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Linear stability of the regular N-gon
periodic solutions for the planar N-body
problem with quasi-homogeneous
potential
Alex Castillo, Paulina Martínez , and Claudio Vidal
Abstract. This paper considers the planar N-body problem with a quasi-homogeneous potential
given by

W = ∑
1≤k< j≤N

[
mk m j

∥rk − r j∥
+

mk m jC jk

∥rk − r j∥p
] ,

where mk > 0 are the masses and C jk = Ck j are nonzero real constants, and the exponent g being
p >1. Generalizing techniques of the classical N-body problem, we first characterize the periodic
solutions that form a regular polygon (relative equilibria) with equal masses (mk = m, k = 1, . . . , N)
and equal constants C jk = C, for all j, k = 1, . . . , N (for short, N-gon solutions). Indeed, for C > 0 we
prove that there exists a unique regular N-gon solution for each fixed positive mass m. In contrast, for
the case C < 0, we demonstrate that there can be a maximum of two distinct regular N-gon solutions
for a fixed positive mass m. More precisely, there is a range of values for the mass parameter m for
which no solutions of the form of an N-gon exist. Furthermore, we examine the linear stability of
these solutions, with a particular focus on the special case N = 3, which is fully characterized.

1 Introduction and formulation of the problem

The Newtonian planar N-body problem of the Celestial Mechanics with point masses
mk > 0 and positions rk ∈ R2, k = 1, . . . , N is governed by the second-order ordinary
differential equations [12]

mk r̈k =
N
∑

j=1, j≠k

mk m j(r j − rk)
∥rk − r j∥3

= ∂U
∂rk

,(1)

for each k = 1, . . . , N with

U = ∑
1≤k< j≤N

mk m j

∥rk − r j∥
,(2)
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2 A. Castillo, P. Martinez, and C. Vidal

the Newtonian potential. Note that the system defined in (1) is analytic in R
2N/Δ

where

Δ = ⋃
k< j

Δk j .(3)

Δk j = {r = (r1 , . . . , rN) ∈ R2N ∶ rk = r j}. Δ represents the set of singularities of the
ODE of second order in (1), and Δk j corresponds to the binary collisions between
the particles rk and r j . For further details, please refer to [12].

The present study is motivated by a variation of the significant N-body problem,
which we refer to as the N-body problem with Manev potential. In 1930, the Bulgarian
physicist Georgi Manev [5] considered a model analogous to the Newtonian case,
obeying potentials of the form

W = ∑
1≤k< j≤N

mk m j [
A

∥rk − r j∥
+ B
∥rk − r j∥2

] ,(4)

where, as described in [1], A and B are constants, while W represents the sum of
two homogeneous potentials of degree −1 and −2, respectively. Manev proposes this
model as an alternative to the theory of relativity. The significance of this model
lies in its ability to address the theoretical requirements of Celestial Mechanics,
preserving the fundamental properties and advantages of the Newtonian Mechanics.
Some authors have investigated the Manev-type problem under the assumption A =
B = 1, for example, in [3].

In the early of 1990s, Florin Diacu [3] proposed the study of Manev’s gravitational
law, which is a small perturbation of Newton’s universal law of gravitation. In the
general context, he referred to it as quasi-homogeneous potentials. In several papers,
written independently or in collaboration, he demonstrated that Manev’s law provides
a classical explanation for the advance of Mercury, taking A = 1 and B = 1/c2, where c
is the speed of light. This phenomenon represents a borderline case between Newton’s
law of gravity and Manev’s law, as evidenced by [11].

The equations of motion that model the planar problem of N-bodies of the Manev
type (4) are as follows:

mk r̈k =
N
∑

j=1, j≠k
mk m j [

A(r j − rk)
∥rk − r j∥3

+
B(r j − rk)
rk − r j∥4

] = ∂W
∂rk

,(5)

and they are analytic in R
2N/Δ.

The problem of N-bodies with Manev potential has been generalized for a quasi-
homogeneous potential of the following form:

W = ∑
1≤k< j≤N

mk m j [
Ak j

∥rk − r j∥a +
Bk j

∥rk − r j∥b ] ,(6)

where 0 < a < b, Ak j and Bk j are real constants. In this case, the equations of motion
are as follows:

mk r̈k =
N
∑

j=1, j≠k
mk m j [a

Ak j(r j − rk)
∥rk − r j∥a+1 +

bBk j(r j − rk)
∥rk − r j∥b+2 ] =

∂W
∂rk

,(7)
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Linear stability for regular N-gon with QHP 3

for each k = 1, . . . , N . This problem has been the subject of study by several authors,
including [2], [7], [4] as well as [1]. More precisely, Diacu in [2] examines the collision
and ejection orbits of 3-particle systems with a quasi-homogeneous potential W =
U + V , where U and V are homogeneous functions of degree −a and −b, respectively,
with 1 ≤ a < b. They show that for values of b ≠ 2 the collision and ejection orbits tend
to form asymptotically a central configuration. In the case b = 2, which corresponds to
Maneff ’s gravitational law, they found a set of collision and ejection orbits reaching the
triple collision manifold without asymptotic phase. This set contains an uncountable
union of manifolds and has positive measure within the set of all rectilinear solutions.
In [1], it is proved that for generalized forces that are a function of the mutual distance,
the ring of n + 1 configuration (with one central mass) is a central configuration.
Besides, it is demonstrated that this solution is homographic. The results are applied
to quasi-homogeneous potentials of the form W = U + V , where U = ∑0≤k< j≤n

mk m j

∥rk−r j∥

and V = ∑0≤k< j≤n
Amk m j

∥rk−r j∥b with b > 0. The paper [7] deals with the study of a special
five-body configuration (four masses placed at the vertices of a rhombus centered in
the fifth mass) in the so-called post-Newtonian gravitational field of Manev of the form
W = U + V with U = ∑0≤k< j≤4

mk m j

∥rk−r j∥a and V = ∑0≤k< j≤4
3mk m j

∥rk−r j∥3 . It has been shown
that the problem with masses 1 and m placed at the symmetrical vertices exhibits a
monoparametric family of relative equilibria. In their study, Diacu et al. in [4] explored
the two-body problems with potentials of the type A/r + B/r2, where r represents the
distance between the particles, A and B are real constants. By employing McGehee-
type transformations and exploiting the rotational symmetry inherent to this class
of vector fields, they reduced the equations of motion to a reduced phase space and
studied all possible choices of the constants A and B. Santoprete in [10] studied the
linear stability of the relative equilibria for homogeneous and quasi-homogeneous
potentials. First, in the case where the potential is a homogeneous function of degree
−a, they found that every relative equilibrium of the n-body problem with a > 2 is
spectrally unstable. Moreover, he finds a similar condition in the quasi-homogeneous
case. Subsequently, he investigated the stability of the equilateral triangle relative
equilibria in the case of three bodies. In the case of homogeneous potentials, he was
able to recover the classical result obtained by Routh in a simpler way. In the case of
quasi-homogeneous potentials, he found a generalization of the Routh inequality and
showed that, for specific values of the masses, the stability of the relative equilibria
depends on the size of the configuration. It should be noted that in his study, the
quasi-homogeneous potential is of the form W = U + V with U = ∑1≤k< j≤n

mk m j

∥rk−r j∥a

and V = ∑1≤k< j≤n
mk m j

∥rk−r j∥b with 0 < a < b.
In our study, we will consider the planar problem of N-bodies with a quasi-

homogeneous potential of the form W = U + V , where

U = ∑
1≤k< j≤N

mk m j

∥rk − r j∥
, V = ∑

1≤k< j≤N

Ck jmk m j

∥rk − r j∥p ,(8)

in other words, U represents the Newtonian potential, whereas V denotes a homo-
geneous potential of degree −p with p > 1. Ck j = C jk = C for each k, j = 1, . . . , N are
nonzero real constants and mk > 0 for each k = 1, . . . , N .
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4 A. Castillo, P. Martinez, and C. Vidal

The main objective of this work is to characterize, identify, and quantify the
existence of periodic solutions that, at each instant, form a regular polygon (on a
circle with radius ρ), where the masses are all equal and rotate with constant angular
velocity ω. This type of solution is sometimes called a ring solution or a Maxwell-type
solution. This designation is attributed to Maxwell (1890) [6], in his attempt to give a
simple model of a planet ring. He first studied the relative equilibria N of equal masses
situated at the vertices of a regular polygon and rotating rigidly about a point mass at
its center.

The periodic solutions forming an N-gon are parameterized by

rk(t) = ρe i(ωt+θ k) , t ∈ R,(9)

where

θk = θ0 + 2π ( k − 1
N
) , k = 1, . . . , N .

In a manner analogous to the N-body problem, we define spectral and linear
stability in accordance with the tenets espoused by Moeckel (see reference [8] for
details).

Definition 1 Suppose that x is a relative equilibrium of the planar N-body problem
with quasi-homogeneous potential and that has eigenvalues 0 with some multiplicity.
We say that x is nondegenerate if the remaining eigenvalues are nonzero. A non-
degenerate equilibrium point x is spectrally stable if the remaining eigenvalues are
purely imaginary and it is linearly stable if, in addition, the linear part restricted to the
reduced space is diagonalizable.

Our study focuses on the existence of Maxwell-type solutions and the study of
their (spectral) stability or instability, depending on the constant C = Ck j , the radius
of the circle containing the particles and the masses. The stability is studied in detail
for N = 3.

The study of the regular N-gon solutions in the Newtonian case was developed by
Perko and Walter [9]. They showed that for N ≥ 4 the given functions (9) are solutions
of the N-body problem, if and only if, all the masses are equal. Furthermore, they
established that there exists a unique admissible radius set to the value m = mk , k =
1, . . . , N . On the other hand, the study of stability must be understood in the spectral
sense, that is, apart from the null eigenvalues, the rest of the eigenvalues must all be
purely imaginary for the matrix of the linearized system. It is known from Moeckel
[8] that the regular polygon solution for problems with gravitational potential (and
no central mass) is always unstable for N ≥ 4. Furthermore, for N = 3 the Lagrange
equilateral triangle solution with equal mass is also unstable.

In his study of stability for the case N = 3, Santoprete [10] considers general expo-
nents a and b for the quasi-homogeneous potentials, coefficients of the form Ak j =
Bk j = 1 with arbitrary masses m1 , m2 , m3. His analysis shows that when 0 < b < 2 < a
the equilateral triangle solution is unstable if, (m1m2 +m1m3 +m2m3)/(m1 +m2 +
m3)2 > (1/3)[(b − 2)/(b + 2)]2. In comparison with our analysis, we take exponents
of the form a = p and b = 1, Ck j = C = 1 (positive) with masses m1 = m2 = m3 = m. It
can be seen that our study corresponds in an equivalent way to Santoprete’s Theorem
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Linear stability for regular N-gon with QHP 5

3 item (b) case (i). With these notations, we obtain the following result: if 0 < 1 <
2 < p and (m1m2 +m1m3 +m2m3)/(m1 +m2 +m3)2 = 1/3, then it follows that 1/3 >
(1/3)[(b − 2)/(b + 2)]2 = 1/27. Therefore, the equilateral triangle solution is unstable,
in agreement with our analysis. It should be noted that in Santoprete’s analysis the case
p = 2 and C ≠ 1 is not considered.

2 Existence of the N-gon periodic solutions with
quasi-homogeneous potential

In accordance with (8), the equations of motion for the planar N-body problem with
quasi-homogeneous potential assuming equal masses mk = m for each k = 1, . . . , N
are as follows:

r̈k = m
N
∑

j=1,k≠ j

⎡⎢⎢⎢⎢⎣

r j − rk

r3
jk
+

pCk j(r j − rk)
rp+2

jk

⎤⎥⎥⎥⎥⎦
, k = 1, . . . , N .(10)

Next, our aim will be to characterize the existence of periodic solutions where all
the particles have the same mass m, are situated on a circle of radius ρ, and rotate with
a constant angular velocity ω, thereby forming a regular polygon (see Figure 1). We
propose that such circular solutions are parametrized by

rk(t) = ρe i(ωt+θ k) , t ∈ R,(11)

where

θk = θ0 + 2π ( k − 1
N
) , k = 1, . . . , N .

For the sake of simplicity, we will assume that θ0 = 0, then

θk = 2π ( k − 1
N
) .(12)

From (11), we obtain the first and second derivative of rk

ṙk = iωrk = iωρe i(ωt+θ k), r̈k = iωṙk = −ω2ρe iθ k e iωt .(13)

Next, we calculate the mutual distances

r j − rk = ρe i(ωt+θ j) − ρe i(ωt+θ k)

= ρe iωt (e iθ j − e iθ k)
= ρe iωt e iθ k (e i(θ j−θ k) − 1) .(14)

So,

r jk = ∥r j − rk∥ = ρ ∥e i(θ j−θ k) − 1∥
�������������������������������������������������������������������

d jk

= ρd jk ,(15)

where

d jk = ∥e i(θ j−θ k) − 1∥ =
√

2
√

1 − cos(θ j − θk).(16)
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6 A. Castillo, P. Martinez, and C. Vidal

Figure 1: Representation of the periodic solution of the quasi-homogeneous problem (10)
forming a regular N-gon.

Substituting in (10), we have that

−ω2

m
e iθ k =

N
∑

j=1, j≠k

⎛
⎝
(e iθ j − e iθ k)

ρ3d3
jk

+
pCk j(e iθ j − e iθ k)

ρp+2d p+2
jk

⎞
⎠

=
N
∑

j=1, j≠k

(e iθ j − e iθ k)
ρ3

⎛
⎝

1
d3

jk
+

pCk j

ρp−1d p+2
jk

⎞
⎠

= e iθ k
N
∑

j=1, j≠k

(e i(θ j−θ k) − 1)
ρ3

⎛
⎝

1
d3

jk
+

pCk j

ρp−1d p+2
jk

⎞
⎠

.

Therefore,

−ω2

m
=

N
∑

j=1, j≠k

(e i(θ j−θ k) − 1)
ρ3

⎛
⎝

1
d3

jk
+

pCk j

ρp−1d p+2
jk

⎞
⎠

.(17)

From (12), it follows that

θ j − θk = 2(π( j − k)
N

) ,(18)

and

1 − cos(θ j − θk) = 2 sin2 (
(θ j − θk)

2
) = 2 sin2 (π( j − k)

N
) .(19)
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Linear stability for regular N-gon with QHP 7

Thus,

d jk = 2 ∣sin(π( j − k)
N

)∣ .(20)

Therefore, taking the real and imaginary parts in the system (17), it is equivalent to

ω2

m
ρ3 =

N
∑

j=1, j≠k
( 1

4
∣csc(π( j − k)

N
)∣ +

pCk j

2p+1
1

ρp−1 ∣csc(π( j − k)
N

)∣ p) ,(21)

and

N
∑

j=1, j≠k

⎛
⎜
⎝

1
8

sin ( 2π( j−k)
N )

∣sin3 ( π( j−k)
N )∣

+
pCk j

2p+2
1

ρp−1

sin( 2π( j−k)
N )

∣sin ( π( j−k)
N )∣ p+2

⎞
⎟
⎠
= 0,(22)

for every k = 1, . . . , N .
In order to study system (21) and (22), from now on, we will assume that

Ck j = C ,

for all k, j = 1, . . . , N .
Next, define

fk =
N
∑

j=1, j≠k

sin2 ( (θ j−θ k)
2 )

4 ∣sin ( π( j−k)
N )∣ 3

+ p
ρp−1

C sin2 ( (θ j−θ k)
2 )

∣sin( π( j−k)
N )∣ 3

,

for k = 1, 2, . . . , N .
Now, we point out that rearranging the sum in fk , we observe that the relations

f1 = f2 = ⋅ ⋅ ⋅ = fN are valid. On the other hand, since

N
∑
j=2

sin( 2π( j−1)
N )

∣sin( π( j−1)
N )∣ α

= 0,

for all α > 0. So f1 = 0 and then (22) is always satisfied for k = 1, ⋅ ⋅ ⋅ , N .
Subsequently, upon rearranging the system of equations in (21), for k =

1, 2, 3, . . . , N , it becomes evident that all of the equations in the system are equal. So,
we can conclude that the following result has been proven.

Lemma 1 Assume Ck j = C and maintain the previous notations. Then, rk(t) =
ρe i(ωt+θ k), t ∈ R, where θk = 2π ( k−1

N ) with equal masses mk = m, k = 1, . . . , N is
a N-gon solution of the system (10), if and only if, the following condition is satisfied:

ω2

m ρ3 =
N
∑
j=2
( 1

4
∣csc(π( j − 1)

N
)∣ + pC

2p+1
1

ρp−1 ∣csc(π( j − 1)
N

)∣ p) .(23)

Now, we see that the equation (23) can be rewritten as

ω2

m
ρ3 = 1

4
A+ pBC

2p+1
1

ρp−1 ,(24)
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8 A. Castillo, P. Martinez, and C. Vidal

with

A =
N
∑
j=2
∣csc(π( j − 1)

N
)∣ , B =

N
∑
j=2
∣csc(π( j − 1)

N
)∣ p .(25)

From all this, we have proved the following theorem.

Theorem 2.1 Let N ≥ 2, Ck j = C ≠ 0 for each k, j = 1, . . . , N, m l = m, ω > 0 for l =
1, . . . , N, then the functions rk(t) given in (11) define a 2π/ω-periodic solution of the
N-body problem with quasi-homogeneous potential (10), which forms a regular polygon
on a circle of radius ρ, provided that the following equation is satisfied:

ω2

m
ρp+2 − A

4
ρp−1 − pBC

2p+1 = 0.(26)

Next, we will study the admissible values of ρ that satisfy (26). The subsequent
analysis will be divided into two distinct cases: one where C > 0 and another where
C < 0. It should be noted that, by employing (26) we can determine the mass m as a
function of ρ, assuming that C , ω > 0 and p > 1 are fixed. In fact, we have

m = f (ρ) ∶= ω2ρp+2 (A
4

ρp−1 + pCB
2p+1 )

−1
,(27)

where A > 0, B > 0 are as in (25).
For the case C > 0, the following result is obtained.

Theorem 2.2 Assume C > 0, p > 1, N > 2 and ω > 0 are arbitrary. For any positive
value m, then there exists a unique radius ρ(m) which gives rise to a regular N-gon
solution to the N-body problem with quasi-homogeneous potential. Furthermore, ρ(m)
is an increasing function, such that lim

m→0
ρ(m) = 0 and lim

m→+∞
ρ(m) = +∞.

Proof We will show that the function f (ρ) is a monotone increasing. Indeed,
differentiating the function f with respect to ρ yields

f ′(ρ) = ω2ρp+1

( A
4 ρp−1 + pBC

2p+1 )
2 (

3A
4

ρp−1 + p(p + 2)
2p+1 BC) .(28)

Since C > 0 clearly f ′(ρ) > 0, then f is a monotonic increasing function, thus f (ρ) >
f (0) = 0. Also, limρ→+∞ f (ρ) = +∞. Consequently, for any value of m > 0, there
exists a unique ρ > 0 such that f (ρ) = m as in (27) (see Figure (2)). Therefore, we have
that f (ρ(0)) = 0 and that f (ρ(m)) → +∞ as m → +∞. This concludes the proof of
the theorem. ∎

Remark 1 Figure 3 illustrates the existence of a unique regular N-gon solution
ρ(m) for the case C > 0. This solution represents the only possible configuration of
the N bodies that can be arranged in a regular polygon at any given instant. These
results agree with those obtained for the Newtonian case in [9].

The following theorem presents the analysis of the case C < 0.
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Figure 2: Study of the function f given in (27) for the case C > 0 and p > 1.

Figure 3: Existence of a regular polygon solution given C > 0 and p > 1.

Theorem 2.3 Assume case C < 0, p > 1, N > 2 and ω > 0. Then there exists a bifurca-
tion value of the mass, denoted by

m♯ =
ω2(p + 2) (−BC p(p + 2)A−1)3/(p−1)

2A(p − 1) ,(29)

such that the following conditions are satisfied:
(1) If m = m♯, then there exists a unique of ρ, which is given by the formula ρ♯ =

1
2 (−

BC
3A p(p + 2))1/(p−1) which gives rise to a N-gon solution of the N-body problem

with quasi-homogeneous potential.
(2) If m > m♯, then there exist two admissible radii, ρ1 , ρ2 such that ρ∗ =
(− pBC

2p−1 A)
1/(p−1)

< ρ1 < ρ♯ < ρ2 which give rise to two N-gon solutions of the N-body
problem with quasi-homogeneous potential.

(3) If 0 < m < m♯, then there are no admissible radii.
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10 A. Castillo, P. Martinez, and C. Vidal

Figure 4: Graphic of the function f given in (27) for the case C < 0 and p > 1.

Proof In accordance with the definition of f (ρ) in (27), it can be established that,
in the case C < 0, in order to have m > 0, it is necessary to impose the following
condition:

(A
4

ρp−1 + pBC
2p+1 ) > 0⇔ ρp−1 > − 4p

2p+1
BC
A
⇔ 0 < ρ < ρ∗ ,

where

ρ∗ = (−
pBC

2p−1A
)

1/(p−1)
= 1

2
(− pBC

A
)

1/p−1
.(30)

On the other hand, according to (28), the sign of f ′(ρ) is determined by the sign of
the expression

3A
4

ρp−1 + p(p + 2)
2p+1 BC .

It should be noted that f ′(ρ) = 0⇔ ρ = ρ♯ where

ρ♯ = (−
p(p + 2)

2p−1
BC
3A
)

1/(p−1)

= 1
2
(−BC

3A
p(p + 2))

1/(p−1)
.(31)

Let us determine which domain, f (ρ) and f ′(ρ), are positive. It can be verified that

f (ρ) > 0 ∧ f ′(ρ) > 0⇔ ρ > 1
2
(−BC

3A
p(p + 2))

1/(p−1)
⇔ ρ > ρ♯ .

Let us now examine which domain f (ρ) > 0 and f ′(ρ) < 0. In this case,

f (ρ) > 0 ∧ f ′(ρ) < 0 ⇔ ρ∗ < ρ < ρ♯ .

Besides, limρ→ρ+∗ f (ρ) = +∞ and limρ→+∞ f (ρ) = +∞.
In this context, we will denote the number obtained by substituting ρ♯ in (27) by

m♯, which is, m♯ = f (ρ♯) (see Figure 4). In consequence, we can state that:
(1) If m = m♯, then there is a unique admissible radius ρ > 0, denoted by ρ♯, which

yields a N-gon solution.
(2) If m > m♯, then there exist two distinct admissible radii, namely ρ1 and ρ2 such

that ρ1 < ρ♯ < ρ2 and each gives rise to a N-gon solution.
(3) If 0 < m < m♯, there are no admissible radii.

Thus, we have concluded the proof of the theorem. ∎
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Figure 5: Existence of two regular polygon solutions given C < 0 and p > 1.

Figure 5 illustrates the existence of two N-gon solutions ρ1(m) and ρ2(m), that is,
there are at least two possible of arrangements of the N bodies such that they form a
regular polygon at each instant.

Remark 2 The preceding results demonstrate the significant distinction between the
case of C < 0 and the situation of C > 0.

3 Relative equilibrium for the quasi-homogeneous N-body
problem

The equations of motion of the particles are given by (10), where the quasi-
homogeneous potential is given by

W(r) = ∑
1≤k< j≤N

[ m2

∥rk − r j∥
+ m2C
∥rk − r j∥p ] .(32)

The linear momentum of the kth particle is given by the equation pk = mṙk with k =
1, . . . , N . Then, the equations of motion are written in their Hamiltonian form

ṙ = M−1 p = Hp

ṗ = ∇W(r) = −Hr ,(33)

whose Hamiltonian function is

H(r, p) = 1
2

pT M−1 p −W(r),
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12 A. Castillo, P. Martinez, and C. Vidal

where r = (r1 , r2 , . . . , rN), p = (p1 , p2 , ⋅ ⋅ ⋅ , pN) and M = diag(M1 , M2 , . . . , MN)
with

Mk =

⎛
⎜⎜⎜⎜⎜
⎝

mk 0 0 ⋅ ⋅ ⋅ 0
0 mk 0 ⋅ ⋅ ⋅ 0
0 0 mk ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋅ ⋅ ⋅ mk

⎞
⎟⎟⎟⎟⎟
⎠

3N×3N

,

for each k = 1, . . . , N , where M = mI.
The system described in (33) can be expressed as follows:

ṙk = m−1 pk = Hpk
,

ṗk = ∇W(rk) = −Hrk , k = 1, . . . , N .(34)

Let us consider a systems in which the center of mass is fixed at the origin of the
coordinates. We assume the existence of equilibrium solutions as described in (11)
and then we introduce a time-dependent symplectic change of coordinates (rotating
coordinates) by

rk = eωLk t xk and pk = eωLk t yk ,(35)

whose system rotates with constant angular velocity ω and where Lk = (
0 −1
1 0 ).

Differentiating the equations in (35), we get

ṙk = ωLk eωLk t xk + eωLk t ẋk ,
ṗk = ωLk eωLk t yk + eωLk t ẏk , k = 1, . . . , N .(36)

Then, substituting the equations of the system (34) in (36), we obtain the new
equations of motion

ẋk = m−1 yk − ωLk xk ,

ẏk =
N
∑

j=1, j≠k
[

m2(x j − xk)
∥x j − xk∥3

+
pm2C(x j − xk)
∥x j − xk∥p+2 − ωLk yk] , k = 1, . . . , N .(37)

These equations have as their Hamiltonian function

H(x , y) = 1
2

yT m−1 y + ωxT Ly −W(x),(38)

with L = diag(L1 , L2 , . . . , LN) and W(x) is the quasi-homogeneous potential (32) at
the new coordinates.

An equilibrium point of (33) now corresponds to a relative equilibrium of the
solutions (37), that is,

m−1 y − ωLx = 0, ∇W(x) − ωLy = 0,(39)

hence

∇W(x) = −ω2mx .(40)
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Linear stability for regular N-gon with QHP 13

By construction, it is clear that x = x∗ = (x∗1 , x∗2 , . . . , x∗N) = ρr∗ with x∗k = ρr∗k and
r∗k = e iθ k is an equilibrium point of the previous system (or, a relative equilibrium
point, since the system is rotating uniformly).

A significant outcome of this section is to demonstrate that the relative equilibrium
point, represented by the vector x∗, is a simultaneous relative equilibrium for the
functions U and V. This implies that both U and V evaluated at the relative equilibrium
are multiples of the equilibrium position.

Proposition 1 The relative equilibrium solution (x∗ , y∗) of (39), which is associated
with the N-gon solution for the quasi-homogeneous N-body problem i.e., x∗, satisfies
(40), more precisely,

x∗ = (x∗1 , x∗2 , . . . , x∗N) = ρr∗ ,(41)

where x∗k = ρr∗k , and such that r∗k = e i 2π(k−1)
N , is a simultaneous relative equilibrium for

U and V, that is, there exist μ, ν ∈ R such that

∇U(x∗) = −μmx∗ and ∇V(x∗) = −νmx∗ .(42)

Proof By calculating the gradient of U(x∗) and given that the imaginary part of the
equation (21) is null, we conclude that

∂U(x∗)
∂rk

=
N
∑

j=1, j≠k

m2(r j − rk)
∥r j − rk∥3

= e iθ k m2 ρ
ρ3

N
∑

j=1, j≠k

1
d3

jk
[(cos(θ j − θk) − 1),− sin(θ j − θk)]

= e iθ k m2 ρ
ρ3

N
∑

j=1, j≠k

[(cos(θ j − θk) − 1)]
d3

jk
(43)

= −(Am2

4ρ3 ) ρe iθ k = −(Am2

4ρ3 ) ρr∗k = −(
Am2

4ρ3 ) x∗k .

In particular, we have that ∇U(x∗) = −μmx∗, with

μ = Am
4ρ3 .(44)

Similarly, by computing ∇V(x∗) and noting that the imaginary part of the equa-
tion (21) is zero, we obtain

∂V(x∗)
∂rk

=
N
∑

j=1, j≠k

m2 pC(r j − rk)
∥r j − rk∥p+2

= e iθ k m2 pC ρ
ρp+2

N
∑

j=1, j≠k

1
d p+2

jk

[(cos(θ j − θk) − 1),− sin(θ j − θk)]

= e iθ k m2 pBC
2p+1

ρ
ρp+2

N
∑

j=1, j≠k

[(cos(θ j − θk) − 1)]
d p+2

jk

(45)
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14 A. Castillo, P. Martinez, and C. Vidal

= −( m2 pBC
2p+1ρp+2 ) ρe iθ k = −( m2 pBC

2p+1ρp+2 ) x∗k .

Thus, ∇V(x∗) = −νmx∗, with

ν = mpBC
2p+1ρp+2 .(46)

In particular, we have proved that the gradients of U and V evaluated at the relative
equilibrium are multiples of the equilibrium position. It can be concluded that the
point x∗ represents a simultaneous relative equilibrium for both potentials. ∎

Remark 3 In the equations (44) and (46), we note that μ depends on (m, ρ) and ν
depends on (m, p, ρ).

Remark 4 The relative equilibrium x∗ satisfies ω2 = m ( A
4ρ3 + pBC

2p+1 ρ p+2 ) = m(μ + ν).

4 Stability of the relative equilibrium associated with the N-gon
for the planar N-body problem with quasi-homogeneous
potential

In this section, we will study the linear stability of the relative equilibrium associated
with the N-gon periodic solution. We begin rewriting the system (37) by setting z =
(x , y), which allows us to express the equations in the following form:

ż = J∇H(z),(47)

where

J = ( 0 I
−I 0) ,

where I is the identity matrix of order 2n.
Let z∗ be an equilibrium point of (47), then ∇H(z∗) = 0 and by developing in

Taylor series the function H around z∗, we arrive to

ż = JD∇H(z∗)(z − z∗).

Using this expression, the linearized system of the equations (47) at the equilibrium
z∗ can be expressed as follows:

ż = Az ,(48)

where S is the symmetric matrix S = D∇H(z∗) = HessH(z∗), A = JS. In this equa-
tion, we have used the same notation z for z − z∗. We point out that

A = [ −ωL m−1I
D∇W(x∗) −ωL] .(49)

Lemma 2 The characteristic polynomial p(λ) associated with the matrix A at the
equilibrium x∗ possesses the factors λ2 and (λ2 − α + 3ω2) where α = 2μ + (p + 1)ν. In
particular, the eigenvalue 0 has multiplicity 2 and ±

√
α − 3ω2 are two other eigenvalues.
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Proof As in Moeckel’s work [8], the proof focus on the subspace Q1(x∗) spanned by
the vectors of R4n

(x∗ , 0), (0, x∗), (Lx∗ , 0), (0, Lx∗),(50)

where x∗ is the relative equilibrium associated with the N-gon solution defined in (41)
for the problem of N-bodies with quasi-homogeneous potential. Since x∗ and Lx∗ are
orthogonal, it follows that the dimension of Q1(x∗) is 4.

Given that the potential functions U and V are homogeneous of degrees −1 and
−p, respectively, we have that their gradients are homogeneous of degrees −2 and
−(p + 1). Consequently, by Euler’s theorem for homogeneous functions and since x∗
is a simultaneous relative equilibrium, we have that

D∇W(x∗)x = −2∇U(x∗) − (p + 1)∇V(x∗)
= −2(−μmIx∗) − (p + 1)(−νmIx∗)
= 2μmx∗ + (p + 1)νmx∗ .(51)

As a consequence of the fact that W is invariant under rotations, it follows that∇W
is also invariant under rotations, in particular,

∇W(eLt x) = eLt∇W(x)

for all t, with eLt = diag(eL1 t , eL2 t , . . . , eLn t). Therefore, it follows that

∇W(x)Lx = L∇W(x).

Now, since x∗ is a relative equilibrium, then from (40) we have

D∇W(x∗)Lx∗ = −ω2LmIx∗ .(52)

This equality will be employed to prove that Q1(x∗) is invariant by A. In fact, note that
(1) A(x∗ , 0) = −ω(Lx∗, 0) + (0, D∇W(x∗)x∗) = −ω(Lx∗ , 0) +m(2μ +
(p + 1)ν)(0, x∗), because D∇W(x∗)x∗ = m(2μm + (p + 1)ν)x∗.

(2) A(0, x∗) = m−1(x∗ , 0) − ω(0, Lx∗).
(3) A(Lx∗ , 0) = −ω(L2x∗, 0) + (0, D∇W(x∗)Lx∗) = ω(x∗ , 0) − ω2m(0, Lx∗),

because by (52) D∇W(x∗)Lx∗ = −ω2Lmx∗ and as L2 = −I.
(4) A(0, Lx∗) = m−1(Lx∗ , 0) + ω(0, x∗).
Thus, we have proved that Q1(x∗) is invariant by A. Moreover,

β = {(x∗ , 0), (0, x∗), (Lx∗ , 0)(0, Lx∗)},(53)

is a basis for Q1(x∗), and the matrix of A restricted to this invariant subspace has the
form

[A]β =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 m−1 ω 0
(2μ + (p + 1)ν)m 0 0 ω

−ω 0 0 m−1

0 −ω −ω2m 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,(54)

whose factor of the characteristic polynomial is

λ2(λ2 − α + 3ω2),
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16 A. Castillo, P. Martinez, and C. Vidal

with α = 2μ + (p + 1)ν. Therefore, it follows that the characteristic polynomial is
written as the product of two polynomials: one of which is the factor λ2(λ2 − α + 3ω2),
which is associated with the last block to be found, and the other is a polynomial,
which we shall refer to as p̂(λ), the form of which is unknown. ∎

The following proposition will serve to analyze the eigenvalues λ = ±
√

α − 3ω2.

Lemma 3 Let γ = α − 3ω2. If p ≥ 2 with C < 0, then the number γ < 0. Furthermore,
the eigenvalues λ = ±

√
α − 3ω2 are purely imaginary.

Proof In fact,

γ = α − 3ω2 = 2μ + (p + 1)ν − 3ω2 = −μ + ν(p − 2).
Using the equality in (44) and (46), we arrive at

γ = − m
4ρ3 (2A− 21−p ρ1−pBC(p + 1)p) − 3ω2 .

Then, if p ≥ 2 with C < 0, it is verified that γ < 0, which consequently establishes that
λ is a pure imaginary number. ∎
Remark 5 In the case where C > 0, the sign of the number γ can be either positive
or negative. Consequently, it is not possible to ascertain with certainty whether the
eigenvalue λ is pure imaginary or not.

We proceed to define another subspace, denoted Q2(x∗), of dimension 4. This
subspace is spanned by the vectors of R4n

(ξ, 0), (0, ξ), (η, 0), (0, η),(55)

where ξ = (1, 0, 1, 0, . . . ) and η = (0, 1, 0, 1, . . . ) are points of R2n . In this case, we have
the following result.

Lemma 4 The characteristic polynomial of the matrix A, restricted to Q2(x∗), can be
expressed as a factor of the form

(λ2 + ω2)2 .

The eigenvalues of this polynomial are ±iω, with multiplicity 2.

Proof It is evident that these vectors are linearly independent in R
4n . On the other

hand, it is known that the function W is invariant under translations, so ∇W is also
invariant under translations. Then,

∇W(x + tξ) = ∇W(x), for all t.

By differentiating this equality with respect to t and employing the chain rule, we
obtain

D∇W(x)ξ = 0,(56)

and analogously,

D∇W(x)η = 0.(57)
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Considering (56) and (57), it follows that:

(1) A(ξ, 0) = (−ωLξ, D∇W(x)ξ) = −ω(η, 0), because Lξ = η.
(2) A(0, ξ) = m−1(ξ,−ωLξ) = m−1(ξ, 0) − ω(0, Lξ) = m−1(ξ, 0) − ω(0, η).
(3) A(η, 0) = (−ωLη, D∇W(x)η) = ω(ξ, 0), because Lη = −ξ.
(4) A(η, 0) = m−1(η,−ωLη) = m−1(η, 0) − ω(0, Lη) = m−1(η, 0) + ω(0, ξ).

Thus, we have proved that Q2(x∗) is invariant by A. Furthermore,

β′ = {(ξ, 0), (0, ξ), (η, 0), (0, η)},(58)

is a basis for Q2(x∗), and the matrix of A associated with this basis has the form

[A]β′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 m−1 ω 0
0 0 0 ω
−ω 0 0 m−1

0 −ω 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, it follows that the polynomial(λ2 + ω2)2 is a factor of the characteristic
polynomial of A. This finishes the proof. ∎

Remark 6 The outcome of the aforementioned lemma is independent of the number
of bodies, the value of p, and the value of the constant C.

5 Study of the stability of the 3-gon solution for the planar 3-body
problem with quasi-homogeneous potential and p > 1 arbitrary

In this section, we will study the stability of the N-gon solutions previously obtained,
focusing on the case where N = 3 and p > 1 is arbitrary. First, it is observed that for
N = 3 the relative equilibrium solution is parametrized by

x1 = ρ, y1 = 0, x2 = −
1
2

ρ, y2 =
√

3
2

ρ, x3 = −
1
2

ρ, y3 = −
√

3
2

ρ.

X1 = 0, Y1 = mρω, X2 = −
√

3
2

mρω, Y2 = −
1
2

mρω,

X3 =
√

3
2

mρω, Y3 = −
1
2

mρω,(59)

where ρ is an admissible radius satisfying the equation (27). In particular, the param-
eterization of the particles forming the equilateral triangle is given by

q1 = ρ(1, 0), q2 = ρ (− 1
2

,
√

3
2
) , q3 = ρ (− 1

2
,−
√

3
2
) .

The velocities of the particles are

p1 = mρω(1, 0), p2 = mρω(
√

3
2

,− 1
2
) , p3 = mρω(

√
3

2
,− 1

2
) .
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18 A. Castillo, P. Martinez, and C. Vidal

We check that for the case N = 3, we must have θ1 = 0, θ2 =
2π
3

, θ3 =
4π
3

. Moreover,
it follows by equations in (25) that the values of A and B are as follows:

A = 2 csc(π
3
) = 4√

3
, B = 2 csc(π

3
)

p
= 2p+1

3p/2 .(60)

Then, substituting the values of A and B into (60), we get that ρ, C , m, and ω must
satisfy

ω2

m
ρp+2 − ρp−1

√
3
− 3−p/2C p = 0.(61)

In general, it is not straightforward to ascertain the admissible values of ρ from the
above equation. Nevertheless, the explicit relationship between m and the remaining
parameters, or between C and the remaining parameters, can be determined for a
given solution ρ, namely:

m = 31+p/2ρp+3ω2

3C p + 3(p+1)/2ρp , C = 3p/2−1

mp
ρp−1 (−

√
3m + 3ρ3ω2) .(62)

For N = 3, the matrix A is of dimension 12 × 12 and in this situation, we have

Hess W(x∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 0 a15 a16
a21 a22 a23 a24 a25 0
a31 a32 a33 a34 0 a36
0 a42 a43 a44 a45 a46

a51 a52 0 a54 a55 a56
a61 0 a63 a64 a65 a66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the entries of this matrix are

a11 =
m (−

√
3m(p − 1) + (3p + 2)ρ3ω2)

6ρ3 = −2a12 = −2a13 = −2a21 = −2a31 ,

a15 =
m (m −mp +

√
3(p + 2)ρ3ω2)

12ρ3 = a24 = a36 = a42 = a51 = a63 ,

a16 =
m (m(p − 1) −

√
3(p + 2)ρ3ω2)

12ρ3 = a25 = a34 = a43 = a52 = a61 ,

a22 = −
m (
√

3m(p − 1) + (2 − 3p)ρ3ω2)
12ρ3 = a33 ,

a23 =
mω2

3
= a32 ,

a44 =
m (−

√
3m(p − 1) + 3(p − 2)ρ3ω2)

18ρ3 = −2a45 = −2a46 = −2a54 = −2a64 ,

a55 =
m (−5

√
3m(p − 1) + 3(5p + 2)ρ3ω2)

36ρ3 = a66 ,
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a56 =
m (
√

3m(p − 1) − 3(p + 1)ρ3ω2)
9ρ3 = a65 .

We verify that the characteristic polynomial associated with the matrix A has the
form

CA(λ) =
1

36ρ9 λ2(λ2 + ω2)2(λ2 − α + 3ω2) p̂(λ),(63)

with p̄(λ) a polynomial of degree four, given by

p̂(x) = x2 + a1x + a0 , x = λ2(64)

where,

a1 =
1

12ρ6 (8
√

3pmρ3 + 4 3(2−p)/2 pmC(p + 1)ρ4−p + 12(1 − 2p)ρ6ω2) ,(65)

and

a0 =
1

12ρ6 (m
2(5p2 + 6p + 5) + 4 31−p p2(p + 1)2m2C2ρ2(1−p))

+ 1
12ρ6 (8 3(1−p)/2 p(p + 1)2m2Cρ1−p − 4

√
3mρ3ω2)(66)

+ 1
12ρ6 (−18

√
3pmρ3ω2 − 10

√
3p2mρ3ω2)

− 1
12ρ6 (8 3(2−p)/2 p(p + 1)2mCρ4−pω2 + 3(5p2 + 12p + 8)ρ6ω4).

At this stage, it is important to highlight that the values of μ and ν, as presented
in (44) and (46), respectively, for N = 3 and in accordance with (62), assume the
following form:

μ = m√
3ρ3

and ν = − m√
3ρ3
+ ω2 ,

as a function of m, or equivalently,

μ = pω2

C p + 3(p−1)/2ρp−1 and ν = C pω2

C p + 3(p−1)/2ρp−1 ,

as function of C.
On the other hand, as previously established in Lemmas 2 and 4 the character-

istic polynomial exhibits eight known eigenvalues: two null eigenvalues, four pure
imaginary represented by ±iω, and the remaining two eigenvalues are given by

±
√

α − 3ω2 = ±
√
−m(p−1)√

3ρ3 + (p − 2)ω2. We must therefore characterize the two roots
of the polynomial p̂(x).

At the outset, we note that the discriminant of p̂(x) in (64) is given by

D = −9p2(p + 1)2m2C2ρ2

− 2 3p/2 p(p + 1)mCρp+1 (2
√

3m(p + 2) − 3(2p + 5)ρ3ω2)
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− 3p ρ2p(m2(p + 1)(p + 5) − 2
√

3m(p(p + 11) + 2)ρ3ω2

+ 3(p(p + 16) + 7)ρ6ω4).(67)

To carry out the stability study, we evaluate a1 and the discriminant D with respect
to the mass specified in (62). Then (65) and (67) are equivalent to

a1 =
ω2 (−3p(p − 2)C + v)

3pC + v
,(68)

and

D = − 8 ω4

(3pC + v)2 (9p3C2 + 3p(p + 1)Cv + v2) ,(69)

where v = κu, κ = 3(p+1)/2 and u = ρp−1.
The roots of the quadratic polynomial in x are given by

x− = −
a1 +
√

D
2

,(70)

and

x+ =
−a1 +

√
D

2
.(71)

As demonstrated in Theorem 2.2, for a given C > 0 and p > 1, there exists a unique
admissible radius ρ > 0, for the fixed mass m. The following theorem will be employed
for the purpose of verifying the type of stability of the associated solution.

Theorem 5.1 If C > 0, p > 1, and m > 0, then the 3-gon solution of the problem of 3-
bodies with quasi-homogeneous potential and ρ = ρ(m) given in Theorem 2.2 is unstable
in the Lyapunov sense.

Proof Since C > 0 it follows immediately from (69) that D < 0 and hence the roots
x− and x+ given in (70) and (71), respectively, are complex. In consequence, the 3-gon
solution is unstable in the sense of Lyapunov. ∎

Next we will analyze the case C < 0. We note that the sgn(D) = −sgn(v2 + 3p
(p + 1)Cv + 9p3C2). Therefore, the objective is now to examine the behavior of
the quadratic polynomial

h(v) = v2 + 3p(p + 1)Cv + 9p3C2 .(72)

Lemma 5 Let C < 0 and p > 1. So we have that:
(1) D = 0⇔ v = v+ = −3p2C or v = v− = −3pC.
(2) D > 0⇔ v− < v < v+.
(3) D < 0⇔ v > v+ or 0 < v < v−.
The graph of D is shown in Figure 6.

Proof In fact,

h(v) = 0⇔ v = 1
2
(−3p(p + 1)C ±

√
9p2(p + 1)2C2 − 36p3C2)
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Figure 6: Graphic of D with C < 0 and p > 1.

⇔ v = 1
2
(−3p(p + 1)C ±

√
9p2C2((p + 1)2 − 4p))

⇔ v = 1
2
(−3p(p + 1)C ± 3p∣C∣

√
p2 − 2p + 1)

⇔ v = 1
2
(−3p(p + 1)C ± 3p(p − 1)C),

because ∣C∣ = −C. Thus,

v+ =
−3pC

2
((p + 1) + (p − 1)) = −3p2C > 0,(73)

v− =
−3pC

2
((p + 1) − (p − 1)) = −3pC > 0,(74)

clearly v− < v+. This proves part 1 of the lemma.
The proofs of items 2 and 3 of the lemma are immediate, as it can be observed that

h(v) < 0 if v− < v < v+ and h(v) > 0 if v > v+. As sgn(D) = −sgn(h), the proof of the
lemma follows. ∎

Remark 7 According the definition of ρ♯ in Theorem 2.3, it can be observed that
ρp−1
♯ = − C

3(p+1)/2 p(p + 2), so v♯ = −C p(p + 2).
Again, using the definition of ρ∗ in Theorem 2.3, we check that v∗ = v−.
By definition of v+, the corresponding ρ+ satisfies ρp−1

+ = − 3C p2

3(p+1)/2 . Analogously, for
v− we have ρp−1

− = − 3C p
3(p+1)/2 .

Moreover, if p > 1 then ρ♯ < ρ+.

Theorem 5.2 If C < 0, m♯ =
ω2(p+2)(−BC p(p+2)A−1)3/(p−1)

2A(p−1) , p > 1 and m > m♯, then the
3-gon solution of the planar 3-body problem for the quasi-homogeneous potential with
radius ρ2(m) > ρ+ (given in Theorem 2.3) is unstable in the Lyapunov sense.

Proof Indeed, as established in item 3 of Lemma 5, we know that D < 0 if v > v+
which implies that both x− and x+ are complex. Thus, the N-gon solution for ρ2 >
ρ+ which exists if m > m♯, satisfies v2 > v+. Therefore, this solution is unstable in the
Lyapunov sense, which proves the theorem. ∎
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Lemma 6 For C < 0, p > 1 and v > v−, then a1 is always positive.

Proof First, let’s check the sign of the denominator of a1 in (68). By hypothesis v >
v−, that is, v > −3pC, or equivalently, v + 3pC > 0.

On the other hand, again from the inequality v > v−, we have −3p(p − 2)C +
v > −3p(p − 1)C > 0. So the numerator of a1 in (68) is positive. This concludes
the proof. ∎

Lemma 7 For C < 0 and p > 1, v− ≤ v ≤ v+, then x− is always negative.

Proof The proof is immediate, since by definition in (70) x− = − a1+
√

D
2 , so by

Lemmas 5 and 6, we get x− < 0. This proves the lemma. ∎

Next, we will analyze the root x+ of the quadratic polynomial p̂(x) given in (71).
Substituting the values of a1 given in (68) and D given in (69), we obtain that

x+ =
ω2

3pC + v

⎡⎢⎢⎢⎢⎣
(3p(p − 2)C − v) + 2

√
6
√
−3p3C2 + p(p + 1)Cv + v2

3

⎤⎥⎥⎥⎥⎦
.

Now, we know by Lemma 6 that 3pC + v > 0. Let us then define the auxiliary
function

g(v) = 3p(p − 2)C − v + 2
√

6
√
−3p3C2 + p(p + 1)Cv + v2

3
.(75)

Of course, it is clear that sgn(x+) = sgn(g(v)) for v ∈ (v−, v+).

Lemma 8 If C < 0 and p > 1, then the auxiliary function g(v) < 0 in v− < v < v+.

Proof Let v ∈ (v−, v+). Differentiating the auxiliary function g given in (75) with
respect to v, we have that

g′(v) = −1 −
√

2 (3p(p + 1)C + 2v)√
−9p3C2 − 3p(p + 1)Cv − v2

,(76)

and differentiating again, we get

g′′(v) = − 9p2(p − 1)2C2
√

2 [−9p3C2 − 3p(p + 1)Cv − v2]3/2
.(77)

Note that the second derivative is always negative, so g′ is decreasing for all v. In
particular, for v ∈ (v−, v♯) it is verified that

g′(v♯) < g′(v) < g′(v−).(78)

We assert that g′(v♯) = 0. In fact,

g′(v♯) = −1 −
√

2 [3p(p + 1)C − 2p(p + 2)C]
[−9p3C2 + 3p2(p + 1)(p + 2)C2 − p2(p + 2)2C2 − p2(p + 2)2C2]1/2

= −1 +
√

2 pC(p − 1)
pC [−9p + 3p(p + 1)(p + 2) − (p + 2)2]1/2

= −1 +
√

2 (p − 1)√
2(p − 1)2

= 0.
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Thus, 0 = g′(v♯) < g′(v) < g′(v−), therefore g is increasing by v ∈ (v∗ , v♯). Then,

g(v−) < g(v) < g(v♯).(79)

In an analogous way, we affirm that g(v♯) = 0. In fact,

g(v♯) = 3p(p − 2)C + p(p + 2)C + 2
√

6
√
(−3p3C2 − p2(p + 1)(p + 2)C2 + 1

3
(p + 2)2 p2C2)

= 3p(p − 2)C + p(p + 2)C + 2
√

6
√

p2C2 (−3p − (p + 1)(p + 2) + 1
3
(p + 2)2)

= pC (4(p − 1) − 2
√

2
√
−2p2 − 4p + 2)

= pC(4(p − 1) − 4
√

p2 − 2p + 1) = pC(4(p − 1) − 4(p − 1)) = 0.

Then, g(v) < 0 for v ∈ (v−, v♯).
Similarly, since g′′ is negative, then g′ is decreasing in (v♯ , v+), so g′(v+) < g′(v) <

g′(v♯) and as g′(v♯) = 0, we have that g is decreasing in (v♯, v+). Then g(v+) < g(v) <
g(v♯) and again since g(v♯) = 0, we conclude that g < 0 in (v♯ , v+). This finishes the
proof of the lemma. ∎

Now, we know from Theorem 2.3 of Section 2, that for C < 0, p > 1, and m > m♯
defined in (29) there exist two radii ρ1 , ρ2 > 0 admissible for fixed mass m. Next, we
will check the type of stability of these solutions.

Theorem 5.3 If C < 0, p > 1 and m > m♯ fixed, then the 3-gon solution of the planar
3-body problem with quasi-homogeneous potential and radius ρ = ρ2(m) with ρ♯ <
ρ2(m) ≤ ρ+ given in Theorem 2.3 is spectrally stable.

Proof As a consequence of Lemma 8, it can be deduced that g(v) < 0 in the interval
(v♯ , v+), and therefore x+ < 0 in the same interval. On the other hand, Corollary 7
indicates that x− < 0 in the interval (v♯ , v+). This shows that the 3-gon solution with
radius ρ2, where ρ♯ < ρ2 < ρ+, is spectrally stable.

Now, for the case v = v+, it can be demonstrated by means of Lemma 5 that the
discriminant D = 0. Consequently, according to the findings of Lemma 6, x+ = x− =
−a1 < 0. This shows that the 3-gon solution with ρ2 = ρ+ is also spectrally stable. This
concludes the proof of the theorem. ∎

Theorem 5.4 If C < 0, p > 1, m ≥ m♯, then the 3-gon solution of the planar N-body
problem with quasi-homogeneous potential and ρ = ρ1(m) with ρ∗ = ρ− < ρ1(m) ≤ ρ♯
given in Theorem 2.3 is spectrally stable.

Proof Indeed, from Lemma 8, it can be deduced that g(v) < 0 in the interval (v−, v♯)
which implies that x+ < 0 in (v−, v♯). Additionally, Corollary 7 indicates that x− < 0
in the interval (v−, v♯). This demonstrates that the 3-gon solution with ρ1 ∈ (ρ∗ , ρ♯) is
spectrally stable.
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On the other hand, from Lemma 8, we have that g(v♯) = 0, which implies that
x+ = 0 in (v−, v♯), and also by Corollary 7, we have x− < 0 in v = v−. This shows that
the N-gon solution with ρ1 = ρ♯ is spectrally stable. This finishes the proof of the
theorem. ∎

6 Concluding remarks

In this work, we consider the planar N-body problem with quasi-homogeneous
potential given by

W = ∑
1≤k< j≤N

[
mk m j

∥rk − r j∥
+

mk m jC jk

∥rk − r j∥p ] ,

where mk > 0 are the masses and C jk = Ck j is a nonzero real constant, with the
exponent p >1. We characterize the periodic solutions that form a regular polygon
with equal masses (mk = m, k = 1, ⋅ ⋅ ⋅ , N) and equal constants C jk (C jk = C ( j, k =
1, ⋅ ⋅ ⋅ , N) (for short, N-gon solutions).

Initially, we study the existence of periodic solutions with angular velocity ω and
equal masses that form a regular polygon on a circle of radius ρ (as we said before),
assuming that Ck j = C for all k, j = 1, . . . , N . We characterize the possible radii as a
function of C , m, and p. We verify that the existence of an N-gon solution with quasi-
homogeneous potential is given by the fulfillment of the following condition:

ω2

m
ρp+2 − A

4
ρp−1 − pBC

2p+1 = 0,

with

A =
N
∑
j=2
∣csc(π( j − 1)

N
)∣ , B =

N
∑
j=2
∣csc(π( j − 1)

N
)∣ p ,

positive constants. We have shown that for Ck j = C > 0 there is a unique admissi-
ble radius which leads to a N-gon solution for the planar N-body problem with
quasi-homogeneous potential. On the other hand, for Ck j = C < 0 there are 2, 1,
or no admissible radii. In fact, there is a critical value of m denoted by m♯ =
ω2(p+2)(−BC p(p+2)A−1)3/(p−1)

2A(p−1) such that if m < m♯ there are no admissible radii. If m = m♯
there is a unique admissible radius which gives rise to a unique N-gon solution.
If m > m♯, then there exist two admissible radii denoted by ρ1 and ρ2 such that
ρ∗ = 1/2 (−pBC/A)1/p−1 < ρ1 < ρ♯ = 1/2 (−(BC/3A)p(p + 2))1/p−1 and ρ2 > ρ♯ each
of them gives rise to a N-gon solution.

Furthermore, we guarantee that one of the factors of the characteristic polynomial
of the Hamiltonian matrix associated with a relative equilibrium is given by the
expression λ2(λ2 − α + 3ω2), where α = 2μ + (p + 1)ν and the values of the param-
eters are as follows: μ = Am/4ρ3 and ν = mpBC/2p+1ρp+2. The remaining factor of
the characteristic polynomial is of the form (λ2 + ω2)2.

We conclude this work by studying the stability for the case N = 3. We find
that for C > 0 the 3-gon solution is always unstable in the Lyapunov sense. For
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C < 0, defining the auxiliary values of ρ, namely, ρ∗ = (−3pC/3(p+1)/2)1/(p−1)
, ρ♯ =

(−p(p + 1)C/3(p+1)/2)1/(p−1)
and ρ+ = (−3p2C/3(p+1)/2)1/(p−1)

, we have that the 3-
gon solution with ρ = ρ1 is spectrally stable throughout its entire interval of definition
(ρ∗ , ρ♯]. The solution for ρ = ρ2 is spectrally stable in the interval (ρ♯ , ρ+]. It is
unstable in the Lyapunov sense in the interval ρ2 > ρ+.
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