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This paper addresses a free boundary problem for a steady, uniform patch of vorticity

surrounding a single flat plate of zero thickness and finite length. Exact solutions to this

problem have previously been found in terms of conformal maps represented by Cauchy-type

integrals. Here, however, it is demonstrated how, by considering an associated circular-arc

polygon and using ideas from automorphic function theory, these maps can be expressed in

a simple non-integral form.
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1 Introduction

In this paper, we consider a two-dimensional free boundary problem which arises in

numerous diverse physical applications, describing a layer surrounding a given fixed,

solid object, where the outer boundary of this layer is free and to be determined. The

problem itself is stated in terms of some function Ψ , which satisfies Poisson’s equation

with constant forcing term (that is, ∇2Ψ = constant, −Ω) in the layer, with the constraints

that Ψ is constant along both the fixed boundary of the object and the free boundary of

the layer, while the first derivatives of Ψ vanish on the free boundary.

One situation in which this problem arises is in a model for an industrial process

for coating objects with viscous fluids originally formulated by Tuck et al. [19]. Another,

identified by Crowdy [5] and the context in which we shall primarily present our discussion,

is in two-dimensional flows of ideal inviscid fluids featuring vortical layers around solid

boundaries. Such flows are of geophysical interest, as bands of vorticity are often observed

in the ocean along coastlines. In this case, Ψ represents the stream function of the flow,

and the above conditions imply that the vortical layer has uniform vorticity Ω, while

the fixed and free boundaries are streamlines of the flow and the flow velocity vanishes

everywhere on the free boundary.

Exact solutions to this problem have been found for the case of a semi-infinite plate by

Howison [11] using a mapping to a potential plane, and for wedges extending to infinity by

Howison and King [12] and more generally by Craster [2], using the differential equation

method originally devised by Polubarinova-Kochina [1, 18].
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In this paper, we consider the case of a single plate of finite length. Exact solutions

for this were in fact found by Johnson and McDonald in [14]. These were derived from

consideration of the Schwarz function [8] of the free boundary of the layer, extending

ideas described by Crowdy in [5] and earlier in [4], and which have subsequently been used

to construct a wide variety of vortical equilibria. The solutions found in [14] are stated

in terms of conformal maps from a parametric domain. These maps were constructed by

first determining their imaginary part on the domain boundary, and then using standard

results to write them as Cauchy-type integrals. Subsequently, following a similar approach,

although using a different parametric variable and employing automorphic function theory,

Marshall [16] was able to derive solutions for an arbitrary array of finitely many plates

of finite length aligned in a parallel direction (not necessarily collinear), retrieving the

results of [14] as a special case.

In this paper, however, we derive a representation for these maps in a simple non-

integral form. We do so by following a similar approach to that in [14, 16], but with

the key difference of constructing an auxiliary function not considered in either of these

two earlier publications. As in [16], our derivation rests on the theory of automorphic

functions.

We report these results for the reasons that, not only are the formulae for the maps

found here arguably simpler than those presented previously, but the method used to

derive them is of theoretical interest and may be applicable to other similar free boundary

problems involving a single flat plate, or possibly arrays of multiple flat plates, or even

plates which are only piecewise flat. We mention here that, in the context of the vortical

flow problem, in addition to the cases referred to above, results are known for a periodic,

collinear array of infinitely many plates of finite length [15], and also for layers along

walls driven by sources and sinks [13], including walls with gaps [17].

Finally, we summarise the contents of the paper as follows. In Section 2, we present the

formulation of the problem. In Section 3, we describe a parameterisation for its solutions

in terms of conformal maps from a parametric domain. Next, in Section 4, we present an

auxiliary function previously used in [14, 16]. The remaining sections contain this paper’s

new contributions. In Section 5, we introduce and construct a second auxiliary function

not considered in either [14] or [16]. Finally, in Section 6, we combine our two auxiliary

functions to obtain a formula for the parameterising conformal map in a non-integral form.

2 Problem formulation

We consider the two-dimensional flow in a z-plane (where z = x+ iy) of an ideal inviscid

fluid in the region exterior to a single flat plate, Γ1, of zero thickness and finite length l,

lying along the real z-axis, centred on the origin, with endpoints z1 = −l/2 and z2 = l/2.

We suppose that Γ1 is surrounded by a bounded patch P of uniform vorticity Ω, with free

outer boundary Γ0. We also assume that the flow velocity is zero on Γ0 and everywhere out-

side P. Furthermore, we assume Γ0 to be an analytic curve. Clearly, this represents a very

particular subclass of all possible vortical flows around Γ1. Nevertheless, given the lack of

exact solutions known for vortical flows around solid boundaries in general, any such res-

ults are of interest. A schematic illustrating P is shown in Figure 1. Note that we label the

points where Γ0 intersects the positive real and imaginary z-axes by x0 and iy0 respectively.
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Figure 1. A patch P of uniform vorticity Ω, with outer boundary Γ0, surrounding a plate Γ1 with

endpoints z1 = −l/2 and z2 = l/2. Γ0 intersects the positive real and imaginary z-axes at the points

x0 and iy0 respectively. The flow velocity is zero on Γ0 and everywhere outside P.

Denoting the streamfunction of the flow by Ψ , we have, for z ∈ P, ∇2Ψ = −Ω. Then,

denoting the components of the fluid velocity in the x- and y-directions by u and v

respectively, by integrating this last equation one arrives at

u − iv = − iΩ

2
(z − S(z)), for z ∈ P, (2.1)

where S(z) is a function of z which is analytic for z ∈ P except possibly for isolated

singularities. One may identify S(z) as follows.

Since we require the flow velocity to vanish on Γ0, (2.1) implies that we must have

S(z) = z, for z ∈ Γ0. (2.2)

Then assuming Γ0 to be an analytic curve, (2.2) implies that S(z) must be the (unique)

Schwarz function of Γ0 [8].

The Schwarz function of a general analytic curve is analytic only in an annular

neighbourhood of the curve. Γ0 is thus special in that we require its Schwarz function

S(z) to be analytic everywhere in P except for the following singularities.

Consider the flow in the neighbourhood of the plate Γ1. Along the plate itself the fluid

velocity is purely tangential, directed along the upper side one way and along the lower

side the other. In fact, local to the plate, we expect the flow round it to be clockwise

if Ω > 0 and anticlockwise if Ω < 0. This follows from the fact that, since we require

the fluid velocity to vanish on Γ0, the net vorticity of the patch and plate must be zero.

One may show that the flow will possess these properties if we impose the following

singularities at the plate endpoints z1 and z2:

u − iv ∼
{

λ(z − z1)
−1/2 for z local to z1

iλ(z − z2)
−1/2 for z local to z2

, (2.3)

where λ is a real constant of the same sign as Ω. Here we pick branches of the square roots

so that, in terms of local coordinates at each endpoint, we have 0 < arg(z − z1) < 2π and

−π < arg(z − z2) < π, with a branch cut along the plate so that the velocity is continuous
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Figure 2. The pre-image annulus D of P. D is bounded by the concentric circles C0 and C1. The

points ζ1 = −q and ζ2 = q are the pre-images of the plate endpoints z1 and z2 respectively.

in the interior of P. Apart from these singularities at z1 and z2, the flow velocity must be

non-singular everywhere else in P. It then follows from (2.1) and (2.3) that S(z) must be

analytic everywhere in P except for singularities at z1 and z2 of the form

S(z) ∼
{

−2iλΩ−1(z − z1)
−1/2 for z local to z1,

2λΩ−1(z − z2)
−1/2 for z local to z2.

(2.4)

3 Parameterising the patch

Both Johnson and McDonald [14] and Marshall [16] seek P in terms of parameterisations

by one-to-one conformal maps. Each, however, uses a different parametric domain. In

this paper, we shall work with that used in [16], namely a concentric circular annulus D

in a ζ-plane. (Note that, P is doubly connected, and any doubly connected domain is the

image under a one-to-one conformal map of a concentric annulus [10].) We label the map

from D onto P by z(ζ). We denote the outer and inner boundary circles of D by C0 and

C1 respectively, and for k = 0, 1, take Ck to correspond Γk under z(ζ). We are free to take

C0 to be the unit circle {ζ : |ζ| = 1}, and label the radius of C1 by q, where 0 < q < 1.

On the grounds of symmetry, we assume that

z(ζ) ≡ z(ζ) and z(−ζ) ≡ −z(ζ). (3.1)

We also assume the normalisation that ζ = 1 maps to the point x0. Thus, for k = 1, 2,

denoting by ζk the point on C1 which corresponds to zk under z(ζ), we must have ζ1 = −q

and ζ2 = q. Furthermore, z(±1) = ±x0, z(±i) = ±iy0, and z(±iq) = 0. A schematic

illustrating D is shown in Figure 2.

We are ultimately going to derive an explicit formula for z(ζ). We begin this derivation

as follows.

Firstly, it will be helpful to introduce the region D′, which is the image of D under

reflection in C0, by which we mean the transformation ζ �→ 1/ζ. D′ is bounded by the

circles C0 and C ′
1, where the latter denotes the reflection of C1 in C0, and is centred on
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the origin with radius q−1. We also introduce the region F , which is the union of D, D′,

C0 and C1, i.e. the region {ζ : q � |ζ| < q−1}. Note that C ′
1 is not included in F .

Now, let us consider S(z) in terms of ζ, that is, S(z(ζ)). We shall denote this as S̃(ζ).

For ζ ∈ C0, since ζ = ζ−1, it follows from (2.2) and the first relation of (3.1) that

S̃(ζ) = z(ζ−1). (3.2)

But z(ζ) must be analytic for all ζ in the closure of D. Furthermore, it follows from the

properties of S(z) described in Section 2 that S̃(ζ) must also be analytic for all ζ in the

closure of D except for singularities at ζ = ±q. Hence, by analytic continuation, one may

deduce that (3.2) must in fact hold for all ζ in the closure of F . An immediate consequence

of this is that both S̃(ζ) and z(ζ) must be analytic everywhere in the closure of F except

for singularities at ζ = ±q and ζ = ±q−1 respectively.

Let us now analyse the singularities of S̃(ζ) at ζ = ±q in more detail. Firstly note that,

for k = 1, 2, since ζk maps to an endpoint of the plate, we must have z′(ζk) = 0 (where we

use the notation ′ to denote differentiation) and, for ζ local to ζk ,

z(ζ) ∼ zk +
z′′(ζk)

2
(ζ − ζk)

2. (3.3)

One may deduce from (3.3) that for k = 1, 2, z′′(ζk) must be real and, furthermore, negative

for k = 1 and positive for k = 2. In fact, it follows from the second relation of (3.1) that

we must have z′′(ζ2) = −z′′(ζ1) = σ, for some σ ∈ �, > 0.

We now take the square root of (3.3). In order to remain consistent with the behaviour

local to zk resulting from the choice of branches already made implicitly in (2.3), one may

show that we must have

(z − z1)
−1/2 ∼ i

√
2

σ
(ζ − ζ1)

−1 for ζ local to ζ1,

(z − z2)
−1/2 ∼

√
2

σ
(ζ − ζ2)

−1 for ζ local to ζ2,

(3.4)

where we take
√

2/σ to denote the positive square root.

It then follows from (2.4) and (3.4) that for k = 1, 2, for ζ local to ζk , we require

S̃(ζ) ∼ χ

ζ − ζk
, (3.5)

where

χ = 2

√
2

σ
λΩ−1, (3.6)

i.e. S̃(ζ) must have simple poles at ζ = ±q, both with the same residue χ given by (3.6).

Having identified these properties of z(ζ) and S̃(ζ), we shall now introduce, in the

following two sections, two auxiliary functions which we shall use to construct z(ζ).
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4 An auxiliary function, h(ζ)

In this section, we present the first of our two auxiliary functions. This was introduced

by Johnson and McDonald in [14] as a function of z, and subsequently used by Marshall

in [16], parameterised in terms of ζ. For completeness, we give details of its construction

as follows.

In terms of z, it is defined as

g(z) = − iΩ

2
(z − S(z)). (4.1)

Note that it follows from (2.1) that, for z in the closure of P, g(z) = Ωy + u − iv. Thus,

since v = 0 on both Γ0 and Γ1,

Im{g(z)} = 0 for z ∈ Γ0, Γ1. (4.2)

Let us now consider g(z) in terms of ζ. We define

h(ζ) = g(z(ζ)) = − iΩ

2
(z(ζ) − S̃(ζ)). (4.3)

One may deduce from the properties of z(ζ) and S̃(ζ) described in Section 3 that h(ζ)

must be analytic for all ζ in the closure of F except for singularities at ζ = ±q,±q−1.

Next, it follows from (4.2) that

h(ζ) + h(ζ−1) = 0 for ζ ∈ C0,

h(ζ) + h(q2ζ−1) = 0 for ζ ∈ C1,
(4.4)

where we have used (3.2) and the first relation of (3.1), together with the fact that ζ equals

ζ−1 and q2ζ−1 for ζ on C0 and C1 respectively. But then, by the analytic continuation of

the two relations in (4.4), one may deduce that

h(q2ζ) = h(ζ) for all ζ. (4.5)

Equation (4.5) will be crucial to our construction of h(ζ), as we now show.

Let us define θ(ζ) = q2ζ. Furthermore, for n ∈ �, let us denote θn(ζ) = q2nζ, so that,

for example, θ0(ζ) is simply the identity, and θ−1(ζ) is the inverse of θ(ζ). Now define

Θ = {θn(ζ) : n ∈ �}. Θ is in fact an example of a Schottky group [9, 16]. Furthermore, F

is a fundamental region of Θ. In fact, any concentric annulus centred on the origin whose

two boundary circles differ in radii by a multiplicative factor of q2, forms a fundamental

region of Θ. It follows from (4.5) that h(ζ) is invariant under each element of Θ, or, in

other words, is automorphic with respect to Θ [9]. The identification of this property will

enable us to exploit the theory of automorphic functions to construct h(ζ) as follows.

Let us first examine the singularities of h(ζ) in F . Recall that this region contains C1

but not C ′
1. It then follows from the properties of z(ζ) and S̃(ζ) described in Section 3

that h(ζ) must be analytic everywhere in F except for simple poles at ζ = ±q, both with

residue iλ
√

2/σ. Note that this residue is purely imaginary, and the sign of its imaginary

part is the same as that of Ω.
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Let us now demonstrate that (4.5) together with the singularities in F just described can

be used to define h(ζ) uniquely. For, suppose that some function h̃(ζ) also possesses these

properties and consider H(ζ) = h(ζ)− h̃(ζ). Since h(ζ) and h̃(ζ) have the same singularities

in F , H(ζ) must be analytic everywhere in this region. But since both h(ζ) and h̃(ζ)

satisfy (4.5), so must H(ζ). It then follows that H(ζ) must be analytic everywhere in the

ζ-plane. Thus, by Liouville’s theorem, H(ζ) must be a constant. But now note that, by our

assumption that z(ζ) maps ζ = 1 to the point x0, it follows from (4.3) that h(1) = 0. Then

assuming also that h̃(1) = 0, it follows that H(1) = 0. Hence, H(ζ) ≡ 0 and h̃(ζ) ≡ h(ζ).

Thus, if one can construct a function with the properties just described, one may identify

it as h(ζ). We demonstrate how this may be done as follows.

4.1 Construction of h(ζ)

Let us first introduce the function P (ζ, q) defined by

P (ζ, q) = (1 − ζ)

∞∏
n=1

(1 − q2nζ)(1 − q2nζ−1). (4.6)

Note that it can be shown that the infinite product in (4.6) converges for all q, 0 < q < 1.

One can check that P (ζ, q) is analytic everywhere in the ζ-plane except at 0 and ∞.

It has a simple zero in F at ζ = 1, and additional simple zeros at all images of 1 under

the non-identity maps in Θ. Furthermore, two useful properties which can be deduced

directly from (4.6) are

P (q2ζ, q) = −ζ−1P (ζ, q) and P (ζ−1, q) = −ζ−1P (ζ, q). (4.7)

Next, we define

K(ζ, q) = ζ
d

dζ
logP (ζ, q). (4.8)

It follows from (4.6) that

K(ζ, q) = 1 +
1

ζ − 1
+

∞∑
n=1

q2n

(
1

ζ − q2n
− 1

ζ−1 − q2n

)
. (4.9)

Note that K(ζ, q) is analytic everywhere in F except for a simple pole at ζ = 1 of residue

1. Also, two useful properties that follow from (4.7) are

K(q2ζ, q) = K(ζ, q) − 1 and K(ζ−1, q) = 1 − K(ζ, q). (4.10)

Then h(ζ) can, in fact, be constructed in terms of K(ζ, q) as

h(ζ) = iμ(K(ζ/q, q) − K(−ζ/q, q)), (4.11)

where μ is some real constant with the same sign as Ω. To verify this, let us check that

the function on the right-hand side of (4.11) possesses the properties identifying h(ζ)

described above. To do so, we make use of the properties of K(ζ, q) just stated. Firstly,

one may deduce from the first relation of (4.10) that this function satisfies (4.5). Next,
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one can check that it is analytic everywhere in F except for simple poles at ζ = ±q, both

with residue iμq, which is purely imaginary and has imaginary part of the same sign as

Ω. Finally, one can show, using (4.9), that it vanishes at ζ = 1. This completes our check

on (4.11). Before continuing, we also point out that the values of μ and q in (4.11) may

be determined by the length l of the plate and the size of the patch, as will be discussed

in greater detail in Section 6.

Now note that, in [16], having constructed h(ζ), a representation for the map z(ζ) is

derived as follows. One may deduce from (4.3) that, for ζ ∈ C0, h(ζ) = Ωy. But, since y is

simply zero along Γ1, we thus know the imaginary part of z(ζ) on both of the boundaries

of D. Given this information, retrieving z(ζ) in full is a modified Schwarz problem, and

the solution to this is known [6]. As shown by Marshall in [16], this gives z(ζ) as the

following Cauchy-type integral,

z(ζ) =
−1

πΩ

ffi
C0

h(ξ)K(ζ/ξ, q)

ξ
dξ, (4.12)

where we integrate around C0 in the anticlockwise direction. Note that K(ζ/ξ, q) has a

pole at ξ = ζ, and this gives rise to a singularity of the integrand in (4.12).

We point out that this approach is similar to that taken by Johnson and McDonald

in [14], who there also construct an integral representation for z, albeit in terms of a

different parametric variable. In fact, in [16], Marshall demonstrated that (4.12) may be

rearranged into this alternative form.

In this paper, however, we shall derive a non-integral representation for z(ζ). To do

this, we introduce a second auxiliary function, not considered by either Johnson and

McDonald in [14] or Marshall in [16]. This is described in the following section.

5 A second auxiliary function, h2(ζ)

Along each of Γ0 and Γ1 we have two real boundary conditions, which we may express

as

Im{z + S(z)} = 0, Im{iz − iS(z)} = 0, for z ∈ Γ0,

Im{z} = 0, Im{iz − iS(z)} = 0, for z ∈ Γ1.
(5.1)

Then using arguments described, for example, by Polubarinova-Kochina [18, Ch. VII, Sec.

2], one can show that the function w(z) defined as

w(z) =
z

S(z)
(5.2)

must map each of Γ0 and Γ1 onto sections of circular arcs. Indeed, by (2.2), at a point z

on Γ0, w(z) = e2i arg(z). Thus, w(z) maps Γ0 onto the unit circle, in fact covering it twice.

Furthermore, taking the ratio of the latter two conditions in (5.1), one finds that

Re

{
1

w(z) − 1

}
= −1, for z ∈ Γ1. (5.3)

It is then straightforward to show from (5.3) that w(z) maps Γ1 onto a section of the circle

centred on w = 1
2

of radius 1
2
. One may deduce that this image of Γ1 does not cover the
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Figure 3. Under w(z), P (top) maps onto (a double covering of) the interior of a circular-

arc polygon (bottom), bounded by the unit circle {w : |w| = 1} and a section of the circle

{w : |w − 1
2
| = 1

2
}. Points labelled by the same letter (a, b, ..., h) correspond to one another under

this transformation.

whole of this circle, and in particular does not contain the point w = 1, as follows. Since

h(ζ) is automorphic with respect to the Schottky group Θ, following from the general

theory of automorphic functions [9], h(ζ) must have the same number of zeros as poles

in the fundamental region F , where we count these according to their multiplicity. But, as

discussed in Section 4, h(ζ) has precisely two simple poles in F (at ζ = ±q). Furthermore,

as one may deduce from (4.3), h(ζ) must vanish at ζ = ±1. It thus follows that these must

be the only zeros of h(ζ) in F (and, in fact, both simple). Hence, one may deduce that h(ζ)

does not vanish on C1, and thus that nowhere on Γ1 does S(z) equal z, or w(z) equal 1.

We remark that this makes sense on physical grounds, since one would not expect there

to be a stagnation point of the flow on Γ1, and hence, from (2.1), that S(z) = z at any

point along this boundary. A schematic illustrating the image of P in the w-plane is given

in Figure 3.

However, now note that, inverting in w = 1, it follows from the basic properties of

Möbius transformations that the circular-arc images of both Γ0 and Γ1 in the w-plane

map onto sections of straight lines, of infinite and finite lengths, respectively. In fact, let
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Figure 4. Under g2(z), P maps onto (a double covering of) the region bounded by the line

Re{g2(z)} = 1
2

and a section of the line Re{g2(z)} = 0, shown here. Again, points labelled by the

same letter in this and Figure 3 correspond to one another.

us consider the function

g2(z) =
1

w(z) − 1
+ 1. (5.4)

Elementary rearrangements lead to

g2(z) =
z

z − S(z)
. (5.5)

Then, from (2.2) and (5.3), it follows that

Re{g2(z)} =

{
1
2

for z ∈ Γ0,

0 for z ∈ Γ1.
(5.6)

A schematic illustrating the image of P under g2(z) is given in Figure 4.

Let us now consider g2(z) in terms of ζ. We define

h2(ζ) = g2(z(ζ)) =
z(ζ)

z(ζ) − S̃(ζ)
. (5.7)

One may deduce from the properties of z(ζ) and S̃(ζ) discussed in Section 3, and the zeros

of h(ζ) just described, that h2(ζ) must be analytic for all ζ in the closure of F except for

singularities at ζ = ±1.

Next, it follows from (5.6) that

h2(ζ) + h2(ζ
−1) = 1 for ζ ∈ C0,

h2(ζ) + h2(q
2ζ−1) = 0 for ζ ∈ C1,

(5.8)

where we have used (3.2) and the first relation of (3.1). But then, by the analytic
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continuation of the two relations in (5.8), one may deduce that

h2(q
2ζ) = h2(ζ) − 1 for all ζ. (5.9)

Thus, unlike h(ζ), h2(ζ) is only quasi -automorphic with respect to Θ. However, using

arguments similar to those applied to h(ζ) in Section 4, we can still identify it as

follows.

Firstly, let us examine the singularities of h2(ζ) in F in more detail. As stated above,

these are located at ζ = ±1. Let us first consider that at ζ = 1. Local to this point we

may expand z(ζ) and S̃(ζ) as Taylor series in ζ as follows. We have

z(ζ) = z(1) + z′(1)(ζ − 1) + . . . ., (5.10)

Next, from (2.2) one may deduce that S̃(1) = z(1), and furthermore that S̃ ′(1) = −z′(1).

Hence, we also have

S̃(ζ) = z(1) − z′(1)(ζ − 1) + . . . . (5.11)

Straightforward manipulations then lead one to find that, local to ζ = 1,

h2(ζ) =
z(1)

2z′(1)(ζ − 1)
+ O(1). (5.12)

Using similar arguments, one can also show that, local to ζ = −1,

h2(ζ) =
z(−1)

2z′(−1)(ζ + 1)
+ O(1). (5.13)

But it follows from the second relation of (3.1) that z(1) = −z(−1) and, furthermore,

that z′(1) = z′(−1). Hence, we deduce that h2(ζ) must have simple poles at ζ = ±1, with

residues ±τ respectively, where τ = z(1)/(2z′(1)).

We may in fact determine τ as follows. Consider the integral, I , of h2(ζ)/ζ around the

boundary of F . h2(ζ)/ζ is analytic everywhere in F except for simple poles at ζ = ±1,

where the residues of these are both τ. Hence, by the residue theorem, I must equal 4πiτ.

However, we also have

I =

ffi
C ′

1

h2(ζ)

ζ
dζ −

ffi
C1

h2(ζ)

ζ
dζ = i

ˆ 2π

θ=0

(h2(q
−1eiθ) − h2(qe

iθ))dθ = 2πi, (5.14)

where the last equality follows from the quasi-automorphicity property (5.9). Hence,

combining the above, one may deduce that τ = 1
2
.

Finally, since we assume ζ = q maps to one of the plate endpoints, where z is finite

and non-zero but S(z) is singular, we must have h2(q) = 0. This fact, together with (5.9)

and the singularities in F just described, are in fact enough to identify h2(ζ) uniquely.

One can show this using arguments similar to those applied to h(ζ) in Section 4 by

supposing that some function h̃2(ζ) also possesses these properties and then considering

H2(ζ) = h2(ζ) − h̃2(ζ). Note that, even though h2(ζ) and h̃2(ζ) are quasi-automorphic with

respect to Θ, H2(ζ) will itself be automorphic.

Thus, if we can construct a function with these properties, we may identify it as h2(ζ).

We show how one may do this as follows.
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5.1 Construction of h2(ζ)

Given the properties of K(ζ, q) described in Section 4.1, one may, at first glance, expect

that some simple combination of this and K(−ζ, q) could be used to construct h2(ζ).

However, on closer inspection, it becomes apparent that a construction in these terms is

not so obvious. Instead, h2(ζ) is given by

h2(ζ) = K(ζ2, q2). (5.15)

We may verify (5.15) as follows. Firstly, one may show from the first relation of (4.10)

that K(q4ζ2, q2) = K(ζ2, q2) − 1. Next, it follows from (4.9) that for ζ2 close to 1,

K(ζ2, q2) =
1

ζ2 − 1
+ O(1) =

1

2(ζ − 1)
− 1

2(ζ + 1)
+ O(1). (5.16)

Hence, K(ζ2, q2) has simple poles at ζ = ±1 with residues ± 1
2

respectively. Finally, using

(4.9), one may show that K(q2, q2) = 0. Thus, K(ζ2, q2) possesses the properties identifying

h2(ζ). This completes our check on (5.15).

Finally, we make the following remark. That h2(ζ) is given by (5.15) may also be

understood from the point of view of conformal mappings as follows. By considering

the effects of w(z) and g2(z), one may deduce that h2(ζ) must map the annulus D onto

a double covering of the slit domain illustrated in Figure 4, with each of the upper and

lower halves of D mapping onto a separate copy. Now note that, as follows from its

properties described in Section 4.1, and as is discussed more generally by Crowdy and

Marshall in [7], one can show that K(ζ, q) maps D onto a slit domain of this type, but in

a one-to-one manner. One may then deduce that K(ζ2, q2) produces the double-covering

required of h2(ζ). This confirms (5.15).

6 Final formula for z(ζ)

Finally, from (4.3) and (5.7), together with (4.11) and (5.15), we obtain the following

expression for z(ζ), for a patch P of vorticity Ω:

z(ζ) =
−2μ

Ω
(K(ζ/q, q) − K(−ζ/q, q))K(ζ2, q2), (6.1)

where μ is some real constant with the same sign as Ω. This is the principal new result of

this paper.

6.1 Determining the mapping parameters

As mentioned in Section 4.1, the values of q and μ in this parameterisation may be

determined by the plate length l and the size of the patch. One may find relations between

these quantities as follows.

Firstly, we have l = 2z(q). Note that K(ζ/q, q) has a simple pole at ζ = q, but, as

stated in Section 5.1, K(ζ2, q2) vanishes there. In fact, a local analysis of (6.1) about ζ = q
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reveals that

l = −8μ

Ω
q2K ′(q2, q2). (6.2)

Then, using (4.9), one may obtain an expression for K ′(q2, q2) in terms of q. Substituting

this into (6.2), one finds

l =
16μ

Ω

∞∑
n=0

q2(2n+1)

(1 − q2(2n+1))2
. (6.3)

Next, as a measure of the size of the patch, let us consider y0. We have y0 = −iz(i).

Alternatively, as one may deduce from (4.3), y0 = h(i)/Ω. It then follows from (4.11) and

(4.9) that

y0 =
4μ

Ω

∞∑
n=0

q2n+1

1 + q2(2n+1)
. (6.4)

Equations (6.3) and (6.4) constitute two relations which may be used to determine q and

μ for a given plate length l and patch thickness y0. Furthermore, one may also derive an

expression for the “aspect ratio” x0/y0 of the patch. In fact, as for y0 above, one may do this

without requiring the full form for z(ζ). Details are given in the appendix. One may also

derive expressions for these quantities using the parameterisations presented in [14, 16].

An example of a patch constructed using this parameterisation is given in Figure 1.

It should be pointed out that the author has so far been unable to show that (6.1) may

be rearranged into the form (4.12) for z(ζ) previously derived in [16], or that presented

in [14]. However, numerical checks demonstrate agreement between these results.

Finally, we point out that, using (6.1) and (4.11), one may easily compute the flow

velocity at points in the interior of the patch from (2.1).

7 Conclusions

In this paper, we have constructed solutions to a free boundary problem in a doubly

connected domain, describing a vortex patch around a single flat plate of zero thickness

and finite length. These solutions are stated in terms of conformal maps from a parametric

domain. Formulae for these maps have been constructed in earlier publications in terms

of Cauchy-type integrals. Here, however, we derive a representation for them in a simple

non-integral form.

Key steps in the derivation of this new formulation are the introduction of the function

w(z) = z/S(z) which maps the patch onto the interior of a circular-arc polygon, and the

observation that, by a simple inversion, this can then be transformed into a region with

straight boundaries. The use of such techniques in free boundary problems set in domains

whose fixed boundaries are straight is well known [1, 18]. However, the majority of such

problems to which they are applied in the existing literature are ones set in domains of

just simple connectivity.

Another vital component in the derivation of these solutions is the use of the theory of

automorphic functions, which facilitates the construction of two auxiliary functions h(ζ)

and h2(ζ).

It is possible that the ideas and methods presented in this paper could be applied to

other similar problems for the free boundary of a layer surrounding a single flat plate,
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or possibly arrays of multiple flat plates, or even plates which are only piecewise flat. We

point out, however, that there appear to be certain restrictions on their use. Firstly, as

mentioned by Marshall in [16], it seems that the auxiliary function h(ζ) is only suited to

cases with plates aligned in a parallel direction. Secondly, while the function w(z) will

always map the patch onto a circular-arc domain, typically this will not be as simple as

the one encountered here. Nevertheless, further examples are currently being investigated.

As yet another possible method of solving this problem, Howison and King [12] suggest

that based on differential equations originally devised by Polubarinova-Kochina [1, 18].

Again, this is a technique more commonly associated with free boundary problems set in

simply connected domains. One could reduce this problem to one in a simply connected

region by exploiting the symmetry of the patch and focusing on just one half or one

quarter of it. Doing so would lead to a differential equation with rational coefficients.

Alternatively, retaining the double connectivity, one could consider a differential equation

with independent variable ζ satisfied by z(ζ) and S̃(ζ). Such an equation would have

coefficients that are not rational, but rather expressible in terms of the function P (ζ, q)

and its derivatives. From our above analysis, it should have singular points in F at

ζ = ±q, corresponding to the singularities of S̃(ζ) there, but also at four other points

on C1. These additional singular points are not singularities of either z(ζ) or S̃(ζ), but

rather correspond, under w(z(ζ)), to the end points of the circular-arc image of C1 in the

w-plane. There are four of them since the image of D in this plane is a double-covering.

At each, dw(z(ζ))/dζ = 0, or equivalently, the Wronskian z′(ζ)S̃ (ζ) − z(ζ)S̃ ′(ζ) vanishes.

Under z(ζ), these correspond to points on the plate Γ1. Such singularities are commonly

observed in the analysis of free boundary problems, using this or related methods, often

corresponding to points of inflection of the free surface (see, for example, [3]). In this

particular case, however, their physical significance is not obvious. We also point out that,

in addition to these singular points in F , there will be others at their images under all the

non-identity maps in Θ.

Finally, we mention that other issues relating to this particular problem are discussed

by Johnson and McDonald in [14] and Marshall in [16]. The main purpose of this paper

has been to present and discuss the new formulation for its parameterisation.

Appendix Aspect ratio of the patch

As mentioned in Section 6, here we derive an expression for the ‘aspect ratio’ x0/y0 of the

patch. We do so without requiring the full form for the map z(ζ), using, rather, properties

of the auxiliary functions h(ζ) and h2(ζ).

We point out that, while one could conduct the following analysis in terms of functions

associated with the Schottky group Θ, as in the rest of this paper, here we shall in fact

use the Jacobi elliptic functions. This is simply for the reason that it is convenient to make

use of the well-documented properties of the latter.

Firstly, as follows from identifications made by Marshall in [16], one can show that

(4.11) can be written as

h(ζ) =
2ρKμ

π
sn(U(ζ), ρ), (7.1)
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where

U(ζ) =
−2Ki

π
log ζ, (7.2)

sn denotes one of the Jacobi elliptic functions, K = K(ρ) is the complete elliptic integral

of the first kind defined by

K(ρ) =

ˆ 1

0

dt

((1 − t2)(1 − ρ2t2))1/2
, (7.3)

and the modulus ρ is related to q by

q = exp

(
−π

2

K′

K

)
, (7.4)

where

K′ = K′(ρ) = K((1 − ρ2)1/2). (7.5)

Now, as stated in Section 6.1, y0 = h(i)/Ω. Using standard properties of sn, it then follows

from (7.1) that μ = πΩy0/(2ρK). Hence, (7.1) may be written as

h(ζ) = Ωy0sn(U(ζ), ρ). (7.6)

Now, recalling x0 = z(1) and the fact, following (2.2), that S̃ ′(1) = −z′(1), one may deduce

from (4.3) that

z′(1) =
i

Ω
h′(1). (7.7)

But, with cn and dn denoting two more of the Jacobi elliptic functions, by differentiating

(7.6), standard results give

h′(ζ) =
−2KΩy0i

πζ
cn(U(ζ), ρ)dn(U(ζ), ρ), (7.8)

and then

h′(1) =
−2KΩy0i

π
. (7.9)

It then follows from (7.7) and (7.9) that

z′(1) =
2K

π
y0. (7.10)

But, as follows from the fact, shown in Section 5, that τ = z(1)/(2z′(1)) = 1
2
, we have

z(1) = z′(1). Hence, from (7.10), one may finally deduce that

x0

y0
=

2K
π

. (7.11)

Lastly, let us provide a quick check on (7.11). Following steps taken by Marshall in [16]

(see equation (4.34) thereof), one can rewrite (4.12) as

z(ζ) =
−2Ky0i

π2

ˆ
C+

0

h(ξ)

h(ξ/ζ)

dξ

ξ
, (7.12)

https://doi.org/10.1017/S0956792514000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000151


594 J. S. Marshall

where C+
0 denotes the section of C0 in the upper half plane, and we integrate along this

in the anticlockwise direction from 1 to −1. Equation (7.11) then follows from (7.12) with

ζ = 1.
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