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The Lie symmetry classification of the known three-component reaction–diffusion system

modelling the spread of an initially localized population of farmers into a region occupied by

hunter-gatherers is derived. The Lie symmetries obtained for reducing the system in question

to systems of ordinary differential equations (ODEs) and constructing exact solutions are

applied. Several exact solutions of travelling front type are also found, their properties are

identified and biological interpretation is discussed.
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1 Introduction

It is widely accepted nowadays that non-linear reaction–diffusion (RD) systems are

governing equations for many well-known non-linear second-order models used to describe

various processes in biology [7,25,28], physics [2,34], chemistry [4] and ecology [30]. The

remarkable Turing paper [38] should be mentioned as a pioneering work in this direction.

At the present time, one may claim that non-linear RD systems have been extensively

studied by means of different mathematical methods, including symmetry-based (group-

theoretical) methods during the last decades. However, the progress is still insufficient, in

particular, Lie symmetries are not completely described for many RD systems arising in

applications because of principal and technical difficulties. For example, although finding

Lie symmetries of the two-component RD systems was initiated about 35 years ago [40],

this Lie symmetry classification problem (the terminology ‘group classification problem’ is

also used in this context) was finished only in the 2000s in papers [12–14,29] (for constant

diffusivities) and [15, 16, 24] (for non-constant diffusivities).

In the case of non-linear RD systems with the cross-diffusion, the problem is still open

except the case when the system in question involves a constant cross-diffusion only [29].

Notably, Lie symmetries of some non-linear RD systems with correctly specified forms of

cross-diffusion arising in real-world applications were studied in [11, 17, 36, 37].

In contrast to the two-component systems, the multi-component RD systems (i.e., those

consisting of three and more equations) were not widely examined by symmetry-based
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methods. To the best of our knowledge, the most general results for the multi-component

RD systems (under essential restrictions on the structure of diffusion coefficients) were

derived in [16]. There are also some studies (see, e.g., [9]) devoted to the Lie symmetry

search of the multi-component RD systems involving only correctly specified functions

(i.e., there are no arbitrary functions as parameters). Becausecomplete Lie symmetry

classification of the general class of multi-component RD systems is an extremely difficult

problem, it is reasonable to restrict ourselves to some systems arising in real world

applications.

In this paper, we examine the three-component model introduced in [3] for describing

the spread of an initially localized population of farmers into a region occupied by hunter-

gatherers. Individuals migrate at random, and some hunter-gatherers are transformed

into converted farmers. It is assumed that three populations (initial farmers, hunter-

gatherers and converted farmers) are growing logistically and there is no intermarriage

among the three populations [3]. Under the assumptions indicated above, the spread and

interaction between farmers and hunter-gatherers can be modelled as an RD process. The

corresponding non-linear RD system has the form

Ft = dfFxx + rfF
(
1 − (e1F + e2C)/K

)
,

Ct = dcCxx + rcC
(
1 − (e1F + e2C)/K

)
+ e1FH + e2CH,

Ht = dhHxx + rhH
(
1 −H/L

)
− e1FH − e2CH,

(1.1)

where F(t, x), C(t, x) and H(t, x) are densities of the three populations of initial farmers,

converted farmers and hunter-gatherers, respectively. Parameters df, dc and dh are the

positive diffusion constants; rf, rc and rh are the intrinsic growth rates of initial farmers,

converted farmers and hunter-gatherers, respectively; K and L are the carrying capacities

of farmers and hunter-gatherers, respectively; and e1 and e2 are the conversion rates of

hunter-gatherers to initial and converted farmers, respectively. Parameters e2, rc and rh
are assumed to be non-negative, while all other parameters are assumed to be positive.

We note that the equalities e1 = e2 and df = dc = dh are assumed in [3]. In our

opinion, it is very unlikely that the three populations of initial farmers, converted farmers

and hunter-gatherers have the same diffusivity in space; hence, their diffusivities should

be assumed arbitrary, i.e., the equality df = dc = dh can take place only in a special

case.

The non-linear RD system (1.1) can be simplified using the following re-scaling of the

variables:

F → K

e1
u, C → KL

rf
v, H → Lw, t → 1

rf
t, x →

√
1

rf
x, (1.2)

and introducing new notation

a1 =
e2L

rf
, a2 =

rc

rf
, a3 =

rh

rf
, a4 =

K

rf
�= 0, a5 =

e2KL

r2f
, df = d1, dc = d2, dh = d3.
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Re-scaling (1.2) in symmetry analysis is called the equivalence transformation of system

(1.1). Transformation (1.2) reduce system (1.1) to the equivalent form

ut = d1uxx + u(1 − u− a1v),

vt = d2vxx + a2v(1 − u− a1v) + uw + a1vw,

wt = d3wxx + a3w(1 − w) − a4uw − a5vw.

(1.3)

Hereafter, (1.3) is called the hunter-gatherer–farmer (HGF) system and one is the main

object of investigation in this paper. We naturally assume that a4 �= 0 (otherwise, K = 0

in (1.1)) and d1d2d3 �= 0.

The paper is organized as follows: In Section 2, the Lie symmetry classification of

the HGF system (1.3) is derived. In Section 3, the most important (from applicability

point of view) cases of system (1.3) with non-trivial Lie symmetries are examined. In

particular, non-trivial Lie ansätze are derived and applied for reducing the systems in

question to systems of ODEs. The reduced systems are analyzed in order to construct

exact solutions. In Section 4, the travelling fronts (TFs) of the HGF system (1.3) with

correctly specified coefficients are constructed in explicit forms. The properties of TFs

obtained are analysed and some biological interpretation is presented. Finally, we briefly

discuss the result obtained and present some conclusions in the last section.

2 Main theorem

To find Lie invariance operators, one needs to consider system (1.3) as the manifold

M = {S1 = 0, S2 = 0, S3 = 0},

where

S1 ≡ d1uxx − ut + u(1 − u− a1v),

S2 ≡ d2vxx − vt + a2v(1 − u− a1v) + uw + a1vw,

S3 ≡ d3wxx − wt + a3w(1 − w) − a4uw − a5vw,

in the prolonged space of the variables

t, x, u, v, w, ut, vt, wt, ux, vx, wx, uxx, vxx, wxx, uxt, vxt, wxt, utt, vtt, wtt.

According to the Lie invariance criterion, system (1.3) is invariant under the Lie group

generated by the infinitesimal operator:

X = ξ0(t, x, u, v, w)∂t + ξ1(t, x, u, v, w)∂x +

η1(t, x, u, v, w)∂u + η2(t, x, u, v, w)∂v + η3(t, x, u, v, w)∂w,

if the following Lie’s invariance conditions are satisfied:

X
2
(S1)

∣∣∣
M

= 0, X
2
(S2)

∣∣∣
M

= 0, X
2
(S3)

∣∣∣
M

= 0, (2.1)
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where the operator X
2

is the second prolongation of the operator X (see, e.g., [5, 6, 10, 19,

31, 32]).

Obviously, system (1.3) admits the Lie algebra with the basic operators

Pt = ∂t, Px = ∂x, (2.2)

because one is invariant with respect to the time and space translations. It can be easily

shown that (2.2) is the principal (trivial) algebra of system (1.3), i.e., this is maximal

invariance algebra of this system with arbitrary coefficients aj and dk . To find all possible

extensions of principal algebra in the case of the system (1.3), one needs to apply the

invariance criterion (2.1) and to solve the corresponding system of determining equations

(DEs). Omitting rather standard calculations (nowadays they can be done using Maple,

Mathematica, etc.), we present the DE system obtained:

ξ0
x = ξ0

u = ξ0
v = ξ0

w = ξ1
u = ξ1

v = ξ1
w = 0, (2.3)

ηkuu = ηkuv = ηkvv = ηkww = ηkuw = ηkvw = 0, k = 1, 2, 3, (2.4)

η1
xv = η1

xw = η2
xu = η2

xw = η3
xu = η3

xv = 0, (2.5)

(d1 − d2)η
1
v = (d1 − d3)η

1
w = (d1 − d2)η

2
u =

(d2 − d3)η
2
w = (d1 − d3)η

3
u = (d2 − d3)η

3
v = 0, (2.6)

2ξ1
x − ξ0

t = 0, 2d1η
1
xu + ξ1

t = 0, 2d2η
2
xv + ξ1

t = 0, 2d3η
3
xw + ξ1

t = 0, (2.7)

η1C1
u + η2C1

v + η3C1
w + (2ξ1

x − η1
u)C

1 = η1
t − d1η

1
xx +

d1

d2
η1
vC

2 +
d1

d3
η1
wC

3, (2.8)

η1C2
u + η2C2

v + η3C2
w + (2ξ1

x − η2
v )C

2 = η2
t − d2η

2
xx +

d2

d1
η2
uC

1 +
d2

d3
η2
wC

3, (2.9)

η1C3
u + η2C3

v + η3C3
w + (2ξ1

x − η3
w)C3 = η3

t − d3η
3
xx +

d3

d1
η3
uC

1 +
d3

d2
η3
vC

2, (2.10)

where

C1 = u(1 − u− a1v),

C2 = a2v(1 − u− a1v) + uw + a1vw,

C3 = a3w(1 − w) − a4uw − a5vw.

(2.11)

Now, we want to find all possible values of the coefficients aj and dk leading to

extensions of the principal algebra (2.2). It means that all inequivalent solutions of the

system of DEs (2.3)–(2.10) (under restrictions (2.11) on the functions C1, C2 and C3)

should be constructed. As a result, the following statement was proved.

Theorem 2.1 The HGF system (1.3) with a4d1d2d3 �= 0 admits a non-trivial Lie algebra

of symmetries if and only if its reaction terms have the forms listed in the second column

of Table 1. The corresponding Lie symmetry operators generating the maximal algebra of

invariance are listed in the last column of Table 1.

Sketch of the proof. In order to prove the theorem, one needs to solve the system

of DEs (2.3)–(2.10) with the functions Ck (k = 1, 2, 3) from (2.11). Although this is a
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Table 1. Lie symmetry operators of the HGF system (1.3)

Reaction terms Restrictions Lie symmetries

(1) u(1 − u)

a2v(1 − u) + uw

−a4uw

a2 �= 0 ∂t, ∂x, I = v∂v + w∂w

(2) u(1 − u)

uw

a3w(1 − w) − a4uw

a3 �= 0 ∂t, ∂x,

X∞ = P (t, x)∂v ,

Pt = d2Pxx

(3) u(1 − u)

uw

−a4uw

∂t, ∂x, I, X
∞

(4) u(1 − u− a1v)

v(1 − u− a1v) + uw + a1vw

a3w(1 − w) − a4uw − a1a4vw

d1 = d2

a1 �= 0

∂t, ∂x,

Q1 = −a1u∂u + u∂v

(5) u(1 − u)

v(1 − u) + uw

a3w(1 − w) − a4uw

d1 = d2

a3 �= 0

∂t, ∂x,

u∂v , Q2 = et(u− 1)∂v

(6) u(1 − u)

v(1 − u) + uw

−a4uw

d1 = d2 ∂t, ∂x, u∂v , I, Q2

(7) u(1 − u)

a4v(1 − u) + uw

−a4uw

d2 = d3 ∂t, ∂x, e
a4tw∂v , I

(8) u(1 − u)

uw

−a4uw

d2 = d3 ∂t, ∂x,

w∂v − a4w∂w, I, X
∞

(9) u(1 − u− a1v)

v(1 − u− a1v) + uw + a1vw

−a4uw − a1a4vw

d1 = d2 = d3

a1 �= 0

∂t, ∂x, Q1,

et
(

a4−1
a1

u + (a4 − 1)v+

w + 1−a4
a1

) (
∂u − 1

a1
∂v

)
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Table 1. Continued

Reaction terms Restrictions Lie symmetries

(10) u(1 − u)

a2v(1 − u) + uw

−uw

d1 = d2 = d3

a2 �= 0, a2 �= 1

∂t, ∂x, I,

u∂v + (a2 − 1)(u− 1)∂w

(11) u(1 − u)

v(1 − u) + uw

−uw

d1 = d2 = d3 ∂t, ∂x,

u∂v , we
t∂v , I, Q2

(12) u(1 − u)

uw

−uw

d1 = d2 = d3 ∂t, ∂x, w∂v − w∂w,

u∂v + (1 − u)∂w,

ue−t(∂v − ∂w), I, X∞

standard routine at the present time, all possible special cases (not some of them) should

be identified and examined in order to obtain a full Lie symmetry classification.

It can be noted that the forms of the functions ξ0, ξ1 and ηk (k = 1, 2, 3) can be defined

independently on the functions Ck . In fact, equations (2.3)–(2.5) can be easily integrated:

ξ0 = ξ0(t), ξ1 = ξ1(t, x),

η1 = r1(t, x)u + q1(t)v + h1(t)w + p1(t, x),

η2 = r2(t, x)v + q2(t)u + h2(t)w + p2(t, x),

η3 = r3(t, x)w + q3(t)u + h3(t)v + p3(t, x),

where ξ0, ξ1, rk, qk, hk and pk (k = 1, 2, 3) are to-be-determined functions.

Now, we analyse equation (2.6). It can be easily seen that five different cases should

be examined depending on diffusion coefficients, namely: (I) dk are arbitrary positive

constants, (II) d1 = d2, (III) d1 = d3, (IV) d2 = d3 and (V) d1 = d2 = d3.

Let us examine case (I). Because the diffusivities dk (k = 1, 2, 3) are arbitrary constants,

equation (2.6) immediately produces qk = hk = 0, k = 1, 2, 3. Equations (2.8)–(2.10) can

be split with respect to the variables u, v, w and their products uv, uw, vw, u2, v2, w2. As a

result, the system of DEs (2.3)–(2.10) reduces to the form

a1p
1 = 0, p1 + a1p

2 = 0, −a2p
2 + p3 = 0, a4p

3 = 0, a5p
3 = 0, r2 = r3, (2.12)

2ξ1
x − ξ0

t = 0, r1 + 2ξ1
x = 0, 2d1r

1
x + ξ1

t = 0, 2d2r
2
x + ξ1

t = 0, 2d3r
3
x + ξ1

t = 0, (2.13)

a1(r
2 + 2ξ1

x) = 0, a3(r
2 + 2ξ1

x) = 0, a5(r
2 + 2ξ1

x) = 0, (2.14)

d1r
1
xx − r1t + 2ξ1

x − 2p1 − a1p
2 = 0, (2.15)

d2r
2
xx − r2t + 2a2ξ

1
x − a2p

1 − 2a1a2p
2 + a1p

3 = 0, (2.16)

d3r
3
xx − r3t + 2a3ξ

1
x − a4p

1 − a5p
2 − 2a3p

3 = 0, (2.17)

d1p
1
xx − p1

t + p1 = 0, d2p
2
xx − p2

t + a2p
2 = 0, d3p

3
xx − p3

t + a3p
3 = 0. (2.18)
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Because (2.12) is the set of algebraic equations, we find p1 = p3 = 0 and a1a2p
2 = 0,

while the overdetermined system (2.13) leads to

ξ0
tt = ξ1

xx = ξ1
t = r1x = r1t = r2x = 0.

Hence, equation (2.15) produces ξ1
x = 0. Having ξ1

x = 0, equations (2.14) give r2 = r3 = 0

provided a2
1 + a2

3 + a2
5 �= 0. In this case, one can find non-trivial Lie symmetry only under

the restriction p2 �= 0; hence, a1 = a2 = a5 = 0. Thus, the general solution of (2.12)–(2.18)

has the form

ξ0 = c0, ξ
1 = c1, p

1 = p3 = 0, r1 = r2 = r3 = 0, p2 = P (t, x),

hereafter, ck (k = 0, 1, . . . ) is arbitrary constant, while the function P (t, x) is an arbitrary

solution of equation Pt = d2Pxx); therefore, Case 2 of Table 1 is obtained.

In the case a1 = a3 = a5 = 0, we obtain Cases 1 and 3 of Table 1. Thus, case I) is

completely examined.

Now, we turn to case (II). Having done a preliminary analysis, we find

q1 = q3 = hk = 0, k = 1, 2, 3, (2.19)

p1 = p3 = 0, a1p
2 = 0,

and derive the system of DEs

2ξ1
x − ξ0

t = 0, 2dη1
xu + ξ1

t = 0, 2dη2
xv + ξ1

t = 0, 2d3η
3
xw + ξ1

t = 0, (2.20)

dr1xx − r1t + 2ξ1
x = 0, dr2xx − r2t + 2a2ξ

1
x = 0, d3r

3
xx − r3t + 2a3ξ

1
x − a5p

2 = 0, (2.21)

a1(r
2 + 2ξ1

x) = 0, a5(r
2 + 2ξ1

x) = 0, a1(r
3 + 2ξ1

x) = 0, a3(r
3 + 2ξ1

x) = 0, (2.22)

(−1 + a2) q
2 = 0, a1 (−1 + 2a2) q

2 + a2

(
r1 + 2ξ1

x

)
= 0, (2.23)

a5q
2 + a4

(
r1 + 2ξ1

x

)
= 0, a1q

2 + r1 + 2ξ1
x = 0, (2.24)

a1q
2 + r1 − r2 + r3 + 2ξ1

x = 0, (2.25)

dq2
xx − q2

t + (a2 − 1) q2 − a2p
2 = 0, (2.26)

dp2
xx − p2

t + a2p
2 = 0, (2.27)

for finding all other functions.

It can be seen from (2.19) that new non-trivial Lie symmetries can exist only if q2 �= 0

(otherwise, one obtains the result of case (I)). Thus, the first equation of (2.23) immediately

produces a2 = 1, while restriction a5 = a1a4 follows from the compatibility condition of

equations (2.24).

The further analysis of the system of DEs (2.20)–(2.27) depends on the value of

constant a1.

If a1 �= 0, then p2 = 0 and r2 = r3 = −2ξ1
x. As a result, equations (2.20) and (2.21)

produce r2 = r3 = 0, r1 = const, ξ0 = c0, ξ
1 = c1. The last unknown function q2 can be

found from (2.24). Hence,

ξ0 = c0, ξ
1 = c1, η

1 = −a1c3u, η
2 = c3u, η

3 = 0,
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and Case 4 of Table 1 is obtained. In a quite similar way, one examines the sub-case

a1 = 0 and arrives at Cases 5 and 6 of Table 1.

The examination of the system of DEs in case (III) does not lead to new system of the

form (1.3) with non-trivial Lie symmetries.

Analysis of case (IV) leads to systems and Lie symmetries listed in Cases 7 and 8 of

Table 1, while case (V) produces Cases 9–12 of Table 1. The relevant calculations are

omitted here.

The sketch of the proof is now completed. �

3 Reduction of the HGF system to ODE systems

In this section, we present examples of reductions of the HGF system (1.3) to ODE

systems using the Lie symmetries obtained. If one compares system (1.3) with the reaction

terms arising in Table 1 with its general form (1.3), then one realizes that Cases 4, 5 and 9

are the most interesting from the applicability point of view. Notably, Cases 4 and 9 only

involve the HGF system with a1 �= 0, and this means that there is an interaction between

initial farmers and converted farmers. Case 5 corresponds to the most general HGF

system among those with a1 = 0. In fact, all the other cases of Table 1 lead to the systems

of the form (1.3) with too many zero coefficients; hence, it is unlikely that such systems

can describe adequately the spread and interaction between farmers and hunter-gatherers.

For this reason, we consider the systems from Cases 4, 5 and 9 of Table 1 and the relevant

linear combinations of the Lie symmetries involving non-trivial operators. The case of

the Lie symmetry operators leading to plane wave solutions, especially TFs, is examined

separately in Section 4.

3.1 Case 4 of Table 1

First of all, we note that one diffusivity, e.g., d1, can be set 1 in (1.3) without losing a

generality; hence, the system from Case 4 of Table 1 has the form

ut = uxx + u(1 − u− a1v), a1 �= 0,

vt = vxx + v(1 − u− a1v) + uw + a1vw,

wt = dwxx + a3w(1 − w) − a4uw − a1a4vw.

(3.1)

Let us consider two essentially different linear combinations of the Lie symmetry operators

of system (3.1)

X = ∂t + α∂x − βa1u∂u + βu∂v (3.2)

and

X = ∂x − βa1u∂u + βu∂v. (3.3)

Hereafter, α and β �= 0 are arbitrary constants.

Solving the characteristic equation

dt

1
=

dx

α
=

du

−βa1u
=

dv

βu
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corresponding to operator (3.2), one obtains the ansatz

u = e−βa1tU(ω), ω = x− αt,

v = V (ω) − 1
a1
e−βa1tU(ω),

w = W (ω),

(3.4)

where U, V and W are new unknown functions. Substituting ansatz (3.4) into (3.1), we

arrive at the system of ODEs

U′′ + αU′ + U (1 + a1β − a1V ) = 0,

V ′′ + αV ′ + V (1 − a1V + a1W ) = 0,

dW ′′ + αW ′ + a3W (1 −W ) − a1a4VW = 0.

(3.5)

One sees that the reduced system (3.5) is non-linear and the problem of constructing its

exact solutions is still a difficult task. However, we were able to note the three special

cases:

(i) d = a3 = 1, (ii) d = 1, a3 = 0, (iii) d = 1, a4 = 1 + a1 + a3, a3 �= 0,

when the functions V and W can be found from the second and the third ODEs of system

(3.5), and then U can be extracted from the first ODE of (3.5). In fact, if one assumes

that the components V and W have the same structure as the well-known solution of

the Fisher equation [1] (see formula (3.18) below), then the case (i) leads to the exact

solution

u = e−βa1tU(ω), ω = x− 5√
6
t,

v =
κ

4a1

(
1 − tanh

[
1

2
√

6
ω

])2

− 1

a1
e−βa1tU(ω),

w =
1 − a4

4(1 + a1a4)

(
1 − tanh

[
1

2
√

6
ω

])2

,

the case (ii) gives the solution

u = e−βa1tU(ω), ω = x− 5
√
a4√
6

t,

v =
1

4a1

(
1 − tanh

[√
a4

2
√

6
ω

])2

− 1

a1
e−βa1tU(ω),

w =
1 − a4

4a1

((
1 − tanh

√
a4

2
√

6
ω

)2

− 4

)
,
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and the case (iii) leads to the solution

u = e−βa1tU(ω), ω = x− 5
√

1 + a1√
6

t,

v =
1

4a1

(
1 − tanh

[√
1 + a1

2
√

6
ω

])2

− 1

a1
e−βa1tU(ω),

w = 1 − 1

4

(
1 − tanh

√
1 + a1

2
√

6
ω

)2

.

Here, κ = 1+a1

1+a1a4
, while the function U is an arbitrary solution of the linear ODE

U′′ + αU′ + U

(
1 + a1β − κ1

(
1 − tanh

[
κ2

2
√

6
ω

])2
)

= 0, (3.6)

where

κ1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

4
κ in case (i),

1

4
in case (ii),

1

4
in case (iii),

κ2 =

⎧⎨
⎩

1 in case (i),√
a4 in case (ii),√
1 + a1 in case (iii).

Ansatz corresponding to operator (3.3) and the reduced system for system (3.1) have

the forms

u = U(t)e−βa1x, v = V (t) − e−βa1x

a1
U(t), w = W (t) (3.7)

and

U′ + U(a1V − 1 − β2a2
1) = 0,

V ′ + V (a1V − a1W − 1) = 0,

W ′ + W (a3W + a1a4V − a3) = 0.

(3.8)

We have solved system (3.8) assuming that the functions V and W are linearly dependent.

In a such way, three different cases

(i) a3 = 1, (ii) a3 = 0, (iii) a4 = 1 + a1 + a3, a3 �= 0

hold. Thus, case (i) gives the exact solution

U =
δ2 exp

(
t + β2a2

1t
)

(1 − δ1 + δ1et)
κ , V =

κδ1e
t

a1 (1 − δ1 + δ1et)
, W =

κδ1(1 − a4)e
t

(1 + a1) (1 − δ1 + δ1et)
, (3.9)

the case (ii) leads to the solution

U =
δ2 exp

(
t + β2a2

1t
)

(1 − δ1 + δ1ea4t)
1
a4

, V =
δ1e

a4t

a1 (1 − δ1 + δ1ea4t)
, W =

(1 − a4)(δ1 − 1)

a1 (1 − δ1 + δ1ea4t)
, (3.10)
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while case (iii) gives the solution

U =
δ2 exp

(
t + β2a2

1t
)

(
1 − δ1 + δ1e(1+a1)t

) 1
1+a1

, V =
δ1e

(1+a1)t

a1

(
1 − δ1 + δ1e(1+a1)t

) , W =
1 − δ1

1 − δ1 + δ1e(1+a1)t

(3.11)

of system (3.8). Here, δ1 and δ2 are arbitrary positive constants, while κ = 1+a1

1+a1a4
.

Let us consider the most interesting solution (3.9) from the applicability point of view

in detail. In fact, the first component U in solutions (3.10) and (3.11) tends to infinity

as t → +∞, while U is bounded in (3.9) for correctly specified κ. Substituting (3.9) into

ansatz (3.7), the three-parameter family of exact solutions

u =
δ2 exp

(
(1 + β2a2

1)t− βa1x
)

(1 − δ1 + δ1et)
κ ,

v =
κδ1e

t

a1 (1 − δ1 + δ1et)
−

δ2 exp
(
(1 + β2a2

1)t− βa1x
)

a1 (1 − δ1 + δ1et)
κ , (3.12)

w =
κδ1(1 − a4)e

t

(1 + a1) (1 − δ1 + δ1et)

of system (3.1) with a3 = 1 is obtained.

It can be noted that the components of exact solutions of the form (3.12) are non-

negative on the space interval x ∈ (0,+∞) provided the restrictions

β =

√
1 − a4

a1(1 + a1a4)
, a4 < 1, δ1 > 1, δ2 < κ (3.13)

hold. In this case, the solutions possess the asymptotical behaviour

u → δ2δ
−κ
1 e−βa1x, v → κ

a1
− δ2

a1
δ−κ

1 e−βa1x, w → 1 − a4

1 + a1a4
(3.14)

as t → ∞.

Such behaviour predicts the scenario when the populations of initial farmers, converted

farmers and hunter-gatherers co-exist in space-time; moreover, the distribution of two

populations is inhomogeneous as t → ∞. Notably, this scenario occurs at any semi-finite

interval (instead of the fixed interval (0,+∞)) because system (3.1) is invariant with

respect to the space translations.

3.2 Case 5 of Table 1

The system and the most general linear combinations of the Lie symmetries from Case 5

of Table 1 have the forms

ut = uxx + u(1 − u),

vt = vxx + v(1 − u) + uw, (3.15)

wt = dwxx + a3w(1 − w) − a4uw
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and

X = ∂t + α∂x + βu∂v + γet(u− 1)∂v, (3.16)

X = ∂x + βu∂v + γet(u− 1)∂v. (3.17)

As one can see, the first equation of system (3.15) is the famous Fisher equation [18] that

is not integrable. There were many attempts to construct its exact solutions taking into

account some reasonable initial and boundary conditions. In particular, the appropriate

exact solution in the form of the TF

u ≡ U(ω) =
1

4

(
1 − tanh

[
1

2
√

6
ω

])2

, ω = x− 5√
6
t (3.18)

was found in [1]. We remind the reader that a plane wave solution of a partial differ-

ential equation (PDE), which is non-negative, bounded and satisfies the zero Neumann

conditions at infinity, is usually called TF.

Ansatz corresponding to (3.16) and the reduced system for system (3.15) have the forms

u = U(ω), ω = x− αt,

v = V (ω) +
(
βt + γet

)
U(ω) − γet,

w = W (ω)

and

U′′ + αU′ + U(1 −U) = 0,

V ′′ + αV ′ + V (1 −U) + U (W − β) = 0,

dW ′′ + αW ′ + a3W (1 −W ) − a4UW = 0.

(3.19)

It can be noted that the last equation of system (3.19) with the function U from (3.18)

has the solutions

W =
1 − a4

4

(
1 − tanh

[
1

2
√

6
ω

])2

, (3.20)

if d = a3 = 1 and

W = 1 − 1

4

(
1 − tanh

[
1

2
√

6
ω

])2

, (3.21)

if d = 1, a4 = 1 + a3.

Thus, we obtain the solutions of the HGF system (3.15) in the forms

u = 1
4

(
1 − tanh

[
1

2
√

6
ω

])2

, ω = x− 5√
6
t,

v = V (ω) + 1
4

(
βt + γet

) (
1 − tanh

[
1

2
√

6
ω

])2

− γet,

w = 1−a4

4

(
1 − tanh

[
1

2
√

6
ω

])2

,

(3.22)
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if d = a3 = 1 and

u = 1
4

(
1 − tanh

[
1

2
√

6
ω

])2

, ω = x− 5√
6
t,

v = V (ω) + 1
4

(
βt + γet

) (
1 − tanh

[
1

2
√

6
ω

])2

− γet,

w = 1 − 1
4

(
1 − tanh

[
1

2
√

6
ω

])2

(3.23)

if d = 1, a4 = 1 + a3. In (3.22) and (3.23), the function V is an arbitrary solution of the

linear ODE

V ′′ + αV ′ + V (1 −U) + U (W − β) = 0 (3.24)

with W from (3.20) and (3.21), respectively, while U is given by formula (3.18).

Remark 1 Although ODEs (3.6) and (3.24) are linear, we were unable to solve them

exactly because they contain very complicated non-constant coefficients. Moreover, their

solutions are not listed in the well-known handbooks like [22, 33].

Ansatz corresponding to operator (3.17) have the form

u = U(t), v = V (t) +
(
βt + γet

)
xU(t) − γetx, w = W (t). (3.25)

Note that the exact solutions of the form (3.25) are not important from the applicability

point of view because two components (u and w) depend only on the variable t.

3.3 Case 9 of Table 1

Finally, we examine the HGF system

ut = uxx + u(1 − u− a1v), a1 �= 0,

vt = vxx + v(1 − u− a1v) + uw + a1vw,

wt = wxx − a4uw − a1a4vw,

(3.26)

corresponding to Case 9 of Table 1. The most general linear combinations of its Lie

symmetries

X = ∂t + α∂x + β(−a1u∂u + u∂v)+

γet
(

a4−1
a1

u + (a4 − 1)v + w + 1−a4

a1

)(
∂u − 1

a1
∂v

) (3.27)

and

X = ∂x + β(−a1u∂u + u∂v)+

γet
(

a4−1
a1

u + (a4 − 1)v + w + 1−a4

a1

)(
∂u − 1

a1
∂v

) (3.28)

lead to the ansätze and the reduced systems for system (3.26) presented in Table 2.

4 Travelling wave solutions and their interpretation

In this section, we look for TFs (a special sub-class of the plane wave solutions) of

the HGF system (1.3). TFs are the most common in theoretical and applied studies of
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Table 2. Reductions of the HGF system (3.26)

Operator Ansatz Reduced system

(3.27) with

1 + βa1 �= 0

u = e−βa1tU(ω) + γet

1+βa1
((a4 − 1)V (ω)+

W (ω) + (1 − a4)/a1

)
, ω = x− αt,

v = V (ω) − u
a1
,

w = W (ω)

U′′ + αU′ + U (1 + a1β − a1V ) = 0,

V ′′ + αV ′ + V (1 − a1V + a1W ) = 0,

W ′′ + αW ′ − a1a4VW = 0

(3.27) with

1 + βa1 = 0

u = et (U(ω) + γ ((a4 − 1)V (ω)+

W (ω) + (1 − a4)/a1

)
t
)
, ω = x− αt,

v = V (ω) − u
a1
,

w = W (ω)

U′′ + αU′ − a1UV−
γ
(
(a4 − 1)V + W + (1 − a4)/a1

)
= 0,

V ′′ + αV ′ + V (1 − a1V + a1W ) = 0,

W ′′ + αW ′ − a1a4VW = 0,

(3.28) with

β �= 0

u = e−βa1xU(t) + γet

βa1
((a4 − 1)V (t)+

W (t) + (1 − a4)/a1),

v = V (t) − u
a1
,

w = W (t)

U′ + U
(
a1V − 1 − a2

1β
2
)

= 0,

V ′ + V (a1V − a1W − 1) = 0,

W ′ + a1a4VW = 0,

(3.28) with

β = 0

u = U(t) + γet((a4 − 1)V (t)+

W (t) + (1 − a4)/a1)x,

v = V (t) − u
a1
,

w = W (t)

U′ + U (a1V − 1) = 0,

V ′ + V (a1V − a1W − 1) = 0,

W ′ + a1a4VW = 0,

non-linear real world models (see, e.g., [7, 27, 28]). In the case of a single RD equation, a

substantial number of such solutions are presented in [20]. Although paper [3] devoted

to study TFs of system (1.1), such solutions are not explicitly presented therein. Here, we

construct several TFs of the HGF system (1.3) and present their interpretation.

As we noted above, one diffusivity can be set 1 in (1.3) without losing a generality;

hence, we consider system

ut = uxx + u(1 − u− a1v),

vt = d2vxx + a2v(1 − u− a1v) + uw + a1vw,

wt = d3wxx + a3w(1 − w) − a4uw − a5vw

(4.1)

in what follows. Because system (4.1) with arbitrary coefficients admits only the trivial

algebra (2.2), the plane wave ansatz

u = U(ω), ω = x− αt, v = V (ω), w = W (ω)

can be easily derived, which reduces (4.1) to the non-linear ODE system

U′′ + αU′ + U(1 −U − a1V ) = 0,

d2V
′′ + αV ′ + a2V (1 −U − a1V ) + UW + a1VW = 0,

d3W
′′ + αW ′ + a3W (1 −W ) − a4UW − a5VW = 0.

(4.2)
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Obviously, the ODE system (4.2) with arbitrary coefficients is not integrable, hence, we

seek for its particular solutions. Our aim is to find TFs, i.e., such plane wave solutions,

which are positive and bounded for arbitrary x and t > 0. Moreover, in order to provide

a biological interpretation of determined solutions, we assume that the solutions to-

be-determined connect the steady-state points of system (4.1). Taking into account the

arguments presented above, we consider the ad hoc ansatz

U = σ1 (1 − tanh μω)k1 ,

V = σ2 (1 − tanh μω)k2 ,

W = 1 − σ3 (1 − tanh μω)k3 .

(4.3)

Notably, ansätze of such form are often used and the corresponding technique is often

called the tanh method (see, e.g., [26, 39]).

We assume that the exact solution of the form (4.3) connects steady-state points of (4.2),

namely (U0, V0, 0) (as ω → −∞) and (0, 0, 1) (as ω → +∞). Having such assumption, one

immediately obtains the restrictions

1 − 2k1σ1 − a12
k2σ2 = 0, 1 − 2k3σ3 = 0.

Substituting ansatz (4.3) into (4.2) and making the corresponding calculations, the exact

solution

U = 1
4
(1 − 2a1δ)

(
1 − tanh

[√
1−2a1δ

2
√

6
ω

])2

,

V = δ − δ tanh
[√

1−2a1δ

2
√

6
ω

]
,

W = 1
2

+ 1
2
tanh

[√
1−2a1δ

2
√

6
ω

] (4.4)

of system (4.2) was constructed. Here, a1 � 1
2δ

(otherwise, the solution is complex), δ > 0

(otherwise, V is negative) and the additional restrictions

α = 5−4a1δ√
6−12a1δ

, d2 = −3−5δ+6a1δ+4a1δ
2

δ(−3+2a1δ)
, a2 = 3−10δ+6a1δ+8a1δ

2

6δ(−3+2a1δ)
,

a4 = d3

3
, a5 = 5−d3+6a3−4a1δ+2a1d3δ

12δ

(4.5)

must take place. Because d2 > 0, a2 � 0 and a5 � 0, the further restrictions

a3 � 1
6
(−5 + 4δa1 + d3 − 2δa1d3) , d3 � 5−4δa1

1−2δa1
,

a1 �

{
1
2δ
, if δ > 1,

−3+10δ
2δ(3+4δ)

, if 3
10

� δ � 1

(4.6)

are obtain from (4.5).

As one can see, the exact solution (4.4) is nothing else but the exact solution connecting

the steady-state points (1 − 2a1δ, 2δ, 0) and (0, 0, 1) of system (4.2), because

(U,V ,W ) → (1 − 2a1δ, 2δ, 0) if ω → −∞,

(U,V ,W ) → (0, 0, 1) if ω → +∞.

An example of the exact solution (4.4) is presented in Figure 1.
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Figure 1. Curves representing the functions U(ω) (dash-dot), V (ω) (dot) and W (ω) (solid) from

(4.4) for parameters a1 = 1/10 and δ = 7/20.

Thus, the one-parameter family of TFs

u = 1
4
(1 − 2a1δ)

(
1 − tanh

[√
1−2a1δ

2
√

6
(x− αt)

])2

,

v = δ − δ tanh
[√

1−2a1δ

2
√

6
(x− αt)

]
,

w = 1
2

+ 1
2
tanh

[√
1−2a1δ

2
√

6
(x− αt)

] (4.7)

of the HGF system (4.1) with restrictions (4.5) and (4.6) is derived. This solution has a

clear biological interpretation and describes such interaction between farmers and hunter-

gatherers that hunter-gatherers die, while the initial and converted farmers co-exist (see

Figure 2). Actually, one may say that extinction of hunter-gatherers takes place because

all of them are converted into farmers.

Now, we turn to system (4.1) with a1 = 0:

ut = uxx + u(1 − u),

vt = d2vxx + a2v(1 − u) + uw,

wt = d3wxx + a3w(1 − w) − a4uw − a5vw.

(4.8)

It follows from Theorem 2.1 that system (4.8) with a2 �= 0 and a3 + a5 > 0 admits only

the trivial algebra (2.2).
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Figure 2. Surfaces representing the components u (green), v (blue) and w (yellow) of TF (4.7)

with α = 81/5
√

62 and δ = 7/20 of the HGF system (4.1) with the parameters a1 = 1/10, a2 =

64/2051, a4 = d3/3, a5 = (162 + 200a3 − 31d3)/140, d2 = 8982/2051.

In order to construct exact solution of system (4.8), an analog of ad hoc ansatz (4.3)

has been again used. So, the coefficients of (4.8) were specified as follows:

d2 =
1

2
, a2 = 1, a3 =

5 − d3

6
, a4 =

5

3
, a5 = 0.

As a result, TF

u(t, x) ≡ U(ω) = 1
4

(
1 − tanh

[
1

2
√

6
ω

])2

, ω = x− 5√
6
t,

v(t, x) ≡ V (ω) = 3d−5
3(d−5)

(
1 − tanh

[
1

2
√

6
ω

])3

,

w(t, x) ≡ W (ω) = 3d−5
2(d−5)

(
1 − tanh2

[
1

2
√

6
ω

]) (4.9)

of the system

ut = uxx + u(1 − u),

vt =
1

2
vxx + v(1 − u) + uw,

wt = dwxx +
5 − d

6
w(1 − w) − 5

3
uw

was constructed (here, d3 ≡ d � 5/3).

TF (4.9) connects the steady-state points
(
1, 8(3d−5)

3(d−5)
, 0

)
and (0, 0, 0) because

(U,V ,W ) →
(

1,
8(3d− 5)

3(d− 5)
, 0

)
if ω → −∞,

(U,V ,W ) → (0, 0, 0) if ω → +∞.
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Thus, the biological interpretation of solution (4.9) is similar to that for solution (4.7).

Notably, TF (4.9) in contrast to that (4.7) has the fixed wave velocity α = 5√
6
, which is

exactly the same as for TF (3.18) of the Fisher equation.

Remark 2 Because the HGF system (1.3) is invariant with respect to the discrete trans-

formation x → −x, all the solutions obtained above can be transformed to another

solutions using this transformation.

5 Conclusions

In this paper, the three-component non-linear system of PDEs (1.1) introduced in [3]

for describing the spread of an initially localized population of farmers into a region

occupied by hunter-gatherers was studied by the classical Lie method. First of all, the

system was transformed to the non-dimensional form (1.2) in order to reduce the number

of parameters. All possible Lie symmetries of system (1.2) were identified (Theorem 2.1),

inequivalent symmetry reductions to the ODE systems in the most interesting case (from

applicability point of view) were conducted (Section 3), several families of exact solutions

(including the travelling fronts) were found and a possible biological interpretation for

some of them was provided (Section 4).

It is worth noting that system (1.1) was studied under the restriction e1 �= 0, otherwise,

one reduces to the three-component diffusive Lotka–Volterra system. Lie symmetries of

the three-component diffusive Lotka–Volterra system are completely described in [9],

while its exact solutions are constructed in [8, 9, 21].

To the best of our knowledge, this paper is the first study of the HGF model by

symmetry-based methods. In [3], the authors studied the existence and behaviour of TFs

of the model; however, any exact solutions are not presented therein. In particular, it is

stated that there are TFs connecting the stable and unstable steady-state points of the

model (see [3, P.10]). Interestingly that TF (4.7) corresponds exactly to such case provided

restrictions (4.5) and (4.6) hold. Moreover, we constructed the exact solution (3.12), which

predicts co-existence of all the populations at any semi-final space interval (see formulae

(3.14)) provided the coefficients of the HGF system (1.3) satisfy the restrictions (3.13).

Such type of behaviour was not identified in [3].

The results obtained in this paper can be useful for investigation of some other

three-component non-linear system of PDEs with similar structure arising in applications

(in particular for the models describing language competition [23, 35]). Such systems

can possess travelling wave solutions with similar structure to those obtained above

in Section 4. On the other hand, it is unlikely that modified systems will possess Lie

symmetries presented in Table 1 because even a modest modification of a given system

may drastically change its Lie symmetry.

A natural continuation of this research is searching for non-Lie (non-classical, condi-

tional, etc.) symmetries of the non-linear system (1.1) and their application for constructing

exact solutions. We have achieved some progress in this direction and an interesting par-

ticular result is presented in Section 3.4 [10]. We plan to report more new results in a

forthcoming paper.
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