1)
<ù . Then r :D

p
=⇒ E0 is a partial morphism if, and only

if, the same holds for ì◦ r :D
p
=⇒ E1. Assuming that these equivalent statements hold,

we have
í
ì◦r
m (ó) = ìm(í

r
m(ó))

whenever the values írm(ó) and í
ì◦r
m (ó) are defined.
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Proof. Invoking the definition of ì◦r, it is straightforward to see that condition
(i) of Definition 5.3 holds for r if, and only if, it holds for ì ◦ r. In the following
we assume that r and ì ◦ r do indeed satisfy condition (i). We can then consider
the values írm(ó) and í

ì◦r
m (ó); note that they are defined for the same arguments,

namely for (m,ó) ∈ ΣD with code below len(r) = len(ì◦ r). The definition of ì◦ r
does also reveal that íì◦rm (ó) = ìm(í

r
m(ó)) holds whenever the relevant values are

defined. Since the components ìm : E0(m)→ E1(m) are order embeddings, it is
straightforward to conclude that condition (ii) of Definition 5.3 holds for r if, and
only if, it holds forì◦r. In order to establish the same for condition (iii), we consider
an embedding f : m→ k and assume that the values írm(ó) and í

r
k(D(f)(ó)) are

defined. If condition (iii) holds for r, we can use the naturality of ì to get

íì◦rk (D(f)(ó)) = ìk(í
r
k(D(f)(ó))) = ìk(E0(f)(í

r
m(ó)))

= E1(f)(ìm(í
r
m(ó))) = E1(f)(í

ì◦r
m (ó)),

as needed to show that condition (iii) holds for ì◦ r. Assuming the latter, the same
equalities show ìk(í

r
k(D(f)(ó))) = ìk(E0(f)(í

r
m(ó))). Since ìk is injective, we can

conclude írk(D(f)(ó)) = E0(f)(í
r
m(ó)), as required by condition (iii) for r. ⊣

To turn Pnø into a preptyx, we also need to define support functions

SuppnE,X : P
n
ø(E)(X )→ [Tr(E)]

<ù

as in Lemmas 3.4 and 3.5. The support of an element r× s × t ∈ Pnø(E)(X ) will

depend on the entries r(i)∈ ΣE+1with r(i) 6=⊤ and hence r(i) = (m,ô)∈ ΣE with
m ∈ N and ô ∈ E(m). As explained after Proposition 2.8, we have a normal form
ô =NF E(é

m
a ◦ ena)(ô0) with a ⊆m = {0, ...,m – 1} and (|a|,ô0) ∈ Tr(E).

Definition 5.9. Consider a (total) morphism ì : E0 ⇒ E1 of predilators. For
each linear order X, we define a function Pnø(ì)X : P

n
ø(E0)(X )→ P

n
ø(E1)(X ) by

Pnø(ì)X (r× s× t) := (ì◦ r)× s× t.

To define a family of support functions, we set

SuppnE,X (r× s× t) = {(|a|,ô0) | there is an i < len(r) with

r(i) = (m,ô) ∈ ΣE and ô =NF E(é
m
a ◦ ena)(ô0)}

for each order X and each element r× s× t ∈ Pnø(E)(X ).

To complete our construction of Pnø, we establish the following properties, which
have been promised above.

Theorem 5.10. For each n ∈ N, we have the following:

(a) the constructions from Definitions 5.5 and 5.9 yield a preptyx Pnø and

(b) the preptyx Pnø is a ptyx if, and only if, we have ø(n)→ ø(n+1).

Proof. (a) From Proposition 5.6 we know that Pnø maps predilators to
predilators. Let us now consider its action on a morphism ì : E0 ⇒ E1. Since
each component ìm : E0(m)→ E1(m) is an order embedding, the same holds for
the map

ΣE0 ∋ (m,ó) 7→ (m,ìm(ó)) ∈ ΣE1.
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In view of Definition 5.7, one readily infers that the components Pnø(ì)X are order

embeddings as well (recall that Pnø(Ei)(X ) ⊆ ((ΣEi +1)× 2×X )
<ù carries the

Kleene–Brouwer order with respect to the lexicographic order on the product). To
conclude that Pnø(ì) is a morphism of predilators, we consider an order embedding
f : X → Y and verify the naturality property

Pnø(ì)Y ◦P
n
ø(E0)(f)(r× s× t) = P

n
ø(ì)Y (r×D

n+1
ø (f)(s× t))

= (ì◦ r)×Dn+1ø (f)(s× t)

= Pnø(E1)(f)((ì◦ r)× s× t)

= Pnø(E1)(f)◦P
n
ø(ì)X (r× s× t).

The claim that Pnø is a functor reduces to ì
1 ◦ (ì0 ◦ r) = (ì1 ◦ì0)◦ r (for partial and

total morphisms of suitable (co-)domain), which is readily verified. To show thatPnø
is a preptyx, we use the criterion from Lemma 3.5. Let us first verify the naturality
condition

SuppnE1,X ◦Pnø(ì)X (r× s× t) = [Tr(ì)]
<ù ◦SuppnE0,X (r× s× t)

with respect to a morphism ì : E0⇒ E1. For an arbitrary element Tr(ì)(|a|,ô0) of
the right side, there is an index i < len(r) such that r(i) has the form (m,ô) ∈ ΣE0
with ô =NF E0(é

m
a ◦ ena)(ô0). We observe

ìm(ô) = ìm(E0(é
m
a ◦ ena)(ô0)) = E1(é

m
a ◦ ena)(ì|a|(ô0)).

In view of (|a|,ì|a|(ô0)) = Tr(ì)(|a|,ô0) ∈ Tr(E1) (cf. Definition 2.16, which relies
on Lemma 2.12), this equation yields the normal form of ìm(ô) ∈ E1(m). Together
with ì◦ r(i) = (m,ìm(ô)), it follows that Tr(ì)(|a|,ô0) lies in the set

SuppnE1,X ((ì◦ r)× s× t) = Supp
n
E1,X

◦Pnø(ì)X (r× s× t).

Now consider any element (|b|,ñ0) of the latter. For some i < len(ì◦ r) = len(r), we
have ì ◦ r(i) = (m,ñ) ∈ ΣE1 with ñ =NF E1(é

m
b ◦ enb)(ñ0). This yields r(i) = (m,ô)

with ìm(ô) = ñ. Writing ô =NF E0(é
m
a ◦ ena)(ô0), we get

ñ = ìm(ô) =NF E1(é
m
a ◦ ena)(ì|a|(ô0))

as above. The uniqueness of normal forms (see the paragraph after Proposition 2.8)
entails that we have (b,ñ0) = (a,ì|a|(ô0)). We can conclude

(|b|,ñ0) = (|a|,ì|a|(ô0)) = Tr(ì)(|a|,ô0) ∈ [Tr(ì)]
<ù ◦SuppnE0,X (r× s× t).

The naturality property SuppnE,Y ◦Pnø(E)(f) = Supp
n
E,X with respect to an order

embedding f : X → Y is straightforward (and in fact automatic, cf. the discussion
after Lemma 3.5). It remains to verify the support condition

{r× s× t ∈ Pnø(E1)(X ) |Supp
n
E1,X
(r× s× t)⊆ rng(ì)} ⊆ rng(Pnø(ì)X )

for a morphism ì : E0⇒ E1. Given an arbitrary element r× s × t of the left side,
we construct r′ ∈ (ΣE0+1)

<ù with len(r′) = len(r) as follows: For each i < len(r)
with r(i) =⊤, we set r′(i) :=⊤. In the case of r(i) = (m,ñ) ∈ ΣE1, we consider the
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unique normal form ñ =NF E1(é
m
a ◦ ena)(ñ0) and observe

(|a|,ñ0) ∈ Supp
n
E1,X
(r× s× t)⊆ rng(ì).

This allows us to write ñ0 = ì|a|(ô0), where ô0 ∈ E0(|a|) is unique since ì|a| is an
embedding. We now set ô := E0(é

m
a ◦ ena)(ô0) ∈ E0(m) and r

′(i) := (m,ô) ∈ ΣE0.
Observe that we have ìm(ô) = ñ and hence ì ◦ r

′ = r. Crucially, the equivalence

from Lemma 5.8 ensures that r′ :Dnø
p
=⇒ E0 is a partial morphism. This entails that

we have r′× s× t ∈ Pnø(E0)(X ), so that we indeed get

r× s× t = (ì◦ r′)× s× t = Pnø(ì)X (r
′× s× t) ∈ rng(Pnø(ì)X ).

(b) For the first direction, we assume that Pnø is a ptyx and that ø(n) holds. By
Proposition 5.2, the latter entails that Dnø is a dilator. Since P

n
ø is a ptyx, it follows

that Pnø(D
n
ø) is a dilator as well. Invoking the morphism from Proposition 5.6, we

can conclude that Dn+1ø is a dilator: For each well order X, the component

ænX :D
n+1
ø (X )→ P

n
ø(D

n
ø)(X )

is an order embedding, which ensures that Dn+1ø (X ) is well founded. By the other

direction of Proposition 5.2, it follows thatø(n+1) holds, as required. To be precise,
one needs to switch back and forth between class-sized and coded dilators; this is
straightforward with the help of Proposition 2.8, Corollary 2.10 and Lemma 2.14.
In order to establish the other direction, we assume that ø(n) holds while ø(n+1)
fails. Then Dnø is a dilator while D

n+1
ø (X ) is ill founded for some well order X.

To conclude that Pnø fails to be a ptyx, it suffices to show that P
n
ø(D

n
ø)(X ) is ill

founded. The proof of Proposition 5.2 provides a function g : N → ΣDnø +1 such

that g[k] :Dnø
p
=⇒Dnø is a partial morphism for each k ∈N. We can also pick a branch

h0× h1 : N → 2×X of the ill founded tree Dn+1ø (X ) ⊆ (2×X )
<ù . It follows that

g× h0× h1 is a branch of the tree P
n
ø(D

n
ø)(X ) ⊆ ((ΣD

n
ø +1)× 2×X )

<ù , which is
thus ill founded. ⊣

As a final ingredient for the analysis of Π12-induction, we discuss the pointwise
sum of ptykes. Consider a family of preptykes Pz , indexed by the elements of a
linear order Z. We define a preptyx P :=

∑

z∈Z Pz as follows: Given a predilator E
and a linear order X, we set

P(E)(X ) := {(z,ó) |z ∈ Z and ó ∈ Pz(E)(X )},

(z,ó)<P(E)(X ) (z
′,ó′) :⇔ z <Z z

′ or (z = z ′ and ó <Pz (E)(X ) ó
′).

For an embedding f : X → Y , we define P(E)(f) : P(E)(X )→ P(E)(Y ) by

P(E)(f)(z,ó) := (z,Pz(E)(f)(ó)).

The support functions suppzX : Pz(E)(X )→ [X ]
<ù of the predilators Pz(E) can

be combined into suppX : P(E)(X )→ [X ]
<ù with suppX (z,ó) := supp

z
X (ó). It is

straightforward to check that this defines P(E) as a predilator. To turn P into a
functor, consider a morphism ì : E0⇒ E1 and define P(ì) : P(E0)⇒ P(E1) by

P(ì)X (z,ó) := (z,Pz(ì)X (ó)).
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Definition 3.3 provides functions SuppzE,X : Pz(E)(X )→ [Tr(E)]
<ù , which we can

combine into SuppE,X : P(E)(X )→ [Tr(E)]
<ù with SuppE,X (z,ó) := Supp

z
E,X (ó).

Invoking Lemma 3.5, one can verify that this turns P =
∑

z∈Z Pz into a preptyx. If
Pz is a ptyx for all z ∈Z, then so is P. Let us also point out that we have a morphism
Pz(E)⇒ P(E) for each z ∈ Z and each predilator E: its components are given by
Pz(E)(X ) ∋ ó 7→ (z,ó) ∈ P(E)(X ). Finally, we can prove the central result of this
paper. Note that the theorem demands less than a dilator D ∼= P(D).

Theorem 5.11 (ACA0). Assume that every normal 2-ptyx P admits a morphism
P(D)⇒D for some dilator D. Then the principle of Π12-induction along N holds.

Let us recall that we can quantify over (coded) dilators, since the latter are
represented by subsets of N (cf. the discussion after Definition 2.2). The situation
for ptykes is somewhat different: In the paragraph before Proposition 3.2, we have
sketched how to construct a universal family of preptykes. However, we have not
carried out the details of this construction. For this reason, one should read the
previous theorem as a schema: Given a Π12-formula ø, possibly with parameters,
we will specify a ∆01-definable family of preptykes. Assuming that every normal ptyx
P from this family admits a morphism P(D)⇒ D, we will establish the induction
principle for ø and arbitrary values of the parameters.

Proof. Let ø(n) be an arbitrary Π12-formula with a distinguished number
variable, possibly with further parameters. We will use the previous constructions
and results for this formula ø (with respect to some fixed normal form, cf. the
second paragraph of this section). Theorem 5.10 provides 2-preptykes Pnø for all
n ∈ N. Let us form their pointwise sum Pø :=

∑

n∈N
Pnø. As we have seen above, we

have a morphism Pnø(E)⇒ Pø(E) for each predilator E and each n ∈ N. For the
predilators Dnø from Proposition 5.2, we will denote these morphisms by

én : Pnø(D
n
ø)⇒ Pø(D

n
ø).

Invoking Theorem 4.20 (and the constructions that precede it), we consider the
normal 2-preptyx P∗

ø := (Pø)
∗ and the morphisms

în : Pø(D
n
ø)+1⇒ P

∗
ø(D

n
ø+1).

Theorem 5.10 tells us that Pnø corresponds to the induction step ø(n)→ ø(n+1).
To incorporate the base of the induction, we form the 2-preptyx P+ø with

P+ø (E) :=D
0
ø+1+P

∗
ø(E).

More formally, this can be explained as the pointwise sum P+ø =
∑

i∈2Pi , where

P1 is P
∗
ø and P0 is the constant preptyx with value D

0
ø +1 (note that the latter

assigns support SuppE,X (ó) := ∅ ∈ [Tr(E)]<ù to any ó ∈ P0(E)(X ) =D
0
ø(X )+1).

It is easy to see that P+ø is still normal. The family of preptykes P
+
ø is ∆

0
1-definable

in the parameters of ø, just as all relevant objects that we have constructed in the
previous sections. Only ptykes from this family will be used to derive the induction
principle for ø. Fix values of the parameters and assume

ø(0)∧∀n∈N(ø(n)→ ø(n+1)).
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By Theorem 5.10 we can conclude that Pnø is a ptyx for every n ∈ N. As we have
seen, it follows that Pø =

∑

n∈N
Pnø is a ptyx as well. Then P

∗
ø is a normal ptyx, by

Theorem 4.20. Given that ø(0) holds, Proposition 5.2 tells us that D0ø is a dilator.
It is straightforward to conclude that P+ø is a normal 2-ptyx. By the assumption of
the theorem, we now get a dilator E that admits a morphism

÷ : P+ø (E)⇒ E.

In the following, we will construct morphisms κn : Dnø+1⇒ E. Given that E is a

dilator, these morphisms will ensure that Dnø is a dilator for each number n ∈ N (as

in the proof of part (b) of Theorem 5.10). By Proposition 5.2 this yields ∀n∈Nø(n),
which is the desired conclusion of induction. To construct κn, we first note that the
pointwise sum P+ø comes with morphisms

ð0 :D0ø+1⇒ P
+
ø (E) and ð1 : P∗

ø(E)⇒ P
+
ø (E).

Using the morphisms æn : Dn+1ø ⇒ Pnø(D
n
ø) from Proposition 5.6 (and the

construction from Example 4.4), we can recursively define κ0 := ÷ ◦ð0 and

κn+1 := ÷ ◦ð1 ◦P∗
ø(κ

n)◦în ◦ (én+1)◦ (æn+1).

Working in ACA0, this construction can be implemented as an effective recursion
along N (see [10] for a detailed exposition of this principle). To justify this claim, we
need to verify that κn+1 is ∆01-definable relative to κ

n ⊆ N (cf. the discussion before
Lemma 2.11). This brings up a somewhat subtle point: In the discussion before
Theorem 4.20, we have noted that the relation P∗

ø(ì)X (ó) = ô is ∆
0
1-definable. More

precisely, the relation is defined by a Σ01- and a Π
0
1-formula that are equivalent when

ì⊆N represents a morphism of predilators. However, wemay not be able to assume
that the two formulas are equivalent for any parameter ì ⊆ N. To point out one
potential issue, we note that it is problematic to compose functions when we do not
know whether they are total. A way around this obstacle has been presented in [10]:
In defining κn+1, we may anticipate the result of the construction and assume that
κn is a morphism of predilators. This ensures that we can use the aforementioned
∆01-definition of the components

P∗
ø(κ

n)X : P
∗
ø(D

n
ø+1)(X )→ P

∗
ø(E)(X ).

It also ensures that the latter are total functions. Due to this fact, the composition
above provides the required ∆01-definition of κ

n+1. ⊣

§6. Constructing fixed points of 2-ptykes. In the present section we show how to
construct a predilator DP ∼= P(DP) for any given 2-preptyx P. Using Π

1
2-induction

along N, we then prove that DP is a dilator when P is a normal 2-ptyx.
We begin with some foundational considerations. Recall that the arguments and

values of our preptykes are coded predilators in the sense of Definition 2.2. If D is
a coded predilator, then D(X ) is only defined when X is a finite order of the form
m = {0, ...,m – 1}; for better readability, we will nevertheless write D(X ) rather
than D(m). Coded predilators are represented by subsets of N, as explained after
Definition 2.2. In view of [9, Section 4] it seems plausible that the desired fixed point
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DP ∼= P(DP) can be constructed in RCA0. We will work in ACA0, as this allows for
a less technical approach and ties in with the base theory of Theorem 5.11. Note
that the class-sized extensionDP will still be computable (relative toDP ⊆N; cf. the
discussion after Proposition 2.8).
The idea is to define DP as the direct limit over iterated applications of P. To

provide a base for the iteration, we point out that any linear order Z gives rise to
a constant predilator with values D(X ) := Z. For each embedding f : X → Y , the
embeddingD(f) :D(X )→D(Y ) is defined as the identity onZ. To obtain a natural
transformation supp : D ⇒ [·]<ù , we need to set suppX (ó) := ∅ ∈ [X ]<ù for every
ó ∈D(X ). It is straightforward to see that this satisfies the support condition from
Definition 2.1. Working in ACA0, the following definition can be implemented as
an effective recursion along N (see [10] and the proof of Theorem 5.11 above). This
relies on the standing assumption that all our preptykes are given by ∆01-relations (cf.
the discussion after Definition 3.1). For the inductive proof that DnP is a predilator,
we rely on the fact that the notion of (coded) predilator is arithmetical (in contrast
to the notion of dilator, which is Π12-complete).

Definition 6.1. Given a 2-preptyx P, we define predilators DnP and morphisms
ín :DnP⇒D

n+1
P by recursion over n ∈N: For n=0we declare thatD0P is the constant

dilator with value 0 (the empty order). Assuming that DnP is already defined, we
set Dn+1P := P(DnP). Each component of the morphism í

0 is the empty function.
Recursively, we put ín+1 := P(ín).

To describe the direct limit over the predilators DnP , we will use the following
observation with ín : DnP ⇒ Dn+1P at the place of ì : D ⇒ E. The proof is
straightforward and given in arXiv:2006.12111v1 , a first version of this paper.

Lemma 6.2. For a morphism ì :D⇒ E and an embedding f : X → Y , we have

ó ∈ rng(ìX ) ⇔ E(f)(ó) ∈ rng(ìY )

for any element ó ∈ E(X ).

For n ≤ k we define ínk : DnP ⇒ DkP as í
nk := ík–1 ◦ ··· ◦ ín. In particular, the

morphism ínn is the identity on DnP . We can now define the desired limit as follows.
Note that the definition of DP(f) is justified by the previous lemma.

Definition 6.3. For each (finite) linear order X we put

DP(X ) := {(m,ó) |m ∈ N\{0} and ó ∈DmP (X )\rng(í
m–1
X )},

(m,ó)<DP (X ) (n,ô) :⇔ ímkX (ó)<DkP (X )
ínkX (ô) for k =max{m,n}.

Given an embedding f : X → Y , we define DP(f) :DP(X )→DP(Y ) by

DP(f)(m,ó) := (m,D
m
P (f)(ó)).

Finally, we define functions suppX :DP(X )→ [X ]
<ù by suppX (m,ó) := supp

m
X (ó),

where suppmX :D
m
P (X )→ [X ]

<ù is the support function of the predilator DmP .

Let us verify that we have constructed an object of the intended type:

Lemma 6.4. The constructions from Definition 6.3 yield a predilator DP .
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Proof. To show that each value DP(X ) is a linear order, we first observe that
the truth of an equality ímkX (ó) <DkP (X )

ínkX (ô) is independent of k ≥ max{m,n},

since all functions í lX are embeddings. Based on this fact, it is straightforward to
show transitivity. Linearity reduces to the claim that ímkX (ó) = í

nk
X (ô) impliesm = n

(and then ó = ô, since ímkX is an embedding). Aiming at a contradiction, we assume
m< n. From

ínkX (ô) = í
mk
X (ó) = í

nk
X ◦ ín–1X ◦ ím(n–1)X (ó)

we then get ô = ín–1X ◦ ím(n–1)X (ó) ∈ rng(ín–1X ), which contradicts (n,ô) ∈ DP(X ). To
see that DP(f) is an order embedding whenever the same holds for f : X → Y , we
note that ímkX (ó)<DkP (X )

ínkX (ô) implies

ímkY ◦DmP (f)(ó) =D
k
P(f)◦ í

mk
X (ó)<DkP (Y )

DkP(f)◦ í
nk
X (ô) = í

nk
Y ◦DnP(ô).

The fact thatDP is a monotone endofunctor of linear orders is readily deduced from
the corresponding property of the predilatorsDmP . The same applies to the naturality
of supports. To verify the support condition, we consider an order embedding
f : X → Y and an element (m,ô) ∈DP(Y ) with

rng(f)⊇ suppY (m,ô) = supp
m
Y (ô).

By the support condition for DmP , we get ô =D
m
P (f)(ó) for some ó ∈D

m
P (X ). Due

to (m,ô) ∈DP(Y ) we have D
m
P (f)(ó) /∈ rng(í

m–1
Y ), which implies ó /∈ rng(í

m–1
X ) by

Lemma 6.2. This yields (m,ó) ∈DP(X ) and then

(m,ô) =DP(f)(m,ó) ∈ rng(DP(f)),

as required by the support condition for DP . ⊣

As promised above, we have the following:

Proposition 6.5. For each 2-preptyx P, the predilator DP is a direct limit of the
system of predilators DmP and morphisms í

mn :DmP ⇒DnP .

Proof. The promised limit should comewithmorphismsìk :DkP⇒DP . In order
to define these, we observe that any element ó ∈DkP(X ) lies in the range of í

kk
X , since

the latter is the identity. Hence there is a minimal m ≤ k with ó ∈ rng(ímkX ). In
view of D0P(X ) = 0 we must have m > 0. We get ó /∈ rng(í

m–1
X ) by the minimality

of m. Since ímkX is an embedding (and hence injective), we can define a function
ìkX :D

k
P(X )→DP(X ) by stipulating

ìkX (ó) := (m,ó0) for ó = í
mk
X (ó0) with m ≤ k as small as possible.

It is immediate that ìkX is an order embedding and that we have ì
n
X ◦ ímnX = ì

m
X

for m ≤ n. To show that the functions ìkX are natural in X, we consider an order
embedding f : X → Y . Consider ó ∈DkP(X ) and write ì

k
X (ó) = (m,ó0). We get

DkP(f)(ó) =D
k
P(f)◦ í

mk
X (ó0) = í

mk
Y ◦DmP (f)(ó0).
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Furthermore, ó /∈ rng(ím–1X ) entails D
m
P (f)(ó) /∈ rng(í

m–1
Y ), by Lemma 6.2. This

minimality property of m allows us to conclude

ìkY ◦D
k
P(f)(ó) = (m,D

m
P (f)(ó0)) =DP(f)(m,ó0) =DP(f)◦ì

k
X (ó).

By Proposition 2.23, the claim that we have a direct limit reduces to the inclusion

Tr(DP)⊆
⋃

{rng(ìn) |n ∈ N}.

An arbitrary element of the left side has the form (m,(n,ó)) with (n,ó) ∈ DP(m)
and suppm(n,ó) = m, where m denotes the finite order m = {0, ...,m – 1}. By the
definition of DP we have ó ∈ DnP(m)\rng(í

n–1
m ). In view of ó = í

nn
m (ó) this yields

ìnm(ó) = (n,ó). As supp
n
m(ó) = suppm(n,ó) = m entails (m,ó) ∈ Tr(D

n
P), we can

invoke Definition 2.16 to conclude

(m,(n,ó)) = (m,ìnm(ó)) = Tr(ì
n)(m,ó) ∈ rng(ìn),

as required to establish the inclusion above. ⊣

It is now straightforward to draw the desired conclusion:

Corollary 6.6. We have DP ∼= P(DP) for any 2-preptyx P.

Proof. According to Proposition 3.2, the preptyx P preserves direct limits. In
view of Definition 6.1, we can infer that P(DP) is a direct limit of the system of
predilators DmP and morphisms í

mn : Dm ⇒ Dn for 1 ≤ m ≤ n. The predilator DP
is a direct limit of the same system, up to an irrelevant index shift. Now the result
follows since direct limits are unique up to isomorphism. ⊣

As Example 4.4 shows, it can happen that P is a ptyx (i.e., preserves dilators) but
DP is no dilator (i.e., does not preserve well orders). In the following we show that
DP is a dilator if we also demand that P is normal in the sense of Definition 4.3.
Combined with Theorem 5.11, this yields our main result:

Theorem 6.7. The following are equivalent over ACA0:

(i) the principle of Π12-induction along N holds,
(ii) if P is a normal 2-ptyx, then DP is a dilator,
(ii) any normal 2-ptyx P admits a morphism P(D)⇒D for some dilator D.

We point out that the theorem asserts an equivalence between schemas (cf. the
detailed explanation after the statement of Theorem 5.11).

Proof. To see that (ii) implies (iii), it suffices to recall that we have P(DP)∼=DP ,
by Corollary 6.6. The claim that (iii) implies (i) is the result of Theorem 5.11. To
establish the remaining implication from (i) to (ii), we consider a normal 2-ptyx P.
In view of Definition 2.9, being a (coded) dilator is a Π12-property. Given that P is
a ptyx, we can use the induction principle from (i) to show that DnP is a dilator for
every n ∈ N (cf. Definition 6.1). The morphism í0 : D0P ⇒ D1P is a segment in the
sense of Definition 4.1, since each of its components is the empty function. Given
that P is normal, another (arithmetical) induction over N shows that all morphisms
ín :DnP⇒D

n+1
P are segments. FromProposition 6.5 we know thatDP is a direct limit

of the predilators DnP . Let us show that the morphisms ì
n :DnP ⇒DP that witness

this fact are segments as well. For this purpose, we consider a (finite) orderX and an
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inequality ó <DP (X ) ì
n
X (ô) with ó ∈DP(X ) and ô ∈D

n
P(X ). We need to show that ó

lies in the range of ìnX . Since DP is a direct limit, we can write ó = ì
k
X (ñ) for some

k ≥ n. We then get ìkX (ñ) = ó <DP (X ) ì
n
X (ô) = ì

k
X ◦ ínkX (ô). Since each component

of ìk is an embedding, this yields ñ <DkP (X )
ínkX (ô). As a composition of segments,

the morphism ínk = ík–1 ◦ ··· ◦ ín is a segment itself. We may thus write ñ = ínkX (ñ0)
with ñ0 ∈D

n
P(X ). This yields

ó = ìkX (ñ) = ì
k
X ◦ ínkX (ñ0) = ì

n
X (ñ0) ∈ rng(ì

n
X ),

as needed to show that ìn is a segment. To prove that DP is a (coded) dilator,
we need to consider the class-sized extension DP (cf. Definition 2.9). Aiming at a
contradiction, we assume that X is a well order with a descending sequence

(a0,ó0)>DP (X ) (a1,ó1)>DP (X ) ...

in DP(X ). Since DP is a direct limit, we get (a0,ó0) ∈ rng((ìn)X ) for some n ∈ N,
where ìn :DnP⇒DP is the class-sized extension fromLemma 2.14. To see this, recall
that Definition 2.5 requires (|a0|,ó0) ∈ Tr(DP). By Proposition 6.5 we get

(|a0|,ó0) = Tr(ì
n)(|a0|,ô0) = (a,ì

n
|a0|
(ô0))

for some n ∈N and some (|a0|,ô0) ∈ Tr(D
n
P). The latter ensures (a0,ô0) ∈D

n
P(X ), so

that we indeed obtain

(a0,ó0) = (a,ì
n
|a0|
(ô0)) = (ìn)X (a0,ô0) ∈ rng((ìn)X ).

According to Lemma 4.2, the class-sized extension ìn is also a segment. For the
fixed n and any i > 0, we can thus rely on (ai,ói) <DP (X ) (a0,ó0) ∈ rng((ì

n)X ) to

infer (ai,ói) ∈ rng((ìn)X ), say (ai,ói) = (ìn)X (ai,ôi). Since the components of ìn

are embeddings, we have a descending sequence (a0,ô0)>DnP (X )
(a1,ô1)>DnP (X )

... in

DnP(X ). This is the desired contradiction: since D
n
P is a dilator (as we have shown

by Π12-induction) and X is a well order, we know that D
n
P(X ) is well founded. ⊣
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