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Dynamics of a large population of red blood
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An exhaustive description of the dynamics under shear flow of a large number of red
blood cells in a dilute regime is proposed, which highlights and takes into account the
dispersion in cell properties within a given blood sample. Physiological suspending
fluid viscosity is considered, a configuration surprisingly seldom considered in
experimental studies, as well as a more viscous fluid that is a reference in the
literature. Stable and unstable flipping motions well described by Jeffery orbits or
modified Jeffery orbits are identified, as well as transitions to and from tank-treading
motion in the more viscous suspending fluid case. Hysteresis loops upon shear rate
increase or decrease are highlighted for the transitions between unstable and stable
orbits as well as for the transition between flipping and tank-treading. We identify
which of the characteristic parameters of motion and of the transition thresholds
depend on flow stress only or also on suspending fluid viscosity.
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1. Introduction
In human blood, the haematocrit, that is, the volume fraction of red blood cells

(RBCs), is usually between 40 % and 50 % while other cells, platelets and white blood
cells, occupy less than 1 % of blood volume. Under healthy conditions, RBCs are
highly deformable cells. This allows them to easily squeeze through narrow capillaries
while preventing clogging even at high volume fraction, and to migrate away from
vessel walls, which optimizes transport thanks to the formation of a lubricating
cell-free layer. Cells also contribute strongly to blood viscosity and its shear-thinning
behaviour (see Chien 1970; Pries, Neuhaus & Gaehtgens 1992; Vitkova et al. 2008;
Fedosov et al. 2011; Forsyth et al. 2011), which allows for partial compensation for
the higher heart power needed in situations of effort. While in most situations blood
flow is influenced by interactions with walls and between cells, the question of the
dynamics of a single RBC in a simple linear shear flow is of utmost fundamental
interest and has been the subject of many experimental and theoretical studies
owing to its complexity and its sensitivity to RBC properties. From a structural
and mechanical viewpoint, an RBC is fundamentally a liquid drop encapsulated
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Red blood cells in shear flow 409

in a membrane. The cytosol is a haemoglobin solution with an average concentration
(mean corpuscular haemoglobin concentration (MCHC)) normally between 320 and
360 g l−1 corresponding to a mean viscosity in the range 6–10 mPa s (see Ross
& Minton 1977). The RBC membrane is composed of a lipid bilayer that provides
area dilation resistance and bending rigidity, and a spectrin network that constitutes
a quasi-2D skeleton on the inner surface of the lipid bilayer and connected to it via
junction complexes and membrane proteins. This skeleton provides 2D shear elasticity
to the membrane and to some extent shape memory. The cell volume is about 90 µm3

on average and the membrane area 136 µm2, corresponding to a reduced volume of
around 0.6 (see Linderkamp, Wu & Meiselman 1983; Fung 1993). This leads to the
characteristic biconcave disk shape and provides enough excess area (compared with
a sphere) to allow large deformations.

Simple shear flow is a basic rheometric configuration and as such the dynamics
of a suspended object can be considered as a marker of rheological and mechanical
properties. In addition, it is also a benchmark situation for comparing experiments
and theoretical or numerical modelling of the RBC. Indeed, there are still many open
questions about the mechanical structure and properties of the RBC: what are the
respective roles of the bending rigidity of the lipid bilayer, the elasticity of the spectrin
network and the viscosity of the cytosol? Does the cytoskeleton have a permanent
stress-free shape or should the possibility of remodelling be considered (e.g. due to
nitric oxide (NO; see Grau et al. 2013; Simmonds, Detterich & Connes 2014) or
adenosine triphosphate (ATP; see Betz et al. 2009) release and production in response
to stress)? What is this stress-free shape (see Fischer et al. 1981; Svelc & Svetina
2012; Cordasco & Bagchi 2014; Peng, Mashayekh & Zhu 2014; Sinha & Graham
2015)? RBC mechanical properties are an indicator and consequence of several
pathologies (sickle cell disease, thalassaemia, elliptocytosis) and can be modified
by physical activity or conditions such as long-term space flight for instance (see
Rizzo et al. 2012). It has been shown that these conditions can induce modifications
of membrane composition and properties, RBC shape and internal viscosity. The
corresponding variations of dynamics, deformation and orientation of RBCs in flow
strongly condition blood rheology (viscosity, viscoelasticity) and the hydrodynamic
interactions that govern the structure of blood flows in vessels through lift forces near
walls, interactions between cells and distribution in networks (see Grandchamp et al.
2013; Roman et al. 2016; Shen et al. 2016).

Numerous studies, both experimental (see Goldsmith & Marlow 1972; Morris
& Williams 1979; Bitbol 1986; Abkarian, Faivre & Viallat 2007; Dupire, Socol &
Viallat 2012; Fischer & Korzeniewski 2013; Lanotte et al. 2016; Levant & Steinberg
2016; Mauer et al. 2018) and numerical (see Cordasco & Bagchi 2013, 2014; Peng
et al. 2014; Sinha & Graham 2015; Lanotte et al. 2016; Mauer et al. 2018), have
been devoted to the dynamics of a single RBC in a shear flow. There have been
recent efforts to capture the main features of the dynamics (see Dupire, Abkarian &
Viallat 2015; Mendez & Abkarian 2018). In an attempt to isolate the contributions of
shear elasticity and membrane bending energy, investigations related to the modelling
of blood flows using elastic capsules or giant lipid vesicles as simplified models of
RBCs already show rather complex diagrams of dynamical states notably involving
tumbling (TB), tank-treading (TT) and vacillating–breathing (VB) modes as a function
of membrane properties, viscosities of the external and internal media, shear rate and
rest shape of the object (see Barthès-Biesel & Rallison 1981; de Haas et al. 1997;
Ramanujan & Pozrikidis 1998; Rioual, Biben & Misbah 2004; Abkarian & Viallat
2005; Kantsler & Steinberg 2005; Lac & Barthès-Biesel 2005; Noguchi & Gompper
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2005a,b; Kantsler & Steinberg 2006; Mader et al. 2006; Misbah 2006; Danker et al.
2007; Lebedev, Turitsyn & Vergeles 2007; Mader et al. 2007; Noguchi & Gompper
2007; Skotheim & Secomb 2007; Kantsler, Segre & Steinberg 2008; Bagchi &
Kalluri 2009; Deschamps, Kantsler & Steinberg 2009; Kessler, Finken & Seifert
2009; Farutin, Biben & Misbah 2010; Biben, Farutin & Misbah 2011; Foessel et al.
2011; Walter, Salsac & Barthès-Biesel 2011; Zabusky et al. 2011; Farutin, Aouane
& Misbah 2012; Farutin & Misbah 2012; Laadhari, Saramito & Misbah 2012;
Dupont, Salsac & Barthès-Biesel 2013; Barthès-Biesel 2016; Dupont et al. 2016).
These parameters are usually combined in a set of dimensionless numbers such as
reduced volume ν, viscosity ratio λ and capillary number Ca, the latter comparing the
hydrodynamic shear with either bending rigidity or shear elasticity of the membrane.
In high-viscosity media, the drop-like tank-treading motion and its characteristics
(cell elongation, inclination and tank-treading frequency) have often been proposed
as a means to characterize RBC mechanical properties (see Fischer, Stöhr-Liesen &
Schmidt-Schönbein 1978; Chien 1987; Fischer 2007). While other regimes that exist
for physiological values of viscosity and shear rate, such as flipping/tumbling (see
Goldsmith & Marlow 1972), rolling motion (see Bitbol 1986) or swinging motion at
intermediate stress and viscosity (see Abkarian et al. 2007), have been identified, as
well as hysteretic behaviour in the transitions between different modes (see Dupire
et al. 2012), there is still no clear consensus on the whole dynamical diagram of
RBCs in shear flow as a function of shear stress and external viscosity.

The discrepancies and uncertainties on the boundaries of the different dynamical
modes in phase space in experimental studies available in the literature is likely partly
due to the variability of RBC properties between different subjects and even within
a given blood sample. Indeed, most studies focused on the analysis of single cells,
sometimes the same cell (by varying shear rate) and often different cells when it
is necessary to vary the viscosity of suspending medium. However, RBCs are filled
with a haemoglobin solution whose concentration, and viscosity, can vary significantly
during the RBC lifespan, as they tend to dehydrate slightly when ageing, and between
individuals. For instance, the volume of RBCs can vary by 25 % between young and
old cells (see Linderkamp & Meiselman 1982), leading to equivalent variations of the
haemoglobin concentration at the cell level (32–40 g dl−1). This leads to dispersion of
internal viscosities within a blood sample between 6 and 20 mPa s at 37 ◦C (see Ross
& Minton 1977) and dispersion of mechanical properties and dynamics (see Pfafferott,
Nash & Meiselman 1985).

In this paper, after summarizing the data on transition thresholds between different
dynamical modes available in the literature, we report on measurements of the
distribution of orientation angles and aspect ratios of RBCs in large samples by
varying suspending medium viscosity and shear rate. This allows us to derive and
quantify the populations of cells that are in the different dynamic modes for a given
set of parameters, for a given healthy blood sample in which natural variability of
cell properties is present. We give ranges of values for the transition thresholds and
their hysteretic behaviour, that take this variability into account. The large populations
analysed for each point of the parameter space (several hundreds of RBCs) provide,
for the first time, relevant statistical information on the dispersity of RBC dynamics
in shear flow.

We focus on two suspending media: one has high viscosity (25 mPa s), and allows
comparisons with the literature, which has notably focused on such a configuration
because it allows the tank-treading regime to be reached; the other has a viscosity
1.5 mPa s close to that of plasma and has an obvious interest for physiological issues.
This situation has been much less studied in the literature, as far as experiments are
concerned.
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2. Cell orientation and Jeffery orbits
We introduce the notation for angles that will be used throughout the paper, and

Jeffery orbits, that describe the motion of rigid ellipsoids under shear flow. This
motion that will be used in our modelling is also a reference case.

2.1. Euler angles
We consider cells placed in a shear flow with flow direction Oz′, shear gradient
direction Oy′ and vorticity axis Ox′. To characterize the orientation and motion of
cells, we shall use the Euler angles. Let us consider, as a first approximation of RBC
shape, an ellipsoid of the equation

r2x2
+ y2
+ z2
= 1. (2.1)

Here r is the aspect ratio, which will be larger than 1 here (oblate ellipsoid). This
ellipsoid may rotate and we use the Euler angles as defined in Jeffery (1922) and in
figure 1 to describe this rotation in the fixed coordinate system Ox′y′z′ that coincides
initially with the system Oxyz associated with the ellipsoid (supplemental material is
available online at https://doi.org/10.1017/jfm.2019.42 and presents a comparison with
the other convention used in the literature).

In the original paper by Jeffery (1922), θ is obtained by rotation around the Oz′ =
Oz axis, then φ is obtained by rotation around the Ox′ axis, such that it is defined
as the angle between the planes Ox′y′ and Ox′x (see figure 1). With this convention,
when φ = 0 and θ = 90◦, the cell face is in the Ox′z′ plane.

If the cells are viewed from the velocity gradient axis Oy′, as in our experiments,
the angle Ψ defined as the angle between Ox′ and the projection of the cell axis of
revolution Ox onto the plane Ox′z′, can be easily determined (see figure 1). This angle
is also the angle between the projection of the cell and the flow direction. Here Ψ is
related to θ and φ through tanΨ = tan θ sin φ.

2.2. Jeffery orbits
For a shear flow in the z′ direction with y′ the shear gradient direction and x′ the
vorticity direction, the motion of a rigid ellipsoid in creeping flow is given by Jeffery
(1922)

θ̇ = γ̇
r2
− 1

r2 + 1
sin θ cos θ sin φ cos φ, (2.2)

φ̇ =
γ̇

1+ r−2
(r−2 cos2 φ + sin2 φ), (2.3)

with C≡ r tan θ0 the orbit parameter. These equations can be solved and give

tan θ =
C

r(r−2 cos2 φ + sin2 φ)1/2
, (2.4)

tan φ = r−1 tan
γ̇ t

r+ r−1
. (2.5)

Here θ oscillates between θ0 and arctan C (spinning motion).
We shall refer to these possible motions as flipping motions. Among them, θ0 = 0◦

corresponds to what is called rolling motion (θ always equal to 0), while θ0 = 90◦
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FIGURE 1. (Colour online) The Euler angles used to describe the flipping regime.
Convention used in Jeffery (1922) and in this paper. The large black arrow shows the
viewing direction in the experiments, where projection onto the x′z′ plane is seen (black
ellipse).

Á

FIGURE 2. (Colour online) Selected snapshots along half a flipping period of an ellipsoid
of aspect ratio r = 3 following a Jeffery orbit of orbit angle θ0 = 45◦. The black shape
is the projection of the ellipsoid parallel in the shear gradient direction; it corresponds to
what is seen in our experiment. Here Ψ is the angle of the main axis of this projected
shape with the flow direction. As stated by (2.6), it oscillates between −θ0 and θ0. The
apparent aspect ratio ra oscillates between a minimal value strictly larger than 1 and r,
when the cell is seen edge on and Ψ =±θ0.

corresponds to tumbling (θ always equal to 90◦). Note that when r> 1, φ̇ is minimal
when φ = 0, which corresponds to the cell aligned with the flow direction.

Simple trigonometry then yields the equation for Ψ (t) according to Jeffery theory:

tanΨ = tan θ0 × sin
γ̇ t

r+ r−1
. (2.6)

Therefore, Ψ oscillates between two extreme positions −θ0 and θ0, where it stays for
more time (see figure 2 for an example).
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Red blood cells in shear flow 413

In this paper, we shall consider the possible flipping motions for a cell, that will
be hypothesized to closely follow Jeffery orbits, but also the tank-treading motion. In
that case, the cell small axis remains in the shear plane (θ = 90◦) while the cell adopts
a constant angle relatively to the flow direction. This definition is unambiguous as
long as the cell does not deform. If it does, as pointed out in Dupont et al. (2016)
where oblate capsules are considered, one should refer to the membrane material point
that was located, at rest, on the small axis. From this unambiguous definition, a cell
of fixed shape in flow for which this point is directed toward the vorticity direction
would be called a rolling cell, even though its deformation is such that it resembles
a tank-treading cell. From this point of view, the tank-treading motion mentioned in
Cordasco, Yazdani & Bagchi (2014, figure 12) or in Sinha & Graham (2015, figure 15)
should be called rolling motion.

Since the numerical studies we will refer to in the following have used the term
tank-treading, and since in most experimental studies the deformation seems to remain
weak, we shall however go on using the (potentially improper) term of tank-treading
for cells whose small axis of symmetry lies in the shear plane.

3. State of the art

Throughout this paper and in this section in particular, we shall use the Jeffery
notation and conventions (figure 1). The original notation used in the considered
papers (which are quite varied) are recalled in the supplemental material, for the sake
of clarity. Experiments were run at laboratory temperature, at which the viscosity of
the haemoglobin solution is close to 10 mPa s, when it is equal to 6.5 mPa s at
body temperature. In experimental papers, the ‘natural’ parameter space (η0, γ̇ ) is
often used, where η0 is the carrying fluid viscosity and γ̇ the shear rate, a parameter
that can be varied continuously. As an alternative to γ̇ , the typical stress on the cell
τ = η0γ̇ is also often considered. We shall stick to this latter choice in the following.

The main thresholds and dynamics states domains found in previous experiments
from the literature are reported in figure 3.

In numerical simulations, dimensionless parameters are naturally chosen. These are
λ and Ca. Here λ is the viscosity contrast, that is, the ratio between the viscosity of
the haemoglobin solution and that of the carrying fluid. Therefore, λ= 1 corresponds
to η0 ' 10 mPa s in the experiments. The capillary number Ca compares the flow
stress η0γ̇ with the elastic stress: Ca = η0γ̇R/µ, where R is the typical size of the
RBC and µ the shear elasticity modulus of the membrane. Here η0 is typically varied
between 1 and 100 mPa s and the stress η0γ̇ does not exceed 5 Pa (20 Pa in the
more recent Mauer et al. (2018)). Technical details and a description of the main
results of the most recent and relevant papers that we consider here are reported in
the supplemental material and will be recalled when necessary in the discussion of
our results.

All recent simulation papers establish a diagram that is qualitatively coherent
with that partly drawn by experiments (see Cordasco & Bagchi 2013; Cordasco
et al. 2014; Peng et al. 2014; Sinha & Graham 2015; Mendez & Abkarian 2018).
This diagram can be divided into four zones, the frontier of which depends on the
considered equilibrium shapes (see figure 3): (i) flipping motions, (ii) tank-treading,
(ii′) tank-treading like motions with oscillations or slightly off-plane motion, (iii)
flipping motions, but orbit stability is different than in the low external viscosity
case (i). The intermediate region (ii′) corresponds to a narrow range in the parameter
space. In all papers, the different regimes are obtained by starting with a cell with a
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From literature

Our results

Jeffery orbits to modified Jeffer orbits (©�↗)
- Goldsmith & Marlow (1972)

Rolling to tank-treading (©�↗) - Bitbol (1986) -

Rolling to tank-treading (©�↗)

Range of rolling to tank-treading transition (©�↗)

Range of flipping to rolling transition (©�↗ and ©�↘)
Range of existence of modified Jeffery orbits (©�↗    and ©�↘   )
Range of existence of unstable high angle orbits (©�↗    and ©�↘   )

Range of tank-treading to flipping transition (©�↘)

Tank-treading to flipping (©�↘) - Dupire et al. (2012) -
Main explored paths - Levant & Steinberg (2016) -
Upper limit for stress in simulations

Lower and upper limits for explored stresses

Flipping to tank-treading (©�↗) - Morries & Williams (1979) -
                - Fischer & Korzeniewski (2013) -

Flipping to rolling (©�↗)

FIGURE 3. (Colour online) Summary of the transition thresholds identified in the literature
and in our experiments. Whether the mentioned transition should be understood to occur
in the increasing or decreasing shear rate case is indicated by the symbols (γ̇ 1) and (γ̇ %),
respectively. The chosen data points from the literature are commented on in the text.
Owing to variability between cells, all of our thresholds are identified by an interval. Some
transitions have no lower bound because of the range of stresses explored. The transition
intervals are slightly shifted around the two explored viscosities 1.5 and 25 mPa s for
clarity.

given orientation θ , and following its time evolution. From the way the simulations
are run, we can consider that they correspond more to the increasing γ̇ case (but to
a sharp increase). None of the previous studies consider the decreasing case or the
smoothly increasing case.

3.1. Experimental papers
One of the first major contributions to the study of RBC dynamics under shear flow
can be found in Goldsmith & Marlow (1972) where statistics on the angle distribution
is obtained. They observed dilute RBCs in a large tube where, at the cell scale, the
flow can be assimilated to simple shear flow, with the same outer viscosity η0 as
plasma. They also performed experiments in a plate geometry at high η0 (520 mPa s)
and low γ̇ (around 1 s−1). Both experiments correspond to an increasing γ̇ : in the
Poiseuille flow experiment the observation tube is narrower than the upstream tubes,
and in the shear chamber experiment, RBCs are initially at rest.

The main outcomes of Goldsmith and Marlow’s study are as follows.

(i) In plasma and at low shear rate (γ̇ < 10 s−1, τ < 0.01 Pa), the time evolution
φ(t) can be well described by Jeffery’s equation (2.5) if an effective aspect ratio
is introduced, which is 25 % lower than the aspect ratio of the convex envelope of
the cell. This result was previously found for rigid circular disks (Anczurowski &
Mason 1967), and the discrepancy between the two ratios is expected to decrease
as the aspect ratio gets closer to 1.

(ii) At higher γ̇ , departure from Jeffery’s equation is observed, with longer duration
of alignment with flow and the initial φ → −φ symmetry for φ̇ is lost. This
is interpreted as the consequence of cell deformability, which induces different
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shapes depending on the cell orientation relatively to the extensional direction of
the flow. At the same time, more cells drift into rolling motion (θ = 0). Those
feature are lost for hardened cells.

(iii) Contrary to what the Jeffery theory states, θ was found not to be periodic as a
function of φ, and the motion appears to be less regular. This is interpreted as a
consequence of rotary Brownian motion of cells.

(iv) In the highly viscous suspending medium, cells are seen to align strongly with
the flow. However, no clear discrimination is made between tank-treading and
rolling cells.

The drift to rolling is studied in Bitbol (1986). The cells were observed in a cone-
plate geometry allowing for γ̇ between 1 and 200 s−1. Viscosity η0 of the suspending
medium was between 1 and 10 mPa s. The main results are as follows.

(i) If one considers the single parameter τ = η0γ̇ , which measures the flow stress on
the cell, a rough phase diagram is obtained from direct observations as follows: if
τ < 0.02 Pa, cells rotate in the flow (that is, flipping motion is observed). In the
intermediate range 0.02 Pa< τ < 1 Pa, cells drift to rolling. For higher stresses,
the number of rolling cells plateaus at viscosity η0= 1 mPa s while it decreases
when η0 > 5 mPa s: cells start to tank-tread.

(ii) In the rolling regime, the cell diameter increases with η0 and γ̇ , as already found
in Goldsmith & Marlow (1972).

(iii) In the considered viscosity range, the typical time for cell drift towards rolling
is of the order of 100× γ̇ −1.

Several new features were highlighted in Dupire et al. (2012), which followed a
first paper by the same group (see Abkarian et al. 2007). In these papers, the case
of decreasing γ̇ is considered for the first time, and off-shear plane motion is also
described for the first time. The carrying fluid viscosities η0 are 7 and 29 mPa s, and
the γ̇ goes from 0 to 15 s−1 in the first case and to 2.7 s−1 in the second case. The
cells flow in a large parallelepiped flow chamber where around 20 cells were tracked
individually and visualized along both the shear and vorticity axes. The main results
of this paper are as follows.

(i) At low γ̇ , the orbit angle θ0 of a flipping cell is not constant but varies between
50◦ and 90◦.

(ii) If the shear rate exceeds a threshold γ̇t lying between 0.01 and 0.05 Pa depending
on the observed cell, this orbit angle stabilizes to a constant value (that decreases
with γ̇ , until the rolling regime is reached).

(iii) In the flipping regime, the time evolution of φ is well described by the Jeffery
equation.

(iv) At some critical shear rate γ̇ +c , transition towards tank-treading is observed. Tank-
treading is associated to swinging, that is, periodic oscillation of the inclination
angle.

(v) If γ̇ is then decreased, the tank-treading motion remains stable until some other
critical shear rate γ̇ −c < γ̇ +c at which a transient intermittent regime is observed.
It shows an alternance (in time) between tank-treading and flipping motions with
high θ0. When an orbit angle lower than 50◦ is reached, flipping motion with a
fixed orbit angle becomes stable, with the same orbit angle equal to that observed
for the same shear rate in the increasing γ̇ case. From this observation we deduce
that γ̇t < γ̇

−

c . Although not explicitly stated in Dupire et al. (2012), it seems that
upon a further decrease of γ̇ the same branch as in the increasing γ̇ case is
followed.
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(vi) There is no variation in γ̇ −c and γ̇ +c if many shear rate cycles are applied to the
same cell. The corresponding critical shear stress values are 0.023 and 0.086 Pa
for η0 = 29 mPa s. These are mean values, because all the critical stresses, as
well as the orbit angles associated with a given stress, depend on the considered
cell.

(vii) All these transitions occur in a shape preserving manner, with diameter variations
that remains lower than 10 %.

The transition between flipping and tank-treading for several viscosities and many
cells is studied in Fischer & Korzeniewski (2013). They consider a Poiseuille flow,
so it is likely that only the increasing γ̇ case is considered, though we do not know
what the upstream conditions are. The critical γ̇ for η0 = 11, 24 and 104 mPa s are
75, 10 and 0.6 s−1, respectively. The transition shear rate is determined as the value at
which half of the RBCs are in tank-treading regime. The authors also establish that
the transition is not sharp: the number of cells in tank-treading increases smoothly
with the γ̇ . The transition becomes more abrupt at high carrying fluid viscosity η0.
Those thresholds together with that measured in Morris & Williams (1979) for plasma
viscosity, allow a separation line to be drawn between flipping-like motion and tank-
treading-like motion in the (η0, τ ) space, as shown in figure 3.

In Lanotte et al. (2016), experiments similar to those in Fischer & Korzeniewski
(2013) are performed in physiological condition, but on a limited amount of cells.
Transitions from flipping to rolling are observed from γ̇ =10 s−1 until γ̇ =40 s−1 (τ =
0.04 Pa s). In the meantime and also for larger shear rates, an increasing proportion
of cup-shaped stomatocytes in rolling motion is detected. At even higher shear rates
(until the maximum considered, γ̇ = 2000 s−1), highly deformed polylobed shapes are
observed. No notion of increasing or decreasing γ̇ is introduced in these experiments.
They confirmed this picture in a second recent paper with shear rates higher than
60 s−1 (see Mauer et al. 2018).

Finally, in Levant & Steinberg (2016), 17 cells are studied in a four roll mill
apparatus which allows to consider a more general flow defined by the vorticity ω
and the strain rate s. Simple shear flow corresponds to the case 2ω = 2s = γ̇ . It
corresponds to a stability threshold for the apparatus, since ω/s > 1 is required for
the cell to remain trapped. Long time observation is then possible, while varying the
ratio ω/s. More precisely, ω is fixed and s is varied. The explored range of external
viscosities is 20–87 mPa s. The possibility to increase the contribution of the vorticity
allows to switch to flipping regimes even in that viscosity range. With the choice to
characterize the flow stress by 2sη0 and to consider the extended viscosity η0(w/s)−1,
three regions are identified, corresponding to tumbling, swinging, and an intermittent
regime, which coincide with those identified in Dupire et al. (2012). Contrary to
what was observed in Dupire et al. (2012), large deformations are associated with the
intermittent regime. Although the stress seems to be increased and decreased within
the same experiment, no hysteretic behaviour is reported. In figure 3, the explored
area in the (η0(w/s)−1, 2sη0) parameter space is shown on the phase diagram for
simple shear rate with parameter space (η0, η0γ̇ ). We shall note that, in agreement
with numerical simulations in Cordasco & Bagchi (2013), no off-plane motion is
observed in the flipping region, while it is seen in simple shear flow in Dupire et al.
(2012). This partial mapping shows that an increased rotational component in the
flow, as in Levant & Steinberg (2016), favours in-plane motion.

The experimental studies summarized above have all brought new features to
the problem. They neither contradict each other nor provide cross-validation since
the explored parameter ranges, or the experimental method, often differ. Studies
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on individual cells that are followed in time have allowed more detailed dynamics
to be exhibited (see Abkarian et al. 2007; Dupire et al. 2012; Levant & Steinberg
2016), but full characterization of the transition dynamics could not be addressed, in
particular concerning the consequence of dispersion in size and mechanical properties
of cells. The decreasing γ̇ case has only been clearly addressed in Dupire et al.
(2012). On the other hand studies on statistically relevant populations are often
limited to the study of a single feature, e.g. the population in tank-treading regime
(see Goldsmith & Marlow 1972; Fischer & Korzeniewski 2013) or in deformed
rolling regime (see Mauer et al. 2018), but they allowed the width of transition zones
due to cell dispersity to be estimated, in the increasing γ̇ case only.

The case of physiological values for the external fluid viscosity has seldom been
addressed, probably because of sedimentation issues, and is therefore much less
documented than the case of more viscous fluids.

3.2. On the hysteresis and the intermittent regimes
A striking feature is the existence, at least for high enough viscosities of the external
fluid, of an hysteresis in the (η0, γ̇ ) space upon variations of γ̇ , which has been
described differently in different papers. We aim at clarifying this in the following.

In the first experimental paper to account for such a feature (see Abkarian
et al. 2007), the observed low shear rate motion is surprisingly always tumbling.
Transition to tank-treading (or, rather, swinging) is characterized by the existence of
an intermediate regime where cells alternatively tumble and swing, which is observed
for both decreasing and increasing γ̇ . The experimental constraints did not allow a
conclusion on whether this intermittent regime is transient or not. Transition shear
rates denoted γ̇ >c and γ̇ <c are identified, with γ̇ >c > γ̇ <c , a signature of hysteretic
behaviour. They correspond respectively to the first observed transition from tumbling
to swinging when increasing γ̇ and to the first observed transition from swinging to
tumbling when decreasing γ̇ , for an observation over a time scale of order 20s.

In the same paper, an improvement of the analytical model by Keller & Skalak
(1982) (a droplet enclosed by an ellipsoidal fluid membrane) is proposed for RBC
dynamics. Membrane shear elasticity is taken into account (as, simultaneously, in
Skotheim & Secomb (2007)), and in Dupire et al. (2015) the possibility for a
stress-free configuration different from the equilibrium shape is explored. In that
model, considering more inflated stress-free configurations amounts to multiplying the
shear modulus by some constant smaller than 1. Considering the transition threshold
and other characteristics such as cell oscillation periods, it was deduced in Dupire
et al. (2015) that the stress-free configuration is likely to be a spheroid, in agreement
with other modelling approaches (see Lim, Wortis & Mukhopadhyay 2002; Cordasco
& Bagchi 2014; Peng et al. 2014). Returning to our initial question, the analytical
model results in differential equations for the angles characterizing cell dynamics,
for the case where the cell axis of symmetry remains in the shear plane. In other
words, only transitions between tumbling-like and tank-treading-like motions can be
explored (a recent model proposed by Mendez & Abkarian (2018) should solve this
issue in the future). These equations can be solved numerically for a given shear rate
and a given set of parameters for the cell mechanical properties, and an intermittent
regime is observed in an interval [γ̇ −c ; γ̇

+

c ]. In Abkarian et al. (2007) or in Dupire
et al. (2015) it is however not specified whether the threshold values are obtained
by considering increasing or decreasing γ̇ . Knowing the dependency of the solutions
of the cell angle evolution equations on the history of γ̇ values probably requires
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a precise stability analysis such as that done in Kessler et al. (2009) in the case of
quasi-spherical cells.

Though they are clearly related to each other, how the different thresholds γ̇ 〈,〉c and
γ̇ −,+c compare with each other is not clear as they were determined differently (limited
observation time in the experiments and more importantly no direct study of potential
hysteresis in the numerical analysis).

The intermittent behaviour has been observed and thoroughly studied using
numerical simulations (starting from a rest configuration) in Cordasco & Bagchi
(2014) and in Peng et al. (2014), with the axis of revolution also restricted to shear
plane, though in some cases this configuration is said to be metastable according
to Cordasco & Bagchi (2014). In Peng et al. (2014), the minor bound γ̇ −c of the
intermittent regime is determined and shown to be smaller than the transition shear
rate between rolling and tank-treading. Finally, in the experimental paper by Levant
& Steinberg (2016) a stationary intermittent regime is also observed for, apparently,
increasing and decreasing flow stress although it is only explicitly highlighted for a
decrease of the flow stress 2sη0. Note that in this paper the flow geometry is not the
same and no off-shear plane motion is observed.

In Dupire et al. (2012), the picture turns out to be more complex: the decreasing
γ̇ path would be characterized by the apparition of a transient intermittent (tank-
treading/flipping with angle larger than 50◦) phase when tank-treading regime is left,
whose duration in time is not clear. After this intermittent phase, flipping motion
with orbit angle strictly smaller than 50◦ would follow. The shear rate at which this
transition takes place is denoted by γ̇ −c , and no notion of interval over which this
intermittent regime would be possible is introduced. The analogy with the notation
γ̇ −c introduced in Abkarian et al. (2007) suggests that the transient intermittent regime
would only take place in the low part of the whole expected range for the intermittent
regime [γ̇ −c ; γ̇

+

c ], while stable tank-treading would be preferred in the top range.
On the other hand, upon an increase of shear rate, no intermittent regime is

observed but rather a continuous drift from tumbling to rolling, then a transition to
swinging. In Dupire et al. (2012), the threshold for this transition is denoted by γ̇ +c ,
suggesting that when increasing γ̇ the route to swinging through the intermittent
regime is replaced by the orbital drift. In Levant & Steinberg (2016), the intermittent
regime is associated with large cell deformations: we hypothesize that the orbital drift
is another route that prevents such large elastic distortions. This would explain why
the intermittent regime is not seen in the increasing shear rate case, unless forced by
restricting the motion to the shear plane, artificially in the simulations or because of
a specific flow geometry as in Levant & Steinberg (2016).

Finally, the fact that, to the best of the authors’ knowledge, no analytical or
numerical analysis has considered the decreasing shear rate case so far limits the
discussion on the relationship between hysteretic and (possibly transient) intermittent
regimes. A secondary goal of the present study is to reinforce the experimental input
on this question.

4. Experiments

Blood samples from healthy donors were tested and provided by the French blood
bank EFS. To remove all substances except RBCs, the samples were centrifuged and
washed in physiological buffer solution (phosphate buffered saline (PBS), Sigma). This
procedure was repeated three times at room temperature; after each centrifugation,
the liquid phase and buffy coat were removed by aspiration. Then RBCs were
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resuspended either in PBS solution with 1 g L−1 of bovine serum albumin (BSA,
Sigma) or in a PBS+BSA solution where dextran was diluted (20 g L−1 of dextran of
molecular weight 1.5× 104

+ 70 g L−1 of dextran of molecular weight 2× 106). This
latter solution has a viscosity at room temperature (23–25 ◦C) of 25 ± 0.5 mPa s, a
configuration close to that often considered in the literature. The viscosity and density
of this solution are such that they allow long-time acquisition without sedimentation
issues.

By contrast, cells in plasma quickly sediment, with a velocity of typically 1 µm s−1.
This prevents long-time observations in flow chambers adapted to microscopy. In
order to counterbalance sedimentation, water in the PBS solution was replaced by
a mixture of 68.5 % water and 31.5 % Optiprep c© (iodixanol solution, Axis-Shield),
so as to reach a density close to that of cells (1.1 g ml−1), following a method
initially proposed in Roman et al. (2012) and subsequently used in Shen et al.
(2016) and Roman et al. (2016). This solution has a viscosity at room temperature
of 1.5± 0.1 mPa s, close to that of plasma (1.95 mPa s at 20 ◦C, and 1.34 mPa s at
37 ◦C (see Brust et al. 2013)).

In all suspensions, the volume fraction is very weak (∼0.01 %), and cells are
located everywhere in the chamber: one can consider the cells are isolated and do
not interact hydrodynamically. The suspension is injected into a plane–plane shear
chamber of gap 200 µm as described previously in Callens et al. (2008). The shear
rate γ̇ is varied step by step from 0.5 s−1 to 200 s−1, then decreased back. The
flow stress ranges are, thus, 7.5 × 10−4 Pa to 0.3 Pa and 1.3 × 10−2 Pa to 5 Pa
for the low- and high-viscosity solutions, respectively. Those ranges are indicated in
figure 3 for a comparison with the ranges explored in the literature. Owing to the
low sedimentation rate, one sequence of increasing or decreasing shear rate could
last around 1 h, with the same RBCs in the chamber all along the experiment. Thus,
small steps for shear rate variation could be imposed, so as to obtain a precise
diagram of the RBC dynamics. At each value of γ̇ , between 1 and 5 (for low shear
rates) series of 600 images are taken at 24 fps. Series are separated by at least 15 s.
Using several series allow good enough statistics to be obtained on the shape and
orientation of the cells. Only cells located at 20 µm or further from the walls are
included in the analysis, because the presence of walls may have an impact on the
cell dynamics, in particular flipping motion (see Vitkova et al. 2009).

The RBC suspension is monitored by digital holographic microscopy (DHM)
working in reduced spatial coherence, whose optical axis is perpendicular to the
chamber planes. This configuration allows a strong reduction of the inherent
noise of interferometry and provides better in-depth reconstruction capabilities
(see Grandchamp et al. 2013; Minetti et al. 2016). On the basis of the acquired
interferogram, it is possible to extract the complex amplitude of the optical beam
passing through the sample and simulate numerically the propagation of the beam
through the whole thickness of the experimental cell. In this way one can scan, slide
by slide, the experimental volume and refocus numerically all the RBCs present in
the suspension volume. The procedure to extract the three-dimensional position and
features of each cell in the experimental volume is similar to that used in Minetti
et al. (2014) for lipid vesicles. RBCs require more attention in the data treatment
than vesicles because their convex shape leads to a much higher distortion of the light
beam, a property that was recently used to characterize cell morphologies (see Miccio
et al. 2015). The projection of the cell shape on the plane perpendicular to the shear
gradient direction is obtained, where each pixel intensity is proportional to the optical
thickness (thickness of the cell times the difference of refractive index between the
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©� = 1 s-1, † = 0.025 Pa ©� = 7 s-1, † = 0.18 Pa ©� = 164 s-1, † = 4.1 Pa

FIGURE 4. (Colour online) Example DHM images after treatment. The green contours are
the fits of the cells projected shapes and the red contours correspond to those that were
discarded because the aspect ratio or the apparent surface are considered as non-realistic.
They mostly correspond to superimposed cells. Owing to the low concentration in cells,
those patterns are scarce and, whatever the exclusion criterion considered, do not have
much influence on the analysis.

cell and the suspending fluid) in the optical axis direction. A segmentation is applied
on each cell to determine the geometrical boundaries of the projected shape.

For each detected cell, its major axis is determined from the diagonalization of the
inertia matrix of its projected shape. This axis makes an angle Ψ with respect to the
flow direction, as defined is § 2.1. Here Ψ is defined in the range [0, 90◦]. Taking this
axis as an origin for angle ξ , the contour of the projection of the cell is fitted by the
polar equation ρ(ξ)= ρ0 + a1 cos2 ξ + a2 cos4 ξ + a3 cos6 ξ , which allows shapes that
are more rod-like than ellipse-like to also be described, as is the case when viewed
from the side. In that case, they may also appear as concave, because of the smaller
contribution of the outer ring to the total optical thickness of the object. Examples of
obtained images with the associated contours are shown in figure 4. The weight of the
contribution of the outer ring can vary a lot depending on the orientation or position
of the cell; for that reason we consider the aspect ratio ra of the convex envelope
of the cell (that is, its effective projection) rather than the ratio between the radii
at ξ = 0 and π/2: ra = ρ(0)/ max(ρ(ξ) sin ξ). Here ra lies in the range [1; +∞],
but in practice it is never larger than 5. Probability densities for Ψ and ra are then
calculated for each shear rate. For simplicity, we consider the Ψ and ra distributions
separately, so as to make the fitting procedure described in the next section converge
more easily and in a reasonable amount of time. A long computing time is due to the
necessity to consider only discrete data sets instead of formal expressions for some
fitting functions, as described in the next section. The bin sizes are δra = 0.05 for ra

and δΨ =1◦ for Ψ . For high γ̇ , around 6000 cell pictures are included in the statistics.
This number is regularly increased as lower shear rates are considered, up to 40 000
for the lower shear rate 0.5 s−1, so as to describe more complex dynamics with many
orbit angles accurately. This last number corresponds to about 500 different cells that
were observed at least once.

5. Model and data analysis

In this section, the experimental probability densities are compared with the
theoretical distribution for Ψ and ra that are expected from the model described.
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FIGURE 5. (Colour online) Probability density for the length of the projected shapes of
RBCs, in the vorticity and flow direction, in the η= 25 mPa s solution, for γ̇ = 200 s−1.

5.1. Premise

We assume that, for a given shear rate, the suspension is composed at each time, on
average, of a proportion pT of cells in tank-treading-like (or swinging) motion and a
proportion 1− pT of cells in flipping motion following a Jeffery orbit, where the orbit
angle θ0 can be between 0 (rolling) and 90◦ (tumbling). In Dupire et al. (2012), it is
shown that above a threshold value, orbits are unstable and the cells switch from one
orbit to another, with angles between this threshold and 90◦. In contrast, below this
value orbits are stable. In order to explore this idea, we look for two subpopulations
of flipping cells: (i) with proportion ps, those with stable orbits that we suppose to
lie between two extremal values θ−0 and θ+0 , with equal probability; while this may
appear as a strong statement, this is the only reasonable choice amongst the possible
distributions that would lead to a reasonable number of fitting parameters; (ii) with
proportion (1− ps), those with unstable orbits with angles between θ+0 and 90◦, with
equal probability. In addition, shear stress may have an influence on the cells’ aspect
ratio, which should also be determined.

In the following, we derive the expression of the theoretical densities that include
the geometrical and dynamical characteristics of the tank-treading and flipping regimes,
but also the dispersion in size and shape within a sample and the uncertainties
associated with the shape characterizations.

5.2. Tank-treading

Viewed from the shear axis direction, depending on the elongation of the cell
(increasing with shear rate), but also on its angle π/2 − φ compared with the
flow direction (decreasing with shear rate), a tank-treading (or swinging) cell
will appear as an ellipse whose long axis may be in the flow or in the vorticity
direction. We therefore look for two populations of cells, in proportion β and 1− β,
with orientations 0 and 90◦. The theoretical distribution dΨ ,TT on [0◦; 90◦] is then,
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in principle,

dΨ ,TT[β](Ψ )= β2δ0(Ψ )+ (1− β)2δ90(Ψ ), (5.1)

where δΨ0 is the Dirac distribution centred on Ψ0.
Here and in the following, we place the parameters of the distribution inside

square brackets [−] while the studied variable is placed inside parentheses (−). For
the aspect ratio, we note that the size distribution is large, as at rest: typical range for
the long axis of a cell at rest is 7–9 µm (see Canham & Burton 1968). In addition,
the distribution of apparent cell length in the flow direction is not symmetric but has
a shorter tail on the large values side (see figure 5). The distribution of width in the
vorticity direction is not symmetric either, with a shorter tail on the low value side.
This may be due to many factors: uneven distribution of the deformability among the
cells (see Dobbe et al. 2002b), saturation of deformation of a given cell under shear
(it would not be possible to elongate a cell and shrink it in the vorticity direction
beyond a given threshold), a result of swinging dynamics that favours some projected
lengths (not valid for width). For the aspect ratio rzx = (flow direction axis/vorticity
direction axis) we shall therefore expect an asymmetric distribution (see Dobbe et al.
2002a). It appeared that the skew-normal distribution, defined by

psG[rT,wT, α](rzx)∝

(
1+ erf

(
α(rzx − rT)
√

2wT

))
e−(rzx−rT )

2/(2w2
T ), (5.2)

works well. Here α is an asymmetry parameter that will be negative in our case. In
our general analysis, we chose to consider the aspect ratio ra between the long axis
and the short axis of the cells, a parameter that is defined even for cells not parallel
or perpendicular to flow. Here, we shall therefore consider the inverse aspect ratio for
the cells with aspect ratio rzx lower than 1, hence the following theoretical distribution
dra,TT for ra:

dra,TT[rT,wT, α](ra)=Θ(ra − 1)
[

psG[rT,wT, α](ra)+
1
r2

a

psG[rT,wT, α]

(
1
ra

)]
, (5.3)

with Θ the Heaviside function. The proportion β of cells whose projection is aligned
with the flow (5.1), is equal to

∫
∞

1 psG[rT,wT, α](ra) dra.

5.3. Flipping motion

Although cells are not exactly ellipsoids, we assume that the dynamics of a flipping
cell may still be described by the Jeffery orbit of an ellipsoid having the same aspect
ratio r as the convex envelope of the cell, as in Anczurowski & Mason (1967).

In experiments, the optical axis is y′ and we visualize its projection on the x′z′ plane
(see figure 1 for the notation and figure 2 for an example). The relationship between
the coordinates (x, y, z) in the moving Oxyz coordinate system and (x′, y′, z′) in the
Ox′y′z′ coordinate system is, according to the convention used here,
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y
z

=
1 0 0

0 cos φ −sinφ
0 sin φ cos φ

cos θ −sinθ 0
sin θ cos θ 0

0 0 1

−1 x′
y′
z′

 . (5.4)

Equations (2.1) and (5.4) yield the equation of the ellipsoid in the Ox′y′z′ coordinate
system. This is a quadratic equation in x′, y′ and z′, with parameters r, θ and φ. The
contour of the projection of the ellipsoid along the y′ axis corresponds to the x′z′
points for which the ellipsoid equation has exactly one solution for y′. It yields the
quadratic equation of an ellipse for x′ and z′, which can be written as A(r, θ, φ)x′2+
B(r, θ, φ)x′z′ +C(r, θ, φ)z′2 = 1.

The angle Ψ of the long axis relatively to flow direction z′ and the aspect ratio
(long axis/short axis) ra of this ellipse are given by

cotΨ = (−A+C−
√
(A−C)2 + B2)/B, (5.5)

ra =

√
(A+C+

√
(A−C)2 + B2)/(A+C−

√
(A−C)2 + B2). (5.6)

For a given aspect ratio r and orbit parameter θ0 we can calculate the trajectories
Ψ (r, θ0, t) and ra(r, θ0, t) over one period and deduce the associated probability
function for Ψ and ra, as the probability is inversely proportional to the time
derivative of the considered parameter. For ra it yields a very complex function,
which furthermore has to be integrated to normalize the probability, making the
calculation unfeasible. For Ψ , thanks to the more direct (2.6), this can indeed be
more easily done, and one finds, for Ψ cast onto [0; 90◦], the probability density

pΨ [θ0](Ψ )=
1+ tan2 Ψ

90 tan θ0

√
1− tan2 Ψ/ tan2 θ0

if Ψ < θ0, and 0 otherwise. (5.7)

Interestingly, for a given θ0, the apparent angle probability does not depend on r.
This could already be seen from the expression (2.6), where the aspect ratio r only
appears in the expression through the period.

To calculate the probability density pra for ra we chose to sample ra(r, θ0, t) given
by (5.6) over one period T with time step 10−3T and infer the associated probabilities
pra[r, θ0](ra) with bin size 0.05 as for the experimental data, for all aspect ratios r
between rmin = 1.025 and rmax = 4.975 with step δr = 0.05 and all orbit angles θ0
between 0 and 90◦ with step δθ0 = 0.25◦. This set of 80 × 361 = 28 880 discretized
probability distributions will be used in the fitting procedure.

Following the premise of this modelling section, the expected distributions are
eventually obtained by considering that the orbit angle lies between two extremal
values θ−0 and θ+0 , with equal probabilities of sum ps or between θ+0 and 90◦, with
equal probabilities of sum (1− ps) and that, because the cell population is not fully
homogeneous, there can be some variation in their aspect ratio. We consider normal
pG[rF,wF](r) distribution for the cell aspect ratio (see Rodak, Fritsma & Doig 2007),
with mean rF and standard deviation wF. We would thus seek a Ψ and ra distribution
in the flipping regime

dra,F[rF,wF, θ
−

0 , θ
+

0 , ps](ra)=

rmax∑
r=rmin

pG[rF,wF](r)δr

×

 psδθ0

θ+0 − θ
−

0 + δθ0

θ+0∑
θ0=θ

−

0

pra[r, θ0](ra)+
(1− ps)δθ0

90− θ+0 + δθ0

90∑
θ0=θ

−

0

pra[r, θ0](ra)

 , (5.8)
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dΨ ,F[θ−0 , θ
+

0 , ps](Ψ )=
psδθ0

θ+0 − θ
−

0 + δθ0

θ+0∑
θ0=θ

−

0

pΨ [θ0](Ψ )+
(1− ps)δθ0

90− θ+0 + δθ0

90∑
θ0=θ

+

0

pΨ [θ0](Ψ ).

(5.9)
Sums on r are made with step δr and sums on θ0 use step δθ0. Both steps are those

used for the generation of the reference distributions.

5.4. Error function on angles
Experimental uncertainty on aspect ratio determination is considered by the use of
(skew-)normal distributions.

The determination of the cell angle may lead to huge errors when the cell apparent
aspect ratio is close to 1. If one considers the ellipse equation Ax2

+ Bxz + Cz2
= 1

with A, B and C being normally distributed around 1, 0 and 1+ ε, respectively, and
variances of the order of 0.1 close to the experimental ones, one numerically finds
an orientation angle distribution that is centred on 0 but with a long tail such that
it is rather well described by a Cauchy distribution. As the considered angles are
in the interval [0; 90] we will therefore consider, instead of δ functions, the Cauchy
distribution folded onto this interval:

p̃C[Ψ0,wΨ ](Ψ )= pC[Ψ0,wΨ ](Ψ )+ pC[Ψ0,wΨ ](−Ψ )+ pC[Ψ0,wΨ ](180−Ψ ), (5.10)

with pC[Ψ0,wΨ ](Ψ )= 1/(wΨπ(1+ ((Ψ −Ψ0)
2)/w2

Ψ )) the Cauchy distribution function
around Ψ0.

For the tank-treading regime, we will thus consider the modified distribution
function for the angle:

d̂Ψ ,TT[β,wΨ ](Ψ )= βp̃C[0,wΨ ](Ψ )+ (1− β)p̃C[90,wΨ ](Ψ ). (5.11)

Here wΨ is a free parameter that is expected to increase when γ̇ decreases, to take
into account the fact that the aspect ratio approaches 1.

For the flipping cells, the link between aspect ratio and angle is more complex. The
apparent aspect ratio is maximal when Ψ = θ0 (cell viewed from the edge, φ=±90◦).
It is minimal when Ψ = 0, but this minimal value depends on the orbit: it reaches
1 only for tumbling (θ0 = 90◦). Therefore, the uncertainty on a given angle depends
on the orbit the cell is following. Thus, to continue handling the ra distribution and
the Ψ distribution separately, we make the simplifying assumption that, for a given
orbit, the width of the modified Cauchy function is 0 when the angle is equal to its
maximum value θ0 and increases linearly with the distance between the angle and the
orbit angle. We, thus, consider the modified distribution for one orbit:

p̂Ψ [θ0,wΨ ](Ψ )=

90∑
ξ=0

pΨ [θ0](ξ)p̃C[ξ,wΨ |ξ − θ0|/90](Ψ ). (5.12)

Here, wΨ is the width of the error distribution when the aspect ratio is close to 1
(θ0= 90◦, ξ = 0). For simplicity, we shall consider the same wΨ for both tank-treading
and flipping distributions. Both tank-treading and flipping populations will coexist in
the highly viscous solution. At high shear rate, tank-treading cells have aspect ratio
far from 1 so wΨ will be smaller than the expected value for the flipping cells, but
in that case, there are few of latter. As γ̇ decreases, flipping cells will appear but in
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the meantime the apparent aspect ratio of tank-treading cells will be close to 1, and
the wΨ values should coincide reasonably.

Finally, the modified distribution function for the flipping regime is

d̂Ψ ,F[θ−0 , θ
+

0 , ps,wΨ ](Ψ ) =
psδθ0

θ+0 − θ
−

0 + δθ0

θ+0∑
θ0=θ

−

0

p̂Ψ [θ0,wΨ ](Ψ )

+
(1− ps)δθ0

90− θ+0 + δθ0

90∑
θ0=θ

+

0

p̂Ψ [θ0,wΨ ](Ψ ). (5.13)

5.5. Complete fitting function
Considering that we have two populations of cells, one in tank-treading-like regime
with proportion pT and one in flipping regime in proportion (1 − pT), we finally
have the following fitting functions for the distributions in apparent aspect ratio ra
and apparent angle Ψ , respectively, defined on [1; +∞] and [0; 90], with 10 fitting
parameters:

dra[pT, rT,wT, α, rF,wF, θ
−

0 , θ
+

0 , ps](ra)

= pTdra,TT[rT,wT, α](ra)+ (1− pT)dra,F[rF,wF, θ
−

0 , θ
+

0 , ps](ra), (5.14)

with dra,TT given by (5.3) and dra,F by (5.8), and

dΨ [pT, rT,wT, α, θ
−

0 , θ
+

0 , ps,wψ ](Ψ )

= pT d̂Ψ ,TT[β,wΨ ](Ψ )+ (1− pT)d̂Ψ ,F[θ−0 , θ
+

0 , ps,wΨ ](Ψ ),

with β =
∫
∞

1
psG[rT,wT, α](ra) dra. (5.15)

Here d̂Ψ ,TT is given by (5.11) and d̂Ψ ,F by (5.13).
The fitting parameters are recalled in table 1. For each shear rate, we minimize the

distance between the theoretical and experimental distribution functions for ra and Ψ ,
given by

ε =
∑
Ψ

|dΨ ,exp(Ψ )− dΨ [pT, rT,wT, α, θ
−

0 , θ
+

0 , ps,wψ ](Ψ )|δΨ

+

∑
ra

|dra,exp(ra)− dra[pT, rT,wT, α, rF,wF, θ
−

0 , θ
+

0 , ps](ra)|δra. (5.16)

Because they appear as bounds in sums, the parameters θ−0 and θ+0 are treated
differently from the other parameters. For a given choice of these angles, we
minimize ε using the NMinimize function of Mathematica c© software. We then
explore systematically the region of interest for these angles so as to find the global
minimum.

6. Results
6.1. Preliminary result: hardened cells

Glutaraldehyde-hardened cells were studied at γ̇ = 200 s−1 in the η0 = 1.5 mPa s
solution. No tank-treading motion is expected and we find that the apparent angle
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pT Proportion of TT cells
rT Location parameter of the skew-normal distribution for the apparent aspect ratio of

TT cells
wT Scale parameter of the skew-normal distribution for the apparent aspect ratio of TT

cells
α Shape parameter of the skew-normal distribution for the apparent aspect ratio of TT

cells
rF Mean aspect ratio of the F cells, assimilated to oblate ellipsoids
wF Standard deviation of the aspect ratio of the F cells, assimilated to oblate ellipsoids
θ−0 Minimal stable orbit angle of F cells
θ+0 Maximal stable orbit angle of F cells
ps Proportion among the F cells in stable orbits (between θ−0 and θ+0 )
wΨ Width of the error distribution of apparent angles

TABLE 1. Summary of the fitting parameters for the apparent angle and apparent aspect
ratio distributions. See (5.14) and (5.15). TT refers to tank-treading and F to flipping.

20 40
Á

60 800

0.005

0.010

dÁ 0.015

0.020

0.025

0.030

FIGURE 6. (Colour online) Apparent angle Ψ probability distribution for hardened cells
in the suspending medium of viscosity 1.5 mPa s, for different γ̇ = 200 s−1. Dots:
experimental data; red solid line: full fit (5.15) with pT = 0 (no tank-treading cells),
θ−0 = 0◦, θ+0 = 90◦. In order to help understand more complex distributions, we also show
the distribution for θ−0 = 20◦, that exhibits a peak around 20◦ (dotted line), and a case
where the probability of orbits between 50◦ and 90◦ is 1/4 of that between 0◦ and 50◦
(dashed line). A strong decrease can be seen around 50◦.

distribution is fully compatible with that of flipping cells with orbit angles equally
distributed in the [0◦; 90◦] interval, as shown in figure 6. This is agreement with the
fact that Jeffery orbits are stable at low Reynolds number: the followed orbit only
depends on the initial condition.

6.2. Cells in fluid of high viscosity
6.2.1. Examples of fits

We first comment on a set of fits obtained in the η0 = 25 mPa s case for selected
shear rates (see figures 7 and 8), so as to validate the modelling hypotheses and
draw a rough scenario for cell dynamics. At high shear rates (γ̇ = 164 s−1 and
higher values), it is known that all cells are in the tank-treading regime. The apparent
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FIGURE 7. (Colour online) Selection of apparent angle Ψ probability distributions for
cells in the suspending medium of viscosity 25 mPa s, for different shear rates. Dots:
experimental data; red line: full fit (5.15); orange line and area: tank-treading population;
red line and grey area: flipping population.
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FIGURE 8. (Colour online) Selection of apparent aspect ratio ra probability distributions
for cells in the suspending medium of viscosity 25 mPa s, for different shear rates. Dots:
experimental data; red line: full fit (5.14); orange line and area: tank-treading population;
red line and grey area: flipping population.
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aspect ratio distribution is well described by the proposed skew-normal distribution
(figure 8i,j), whereas all angles are close to zero due to strong cell elongation
(figure 7i,j). The width wΨ of the angle distribution is of order 1◦; as the angle
determination is quite precise due to the high apparent aspect ratio, this is an
indicator of experimental intrinsic fluctuations: shear chamber vibrations and the
influence of other cells, which can therefore be considered negligible.

For γ̇ = 20 s−1, the scenario is different depending on whether γ̇ is increasing
or decreasing. In the latter case, there is still only one population of tank-treading
cells, but as the cells are less stretched, their apparent aspect ratio is close to 1. As
a consequence, the distribution of their apparent angle has two peaks around 0 and
90◦, well described by the proposed Cauchy distribution. The two peaks have almost
the same height, indicating an aspect ratio close to 1 (as seen on the ra distribution),
which is the worst case for angle detection. This results in the presence of all angles
in the experimental distribution, which would not be well described by a Gaussian
distribution, for instance.

On the other hand, in the increasing γ̇ case, a second peak appears in the apparent
aspect ratio distribution, around ra = 2, which is more important for γ̇ = 12 s−1 or
7 s−1, and corresponds to flipping cells with orbit angles close to 0◦, that is, to rolling.
This second peak is well fitted by a normal distribution, as hypothesized for (5.8).
This second peak of rolling cells is present in the decreasing γ̇ case, but has lower
weight. We shall return to this later.

At low shear rates (γ̇ = 2.5 s−1 and 1 s−1 for this example), the tank-treading cells
contribute in the ra distribution with a peak which is now far from 1, with apparent
angle is now only around 90◦, along the vorticity direction due to the projection. On
the other hand, the contribution of flipping cells is more complex because other orbit
angles have appeared. This results in a broadening of angle distribution towards higher
angles (from 0 to around θ+0 ), while the aspect ratio distribution broadens towards
ra = 1: flipping cells with θ0 = 0 are always seen from their edge so the apparent
aspect ratio is a peak centred on their 3D aspect ratio r, while cells with larger θ0 also
exhibit apparent aspect ratios lower than r. Only for θ0= 90◦ can this apparent aspect
ratio be 1. At the minimum shear rate presented in this example, one can see that the
peak of the distribution is no longer located at 0◦. As exemplified by the dashed line
in figure 6, the location of this peak is indeed an indicator of the value of θ−0 . For
instance, at γ̇ = 1 s−1, decreasing case, θ−0 is around 20◦ while θ+0 is around 50◦.

In particular, in the increasing case, for γ̇ = 1 s−1 and 2.5 s−1, the angle
distribution does not drop to zero for high angles. This cannot be associated only
with tank-treading cells with angle 90◦: a look at the probability distribution in the
(Ψ , ra) space (figure 9a) shows that cells with high angles also have apparent aspect
ratios as high as those with low angles; that is, they are also seen edge-on sometimes.
This is even clearer when one compares with a case where the high angle cells are
in tank-treading regime: in figure 9(b), the aspect ratios of the high angle cells are
lower than those of the low angle rolling cells. Note that what matters here is the
comparison between the low and high angle populations, not the absolute values of
the aspect ratios, that depend on the shear rate through cell deformation. On the
other hand, the angle distribution cannot be described by an equal orbit distribution
between θ−0 and 90◦. It requires the population of flipping cells to be divided into
two subpopulations, in proportion ps and 1 − ps, having orbits between θ−0 and θ+0 ,
and θ+0 and 90◦, respectively, such that the high angle orbits are less probable. This
is exemplified by the dotted line in figure 6, to be compared with the solid line
corresponding to equal probabilities. For instance, for γ̇ = 1 s−1, increasing shear rate
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FIGURE 9. (Colour online) Maps of probability densities in the (Ψ , ra) space: (a) η0 =

25 mPa s and γ̇ = 1 s−1, increasing shear rate case; (b) η0 = 25 mPa s and γ̇ = 7 s−1,
decreasing shear rate case.

case, we find ps = 0.81 such that the ratio αu/s between the probability of an orbit
with θ+0 < θ0 < 90◦, and of that of an orbit with θ−0 < θ0 < θ

+

0 , is equal here to 0.22.
Here αu/s is defined by [(1− ps)/(90− θ+0 )]/[ps/(θ

+

0 − θ
−

0 )].

6.2.2. Transition scenario
In figure 10 we show the evolution with flow stress τ = η0γ̇ of the main parameters

characterizing the collective dynamics of RBCs.
The main difference between the increasing and the decreasing γ̇ cases lies in the

proportion pT of cells in the tank-treading regime (figure 10a). A full hysteresis loop
is highlighted: at low and high flow stresses, the amount of cells in tank-treading
regime are identical. At low flow stress, we observe that, according to our model,
the proportion of tank-treading cells is not equal to 0. We shall propose later an
interpretation of this result, which calls for a refinement of the model.

For increasing γ̇ , a significant increase in the proportion of tank-treading cells is
observed from τ>c−min= 0.08 Pa until all cells are in tank-treading regimes at τ>c−max=

2 Pa. This shows that the dispersion in the transition stress towards tank-treading τ>c
is high: the transition values span over one decade. This result is in agreement with
Fischer & Korzeniewski (2013), where for η0= 24 mPa s a transition to tank-treading
is found around τ = 0.23 Pa but with a smooth transition that indeed spans over one
decade, as here (see figure 2b in Fischer & Korzeniewski (2013)).

For decreasing γ̇ , the first cells to leave the tank-treading regime do it at a flow
stress τ<c−max = 0.4 Pa smaller than τ>c−max. The last cells to leave the tank-treading
regime seem to do it around τ<c−min = 0.02 Pa. The values for τ>c and τ<c found in
Dupire et al. (2012) and Mauer et al. (2018) lie in the lower part of the transition
zone we find.

Figure 10(b) shows the mean aspect ratio of cells in tank-treading regime,
considering the aspect ratio rzx between the axis along the flow direction and the
axis in the vorticity direction, whose distribution is given by (5.2). This mean value
is a function of the fit parameters through 〈rzx〉T = rT + wTα

√
2/
√

π(1+ α2) and is
directly linked to the deformability of cells. Owing to the dispersion in cell properties
(and, probably, to swinging motion), the standard deviation around this mean value
is between 0.1 and 0.15 within the whole stress range.
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FIGURE 10. (Colour online) Main parameters characterizing cell dynamics for η0 =

25 mPa s as a function of shear stress τ = η0γ̇ in both increasing γ̇ (full triangles) and
decreasing γ̇ (empty triangles) cases, as indicated by arrows. Empty circles: additional
control experiments at decreasing γ̇ made with RBCs from two other donors and a
suspending medium prepared independently. On top of panel (a), the transition between
the two stresses indicated by stars corresponds to that studied in figure 16. (a) Proportion
pT of cells in tank-treading-like motion. (b) Mean apparent aspect ratio 〈rzx〉T = rT +

wTα
√

2/
√

π(1+ α2) of tank-treading cells. (c) Minimal and maximal orbit angles θ−0 and
θ+0 for stable flipping cells. Dotted symbols indicate the limit orbits (90◦) of (probably)
unstable orbits between θ+0 and 90◦, when present. (d) Ratio αu/s between the probability
of orbits with orbit angle between θ+0 and 90◦, and between θ−0 and θ+0 .
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Deformation is quite similar for both directions of shear rate variation. However, in
the hysteretic region for the tank-treading population, the apparent aspect ratio is up
to 10 % smaller in the decreasing γ̇ case and is almost constant, while it varies more
strongly for higher stress values. On the other hand, in this range stress is not so
small that we should expect cell shape not to be modified by the flow. Indeed, even
for lower stresses transitions between different regimes occur and orbit angles of the
flipping regimes change continuously: another explanation for this plateau has to be
found.

We note that, while the aspect ratio of cells in the tank-treading regime should be
an increasing function of stress, the population of cells in that regime is not constant.
We hypothesize that the plateauing shows that, upon an increase of shear rate, the
contribution of the cells switching to tank-treading compensates for the increased
deformation of the cells already in the tank-treading regime. This implies that the
latter are more deformable (in the sense of stretchable) than the newcomers, which
are themselves the most deformable of the flipping cells that have not yet switched
to tank-treading. This is coherent with the picture of more deformable cells needing
smaller stress to make their transition. Similar reasoning shows that, upon a decrease
of shear rate, the less deformable cells of the tank treading population are the first
to transit towards the flipping motion.

A consequence of this would be that at a given stress, because of the hysteresis
in the transition thresholds, the tank-treading population in the decreasing γ̇ case
contains more cells than in the increasing γ̇ case. To validate the whole picture, let
us first denote by PT1 and PT% the proportion of cells in the tank-treading regime
in the increasing and decreasing γ̇ cases, respectively. From the previous discussion,
we conclude that, among the tank-treading cells in the decreasing γ̇ case, the more
deformable ones are also in the tank-treading regime in the increasing shear rate
case, while the less deformable are not. The proportions of these two subpopulations
are, by definition, PT1/PT% and 1 − PT1/PT%, respectively. Considering, for a given
stress τ , the whole skew-normal distribution of rzx in the decreasing shear rate case,
we make a cut-off in this distribution by considering only the last PT1/PT% cells, on
which the mean value of rzx, that we denote by 〈rzx〉

∗

T , is calculated. The result is
shown in figure 11. The curve of the mean value taken on the more deformable cells
in the decreasing shear rate case now collapses onto the mean value 〈rzx〉T in the
increasing shear rate case, thus validating our hypothesis.

Even in the hysteresis domain, the main characteristics of the cell flipping dynamics
remains unchanged whether γ̇ is increased or decreased (figure 10c): the range of orbit
angles of flipping cells does not depend on shear rate history. This is in agreement
with Dupire et al. (2012), where it is found that once the cells have left the tank-
treading regime when decreasing γ̇ , they follow the same dynamics as if they had
the same shear rate in the increasing sequence. However, in Dupire et al. (2012), no
quantitative data on the orbit angles upon a decrease of γ̇ are given. A single example
is given (figure 4c), where an orbit angle around 30◦ is shown. Here, we do not
prove formally that a given cell will follow the same orbit for a given stress, whatever
the shear rate history, but the similarities in the angle distribution for both shear rate
variation cases pleads in favour of such a scenario. Finally, the large range of orbits
is another signature of the dispersion in cell properties.

Figure 10(d) shows that at low stress the flipping populations must be divided into
two subpopulations with different probabilities. Interestingly, the range of existence
of a population reaching orbits up to 90◦ (in probability 1 − ps) is similar to that
where θ+0 is almost constant (between 50◦ and 60◦, when τ . 0.07 Pa close to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.42


Red blood cells in shear flow 433

0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

˙0©� (Pa)

¯r
zx

˘ T,
 ¯r

zx
˘* T

FIGURE 11. (Colour online) Mean apparent aspect ratio 〈rzx〉T = rT +wTα
√

2/
√

π(1+ α2)
of tank-treading cells, in the increasing and decreasing shear case (same data as in
figure 10b). Additional full line shows the mean apparent aspect ratio 〈rzx〉

∗

T when the
less-deformable cells are removed from the distributions in the decreasing shear rate case
(see the text).

upper bound for η0γ̇ = 0.05 Pa found in Dupire et al. (2012)). This shows that,
while limit orbit angles θ−0 and θ+0 vary smoothly with stress, a population with
many different orbits equally distributed between θ+0 and 90◦, with θ+0 very different
from 90◦, emerges (or disappears) as a whole as the stress is varied. This is in strong
agreement with the observation in Dupire et al. (2012) of the existence of a threshold
in θ0 above which orbits are not stable and are rather distributed on a wide range
(hence, a much lower relative probability αu/s). Here we exhibit, with strong statistical
weight, that this threshold is 56◦ ± 2◦ (averaged on values for τ 6 0.05 Pa). Note
finally that at decreasing γ̇ , cells also reach this state of unstable Jeffery orbits, which
was not mentioned in Dupire et al. (2012). There is a difference in the number of
cells in unstable orbits depending on the direction γ̇ variation, which is even clearer
in the case of low η0 discussed in the next section.

According to the fitting procedure, we find a non-negligible number of tank-treading
cells at the lowest stresses, which clearly does not correspond to reality but must be
seen as an artefact of the chosen model. As seen in figure 7, these cells are seen
with apparent angle centred on 90◦. This is consistent with the assumption that the
unstable flipping cells do not fully follow Jeffery orbits but spend more time aligned
with the flow, presenting thus a kind of transient tank-treading regime, as found in
physiological solution in Goldsmith & Marlow (1972). This interpretation is reinforced
by the overlap of the domain of existence of these tank-treading-like cells and of
unstable orbits (τ . 0.08 Pa in the increasing γ̇ case). This feature as a major impact
on the overall distribution of aspect ratios and apparent angles.

While the decrease of the flipping cell population with increasing γ̇ is associated
with a decrease of the orbit angle θ0, the data do not clearly show in which orbits the
cells are right before switching to tank-treading. In Dupire et al. (2012), the tracking
of single cells showed that all studied cells are in the rolling regime before they do
so. To connect this observation to our statistically relevant sample, we compare our
data for the population 1− pT of cells in the flipping regime to that expected from the
following model: we assume that, for a given relative stress variation dτ/τ = d log(τ ),
the flipping cells having orbit angle between 0 and dθt, if any, switch towards tank-
treading. The ratio q= dθt/d log(τ ) is considered as a constant to be determined. The
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FIGURE 12. (Colour online) Evolution of the proportion 1 − pT of cells in the flipping
regime for η0 = 25 mPa s as a function of shear stress τ = η0γ̇ , for the increasing shear
rate case: dots, experimental data (same as 16(a) with the low stress values set to 1 to
discard the fake tank-treading cells); full line, fit with equation (6.2); dashed line, best fit
with a constant transition angle by absolute stress variations dθt/dτ (see the text).

theoretical proportion of cells in the flipping regime 1− pT,th then obeys

1−pT,th(τ +dτ)=[1−pT,th(τ )]×

[
1− ps(τ )

max(0,min(θ+0 (τ ), q d log(τ ))− θ−0 (τ ))
θ+0 (τ )− θ

−

0 (τ )

]
.

(6.1)
If this equation is discretized on the experimental stresses τi, i 6 n, one finds

1− pT,th(τi+1)= [1− pT,th(τ1)]

×

n∏
j=2

[
1− ps(τi−1)

max(0,min(θ+0 (τj−1), q log(τj/τj−1))− θ
−

0 (τj−1))

θ+0 (τj−1)− θ
−

0 (τj−1)

]
, (6.2)

where 1 − pT,th(τ1) is the proportion of cells in the flipping regime at the lowest
explored stress, expected to be equal to 1 in our case where we have explored low
enough stresses. Together with q, they constitute the free parameters of the model,
that can be adjusted to fit the experimental data. As shown in figure 12, a good fit
is obtained, with q= 10.7◦. This means that, upon a relative stress variation dτ/τ of
5 %, only the cells with orbit angle between 0 and 0.54◦ will switch to tank-treading.
This validates the observation made in Dupire et al. (2012). Note that a model that
would assume a constant transition angle by absolute stress variations dθt/dτ does not
result in a good fit with the experimental data (see figure 12).

For decreasing γ̇ , figure 10(c) directly shows that at least half of the cells switching
from tank-treading to flipping do switch to an orbit close to rolling (θ+0 < 10◦, in
the range 0.1 Pa< τ < 0.4 Pa), while at lower stress the others may a priori directly
reach other orbits. However, the same analysis made with equation (6.2) on the data
for decreasing γ̇ reveals that q = 16.6◦ that is, they always reach an orbit close to
rolling.

6.3. Cells in a fluid of physiological viscosity
6.3.1. Examples of fits

As for the first case, we start by commenting on some selected distributions and
the corresponding fits, shown in figure 13 (increasing shear rate case). At the highest
explored shear rate γ̇ = 200 s−1, the apparent angles mainly span between 0 and 10◦,
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FIGURE 13. (Colour online) Selection of apparent angle Ψ and apparent aspect ratio ra
probability distributions for cells in the suspending medium of viscosity 1.5 mPa s, for
different increasing shear rates. Dots, experimental data; red line, full fit (5.14) and (5.15);
orange line and area, tank-treading population; red line and grey area, flipping population.

indicating flipping orbit angles between 0 and 10◦. For such orbits, the apparent aspect
ratio spans between a value larger than 1 and r the cell aspect ratio (grey envelope
in figure 13g,h). Here, we observe that the probability of apparent aspect ratio around
1 is not 0, indicating that tank-treading-like motion is present, as found by the fitting
procedure.

For lower γ̇ , the orbit distribution is wider, but a contribution of tank-treading-like
motions is still needed to explain the whole distribution. At shear rate γ̇ = 20 s−1,
all orbit angles are present, but the contribution of high θ0 orbits is less important,
indicating probably the presence of unstable high angle orbits (see dotted curve of
figure 6, to be compared with the solid curve on the same figure). At even smaller
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shear rate γ̇ =4 s−1, these angles now have similar probabilities, but small angle orbits
are no longer present, as on the dashed curve of figure 6.

6.3.2. Transition scenario
Figure 14 details the values of the main parameters while the shear rate is varied.

As for the high η0 case, the range of θ0 increases as the shear rate becomes lower,
and it does not depend on the direction of γ̇ variation (figure 14c). Interestingly, the
threshold in flow stress below which orbits other than those close to rolling (maximal
orbit angle θ+0 larger than 10◦) is similar to that obtained for a much more viscous
suspending fluid. For smaller stress, a plateau in θ+0 is also reached, at 45◦± 2◦, while
orbits between θ+0 and 90◦ with smaller relative probability αu/s appear (figure 14d).
We interpret these orbits as unstable orbits. For small stresses, all orbits between θ−0
and 90◦ become equiprobable (αu/s = 1). In that case θ+0 is ill-defined (any value can
yield the same fitting function eventually, with an adapted value of ps). If we interpret
this equiprobability as a signature of the stability of the large angle orbits, then θ+0 =
90◦, which is the choice made in figure 14(c).

The range of existence of unstable orbits is not the same whether we consider
increasing or decreasing γ̇ (figure 14d). This feature, which has not been observed
previously in the literature, is also a key ingredient to understand the variations in
the proportion of tank-treading-like cells (figure 14a) and the associated mean aspect
ratio (figure 14b).

The hysteretic behaviour is seen for stresses below ∼0.05 Pa. Let us comment first
on what happens above this threshold. There, the mean aspect ratio of tank-treading-
like cells is much larger than 1 (figure 14b), which would support the observation
made in Lanotte et al. (2016) and Mauer et al. (2018): in physiological conditions, the
authors observe that between 40 and 200 s−1, more than 60 % of cells are rolling or
vacillating–breathing stomatocytes. This feature disappears for a shear rate of 40 s−1,
corresponding in their case to a stress of 0.04 Pa. This is also the value around which
we observe a strong drop of the mean aspect ratio, for decreasing γ̇ . This drop is not
observed for increasing γ̇ because of overlapping with another phenomenon, which we
now discuss: when increasing γ̇ , unstable orbits are present in the range 0.01 Pa<τ <
0.05 Pa (figure 14c), which is very close to that where the proportion of (apparently)
tank-treading-like cells is non-negligible (figure 14a), and associated apparent aspect
ratio still large (figure 14b). This observation holds also when decreasing γ̇ for the
domain τ < 0.01 Pa.

The similarity in the range of existence of tank-treading-like cells and unstable
orbits, already observed in the high η0 case, indicates that unstable (large-angle) orbits
do not follow completely Jeffery orbits but longer time is spent aligned with the flow,
as observed in one of the few experiments made in that regime (Goldsmith & Marlow
1972).

The threshold τ ∼ 0.01 Pa for the appearance of the first feature in the increasing
γ̇ case (considered also in Goldsmith & Marlow (1972)) is the same here as in this
historical paper, and we also observe around this threshold the apparition of rolling
motion (while below this threshold θ−0 is slightly larger than 10◦), as well as the loss
of stability of orbits close to tumbling (high orbit angles).

6.4. The whole picture
We have synthesized in figure 3 the main findings of this study in terms of transition
threshold and existence intervals. They are compatible with those mentioned in the
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FIGURE 14. (Colour online) Main parameters characterizing cell dynamics for η0 =

1.5 mPa s as a function of shear stress τ = η0γ̇ in both increasing (full triangles) and
decreasing (empty triangles) γ̇ cases, also indicated by arrows. (a) Proportion pT of
cells in tank-treading-like motion. For the sake of comparison, the full line corresponds
to the data for η0 = 25 mPa s, increasing γ̇ case, already shown in figure 10(a). (b)
Mean apparent aspect ratio 〈rzx〉T of tank-treading cells. (c) Minimal and maximal orbit
angles θ−0 and θ+0 for flipping cells. Dotted symbols indicate the limit orbits of (probably)
unstable orbits between θ+0 and 90◦. The lines correspond to the data for η0 = 25 mPa s,
increasing γ̇ case, already shown in figure 10(c). In (c), the transition between the two
stresses indicated by stars corresponds to that studied in figure 18. (d) Ratio αu/s of the
probability of an orbit with orbit angle between θ+0 and 90◦, and of that of an orbit
between θ−0 and θ+0 . The full lines correspond to the data for η0 = 25 mPa s, increasing
(orange) and decreasing (black) γ̇ cases.
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main experimental studies of the literature as commented on in the above analysis.
The sole notable incompatibility is the existence of off-plane motion in the flipping
regime in the case of high η0, which was not observed in Levant & Steinberg (2016)
while observed in Dupire et al. (2012), but the parameter space is different.

Many features are quantitatively similar in the low- and high-viscosity cases, as
soon as one considers the flow stress τ =η0γ̇ as the control parameter (see full lines in
figure 14a,c,d). This observation was also made in Mauer et al. (2018), where stresses
larger than here were considered and other regimes and deformation observed.

The range of existence of flipping orbits, and the values of the angles of stable
orbits, are a remarkably robust feature that does not depend on the history of shear
rates and only weakly on the external viscosity for a considered stress (the angles
are shifted by about 10–15◦ in the high-viscosity case). Flipping motions are well
described by Jeffery orbits, which seem stable as long as the orbit angle is lower
than θ+0 ∼ 50◦. There exists a range where higher angles orbits appear but seem to be
unstable: all angles between θ+0 and 90◦ become available, with low probability. The
existence of many orbits is in contradiction with recent numerical simulations (see
Cordasco & Bagchi 2013; Cordasco et al. 2014; Sinha & Graham 2015), where it is
often found, for small or large values of η0, that stable orbits are those with angle θ0
close to 0◦ or 90◦, depending on the paper considered (see the supplemental material
for a detailed description). However, more recent results by Mendez & Abkarian
(2018) exhibit stability of other orbits with a drift towards rolling as the shear rate
is increased.

Unstable orbits are present below a threshold ∼0.04 Pa for both viscosities, in
higher proportion at low viscosity, and associated with strong hysteresis with stress
variation (through γ̇ ). On average, the unstable-to-stable transition occurs for larger
stress than the stable-to-unstable transition. It is particularly clear at low η0, while
at high η0 these transitions are close to the lowest explored value, making the
picture less obvious. Unstable orbits are modified Jeffery orbits: longer time is spent
aligned with the flow, which is seen through an artificial increase in the number of
tank-treading cells in our model. At low stresses (only explored in the low-viscosity
case, though), all orbits become equiprobable, as for rigid cells, though low angles
are no longer explored. Indeed, normal cells never behave like rigid cells even under
small stress.

Finally, in the tank-treading regime (at high η0), cell deformation is similar whatever
the history of shear rates (figure 11). At low η0 and high stress, a signature of the
presence of stomatocytes is detected. This feature is also independent of history.

In contrast to the previous features, the flipping to tank-treading transition strongly
depends on η0. While tank-treading appears for τ between 0.1 and 2 Pa at high
η0 (with the more stretchable cells transiting first), the threshold is expected to be
at least two orders of magnitude higher at low η0 (see Morris & Williams 1979).
Note, however, that in that case, according to our results and Lanotte et al. (2016),
the notion of such a transition would not be as well defined because of the strong
deformations undergone by the cells, whose shapes strongly depart from the usual
discocyte.

To summarize, the characteristics of each regime (accessible orbits and stability of
orbits for the flipping regime, deformation in the tank-treading regime) are controlled
by the flow stress with no dependency with the shear rate history, while the possibility
of transition towards tank-treading also depends on the viscosity ratio. An hysteresis
is associated with this latter transition, as well as with the unstable-to-stable Jeffery
orbit transition.
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6.5. Dispersion in the transition thresholds
The width of the transition zones between the different regimes or between the
different orbits can be associated with the dispersion in RBC properties. Cells can,
in particular, differ by their size, deflation (volume/surface ratio) and mechanical
properties: viscosity of the haemoglobin solution, shear and bending moduli of the
membrane, stress-free shape or spontaneous curvature. Linking the width of the
transition zone to a dispersion in all these parameters would require a full (numerical
or theoretical) model that is not yet available. However, we can draw some conclusion
from our results and from the partial results found in the literature.

We first focus on the rolling-to-tank-treading transition for high η0. There is a factor
∼20 between the two stresses between which the transition of all cells occur (in both
increasing and decreasing γ̇ cases).

The effect of bending rigidity on the transition towards tank-treading has been
explored in Yazdani & Bagchi (2011) where the bending modulus was varied by
a factor of 25: the critical stress for transition varies only by a factor of 1.7. In
Mendez & Abkarian (2018), it is argued that because of the strong dependency of
the transition thresholds on the choice of stress-free shape (relative to the value of
in-plane shear elasticity), out-of-plane deformations (that would be controlled by the
bending modulus) should play a minor role. This is confirmed by the reproduction of
several important features (orbital drift and transition towards tank-treading) through
a shape-preserving model. Finally, for vesicles where shear modulus vanishes, it has
also been shown in Farutin & Misbah (2012) that the transition towards tank-treading
depends only weakly on the bending modulus. We conclude that dispersion in bending
moduli, that seem to lie between 3× 10−19 and 9× 10−19 N m (see Evans et al. 2008;
Betz et al. 2009; Sinha & Graham 2015), are unlikely to contribute significantly to
the dispersion in transition stresses.

As already mentioned, the viscosity of the cytoplasm can lie between 6 and
20 mPa s within one sample. From the results of Fischer & Korzeniewski (2013)
shown in figure 3, the critical stress varies by one decade when the external viscosity
(and, therefore, the ratio between internal and external viscosities) is varied by one
decade. Therefore, variations in inner fluid viscosity may account for a factor of
around three in the critical stress dispersion.

The flow stress can be compared directly with the shear stress in the membrane, that
is proportional to µ/R, where µ is the shear modulus and R a typical size of the cell.
In Hénon et al. (1999), it is stated that according to the literature, µ lies between 4
and 10 µN m−1; they themselves found values between 1 and 4 µN m−1 (but extreme
values are scarcer) while in Mills et al. (2004) values between 5 and 11 µN m−1 were
found. Beyond the question of the exact value of this modulus, that indeed depends
on the chosen model for elasticity, one can see that it can be dispersed by a factor of
2–3, which can be multiplied by a factor of 1.3 if one takes into account that cell size
can vary by this amount: cell diameters are typically between 7 and 9 µm (Canham
& Burton 1968).

In Peng et al. (2014), the effect of stress-free shape on the transition threshold is
explored, and a factor of 2 in this threshold arises when the this shape is varied within
an admitted range. In Sinha & Graham (2015), the effect of spontaneous curvature
on the transition has been explored, but only two cases of interest were explored,
with very tiny variation in the transition threshold. Finally, in Cordasco & Bagchi
(2013), oblate ellipsoids with mechanical properties similar to that of RBCs were
considered and it is shown that within a range of aspect ratio between 1.2 and 2,
the transition threshold cannot vary by more than 2, but the high discretization in the
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explored parameter space prevents precise conclusions from being drawn. In addition,
the reduced volume (volume divided by the volume of a sphere of same surface) of
an RBC is typically between 0.61 and 0.76 (see Canham & Burton 1968), which
corresponds for an oblate ellipsoid to r between 2.7 and 3.7, far from the explored
range.

All these considerations seem to indicate that taking into account all variabilities in
cell properties is necessary to account for the large dispersion in transition threshold.
This also implies that these variations are necessarily independent if one wants to
account for the factor of 20 that characterizes that dispersion.

Other transitions are associated with variations within the flipping regime: unstable
to stable orbits, flipping to rolling, etc. We generally observe a dispersion in the
transition stress characterized by a factor of the order of 3–10. This tends to prove
that not all cell parameters are involved in this transition. It was suggested in Dupire
et al. (2012) than in-plane elasticity (and not dissipation) is responsible for the
orbital drift, and in Mendez & Abkarian (2018), it was shown, as in our study, that
the flipping dynamics depends very weakly on the fluids viscosities. This removes
variations in the viscosity of the haemoglobin solution from the cause of dispersion,
and may explain why the dispersion in the transitions within the flipping regime is
smaller than for the rolling-to-tank-treading transition.

6.6. Transition times and intermittent regimes
Transition times between states are a priori a function of the initial stress, the final
stress, but also on the state in which the cells are, which may depend on the history
of shear rates. While a full study of these times is out of the scope of the present
work, a few robust points deserve to be made.

In the experiments presented above, γ̇ was varied by small steps so as to explore
the state diagram in detail. Owing to the dispersion in cell properties and of the low
numbers of cells seen in each picture, the time evolution of characteristic properties
such as the mean apparent aspect ratio is rather noisy and small transition times could
not be measured. Therefore, we ran a few experiments with more abrupt increase or
decrease of γ̇ .

Some transitions in the high η0 case are shown in figure 15, by considering the
mean apparent aspect ratio 〈ra〉(t), where the average is made over all cells on each
image.

Almost all situations, even when starting from rest (figure 15a), lead to transition
times that span between 10 and 70 ms. This is in agreement with stop-and-go
experiments in a channel performed in Prado et al. (2015). The only longer transition
time found here is when decreasing γ̇ so as to switch from a tank-treading regime to
coexistence between tank-treading and flipping: see the final transition in figure 15(b).
This transition is indicated by an arrow on top of figure 10. Transitions within the
tank-treading regime (the two first transitions in figure 15b) do not exhibit such a long
transition time: we conclude that this long time is not associated with the relaxation of
the cells that remained in the tank-treading regime but rather to the regime transition.
At first sight, this may be related to the intermittent regime observed in Dupire
et al. (2012), where successions of high angle orbits and tank-treading motions are
observed before stabilization towards a low angle flipping regime. Indeed, right after
the change of shear rate, the probability distribution in the (Ψ , ra) space is quite
different from the final distribution, which is characterized by orbits between 0 and
40◦ and a population of cells in tank-treading regime with apparent angle around 90◦,
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FIGURE 15. (Colour online) Examples of transition dynamics for parameter 〈ra〉 after
shear stress sharp increases (a) or decreases (b). Here η0 = 25 mPa s. Shear stresses τ
are in Pascals. Vertical dotted lines correspond to the shear stress instantaneous switches
(by changing the shear rate). (a) Two-step or one-step increase from 0 to 3.7 Pa. (b)
Three-step decrease from 3.7 to 0.073 Pa.

while in the initial state, the tank-treading cells have an angle either around 0◦ or
around 90◦ (see figure 16). In this transient state, (figure 16b), angles between 50◦
and 90◦ are dominant with aspect ratio that are higher than that of the tank-treading
cells. This is a clear signature of the presence of the flipping orbits with high angles,
that eventually disappear within a time of order 1 minute.

In Dupire et al. (2012), it was noted that the cells are not deformed much during
transitions, while in Levant & Steinberg (2016), important deformations are observed
during the intermittent regime. On the other hand, in this latter study, no off-plane
motion is observed. This may suggest that off-plane motion is an alternative scenario
to in-plane motion with high deformations, and that the different flow geometry in
Levant & Steinberg (2016) favours in-plane motions. From our data, it is difficult to
validate any scenario, because of the strong dispersion of behaviours within a short
time lapse.

Note finally that even the presence of these transient orbits become statistically
negligible for smaller steps of shear rates. In that case, the number of cells involved
in the transition would be so small that their contribution in the distribution could
not be detected accurately. This limit is the consequence of a statistical study led on
a population whose mechanical properties span on a wide range.

Intermittent behaviour has also been reported in Abkarian et al. (2007) in the
increasing shear rate case (but no rolling as observed), as in some numerical studies
(see Cordasco & Bagchi 2014; Peng et al. 2014). Here, we do not observe such a
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FIGURE 16. (Colour online) Maps of probability densities in the (Ψ , ra) space along
a transition towards the hysteresis zone in the decreasing shear rate case. Here η0 =

25 mPa s. (a) Corresponds to the 47–62 s interval in figure 15(b) (τ = 0.73 Pa).
(b) Corresponds to the 62–74 s interval right after the transition to τ = 0.073 Pa.
(c) Corresponds to the 195–207 s interval, still at τ = 0.073 Pa. (a,c) Correspond to the
initial and final states between which the arrow on top of figure 10 indicates a transition;
(b) is the transient state.
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FIGURE 17. Examples of transition dynamics for parameter 〈Ψ 〉 after shear stress sharp
increases and decreases. Here η0 = 1.5 mPa s. Shear stresses τ are in Pascals. Vertical
dotted lines correspond to the shear stress instantaneous switches (by changing the shear
rate).

regime: transitions are sharp, even when directed towards the heart of the hysteresis
zone (see, e.g., the transition from 0 to 0.37 Pa in figure 15a): the suspension
converges quasi-immediately towards its final state, where no signature of tumbling
is reported.

In Bitbol (1986), a transition time towards rolling of order 100× γ̇ −1 was measured.
Here, the transition from 0 flow to τ =0.37 Pa corresponding to a shear rate of 15 s−1

is 100 ms, much lower than 100/15∼ 7 s.
Some transitions for low η0 are shown in figure 17. Here, we consider the apparent

angle as an indicator, as it varies more strongly than the apparent aspect ratio.
Transition times are of order 10 s and more, and this result is not in agreement with
that of Bitbol either: the transition between τ = 0.075 Pa and τ = 0.3 Pa, that is
detailed in the density maps of figure 18, corresponds to a mean angle continuous
switching from 25◦ to around 10◦ and corresponds clearly to a transition towards
rolling, as seen also in figure 14(c). The corresponding shear rates are 50 and 200 s−1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.42


Red blood cells in shear flow 443

4.5
4.0

3.0

(a)

3.5

2.5
2.0
1.5

4.5
4.0

3.0

(b)

3.5

2.5
2.0
1.5

4.5
4.0

3.0

(c)

3.5

2.5
2.0
1.5

ra

10 30
Á
50 70 10 30

Á
50 70 10 30

Á
50 70

0
0.003
0.006
0.010
0.014
0.017
0.020
0.024
0.028

0
0.005
0.010
0.015
0.020
0.026
0.032
0.038
0.045

0
0.007
0.014
0.021
0.029
0.037
0.045
0.053
0.060

FIGURE 18. (Colour online) Maps of probability densities in the (Ψ , ra) space
along a transition towards rolling in the increasing shear rate case, η0 = 1.5 mPa s.
(a) Corresponds to the 25–35 s interval in figure 17 (τ = 0.075 Pa). (b) Corresponds to
the 35–50 s interval right after the transition to τ =0.3 Pa. (c) Corresponds to the 50–60 s
interval, still at τ = 0.3 Pa. (a,c) Correspond to the initial and final states between which
the arrow on top of figure 14(c) indicates a transition.

so one should expect from Bitbol (1986) (and also from Cordasco et al. (2014)) a
transition time of order 1 s, one order of magnitude lower than what we see here.

Finally, from a methodology viewpoint, the observed transition time of sometimes
1 minute for every γ̇ decrease validates the method for exploring steady states: shear
rates were varied by small steps, many movies separated by 15 s were taken and the
first one was taken around 30 s after the change of shear rate.

7. Conclusion

We have proposed a complete description of the dynamics of a large, dilute
population of RBCs, that takes into account the dispersion in size and mechanical
properties within this population. This dispersion, which is partly documented in the
literature, results in large ranges for the transition thresholds as commented here.

Hysteretic behaviour for the transition between rolling and tank-treading has been
highlighted, in the case of suspending fluid of viscosity 25 mPa s. We confirm the
presence of intermittent regimes during the transition from tank-treading to the rolling
regime, though quantifying this dynamics would require another more complete study.
In contrast with Dupire et al. (2012), cells leaving the tank-treading regime seem to
switch to small angle orbits, and not to any stable orbit. The characteristics of the
stable orbits are the same whatever the direction of variation of the shear rate. Orbits
with angles larger than a threshold of order 50◦ are unstable. The transition to these
orbits does not occur at the same stress than the transition from these orbits, a feature
which has not been observed previously.

In the low and physiological viscosity case, this hysteresis between stable and
unstable orbits was clearly identified. The characteristics of the stable orbits, as well
as the range of existence of only stable orbits, are quite similar in the low- and
high-viscosity cases. While in the high-viscosity case rolling cells eventually switch
to tank-treading motion, some of them become stomatocytes in the low-viscosity case.
These two transitions are observed for stresses that are not that different (of the order
of 0.05–0.1 Pa).

One of the consequences of the deformability of cells under flow is the creation
of fore–aft asymmetry that allows lateral migration in the vicinity of walls, even in
Stokes flow (see Olla 1997; Coupier et al. 2008). In Grandchamp et al. (2013), the
migration of RBCs in the vicinity of the walls of the same chamber as used here
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was studied. It was found that, within the studied range of viscosity and shear rates,
there is no other effect of the shear rate than that of scaling the time. In particular,
for η0 = 6.1 mPa s, the curves y′ = f (γ̇ t) collapse for γ̇ between 10 and 50 s−1,
that is, τ between 0.06 and 0.3 Pa. On the other hand, in that stress range, we can
expect from our results to observe a change in accessible orbits. We conclude that
this change in behaviour does not strongly affect the surrounding flow and does not
modify the resulting lift force. This does not mean that stresses do not influence the
lift: at fixed shear rate and upon an increase of suspending fluid viscosity, the lift
force increases (see Grandchamp et al. 2013). More studies on wider ranges of shear
rate are necessary to explore this issue.

From a rheology viewpoint, it has been shown in Vitkova et al. (2008) that the
contribution of cells to fluid viscosity depends on their regime in a non-trivial way.
The existence of hysteresis loops in the dynamics indicates that blood viscosity may
depend on the flow history, a fact that has never been reported (nor sought) to the
best of the authors’ knowledge.

While more and more numerical simulations approaches are found in the literature,
with models mostly validated through comparison with simple configurations such
as stretching experiments, we hope that this study based on statistically significant
data will provide a reliable benchmark that will help explore issues hardly solvable
through sole experiments, such as that of the nature and properties of cytoskeleton,
the impact of cell properties on rheology, and on the structuring of the suspension. It
may also support the development of adequate viscoelastic models such as in Mendez
& Abkarian (2018) that would account for the important features we highlighted here,
such as the presence of two hysteretic transitions and the robustness of the dynamical
regimes against external viscosity variation, as long as stress is conserved.
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