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Interaction of turbulent fluctuations with a shock wave plays an important role in
many high-speed flow applications. This paper studies the amplification of enstrophy,
defined as mean-square fluctuating vorticity, in homogeneous isotropic turbulence
passing through a normal shock. Linearized Navier–Stokes equations written in a
frame of reference attached to the unsteady shock wave are used to derive transport
equations for the vorticity components. These are combined to obtain an equation that
describes the evolution of enstrophy across a time-averaged shock wave. A budget
of the enstrophy equation computed using results from linear interaction analysis and
data from direct numerical simulations identifies the dominant physical mechanisms in
the flow. Production due to mean flow compression and baroclinic torques are found
to be the major contributors to the enstrophy amplification. Closure approximations
are proposed for the unclosed correlations in the production and baroclinic source
terms. The resulting model equation is integrated to obtain the enstrophy jump across
a shock for a range of upstream Mach numbers. The model predictions are compared
with linear theory results for varying levels of vortical and entropic fluctuations in the
upstream flow. The enstrophy model is then cast in the form of k–ε equations and used
to compute the interaction of homogeneous isotropic turbulence with normal shocks.
The results are compared with available data from direct numerical simulations. The
equations are further used to propose a model for the amplification of turbulent
viscosity across a shock, which is then applied to a canonical shock–boundary
layer interaction. It is shown that the current model is a significant improvement
over existing models, both for homogeneous isotropic turbulence and in the case of
complex high-speed flows with shock waves.

Key words: compressible turbulence, high-speed flow, turbulence modelling

1. Introduction
Turbulent flows are marked by a high level of fluctuating vorticity, and these vortical

fluctuations play an important role in the dynamics of turbulent motion. Enstrophy,
defined as the mean-square vorticity fluctuations, represents the intensity of rotation of
turbulence and is a quantity of fundamental interest in a turbulent flow. It is mainly
associated with the small-scale motion, and thus determines the resolution requirement
of direct numerical simulation (DNS) of a turbulence field. The turbulent kinetic
energy k is dissipated into heat by the action of viscous stresses. In homogeneous
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Enstrophy evolution in shock/turbulence interaction 75

incompressible turbulence, the dissipation rate ε can be expressed as the product
of enstrophy and the mean kinematic viscosity of the fluid. In compressible flows,
enstrophy is related to the solenoidal dissipation rate εs, which is a dominant part of
turbulent dissipation in wall-bounded shear flows. The quantities k, ε and enstrophy
are often used to characterize the state of turbulence in the Reynolds-averaged
Navier–Stokes (RANS) framework.

Interaction of turbulent fluctuations with shock waves is common in supersonic
and hypersonic flow applications. In the case of aerospace vehicles, shock–boundary
layer interactions are often present on deflected control surfaces, wing–body junctions,
intakes of air-breathing engines and rocket nozzles. Impingement of the shock
generated by the engine cowl, for example, can significantly alter the turbulent
boundary layer on the inlet walls. Typical effects include flow separation and
reattachment, localized high pressure rise and enhanced heat transfer, which are
detrimental to the performance and operability of the engine. Accurate prediction
of shock–boundary layer interaction (SBLI) flows poses a significant challenge
to numerical simulations based on RANS methodology (Roy & Blottner 2006).
Uncertainty in the predictions of current turbulence models often require large design
margins for practical applications.

The amplification of boundary layer turbulence due to the shock lies at the core
of SBLI flows. It directly influences the extent of flow separation, and therefore
determines the topology of shocks and expansion waves generated by the separation
bubble. See, for example, the simulation of an oblique shock impinging on a turbulent
boundary layer by Pasha & Sinha (2008) and hypersonic cone–flare configurations by
Pasha & Sinha (2012). Accurate prediction of the flow topology is essential to obtain
the correct variation of surface properties. Wall skin friction coefficient and heat flux
are also a strong function of the turbulence level in the near-wall region. Predicting
the state of the downstream turbulence, specifically the post-shock levels of k, ε and
enstrophy, is therefore important in these interactions.

Shock/turbulence interaction is a complex process involving several physical
phenomena. Bulk compression at the shock amplifies the turbulent fluctuations. The
turbulent length scales, like the Kolmogorov scale and Taylor microscale, decrease
across the shock (Larsson & Lele 2009). Turbulent fluctuations in the incoming
flow cause local distortion and unsteadiness of the shock wave. The unsteady shock
motion is found to have a damping effect on the streamwise velocity fluctuations
(Sinha, Mahesh & Candler 2003). The level of turbulence amplification also depends
on the nature of upstream turbulence – namely, the relative magnitude of and
correlation between the acoustic, entropic and vortical components (Kovasznay 1953).
For example, turbulence amplification is significantly enhanced in the presence of
negatively correlated temperature and velocity fluctuations in the incoming flow
(Mahesh, Lele & Moin 1997). The interaction of turbulence with a shock wave is thus
a complex interplay of different physical processes. Understanding these mechanisms
at the shock and predicting the turbulence amplification accurately is therefore a
challenging task.

Vorticity generation at a gas dynamic discontinuity has been the subject of several
previous studies, see for example, Hayes (1957) and Berndt (1966). More recently,
Kevlahan (1997) summarized the earlier results, and derived a general expression for
the vorticity jump across a shock wave. He considered several scenarios of steady
and unsteady shocks propagating into uniform and non-uniform flows, and reproduced
the results presented by Hayes (1957). It is found that the vorticity production at the
shock is caused by three physical mechanisms: shock focusing, baroclinic torques and
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76 K. Sinha

conservation of angular momentum at the shock wave. The role of non-uniformities
in the upstream flow in generating vorticity at the shock is emphasized by Kevlahan
(1997). In this regard, the interaction of turbulence with shock waves is of particular
interest, and the contribution of the different mechanisms in vorticity generation when
weak/strong turbulence passes through a weak/strong shock are discussed.

The objective of the current work is to study the evolution of vorticity components
ω′i for i = 1, 2 and 3, and the resulting amplification of enstrophy ω′iω′i across a
shock wave. The key physical processes are to be identified and modelled in a
physically consistent way so as to predict the downstream level of ω′iω′i accurately.
The model problem chosen for the study is the interaction of homogeneous isotropic
turbulence with a normal shock. It is a fundamental problem that isolates the effect of
a shock wave on turbulent fluctuations. It eliminates other effects like flow separation,
reattachment and streamline curvature that are commonly present in shock/turbulent
boundary layer interactions. Availability of DNS data (Mahesh et al. 1997; Jamme
et al. 2002; Larsson & Lele 2009) for homogeneous turbulence passing through
a normal shock wave provides insight into the underlying physical processes. The
dominant mechanisms can thus be identified for detailed analysis and modelling. In
addition, turbulence amplification computed in the DNS can serve as a benchmark for
comparing existing and new models.

Mahesh et al. (1997) apply linear interaction analysis (LIA) to study the interaction
of homogeneous turbulence with a normal shock. The upstream turbulence field is
represented as a combination of vorticity and entropy waves. In the linear inviscid
framework, each wave interacts independently with the shock, which is treated as
a discontinuity. Superposition of the resulting waves, for a given upstream energy
spectrum, yields the turbulence field downstream of the shock. The analysis is based
on the assumption that the turbulent fluctuations are small in magnitude compared to
the variations in the mean flow quantities. Inter-modal interactions are expected to be
negligible at the shock as long as M2

t �M2
1 − 1 (Lee, Lele & Moin 1993). Here, Mt

and M1 are the turbulence and mean flow Mach numbers in the incoming flow.
The linear analysis is found to reproduce several key aspects of shock–turbulence

interaction that are observed in DNS. For example, it predicts the non-monotonic
behaviour of the streamwise Reynolds stress behind the shock due to a rapid decay
of acoustic energy (Mahesh et al. 1997). It also matches the DNS amplification of
turbulent kinetic energy across the shock wave (Sinha et al. 2003). On the other hand,
the theory does not predict the amplification of individual Reynolds stresses correctly
(Larsson & Lele 2009). It also does not reproduce the rapid increase in streamwise
vorticity variance downstream of the shock wave. In spite of these limitations, LIA
provides valuable insight into the underlying physical processes. Results from the
analysis have therefore proved useful in developing advanced turbulence models for
shock–turbulence interaction. Some of the work in this direction is summarized below.

Sinha et al. (2003) study the effect of unsteady shock motion on turbulence
amplification across a shock. They start by deriving a transport equation for the
turbulent kinetic energy in a frame of reference attached to the instantaneous shock
wave. The shock-unsteadiness effect appears as a negative source term in the k-
equation, and involves a correlation between the streamwise velocity fluctuations and
the unsteady shock speed. The correlation is found to be positive, implying an in-
phase coupling between the two quantities. Specifically, a positive streamwise velocity
fluctuation results in a downstream motion of the shock wave, and vice-versa. The
correlation coefficient is obtained from linear analysis results and a model is developed
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Enstrophy evolution in shock/turbulence interaction 77

for the damping effect of the unsteady shock motion. The resulting equation is found
to yield an accurate prediction of the turbulent kinetic energy amplification across a
normal shock, for purely vortical turbulence in the incoming flow.

In a subsequent work, Veera & Sinha (2009) study the effect of upstream
temperature fluctuations on k-amplification in shock/homogeneous turbulence
interaction. It is found that the primary effect of upstream temperature fluctuations
is via the mean pressure-gradient production term. The source term has a vanishing
contribution for purely vortical turbulence upstream of the shock, and its magnitude
increases with the level of incoming temperature fluctuation. The production due to
mean pressure gradient involves a correlation between the temperature and streamwise
velocity fluctuations, such that it is positive for negatively correlated temperature and
velocity fluctuations in the incoming turbulence. The source term is negative when
the upstream temperature fluctuations are positively correlated with the streamwise
velocity fluctuations. A model for the source term is developed using linear theory
results, and it reproduces the physical effect correctly.

In this paper, an equation describing the evolution of enstrophy across a nominally
normal shock is derived. The starting point is the Navier–Stokes equations written
in a frame of reference attached to the unsteady shock wave. This coordinate
transformation brings the shock unsteadiness and distortion effects into the governing
equations. A separation of scales between the rapid changes across the shock and
the relatively slower variation due to turbulence is assumed to identify the leading-
order terms. The resulting equations are linearized about a steady one-dimensional
mean flow, and are then used to derive a transport equation for the streamwise
vorticity fluctuations. An equation for the transverse vorticity components is derived
by considering the streamwise derivative of the linearized momentum equations. Here,
it is important to separate the streamwise gradient caused by the shock wave from
those due to turbulent fluctuations that contribute to the turbulent vorticity. The
transport equations for the vorticity components, thus obtained, are combined to give
an equation for the evolution of enstrophy across the shock wave.

Next, the Rankine–Hugoniot relations applied to the unsteady shock wave are
linearized, and a procedure similar to that described above is followed to arrive at
an integrated form of the enstrophy equation. Results from LIA of Mahesh et al.
(1997) and DNS of Larsson & Lele (2009) are used to compute a budget of the
enstrophy amplification as a function of the shock strength for different types of inflow
turbulence. The relative magnitude of the source terms is evaluated to identify the
dominant mechanisms that contribute to enstrophy amplification in each case. Models
are then proposed for the unclosed correlations and the resulting equation is integrated
analytically to obtain the amplification of enstrophy across the shock wave in the high-
Reynolds-number limit. The accuracy of the model is evaluated against predictions of
the linear theory (Mahesh et al. 1997).

Finally, the model predictions are compared with DNS of shock/homogeneous
turbulence interaction and experimental results for a canonical SBLI flow. For this
purpose, the modelled enstrophy equation is combined with an equation for the
turbulence kinetic energy from earlier work (Veera & Sinha 2009), and cast in the
form of a k–ε turbulence model. The equations are then numerically integrated along
with the mean flow conservation equations, and the resulting evolution of turbulent
kinetic energy and solenoidal dissipation rate are compared with the DNS data. Test
cases corresponding to different types of inflow turbulence for varying upstream mean
flow Mach number are considered. The effects of numerical error incurred at the
shock wave are also discussed. For the SBLI test case, the k–ε model equations are
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used to propose a model for the amplification of the turbulent viscosity at the shock.
Simulations are performed in the framework of the Spalart–Allmaras (SA) turbulence
model and the surface predictions are compared with experimental measurements.

It is assumed that the turbulence upstream of the shock is composed of vortical
and entropic fluctuations. As per Morkovin’s hypothesis, turbulent fluctuations in
a compressible boundary layer are essentially composed of vorticity and entropy
modes, i.e. the acoustic component is negligible. Fluctuations in total temperature
are also assumed to be small, which results in the following relation between the
thermodynamic and velocity fields:

ρ ′

ρ̄
=−T ′

T
= (γ − 1)M2 u′

ū
, (1.1)

where ρ, T and u are density, temperature and streamwise velocity, M is the mean
flow Mach number, and γ is the ratio of specific heats at constant pressure and at
constant volume. An overbar represents Reynolds averaging, while a prime indicates
the fluctuating part.

The turbulence upstream of the shock is considered to be homogeneous and
isotropic, with the thermodynamic field related to the velocity fluctuations by

ρ ′

ρ̄
=−T ′

T
= AuT

u′

ū
. (1.2)

Here, the acoustic fluctuations are neglected (p′ = 0) and Morkovin’s hypothesis
is satisfied for AuT = (γ − 1)M2. The term AuT can be interpreted as the ratio
of normalized temperature and velocity fluctuations. Constant values of AuT are
chosen and the amplification of ω′iω′i across a normal shock is studied for a given
AuT as a function of the upstream Mach number. AuT = 0 corresponds to purely
vortical turbulence upstream of the shock. Negatively correlated upstream velocity
and temperature fluctuations are considered for AuT = 0.58, 1, 2 and 4, where the
magnitude of temperature and density fluctuations increase with increasing AuT . A case
with positive velocity–temperature correlation in the incoming flow (AuT = −0.58) is
also studied. Note that the cases AuT = 0.58 and −0.58 are analysed by Mahesh et al.
(1997).

2. Transport equation for enstrophy
A uniform mean flow is considered upstream and downstream of a normal shock,

with x as the shock-normal direction. The shock wave is steady in the mean, and
undergoes small deviations from its mean position in response to the turbulent
fluctuations. The deviation of the shock is denoted by ξ(y, z, t), such that the temporal
derivative ξt denotes the streamwise velocity of the shock wave, and the transverse
derivatives ξy and ξz represent the angular distortions of the shock in the x–y and x–z
planes respectively (see figure 1).

A frame of reference stationary with respect to the shock wave is denoted by
x(1), x(2), x(3). The instantaneous shock-normal direction is along x(1), and the axes x(2)

and x(3) are in a plane parallel to the shock wave (see figure 1). For small shock
distortions,

x(1) = x− ξ − yξy − zξz, (2.1a)

x(2) = xξy + y, (2.1b)

x(3) = xξz + z, (2.1c)
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x

y

FIGURE 1. Schematic showing a distorted shock wave caused by the interaction with
turbulent fluctuations.

where higher-order terms are neglected. The corresponding velocity components are
given by

u(1) = u− ξt − vξy − wξz ' ū+ u′ − ξt, (2.2a)

u(2) = uξy + v ' ūξy + v′, (2.2b)

u(3) = uξz + w' ūξz + w′, (2.2c)

where u, v, w are the velocity components in the (x, y, z) coordinate system. The
transverse velocity components v̄ = w̄ = 0 in the one-dimensional mean flow, and
higher-order terms are neglected, once again, owing to small distortions of the shock
wave from its mean location. Also, the fluctuations are assumed to be small compared
to the changes in the mean flow variables. In the following derivation, Reynolds
averaging (u= ū+ u′) is used instead of Favre averaging (u= ũ+ u′′). This is because
ū' ũ and u′ ' u′′ in the linear limit.

We start with the momentum conservation equation in the shock-normal direction:

∂ρu(1)

∂t
+ ∂ρu(1)u(1)

∂x(1)
+ ∂ρu(1)u(2)

∂x(2)
+ ∂ρu(1)u(3)

∂x(3)
+ ∂p

∂x(1)

= ∂σ11

∂x(1)
+ ∂σ12

∂x(2)
+ ∂σ13

∂x(3)
, (2.3)
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where ρ and p are density and pressure respectively, and σij is the viscous stress
tensor. The equation is written in conservative form for the instantaneous variables
for a finite-thickness shock wave. The shock-parallel variations along x(2) and x(3)

are caused by the turbulent fluctuations, and the corresponding derivatives scale as
the turbulent length scale `. On the other hand, the derivatives in the shock-normal
direction x(1) are due to the shock gradient, with the instantaneous shock thickness δ as
the characteristic length scale. Noting that δ� `, we have

∂

∂x(1)
∼ 1
δ
� 1
`
∼ ∂

∂x(2)
∼ ∂

∂x(3)
. (2.4)

In a frame of reference attached to the unsteady shock wave, the temporal variation
at a point is primarily caused by the turbulent fluctuations being convected by the
mean flow. Thus, the time derivative ∂/∂t is of the order U/`, where U is the
characteristic mean velocity. The unsteady term is small compared to the convection
across the shock thickness, which scales as U/δ. Thus, the dominant inviscid and
viscous terms in (2.3) are

∂ρu(1)u(1)

∂x(1)
+ ∂p

∂x(1)
= ∂σ11

∂x(1)
. (2.5)

Note that (2.3) and (2.5) are written in a non-inertial frame of reference. There are
fictitious force terms of the form −ρξtt on the right-hand side. The instantaneous
shock speed ξt is assumed to be comparable to the characteristic turbulent velocity
fluctuation û in magnitude, and the time derivative ∂/∂t scales as U/`. Thus, the frame
acceleration term is of the order ρUû/` in magnitude, and its contribution is much
smaller than the terms retained in the above equation.

The viscous term in (2.5) is diffusive, and it determines the shock thickness in a
Navier–Stokes calculation. An inviscid model, without numerical viscosity, will yield
a zero-thickness shock wave. The viscous stress is given in terms of the rate of strain
and dynamic viscosity µ of the fluid,

∂σ11

∂x(1)
= 4

3
µ
∂2u(1)

∂x(1)x(1)
+ 4

3
∂µ

∂x(1)
∂u(1)

∂x(1)
, (2.6)

where the first terms corresponds to diffusion in constant-property flows and the
second term brings in the additional effects due to variation in fluid viscosity. It can be
easily seen that the ratio of inertial to viscous terms in (2.5) scales as ρUδ/µ, which is
taken to be of order unity in magnitude.

It is shown in the Appendix that the viscous terms in the instantaneous vorticity
equation follow a similar scaling. Their magnitudes are related to those of the inertial
terms via the Reynolds number

ρ̄1Uδ

µ̄1
∼ O(1) (2.7)

in terms of the characteristic mean flow quantities ρ̄1 and µ̄1 in the upstream flow
and the instantaneous shock thickness. The order-of-magnitude estimates, however,
change on time averaging, such that the ratio of inertial to viscous terms in the
Reynolds-averaged equation scale as

ρ̄1Uδ̄

µ̄1
∼ ρ̄1Uδ

µ̄1

δ̄

δ
∼ δ̄
δ
� 1, (2.8)
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where δ̄ (see figure 1) is the mean shock thickness obtained by averaging across
a fluctuating shock wave. It is much greater than δ due to unsteady oscillations.
The viscous effects in the shock are therefore small in the time-averaged enstrophy
equation and are dropped from further analysis. We proceed with the inviscid
part of (2.5) and investigate the dominant mechanisms that contribute to enstrophy
amplification across the shock wave.

Transforming (2.5) back to the (x, y, z) coordinate system, and collecting terms that
are linear in the fluctuations, we get

∂

∂x

[
2ρ̄ū(u′ − ξt)

]+ ∂

∂x
(ρ ′ū2)+ ∂p′

∂x
= 0. (2.9)

Once again, the frame acceleration effect ρ̄ξtt is small compared to the terms retained
in the above equation. The linearized Euler equation in an inertial frame of reference
is given by

∂u′

∂t
+ ū

∂u′

∂x
+ u′

∂ ū

∂x
− ρ ′

ρ̄2

∂ p̄

∂x
+ 1
ρ̄

∂p′

∂x
= 0. (2.10)

The unsteady term is retained here because the temporal derivative estimate for the
moving frame attached to the shock does not hold. Comparison of this equation with
(2.9) yields

∂u′

∂t
'−ξt

∂ ū

∂x
. (2.11)

A physical interpretation can be deduced by noting that the temporal change at
a fixed point in the inertial frame is primarily due to the unsteady shock wave
passing through it. The time scale of this variation is given by δ/ξt in terms of
the instantaneous shock speed and thickness. The corresponding change in the fluid
velocity is u1 − u2 '−1ū for an instantaneous shock speed ξt > 0. Here, 1 represents
the jump in a flow variable across the shock. For a shock travelling in the negative
x-direction (ξt < 0), the point of interest will record an opposite velocity change from
u1 to u2, i.e. u2 − u1 '1ū. Noting that the mean flow is steady, we have

∂u

∂t
= ∂u′

∂t
'−ξt

1ū

δ
'−ξt

∂ ū

∂x
. (2.12)

This shows that the streamwise velocity fluctuations measured at a fixed point in the
inertial frame are caused by the jump in mean velocity across the shock. Large values
of the streamwise normal Reynolds stress in the region of the shock wave are reported
in DNS studies (Lee et al. 1993; Mahesh et al. 1997; Jamme et al. 2002; Larsson &
Lele 2009), which are an artifact of the unsteady shock motion.

Analysis of the momentum conservation equations of the form (2.3) in the shock-
parallel x(2) and x(3) directions yields the corresponding linearized Euler equations for
the transverse momenta:

∂

∂x

(
v′ + ūξy

)= 0, (2.13)

∂

∂x

(
w′ + ūξz

)= 0, (2.14)

which essentially conserve the fluctuating part of the velocity in the directions
tangential to the distorted shock wave.
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Differentiating the above equations with respect to z and y respectively results in the
following transport equation for ∂v′/∂z and ∂w′/∂y across the shock wave:

∂

∂x

(
∂v′

∂z
+ ūξyz

)
= 0, (2.15)

∂

∂x

(
∂w′

∂y
+ ūξzy

)
= 0, (2.16)

which can be combined to yield an equation for the streamwise component of vorticity
ω′x = ∂w′/∂y− ∂v′/∂z:

∂ω′x
∂x
= 0. (2.17)

This states that the streamwise vorticity remains unaltered across the shock in the
linear inviscid limit. Identical results have been observed in the work of Mahesh et al.
(1997).

To obtain a transport equation for the transverse component of vorticity ω′z =
∂v′/∂x− ∂u′/∂y, we differentiate (2.9) with respect to y:

∂

∂x

(
2ρ̄ū

∂u′

∂y

)
− ∂

∂x

(
2ρ̄ūξyt

)+ ∂

∂x

(
∂ρ ′

∂y
ū2

)
+ ∂2p′

∂x∂y
= 0, (2.18)

which represents the variation of ∂u′/∂y across the shock. The variation in u′ in the
transverse direction y is caused by the turbulent fluctuations. The derivative ∂u′/∂y is
therefore of the order û/` in magnitude and contributes to the turbulent vorticity. The
above equation can be written in an equivalent non-conservative form

ū
∂

∂x

(
∂u′

∂y

)
+ ∂u′

∂y

∂ ū

∂x
− ξyt

∂ ū

∂x
− ∂ρ

′

∂y

1
ρ̄2

∂ p̄

∂x
+ 1
ρ̄

∂2p′

∂x∂y
= 0, (2.19)

which is similar to the vorticity transport equation derived below. Note that the
vorticity equation presented in the Appendix has non-conservative source terms due
to vortex stretching and baroclinic torques.

A similar approach of differentiating the linearized y-momentum equation (2.13)
with respect to x yields a transport equation for ∂v′/∂x. However, (2.13) is derived
by neglecting the spatial derivatives due to turbulent fluctuations in comparison with
those due to the shock wave. Therefore, the streamwise derivative of (2.13) yields
∂v′/∂x that is caused by the shock gradient, and not due to the turbulent fluctuations
that contribute to the vorticity component ω′z. One way to bring in the variation in
v′ over turbulent length scale ` is to consider the time derivative ∂v′/∂t at a fixed
point in space. As noted earlier, the temporal variation is primarily due to turbulent
fluctuations being convected by the mean velocity. The shock wave is steady in the
frame of reference attached to it, and therefore the shock gradient does not contribute
to the time derivative. On differentiating (2.13) with respect to time, we get

∂

∂x

(
∂v′

∂t
+ ūξyt

)
= 0, (2.20)

which indicates how ∂v′/∂t changes across the shock wave.
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The rate of change of transverse velocity fluctuations with time at a fixed point in
space is given by

∂v′

∂t
=−ū

∂v′

∂x
− 1
ρ̄

∂p′

∂y
. (2.21)

This is obtained by collecting the second-order terms in the Euler equation written in
the y-direction for a steady one-dimensional mean flow, akin to the one considered
in this work. Here, the variations in the flow variables with respect to x and y are
due to turbulent fluctuations only and hence over a length scale comparable to `.
The spatial derivatives on the right-hand side of (2.21) therefore contribute to the
temporal variation in v′ due to turbulent fluctuations, and not due to shock gradients.
Substituting the above relation in (2.20) yields

ū
∂

∂x

(
∂v′

∂x

)
+ ∂v

′

∂x

∂ ū

∂x
− ξyt

∂ ū

∂x
− 1
ρ̄2

∂ρ̄

∂x

∂p′

∂y
+ 1
ρ̄

∂2p′

∂x∂y
= 0, (2.22)

which is in a form similar to (2.19), and can be considered as the transport equation
for ∂v′/∂x at the shock.

Combining (2.19) and (2.22) results in

ū
∂ω′z
∂x
+ ω′z

∂ ū

∂x
+ 1
ρ̄2

∂ρ ′

∂y

∂ p̄

∂x
− 1
ρ̄2

∂ρ̄

∂x

∂p′

∂y
− ν̄ ∂

2ω′z
∂x2
= 0, (2.23)

which represents the evolution of ω′z across the shock wave. Note that the viscous
diffusion term is added to the equation, as its magnitude is shown (in the Appendix)
to be comparable to the other inviscid terms in the equation. Taking a moment with ω′z
and Reynolds averaging yields the equation governing the amplification of ω′2z across
the shock wave:

ū
∂

∂x

(
ω′2z
2

)
=−ω′2z

∂ ū

∂x
− ω′zρ ′,y

1
ρ̄2

∂ p̄

∂x
+ ω′zp′,y

1
ρ̄2

∂ρ̄

∂x
+ ν̄ ∂

2

∂x2

(
ω′2z
2

)
− ν̄ ∂ω

′
z

∂x

∂ω′z
∂x
.

(2.24)

The other transverse vorticity component ω′2y follows a very similar equation. The
viscous diffusion and dissipation effects are argued (see the Appendix) to be small
compared to the inviscid terms in the above time-averaged equation. The dominant
mechanisms contributing to the amplification of enstrophy ω′iω′i = ω′2x +ω′2y +ω′2z across
the shock are thus given by

ū
∂ω′iω′i
∂x
=−4ω′2z

∂ ū

∂x
− 4ω′zρ ′,y

1
ρ̄2

∂ p̄

∂x
+ 4ω′zp′,y

1
ρ̄2

∂ρ̄

∂x
, (2.25)

obtained by combining (2.17) in the streamwise direction with those in the transverse
directions of the form (2.24). A symmetry about the shock-normal direction means
that ω′2z = ω′2y , ω′zρ ′,y = ω′yρ ′,z and ω′zp′,y = ω′yp′,z.

The first term on the right-hand side of (2.25) is the production due to bulk
compression, and the other two terms correspond to the baroclinic generation of
vorticity. These terms are denoted by Pω, B1

ω and B2
ω respectively. Consider a fluid

element passing through the shock. Vorticity can be interpreted as the rotation of the
fluid element. Bulk compression at the shock compresses the fluid element and thus
reduces its moment of inertia. This is manifested as an increase in the rotation of
the fluid element, and equivalently as an increase in its vorticity behind the shock.
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The baroclinic source terms arise due to a mis-alignment of the pressure-gradient and
density-gradient vectors. The sign of the correlations between the fluctuating vorticity
and the gradient in density and pressure fluctuations determines whether these terms
have an amplifying effect on vorticity or they damp vorticity fluctuations.

The enstrophy equation (2.25) does not have any contribution from the shock
deformation, denoted by ξ . The local shock speed ξt is found to affect the streamwise
velocity fluctuations in (2.9), and the angular distortion ξy and ξz alter the transverse
velocity components in (2.13) and (2.14). It is shown by Sinha et al. (2003) that the
correlation u′ξt has a damping effect on the streamwise Reynolds stress and terms
of the form v′ξy and w′ξz enhance the transverse Reynolds stresses across a shock
wave. The equations for ∂u′/∂y and ∂v′/∂x presented above have a contribution due
to ξyt, which is the time rate of change of the shock angle. The corresponding terms
cancel each other in (2.23) such that there is no net effect on the vorticity fluctuations.
Thus, the unsteady shock deformation has no direct influence on the amplification of
vorticity fluctuations across a shock wave, as long as the fluctuations and the shock
distortions are small, and the linear analysis is valid.

2.1. Integrated form of equations
The flow variables across the shock are related by the Rankine–Hugoniot jump
conditions. These relations can be obtained by integrating the conservation equations
of the form (2.5) across the shock. The integrated contributions of the viscous terms
are small, as noted below. On writing these equations for an unsteady shock wave and
linearizing them about the mean flow yields the following relations for the fluctuating
quantities:

2ρ̄1ū1(u
′
2 − u′1)+ ρ ′2ū2

2 − ρ ′1ū2
1 + p′2 − p′1 = 0, (2.26)

v′2 − v′1 + ξy(ū2 − ū1)= 0, (2.27)

w′2 − w′1 + ξz(ū2 − ū1)= 0, (2.28)

where subscripts 1 and 2 denote shock upstream and downstream locations. These
equations can be interpreted as the integrated form of (2.9), (2.13) and (2.14),
where the streamwise derivatives across the shock are replaced by the corresponding
differences between the upstream and downstream values. The inviscid terms in
(2.26) scale as ρ̄1Uû, whereas the leading viscous terms are of the order µ̄1û/` in
magnitude. Their ratio ρ̄1U`/µ̄1 is much larger than unity, due to the fact that δ� `

and ρ̄1Uδ/µ̄1 = O(1). The viscous and inviscid terms in (2.27) and (2.28) exhibit a
similar trend. The viscous effects are therefore dropped from the above equations.

Using (2.26)–(2.28) as the starting point and following the same procedure as above,
we arrive at an integrated form of (2.25). The steps are delineated next. Writing (2.26)
in an equivalent form

ū1(u
′
2 − u′1)+ (u′1 − ξt)(ū2 − ū1)− ρ

′
1

ρ̄2
1

(p̄2 − p̄1)+ p′2 − p′1
ρ̄1

= 0 (2.29)

and differentiating it with respect to y, we get an equation relating ∂u′/∂y on each side
of the shock wave:

ū1

(
∂u′2
∂y
− ∂u′1
∂y

)
+ ∂u′1
∂y
(ū2 − ū1)− ξyt(ū2 − ū1)

− ∂ρ
′
1

∂y

p̄2 − p̄1

ρ̄2
1

+ 1
ρ̄1

(
∂p′2
∂y
− ∂p′1
∂y

)
= 0. (2.30)
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A similar equation relating ∂v′/∂x on each side of the shock wave cannot be directly
obtained by differentiating (2.27) with respect to x. Care is to be taken so as to retain
contributions from turbulent fluctuations, and not by the shock gradient, to enstrophy.
As earlier, we consider the linearized Euler equation for the y-momentum on each
side of the shock wave. The x-derivative at the shock is then written as the difference
between the upstream and downstream equations:(

∂v′2
∂t
+ ū2

∂v′2
∂x
+ 1
ρ̄2

∂p′2
∂y

)
−
(
∂v′1
∂t
+ ū1

∂v′1
∂x
+ 1
ρ̄1

∂p′1
∂y

)
= 0. (2.31)

This is similar to the procedure followed by Kevlahan (1997). The shock-normal
derivatives are termed ‘external’ and are evaluated by writing the conservation
equations on each side of the shock wave. The difference between the upstream
and downstream equations yields the jump in the shock-normal velocity gradient that
contributes to the vorticity amplification at the shock wave.

The jump relation (2.31), when combined with the temporal derivative of (2.27),
results in

ū2
∂v′2
∂x
− ū1

∂v′1
∂x
− ξyt(ū2 − ū1)+ 1

ρ̄2

∂p′2
∂y
− 1
ρ̄1

∂p′1
∂y
= 0, (2.32)

which relates ∂v′/∂x on each side of the shock wave. Combining (2.30) and (2.32)
gives the following equation for the change in transverse vorticity fluctuations across
the shock:

ū1(ω
′
z2 − ω′z1)=−ω′z21ū− ρ ′1,y

1p̄

ρ̄2
1

+ p′2,y
1ρ̄

ρ̄1ρ̄2
− (u′2,y − u′1,y)1ū, (2.33)

where 1ū = ū2 − ū1, 1p̄ = p̄2 − p̄1 and 1ρ̄ = ρ̄2 − ρ̄1. The above equation can be
treated as the integrated form of (2.23) without the viscous terms.

Multiplying both sides by ω′zm = (1/2)(ω′z1 + ω′z2) and Reynolds averaging yields

ū1
(ω′2z2 − ω′2z1)

2
=−ω′zmω

′
z21ū− ω′zmρ

′
1,y

1p̄

ρ̄2
1

+ω′zmp′2,y
1ρ̄

ρ̄1ρ̄2
− ω′zm(u

′
2,y − u′1,y)1ū, (2.34)

which can be interpreted as the integrated form of (2.24) across the shock wave. A
similar equation can be derived for the other transverse vorticity component. Further, it
can be easily shown using (2.27) and (2.28) that the streamwise vorticity component
remains unchanged across the shock wave. Combining all the components yields

ū1

[
(ω′iω′i)2− (ω′iω′i)1

]=−4ω′zmω
′
z21ū− 4ω′zmρ

′
1,y

1p̄

ρ̄2
1

+ 4ω′zmp′2,y
1ρ̄

ρ̄1ρ̄2
− 4ω′zm(u

′
2,y − u′1,y)1ū, (2.35)

which is the integrated version of the enstrophy equation (2.25) at the shock wave.
The first term on the right-hand side represents production due to bulk compression,

and the second and third terms correspond to the baroclinic generation of vorticity.
The last term arises due to differencing across the shock, and it does not have a
counterpart in (2.25). Once again the shock-unsteadiness and distortion mechanisms do
not affect the enstrophy jump in (2.35).
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2.2. Budget of enstrophy amplification
A budget of the enstrophy equation (2.35) is computed using results from the LIA of
Mahesh et al. (1997). The upstream turbulence field is represented as a collection of
two-dimensional vorticity–entropy waves. The velocity and thermodynamic fluctuations
associated with a single wave are given by

u′1
ū1
= Av sinψ exp[iκ(x cosψ + y sinψ − ū1t cosψ)], (2.36a)

v′1
ū1
=−Av cosψ exp[iκ(x cosψ + y sinψ − ū1t cosψ)], (2.36b)

ρ ′1
ρ̄1
=−T ′1

T̄1
= Ae exp[iκ(x cosψ + y sinψ − ū1t cosψ)], (2.36c)

p′1
p̄1
= 0, (2.36d)

where κ is the wavenumber magnitude and ψ is the angle between the wavenumber
vector and the mean shock-normal direction. Av represents the magnitude of the
solenoidal velocity fluctuations and Ae corresponds to the entropy mode. The ratio
Ae/Av is defined as Areiφr , where Ar is the amplitude ratio and φr is the phase
difference between the entropy and vorticity components. It can be shown that
Areiφr = AuT sinψ , such that φr = 0 for the positive AuT values considered in this
work, while negative AuT values correspond to φr = π. In both cases, the sinψ
functional dependence results in an axisymmetric entropy field for an isotropic
vortical flow.

The interaction of a vorticity–entropy wave with a shock generates vortical, entropy
and acoustic components downstream of the shock wave. The resultant flow variables
are computed by applying the linearized Rankine–Hugoniot equations at the shock and
solving the linearized Euler equations in the downstream flow. Superposition of the
waves, for a given upstream energy spectrum, yields the turbulence statistics behind
the shock. The flow variables immediately downstream of the shock (subscript 2) are
used along with the prescribed upstream values (subscript 1) to compute a budget of
(2.35). The terms on the right-hand side are evaluated to assess the contribution of
the different physical mechanisms towards the amplification of vorticity fluctuations
at the shock wave. The data are normalized by ū3

1κ
2
0 , where κ0 is the most energetic

wavenumber, and are plotted as a function of upstream Mach number for different AuT

values (see figure 2).
The production due to mean compression has a dominant effect on the amplification

of vorticity fluctuations across the shock wave. This is true for all Mach numbers
and for all the AuT cases presented in figure 2. In the absence of upstream entropy
fluctuations (AuT = 0), the baroclinic term B1

ω is identically zero at all Mach numbers.
For AuT > 0, B1

ω is positive and its magnitude increases rapidly with the level
of temperature fluctuations in the incoming flow. For high values of AuT (e.g. in
figure 2e), B1

ω is a major contributor to vorticity amplification across the shock. On
the other hand, B1

ω has a damping effect on the vorticity fluctuations for AuT < 0 (see
figure 2f ). The other baroclinic source term B2

ω is found to be negative for all values
of AuT . The last term Eω has minimal effect on the vorticity budget across the shock
wave.

The amplifying effect of B1
ω in (2.35) for AuT > 0 is due to a negative correlation

between fluctuating vorticity and density fluctuation gradient, i.e. the two quantities
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FIGURE 2. Budget of enstrophy amplification as a function of upstream Mach number
for different values of AuT . (a) AuT = 0; (b) AuT = 0.58; (c) AuT = 1.0; (d) AuT = 2.0;
(e) AuT = 4.0; (f ) AuT = −0.58. Here,

∫
Pω,

∫
B1
ω,
∫

B2
ω and

∫
Eω represent the four terms

on the right-hand side of (2.35). The amplification of enstrophy on the left-hand side is
denoted by LHS, where all the terms are normalized by ū3

1κ
2
0 .

are out of phase. A physical interpretation of the underlying phenomenon is
shown graphically by Mahesh et al. (1997). For the case when ω′z > 0 (counter-
clockwise) and ρ ′,y < 0, there is a downward shift of the centre of mass of a fluid
element. The mean pressure gradient acting at the geometric centre thus results in a
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counter-clockwise moment about the centre of mass. The baroclinic torque therefore
adds to the vorticity of the fluid element. Similarly, for ω′z < 0 (clockwise) and ρ ′,y > 0,
the pressure gradient at the geometric centre creates a clockwise moment about the
centre of mass, which is now shifted upwards. In both cases, the baroclinic torque
has an amplifying effect on the vorticity fluctuation. The opposite is true for AuT < 0,
where the vorticity fluctuations and the density fluctuation gradient are in phase, i.e.
ω′zρ ′,y > 0. Arguments similar to those given above can be advanced to show that the
baroclinic torque in this case is opposed to the direction of the vorticity fluctuations.
This results in a damping effect due to B1

ω.
The second baroclinic source term B2

ω in (2.35) brings in the effect of pressure
fluctuations on vorticity amplification. It is found that the fluctuating vorticity is out of
phase with the pressure fluctuation gradient, i.e. ω′zp′,y < 0, irrespective of the sign of
AuT . For the case where ω′z > 0 (counter-clockwise) and p′,y < 0, the centre of pressure
is shifted downwards. The net pressure force thus has a clockwise moment about the
centre of mass located at the geometric centre of the fluid element. The baroclinic
torque therefore opposes the fluid vorticity direction. A similar opposing effect of the
baroclinic torque on the vorticity fluctuation can also be shown in the case where
ω′z < 0 and p′,y > 0. The corresponding source term B2

ω has a negative contribution to
the vorticity budget for all values of AuT .

Larsson & Lele (2009) present DNS of homogeneous isotropic turbulence
interacting with nominally normal shock waves. Data from their DNS are used to
compute the dominant terms in (2.35) and the results are presented in figure 3.
The corresponding terms obtained from linear theory results are reproduced from
figure 2(a) for comparison. The Mach 1.5, 2.5, 3.5 and 4.7 cases with Mt = 0.22
and AuT ' 0 (see table 1 in § 4) are considered. The locations 1 and 2 are identified
upstream and downstream of the time-averaged shock wave, and averaging is done
over the transverse directions. The left-hand side and production terms in (2.35)
computed using DNS data follow the qualitative trends obtained from linear theory.
There are, however, quantitative differences between the LIA and DNS results, as
described below.

The integrated value of the production term in (2.35) is computed as∫
Pω =−4ω′zmω

′
z21ū= 2(ω′z1ω

′
z2 + ω′2z2)|1ū|. (2.37)

It is found that the first part has negligible contribution to the vorticity generation, due
to a vanishingly small correlation between the vorticity fluctuations across the mean
shock gradient. This is a consequence of the viscous and nonlinear processes occurring
in this region of thickness δ̄, which is comparable to the turbulent length scale `

in magnitude. The absence of viscous and nonlinear effects in LIA yields a strong
correlation between the vorticity fluctuations immediately upstream and downstream of
the shock wave. Both correlations in (2.37) contribute to the production of vorticity,
which is comparable to the enstrophy amplification term (marked as left-hand side)
as linear theory estimates. On the other hand, the production term computed using
the DNS data is lower than the corresponding left-hand-side term in magnitude (see
figure 3).

Both LIA and DNS data show that the production due to mean compression
has a dominant effect on enstrophy amplification for AuT = 0. At M1 = 2.5, the
production accounts for ∼80 % of the enstrophy amplification in the DNS, and its
contribution is even higher at higher Mach numbers. The production term is therefore
the subject of further analysis and modelling for interactions without appreciable
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FIGURE 3. The dominant terms in the enstrophy budget computed from LIA results (lines)
for AuT = 0 and using DNS data (symbols) of Larsson & Lele (2009): •, left-hand side; and
◦, production term in (2.35), where the DNS data are scaled to match the upstream enstrophy
level in the linear theory.

velocity–temperature correlation upstream of the shock wave. A similar evaluation
of the source terms for non-zero AuT cases using the corresponding DNS data, if
available, can quantify the contribution of the baroclinic torques to the enstrophy jump
in the presence of nonlinear and viscous effects.

3. Modelling of the enstrophy equation
In this section, models are developed for the unclosed terms in the enstrophy

equation (2.25). The inviscid mechanisms that play a dominant role in enstrophy
amplification at the shock are considered here. The viscous diffusion and dissipation
terms are assumed to be relatively small (see the Appendix). The model predictions
may therefore apply to high-Reynolds-number (Uδ̄/ν � 1) flows, and are compared
with LIA results based on linearized Euler equations. First, the case of purely vortical
turbulence upstream of the shock wave is studied. This is followed by modelling the
effect of upstream temperature fluctuations.

3.1. Modelling for AuT = 0

Based on the budget of the enstrophy equation for AuT = 0 presented above, the
transport equation for ω′iω′i is approximated as

ū
∂ω′iω′i
∂x
'−4ω′2z

∂ ū

∂x
=−cω ω′iω′i

∂ ū

∂x
, (3.1)

where the viscous terms are neglected and the parameter cω is used to model the
production term. Integration across the mean shock thickness yields a closed-form
solution for ω′iω′i amplification across the shock wave:

(ω′iω′i)2
(ω′iω′i)1

=
(

ū1

ū2

)cω

. (3.2)
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FIGURE 4. ω′iω′i-amplification across a normal shock when AuT = 0. Model predictions
(lines) are compared with linear theory results (circles).

Assuming isotropic turbulence, ω′2x = ω′2y = ω′2z = ω′iω′i/3 yields cω = 4/3, and the
results are compared to the enstrophy amplification obtained from LIA in figure 4.
The model predictions compare well with the theoretical values for low upstream
Mach number, but are lower than the theory at higher Mach numbers.

The model can be improved by noting that ω′y and ω′z are amplified across the shock,

while ω′x remains relatively unchanged. This may result in ω′2x � ω′2y = ω′2z ' ω′iω′i/2
downstream of the shock wave. Using this estimate of ω′2z in (3.1) yields cω = 2, which
is found to over-predict enstrophy amplification in figure 4. In fact, ω′iω′i/3 6 ω′2z 6
ω′iω′i/2 such that the above values may be regarded as the lower and upper limits
for cω. The actual value lies somewhere in between the two extremes. A value of
cω = 1.55 matches the theoretical results in figure 4 closely.

3.2. Modelling for non-zero AuT

The budget of the enstrophy equation shows that the baroclinic source term

B1
ω =−4ω′zρ ′,y

1
ρ̄2

∂ p̄

∂x
= 4ω′zρ ′,y

ū

ρ̄

∂ ū

∂x
(3.3)

is important for AuT 6= 0 cases. It is positive for AuT > 0 and vice-versa. In the
following, the unclosed correlation ω′zρ ′,y is modelled such that the effect of B1

ω can be
included in the modelled equation.

In the absence of pressure fluctuations in the upstream flow, the density fluctuations
are generated by the entropy component. The thermodynamic fluctuations are related
to the vortical part via AuT , as in (1.2). For a vorticity–entropy wave considered in the
LIA (see § 2.2), it can be shown that

ρ ′1,y
ρ̄1
=−AuT

ω′z1sin2ψ

ū1
. (3.4)
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On integration over the energy spectrum, we get the following relation for the
upstream turbulence field:

ω′z1ρ
′
1,y

ρ̄1
=−AuT

ω′2z1sin2ψ

ū1
=−bωAuT

ω′2z1

ū1
, (3.5)

where bω is a modelling coefficient and its value is found to be 1/2 using linear
analysis results.

Based on the foregoing, the baroclinic term can be modelled as

B1
ω = 4ω′zρ ′,y

ū

ρ̄

∂ ū

∂x
=−4bωAuTω′2z

∂ ū

∂x
. (3.6)

Combining this with the model for the production term (3.1) yields

ū
∂ω′iω′i
∂x
'−4(1+ bωAuT)ω′2z

∂ ū

∂x
=−cω(1+ bωAuT)ω

′
iω
′
i

∂ ū

∂x
, (3.7)

where the viscous terms are once again neglected in the equation. The amplification in
ω′iω′i across the shock in the high-Reynolds-number limit is therefore given by

(ω′iω′i)2
(ω′iω′i)1

=
(

ū1

ū2

)cω(1+bωAuT )

, (3.8)

and it is compared to LIA results for different values of AuT in figure 5. The prediction
for AuT = 0 is identical to that presented earlier. For AuT = 0.58, the above equation
matches theoretical values for Mach numbers less than 1.2, but over-predicts the
amplification at higher M1. The over-amplification of enstrophy at high Mach numbers
increases dramatically for AuT = 1, 2 and 4. The model predicts the damping effect of
B1
ω for negative AuT (see figure 5a), but yields too low a value of ω′iω′i-amplification at

high Mach numbers.
Next, we attempt to improve the modelling of B1

ω. Instead of using the upstream
closure given by (3.5), taking an average of upstream and downstream values may give
a better estimate. Thus,

ω′zρ ′,y
ω′2z

ū

ρ̄
' 1

2

[
ω′z1ρ

′
1,y

ω′2z1

ū1

ρ̄1
+ ω

′
z2ρ
′
2,y

ω′2z2

ū2

ρ̄2

]

=−bωAuT

2

1+
(
ω′z2ρ

′
2,y

ω′2z2

ū2

ρ̄2

)(
ω′z1ρ

′
1,y

ω′2z1

ū1

ρ̄1

)−1
 (3.9)

where the downstream correlation is evaluated immediately behind the shock, so as to
consider the effect in the vicinity of the shock wave. The downstream term is found
to be smaller in magnitude than the upstream correlation for high values of M1. This
is mainly because amplification of the transverse vorticity ω′2z across a strong shock
wave is larger than that of ω′zρ ′,y. An increase in the mean density and a corresponding
decrease in the mean velocity add to this effect. The ratio of the upstream and
downstream correlations is plotted in figure 6 for different values of AuT . It has values
close to 1 for M1→ 1 and tends to low values for high upstream Mach number. This
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FIGURE 5. Model predictions for ω′iω′i-amplification across a normal shock for different
values of AuT are compared with LIA results (symbols). The dashed line represents (3.8)
and the solid line corresponds to (3.11). (a) AuT = −0.58; (b) AuT = 0; (c) AuT = 0.58;
(d) AuT = 1.0; (e) AuT = 2.0; (f ) AuT = 4.0.

trend can be mimicked by a factor exp(1−M1), such that

ω′zρ ′,y
ω′2z

ū

ρ̄
'−bωAuT

2
[1+ e1−M1]. (3.10)
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FIGURE 6. Ratio of downstream to upstream values of the correlations (ω′zρ ′,y/ω′2z )(ū/ρ̄) as
computed using linear theory.

The above modification can be incorporated in the model equation (3.6) for B1
ω by

multiplying bω by (1/2)[1 + e1−M1]. The term (1/2)[1 + e1−M1] ' 1 at low supersonic
M1, and decreases to 1/2 at high Mach numbers. It therefore reduces the amplifying
effect of AuT , especially for high M1, and results in an improvement in the model
predictions. However, the discrepancy between model and theory is still considerable
for large values of AuT . Including an additional factor of 1/2 results in a good match
with theory for all cases (see figure 5), except for AuT = 4 and M1 > 3. This reduction
in the model coefficient by 1/2 may be interpreted as bringing in the effect of B2

ω,
which has a negative contribution to the budget (see figure 2).

Thus, the final modelled form of the production and baroclinic terms in the
enstrophy equation can be written as

ū
∂ω′iω′i
∂x
'−cω(1+ b′ωAuT)ω

′
iω
′
i

∂ ū

∂x
(3.11)

with

b′ω = 1
4 bω[1+ e1−M1]. (3.12)

4. Model evaluation
The model developed above is applied to the interaction of homogeneous isotropic

turbulence with a normal shock. As noted earlier, the solenoidal dissipation rate can
be written as εs = ν̄ω′iω′i. The modelled enstrophy equation is cast in the framework
of a k–ε turbulence model, and viscous dissipation is added to simulate turbulence
decay on each side of the shock wave. The resulting equations are used to compute
shock/homogeneous turbulence interaction cases, for which DNS data are available in
literature.

4.1. Model for the solenoidal dissipation rate

Amplification of the solenoidal dissipation rate across the shock can be expressed
in terms of the changes in the kinematic viscosity and the amplification in
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FIGURE 7. Amplification of the solenoidal dissipation rate predicted by model
equations (4.3), solid line, and (4.10), dashed line, are compared with linear theory results,
shown by symbols.

enstrophy:

ū
∂εs

∂x
= ū

∂

∂x
(ν̄ω′iω′i)= ūω′iω′i

∂ν̄

∂x
+ ūν̄

∂ω′iω′i
∂x

. (4.1)

The dynamic viscosity µ̄ is assumed to be a function of mean temperature T̄ , such that
µ̄= cT̄α. Here c and α = 0.76 are constants. The change in kinematic viscosity across
the shock can be calculated as

∂ν̄

∂x
=− µ̄

ρ̄2

∂ρ̄

∂x
+ 1
ρ̄

∂µ̄

∂x
= ν̄

[
1
ū

∂ ū

∂x
+ α

T̄

∂T̄

∂x

]
. (4.2)

Combining (3.11) and (4.2) yields the following modelled equation for εs:

ū
∂εs

∂x
'−cω(1+ b′ωAuT)εs

∂ ū

∂x
+ εs

∂ ū

∂x
+ αεs

ū

T̄

∂T̄

∂x
, (4.3)

where the first term models the effect of mean compression and baroclinic torques
on enstrophy amplification, and the last two terms are due to the changes in mean
kinematic viscosity. Similarly to (3.11), the above equation neglects viscous effects
and the model predictions can be assumed to hold for high-Reynolds-number flows.
Integrating it across the shock wave yields

εs2

εs1
=
(

T̄2

T̄1

)α(
ū1

ū2

)cω(1+b′ωAuT )−1

, (4.4)

which matches linear theory results for all M1 and AuT (see figure 7), except for the
AuT = 4 case when M1 > 3.

The conservation of total enthalpy across a normal shock

ū

T̄

∂T̄

∂x
=−(γ − 1)

ū2

ā2

∂ ū

∂x
, (4.5)
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can be used to develop the model (4.3) further. Here, ā is the mean speed of sound.
We obtain

ū
∂εs

∂x
=−[cω(1+ b′ωAuT)− 1+ α(γ − 1)M2]εs

∂ ū

∂x
=−2

3
cε1εs

∂ ū

∂x
, (4.6)

where cε1 = (3/2)[cω(1 + b′ωAuT) − 1 + α(γ − 1)M2] is a function of the local Mach
number, and a factor of 2/3 is included in (4.6) to match the form of standard k − ε
equations. For cases where upstream Mach number is known, a more convenient form
of cε1 can be derived by expressing the temperature ratio in terms of the velocity ratio
across the shock. It can be easily checked that

T̄2

T̄1
=
(

ū1

ū2

)aM1+b

, (4.7)

where a= 0.185 and b= 0.175 give a close approximation to the exact value. Thus,

cε1 = 3
2 [cω(1+ b′ωAuT)− 1+ α(aM1 + b)]. (4.8)

Substituting the values of different parameters gives the following form of the final
model constant:

cε1 ' 1+ 0.21M1 + 0.3AuT(1+ e1−M1), (4.9)

which yields practically identical results to the model equation (4.3), as can be seen
in figure 7. The final modelled form of the εs-equation can therefore be written in a
frame-independent form as

ρ̄ūi
∂εs

∂xi
=−2

3
cε1ρ̄εss̄jj − cε2

ρ̄ε2
s

k
, (4.10)

where s̄jj = ∂ ūj/∂xj is the mean dilatation. A viscous dissipation term similar to that
used in the standard k–ε model (Wilcox 1998) is added, and the value of the model
constant cε2 is set to reproduce the decay rate of homogeneous isotropic turbulence in
the DNS.

Sinha et al. (2003) present an alternative equation for the model constant cε1

for purely vortical turbulence interacting with a shock wave. The values of the
model constant are within 3 % of those obtained using (4.9), and make practically
no difference to the DNS test cases with AuT ' 0 described below. The equation
was subsequently extended to non-zero AuT cases by Veera & Sinha (2009). These
earlier forms of cε1 are based purely on empirical curve-fitting to LIA data. By
comparison, the current model is based on a rigorous equation for the evolution of the
solenoidal dissipation rate across the shock derived from the Navier–Stokes equations.
The physical mechanisms that contribute to the amplification of εs are systematically
analysed to arrive at the final form of the model equation presented above.

4.2. Model for turbulent kinetic energy
The modelling of turbulent kinetic energy (TKE) amplification in the interaction of
homogeneous turbulence with a normal shock is discussed in detail by Sinha et al.
(2003) and Veera & Sinha (2009). The key results are presented below.

The TKE equation in the k–ε turbulence model (Wilcox 1998) applied to
shock/homogeneous turbulence interaction is given as

ũ
∂k

∂x
=−ũ′′2

∂ ũ

∂x
− εs, (4.11)
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where compressibility corrections in the form of dilatational dissipation and
pressure–dilatation effects are neglected, as they are not found to improve predictions
in shock/homogeneous turbulence interactions (Sinha et al. 2003). Using the
Boussinesq approximation, the Reynolds stress ũ′′2 is given by

ρ̄ũ′′2 =−4
3
µT
∂ ũ

∂x
+ 2

3
ρ̄k, (4.12)

where the eddy viscosity µT = cµρ̄k2/εs and cµ = 0.09. Substitution in (4.11) results
in a production term that is proportional to (∂ ũ/∂x)2. The source term assumes large
values (∝1/δ̄2) at a shock wave, and this leads to high amplification of turbulent
kinetic energy. Also, the amplification increases rapidly as the grid is refined to
get a thinner shock. Sinha et al. (2003) argue that this non-physical behaviour of
the standard k–ε model is primarily caused by the breakdown of the eddy-viscosity
assumption in a highly non-equilibrium flow, such as a shock wave.

Algebraic Reynolds stress models are independent of the eddy-viscosity formulation,
and therefore expected to perform better than the standard k–ε model. The equivalent
nonlinear eddy-viscosity models suppress the model parameter cµ in regions of high
mean flow gradient. Suppressing eddy viscosity in the shock wave leads to a reduction
in the k-amplification level, and brings it closer to the DNS data. A limiting case of
the nonlinear eddy-viscosity models is to set µT = 0 in the shock wave, and it yields
the isotropic form of the Reynolds stress ũ′′2 = 2k/3. The resulting equation matches
DNS amplification of TKE for Mach numbers lower than 1.4 (see figure 5 in Sinha
et al. 2003).

Further, a model is proposed to include the damping effect of the unsteady shock
motion, and it results in a good match with theory and DNS over the entire range
of Mach numbers (Sinha et al. 2003). The presence of non-zero velocity–temperature
correlation in the incoming flow is known to affect TKE amplification across the shock
(Mahesh et al. 1997). The corresponding source term in the TKE equation is positive
for negatively correlated velocity and temperature fluctuations (AuT > 0) and has a
damping effect for positive correlations (AuT < 0). Veera & Sinha (2009) propose a
physically consistent model for this effect. The final model form as applicable to the
shock/homogeneous turbulence interactions considered in this section is given by

ρ̄ūi
∂k

∂xi
=−2

3
ρ̄ks̄jj

[
1− b′1 +

AuT

2

(
1+ 1

Tr

)]
− ρ̄εs, (4.13)

and is found to match theory and DNS data well. Here, b′1 = b′1,∞(1 − e1−M1) is
the shock-unsteadiness modelling parameter and b′1,∞ = 0.4 + 0.2AuT is its high-Mach-
number limiting value. The mean temperature ratio across the shock is given by
Tr = T2/T1, and we use ũ' ū as noted in § 2. Further details can be found in the work
of Veera & Sinha (2009).

4.3. Comparison with DNS data

The k–ε model developed above is compared with DNS data for shock/homogeneous
turbulence interaction for a range of upstream conditions (see table 1). Other k–ε
models commonly used in the literature are also presented. The first four cases bring
out the effect of upstream entropy fluctuations on shock–turbulence interaction, and are
studied first. Comparison with the high-Mach-number interactions of Larsson & Lele
(2009) are presented subsequently.
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Case M1 AuT Mt Reλ kin εin Source

1.29A 1.29 0.04 0.14 19.1 9.8× 10−3 1.3× 10−3 Mahesh et al. (1997)
1.29B 1.29 0.56 0.14 19.1 9.8× 10−3 1.3× 10−3 Mahesh et al. (1997)
1.5A 1.50 0.01 0.17 6.7 1.5× 10−2 4.2× 10−3 Jamme et al. (2002)
1.5B 1.50 0.82 0.17 6.7 1.5× 10−2 4.2× 10−3 Jamme et al. (2002)
2.5 2.50 0.00 0.22a 40.0a 2.7× 10−2 9.9× 10−4 Larsson & Lele (2009)
3.5 3.50 0.00 0.22a 40.0a 2.6× 10−2 9.7× 10−4 Larsson & Lele (2009)
4.7 4.70 0.00 0.22a 40.0a 2.6× 10−2 9.5× 10−4 Larsson & Lele (2009)

TABLE 1. Mean and turbulent flow quantities for the interaction of homogeneous
turbulence with a normal shock. Values are reported either at the inflow station or
immediately upstream of the shock (marked by a). The turbulence quantities k and ε
are normalized by the upstream values of ρ̄, ā and µ̄.

4.3.1. Effect of entropy fluctuations
The cases 1.29A and 1.5A have essentially vortical inflow turbulence, and cases

1.29B and 1.5B have an entropic thermodynamic field along with vortical velocity
fluctuations in the incoming flow. Morkovin’s hypothesis holds in a weak form, such
that urms and Trms upstream of the shock wave follow (1.1):

u′T ′

ūT
= Ru′T ′

urms

ū

Trms

T
= (γ − 1)M2

1Ru′T ′
u′2

ū2
, (4.14)

where the cross-correlation coefficient Ru′T ′ is given for each case. The above equation
is compared with (1.2) to obtain the equivalent AuT for the cases listed in table 1. The
values of Reynolds number based on the Taylor microscale, Reλ, and turbulent Mach
number, Mt, at the inflow station are also tabulated. These are used to compute the
inlet values of k and εs at x = 0. Details are given in Veera & Sinha (2009), and are
not repeated here.

The evolution of the streamwise and transverse vorticity variances obtained from the
DNS are presented by Mahesh et al. (1997) and Jamme et al. (2002). These are used
along with the kinematic viscosity of the fluid to compute the variation in solenoidal
dissipation rate (see figure 8). The data show a monotonic decay of εs from its inflow
level to a normalized value of unity immediately upstream of the shock. There is a
sharp increase at the shock, which is located at x= 2 for Mach 1.29 cases and at x= 3
for the Mach 1.5 flows. This is followed by a further decay of εs downstream of the
shock wave.

The model equations (4.10) and (4.13) are non-dimensionalized using the upstream
values of ρ̄, ā and µ̄. The reference length scale, L, in cases 1.29A and 1.29B is
chosen such that the Reynolds number based on the reference quantities, ReL, is 750
(Mahesh et al. 1997). Cases 1.5A and 1.5B use a characteristic length of 2λ as
reference, where λ is the Taylor microscale as defined by Tennekes & Lumley (1972).
Note that a value of cε2 = 1.5 is used in the modelled εs-equation to match the decay
rate upstream of the shock wave.

The turbulence model equations are solved fully coupled with the conservation
equations for mean flow. A finite-volume code based on a low-dissipation form of the
Steger–Warming flux–vector splitting approach (MacCormack & Candler 1989) is used
for this purpose. The viscous fluxes are discretized using a central-difference scheme,
and an explicit time integration is used to reach a steady-state solution. The code has
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FIGURE 8. Evolution of solenoidal dissipation rate in homogeneous turbulence passing
through a normal shock for cases (a) 1.29A, (b) 1.29B, (c) 1.5A and (d) 1.5B listed in
table 1. Different versions of the k–ε model are compared with DNS data (Mahesh et al. 1997;
Jamme et al. 2002).

been validated for several supersonic and hypersonic applications (Sinha, Mahesh &
Candler 2005; Pasha & Sinha 2008, 2012). The mean flow variables are initialized
to a hyperbolic tangent profile centred at the DNS shock location. The upstream and
downstream boundary values are matched to the Rankine–Hugoniot conditions. The
turbulent quantities k and εs are initialized to their inlet values listed in table 1. The
results presented in figure 8 are computed on a mesh with 200 grid points distributed
uniformly between the inlet (at x = 0) and the outlet (at x = 6). Sensitivity of the
results to the grid resolution is described below.

As discussed earlier, the standard k–ε model predicts a high amplification of εs

across the shock wave (see figure 8). For the 1.29A case, it predicts a peak εs value
of 3.52 compared to that of 1.33 in the DNS. Suppressing eddy viscosity in the shock
region by the realizable k–ε model (Thivet et al. 2001) brings down the post-shock
εs level, but the values are still higher than DNS. The current model, on the other
hand, predicts the amplification of εs across the shock as well as the downstream
decay rate correctly. The presence of upstream temperature fluctuations (case 1.29B)
enhances εs-amplification at the shock, and it is matched well by the current model.
By comparison, the standard and realizable k–ε models are insensitive to the nature
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FIGURE 9. Evolution of turbulent kinetic energy k in the interaction of homogeneous
turbulence with a normal shock for case 1.5A. Different versions of the k–ε model are
compared with DNS data (Jamme et al. 2002).

of upstream turbulence, and their results are identical to the respective predictions in
1.29A. The k–ε model proposed by Sinha et al. (2003) is also independent of AuT . Its
predictions match the current model closely for the 1.29A flow, but are appreciably
lower than DNS for 1.29B with non-zero AuT .

A stronger shock wave at Mach 1.5 yields a higher amplification of εs across the
shock compared to the Mach 1.29 flows. The standard and realizable k–ε models,
once again, over-predict the post-shock εs value for 1.5A, and are insensitive to the
presence of upstream temperature fluctuations in 1.5B. The current model results
match DNS data well for solenoidal inflow turbulence (figure 8c) and over-predict the
post-shock εs (by ∼15 % at the peak location) in the presence of entropy fluctuations
in the upstream flow (figure 8d).

The evolution of turbulent kinetic energy predicted by the current model
equations (4.10) and (4.13) is compared with DNS data for the case 1.5A in figure 9.
Results computed using the standard and realizable k–ε models are also presented. The
turbulent kinetic energy predicted by the current model matches DNS data well for
solenoidal turbulence interacting with a normal shock at Mach 1.5. By comparison, the
standard and realizable models lead to higher values of k downstream of the shock.
The same is true for the other three test cases and the results are presented in Veera
& Sinha (2009). Note that DNS yields a high level of turbulent kinetic energy in the
region of the shock wave. This is caused by the unsteady shock motion and does not
represent turbulent fluctuations. Also, the non-monotonic variation in k immediately
downstream of the shock wave (3.2 < x < 3.9) is due to a rapid decay of acoustic
energy in this region (Mahesh et al. 1997). This transfer between the acoustic and
vortical modes is not explicitly reproduced, but its net effect on turbulent kinetic
energy amplification is included in the current model. As a result, there is a close
match between the model predictions and DNS data for x> 3.9.

4.3.2. High-Mach-number interactions
Application of the current model to the high-Mach-number cases of Larsson & Lele

(2009) is presented next. The Mt and Reλ values listed for these cases in table 1
are immediately upstream of the shock wave. They are extrapolated to the inlet
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FIGURE 10. Model predictions (lines) for turbulent kinetic energy and solenoidal dissipation
rate in the shock/homogeneous turbulence interaction cases (a) M1 = 2.5 and (b) M1 = 3.5
compared to DNS data (symbols) of Larsson & Lele (2009).

location using one-dimensional k–ε equations for decaying homogeneous isotropic
turbulence. A value of cε2 = 1.2 is used here. At a shock wave, the k–ε model
equations in a RANS code can yield results that are significantly higher than those
presented in figure 7 for the limiting inviscid case. The error is more prominent at
high Mach numbers with relatively large turbulence amplification across the shock
wave, and is due to the non-conservative nature of the k–ε source terms. The model
equations (4.10) and (4.13) are therefore cast in an equivalent conservative form and
the results are comparable to those obtained by direct integration of the inviscid
equations (4.3). The values are slightly lower than those in figure 7 because of the
effect of viscous dissipation in the shock region.

For the Mach 2.5 case, the current model predicts an εs-amplification of 3.12 at the
shock wave and it is close to the peak value obtained in the DNS (see figure 10a).
Downstream of the shock, the εs-decay rate is higher in the DNS, resulting in a
mis-match with the model results for 0 < x < 6. As noted by Larsson & Lele (2009),
anisotropy in the Reynolds stresses and vorticity variances is prominent up to about
x = 10. Further downstream, the model reproduces the value of εs and its decay
rate closely. The turbulent kinetic energy comparison for this case is similar to that
presented in figure 9. The model matches the k-amplification obtained from DNS, but
is somewhat lower than the data downstream of the shock wave. This is probably due
to the over-prediction of εs in the post-shock region. Further downstream (x > 6), the
model results closely match the decay rate of turbulent kinetic energy in the DNS.

The model predictions for the Mach 3.5 case (in figure 10b) show a similar
comparison with DNS. The amplification of k and εs at the shock is reproduced
closely. Downstream of the shock, there is discrepancy between the data and
prediction of the solenoidal dissipation rate in the near field. However, the model
matches DNS data further downstream (x > 10). The far-field decay rate of the
turbulent kinetic energy is comparable to that obtained from DNS, but the values
are under-predicted by the model. The highest Mach number case 4.7 (not shown here)
follows a similar trend. The near-field discrepancy between model and DNS is higher
than the previous cases, but the turbulence amplification at the shock is predicted
correctly.
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FIGURE 11. Comparison of εs-amplification across the shock obtained from linear theory
(line), DNS (•) and RANS computations using the current k–ε model (◦).

Figure 11 presents the amplification of εs obtained from the RANS simulations
as a function of the upstream mean flow Mach number. The cases correspond to
1.5A, 2.5, 3.5 and 4.7, and the peak value of εs in the DNS are plotted. Linear
analysis results for AuT = 0 are also included for comparison. The RANS results are
comparable to the linear theory at low Mach numbers, but are relatively lower for the
hig-Mach-number cases. This may be due to the effect of viscous dissipation in the
region of the shock wave, which is not accounted for by the inviscid linear theory. A
higher dissipation rate for cases 3.5 and 4.7 results in a larger discrepancy between
the RANS computation and linear theory. On the other hand, the DNS include viscous
effects at the shock wave, and the corresponding εs-amplification values overlap with
the RANS results.

Note that the current model based on linear theory reproduces the DNS data for
turbulent kinetic energy, enstrophy and solenoidal dissipation rate fairly well. This is
probably due to the fact that M2

t � (M2
1 − 1) for all the cases considered here. This

condition is proposed by Lee et al. (1993) for the validity of LIA. There are, however,
other aspects of shock–turbulence interaction that are not captured by the linear theory.
For example, the streamwise vorticity variance shows a rapid build-up downstream
of the shock to match the transverse vorticity components. The linearized governing
equations, without the nonlinear terms, do not predict this increase in the streamwise
vorticity. Additional modelling to account for the nonlinear effects may improve the
model predictions further in the post-shock region. Also, Larsson & Lele (2009) note
that incoming turbulence with M2

t > 0.06(M2
1 − 1) can result in significantly deformed

or broken shock waves. Such strong interactions are clearly outside the scope of the
current linearized analysis.

4.3.3. Grid refinement study
Sensitivity of the results presented above to the computational mesh is studied by

varying the grid-point density at the shock. Case 1.5B is considered for the grid
refinement study and the results are presented in figure 12. The baseline grid with
200 points, a finer mesh with 400 points and a coarser mesh with 100 points are
used in the simulations. All the grids have uniformly spaced grid points throughout
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FIGURE 12. Amplification of turbulent kinetic energy in the shock/homogeneous turbulence
interaction case 1.5B computed using varying numbers of grid points: (a) standard k–ε model;
and (b) current k–ε model.

the computational domain, resulting in a cell size of 0.015, 0.03 and 0.06 for the fine,
baseline and coarse meshes respectively.

As noted earlier, the standard k–ε model predictions (figure 12a) are highly sensitive
to the computed shock thickness. The shock gets thinner with successive refinement
of the computational mesh, and the k-amplification obtained using the standard model
increases rapidly. The post-shock dissipation rate also increases with grid refinement,
which results in a faster downstream decay of the turbulent kinetic energy computed
on the finer mesh.

By comparison, predictions of the current and realizable k–ε models are fairly
insensitive to the changes in computational mesh (see figure 12b). The variations are
mostly localized in the region of the shock wave, and the post-shock turbulent kinetic
energy shows a converging trend with successive grid refinement. The difference in
peak values between the baseline and fine meshes is less than 2 %. The corresponding
variation for the higher Mach number cases is less than 3 %. The trends in solenoidal
dissipation rate, not shown here, are similar to that presented in the figure, with
post-shock peak values predicted by the current model within 3.5 % between the two
finer meshes.

5. Application to shock–boundary layer interactions
Interaction of turbulent boundary layers with shock waves forms an important

class of problems for testing new turbulence models for high-speed flows. Several
turbulence models and their modifications have been proposed for SBLI flows (Roy
& Blottner 2006). We evaluate the potential of the current model in a canonical
shock–boundary layer configuration.

In the current framework, the amplification of turbulent fluctuations at a shock
wave depends on two parameters, namely the local strength of the shock wave given
in terms of the shock-normal Mach number and the upstream velocity–temperature
correlation. The mean flow Mach number and the local shock inclination angle can
be obtained from a RANS solution. The shock-normal Mach number and its variation
across the boundary layer can thus be computed; see previous work by Sinha et al.
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(2005) and Pasha & Sinha (2008, 2012). On the other hand, the level of temperature
fluctuations in a boundary layer and its correlation with the velocity fluctuations is not
readily available in a RANS computation. Recent DNS studies of supersonic turbulent
boundary layers shed light on this point.

Guarini et al. (2000) present DNS of a Mach 2.5 turbulent boundary layer at a
Reynolds number based on momentum thickness of 1577. Morkovin’s hypothesis (see
§ 1) and the strong Reynolds analogy relating velocity and temperature fluctuations
in the flow are critically evaluated using the DNS data. They find that the relation
between temperature and velocity fluctuations given in (1.1) is valid in a weak form up
to y/δBL ' 0.6. The temperature fluctuations are, however, higher than (1.1) estimate in
the outer part of the boundary layer. A modified form of the strong Reynolds analogy
(SRA) presented by Huang, Coleman & Bradshaw (1995),

Trms

T
= (γ − 1)M2

1

urms

ū

1
PrT

(
1− ∂T̄t

∂T̄

)−1

, (5.1)

is found to scale the fluctuations near the boundary layer edge better. Here, Tt is the
total temperature, PrT is the turbulent Prandtl number and δBL is the boundary layer
thickness.

Further, the streamwise velocity and temperature fluctuations are found to be anti-
correlated with the correlation coefficient Ru′T ′ ' −0.6 for 0.2 < y/δBL < 0.8. It attains
higher magnitude (Ru′T ′ ∼ −0.8) in the near-wall region and falls off to negligible
values at the boundary layer edge. Pirozzoli, Grasso & Gatski (2004) report similar
trends for the correlation coefficient and SRA relations in a spatially evolving turbulent
boundary layer at Mach 2.25. The modelling parameter AuT is thus evaluated as

AuT =−(γ − 1)M2 Ru′T ′

PrT

(
1− ∂T̄t

∂T̄

)−1

(5.2)

and is applied to a Mach 2.25 turbulent boundary layer at conditions comparable to
those of Pirozzoli et al. (2004). The parameter AuT is found to follow the variation of
M2 across the boundary layer. It is close to zero in the low-Mach-number near-wall
region. A maximum value of AuT ' 1.0 is attained at y/δBL = 0.8 before dropping to
negligible values at the boundary layer edge. Upstream temperature fluctuations with
AuT ∼ 1 can result in an enhancement of 30–40 % in the εs-amplification at the shock
wave. Note that the variation in M and the derivative ∂T̄t/∂T̄ across the boundary layer
are obtained from a RANS simulation. The turbulent Prandtl number is assumed to be
0.9.

Application of the current shock–turbulence model to practical SBLI configurations
requires evaluation of AuT in the upstream boundary layer. Models proposed for
turbulent heat flux or energy flux can be used for this purpose. For example, Bowersox
(2009) presents the following algebraic model for the streamwise energy flux in a
zero-pressure-gradient boundary layer:

ρe′′u′′ = τ12
∂ h̃

∂y
τθ − τ22

∂ h̃

∂y

∂ ũ

∂y
τ 2
θ , (5.3)

where e and h are the internal energy and enthalpy respectively, τ12 and τ22 are the
shear and normal Reynolds stresses, τθ = σθk/ε is a turbulent time scale, and σθ is
a model constant. The above equation can be readily rearranged to get an equivalent
relation for AuT , where all the quantities on the right-hand side can be obtained from
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a RANS simulation. Note that a component normal to the shock wave is considered
by modifying the value obtained from the above equation with respect to the shock
inclination angle.

The SBLI test case considered here is a 24◦ compression corner at Mach 2.84
and Reynolds number per unit length of 6.8 × 107 m−1. An experimental investigation
of this nominally two-dimensional configuration is reported by Settles & Dodson
(1994). Surface pressure and skin friction coefficient measured in the experiments
are used for evaluating numerical solutions, for example, in an earlier work
by Sinha et al. (2005). The simulation methodology followed here is identical to
the previous study and is not repeated. The computational grid is also based on a
detailed grid-refinement study reported by Sinha et al. (2005), and inlet conditions are
specified to match the incoming turbulent boundary layer momentum thickness.

Simulations using the standard k–ε and k–ω turbulence models predict a delayed
separation at the compression corner (Sinha et al. 2005). This is argued to be
due to turbulence over-amplification at the shock wave. The shock-unsteadiness
damping effect (Sinha et al. 2003) is incorporated to reduce the amplification of
turbulent kinetic energy. The separation location thus moves upstream, and the
modified turbulence model predictions match the experimental measurements better.
The Spalart–Allmaras (SA) model exhibits an opposite trend compared to the two-
equation turbulence models. The standard SA model predicts an early separation, and
applying the shock-unsteadiness correction moves the separation point downstream.

The standard SA model solves a transport equation for ρ̄ν̃, where ν̃ is related to
the turbulent kinematic viscosity νT via a wall damping function. In the transport
equation, the turbulence production due to mean flow gradients is a function of the
mean vorticity. The strong dilatation in a shock wave has only a small effect (less
than 5 % in this case) on the turbulent kinematic viscosity. Noting that νT ∝ k2/εs in
the absence of appreciable dilatational dissipation in a boundary layer, the changes in
νT across the shock can be estimated in terms of the amplifications of k and εs. The
model equations (4.10) and (4.13) are thus used to propose an additional source term
of the form −c′b1ρ̄ν̃Sii in the transport equation for ρ̄ν̃. Here, the coefficient

c′b1 =
4
3

[
1− b′1 +

1
2

AuT

(
1+ 1

Tr

)]
− 2

3
cε1, (5.4)

and the parameters b′1 and cε1 have been reported earlier. The additional source term
is effective only in regions of strong compression and does not alter the standard SA
model elsewhere in a flow. A similar correction to the SA model was proposed by
Sinha et al. (2005), but the effect of upstream entropy fluctuations via AuT was not
included.

The variation of AuT in the undisturbed turbulent boundary layer upstream of the
compression corner is plotted in figure 13(a). The distribution of the upstream shock-
normal Mach number along the separation shock is also shown. The model coefficient
c′b1 computed using these values of M1n and AuT (see figure 13b) varies from near zero
close to the wall to a maximum of 1.2 at y/δ0 = 0.73. Positive values of c′b1 lead to an
amplification of νT across the shock, thus delaying flow separation. This results in an
improved match with the experimental results.

The normalized surface pressure and skin friction coefficient measured in the
experiment are compared with the computed solution in figure 14. The streamwise
distance s along the plate and the ramp is normalized by the incoming boundary
layer thickness δ0, where s = 0 represents the corner. The experimental pressure rise
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FIGURE 13. Variation of model parameters AuT , M1n and c′b1 in a 24◦ compression ramp SBLI
flow. The wall-normal distance y is normalized by the undisturbed boundary layer thickness
δ0 upstream of the interaction.
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FIGURE 14. Comparison of (a) normalized surface pressure and (b) skin friction coefficient
along a 24◦ compression corner obtained using different versions of the SA model with
experimental data of Settles & Dodson (1994).

(at s/δ0 = −2) corresponds to the separation shock location, and it is reproduced
well by the current model. The pressure plateau in the recirculation region is slightly
over-predicted, but the reattachment pressure rise for s > 0 is closely matched by
the simulation. The standard SA model, on the other hand, predicts the separation
shock pressure rise far upstream of the experiment and the surface pressure in the
reattachment region is under-predicted. The drop in skin friction coefficient from its
flat-plate value marks the onset of separation, and it is also reproduced well by
the current model. However, the separation bubble size, as indicated by the cf = 0
data points, is over-predicted by both standard and modified SA models. Also, the
computed skin friction coefficient on the ramp is much lower than the experimental
measurement, and the current modification improves it by a small amount.

The results obtained using the shock-unsteadiness model (Sinha et al. 2005) are
presented for comparison. The value of c′b1 across the boundary layer for this case
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(obtained using AuT = 0, see figure 13b) is significantly lower than the current model,
and it results in a lower amplification of the turbulent eddy viscosity across the shock
wave. The shock-unsteadiness modification thus shows only a moderate improvement
in predicting the separation shock location (see figure 14), and is not enough to match
the experimental data. It is essential to include the effect of upstream temperature
fluctuations in the incoming boundary layer to match the onset of shock-induced flow
separation in this flow.

The implementation of the current shock–turbulence modification in two-equation
turbulence models can follow a procedure similar to that outlined in Sinha et al.
(2005). The turbulence production term in the original models is suppressed in the
shock wave and the model coefficients are matched to those in (4.10) and (4.13).
This requires identifying high-compression regions of the flow field and is achieved
by using an empirical function fs. The standard model is thus recovered in regions
outside the shock wave. By comparison, the mean-dilatation based correction for the
SA model is effective only in the shock wave and does not require the additional
variability due to the shock-identifying function to retain the standard form of the
model elsewhere.

Wilcox (2008) presents a k–ω stress-limiter turbulence model that limits TKE
production in a shock wave. It reduces the error caused by the eddy-viscosity
assumption and thus improves SBLI predictions compared to the standard k–ω model;
see, for example, figure 17 in Wilcox (2008). Further, Reynolds stress models are
independent of the eddy-viscosity assumption, and are therefore expected to include
the anisotropy effects at a shock wave. The shock–turbulence correction, presented in
this work, should consequently be smaller in magnitude when such turbulence models
are applied to SBLI flows. The models, however, may require additional development
to account for the effect of upstream temperature fluctuations.

The results presented above show the potential of the current model in a supersonic
compression ramp SBLI flow. Other configurations like two-dimensional oblique shock
impingement, axisymmetric cone–flare and cylinder–flare, and three-dimensional single
and double fins can also be used for model validation. In addition to the geometry,
these test cases vary in terms of Mach number, Reynolds number and shock angle.
Application of the shock–turbulence modification, like the model proposed by Sinha
et al. (2003), show that the majority of the effect is localized at the separation shock.
The separation location is better predicted by the modification, and this results in an
improved flow topology and shock structure (Pasha & Sinha 2008, 2012).

The model coefficients in (4.10) and (4.13) are a function of the local shock
strength, and the velocity–temperature correlation in the incoming flow. The results
can therefore be sensitive to the free stream and boundary conditions. The parameter
AuT scales with the square of the upstream Mach number, and can have a large effect
in hypersonic flows. The temperature boundary condition can further alter the value
of AuT in the vicinity of the wall. A detailed validation of the current model against
different canonical configurations at varying Mach numbers, for both adiabatic and
isothermal walls, is a subject of further investigation.

6. Conclusions
This paper studies the amplification of enstrophy when homogeneous isotropic

turbulence interacts with a normal shock. Upstream turbulence with varying levels
of vortical and entropic fluctuations are considered for a range of shock strengths. A
linearized transport equation is derived for the evolution of enstrophy in the immediate
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vicinity of the shock wave. The equation is written in a frame of reference attached
to the unsteady shock wave, and assumes a separation of scales between the shock
gradient and turbulent fluctuations. An integrated form of the equation is used to
compute a budget of the enstrophy jump across the shock. It is found that mean
compression at the shock plays a dominant role in amplifying enstrophy, and the
baroclinic torque due to mean pressure gradient has an appreciable effect for non-zero
temperature fluctuations in the upstream flow. The baroclinic source term is positive
for negatively correlated temperature and velocity fluctuations upstream of the shock,
and vice-versa.

The baroclinic term in the enstrophy equation is proportional to the correlation
of transverse vorticity and density fluctuation gradient. A closure approximation is
proposed for this correlation based on linear analysis results. This, along with a
model for the production term, yields a closed-form solution for the enstrophy jump
across a shock wave in the inviscid limit. The results are found to match enstrophy
amplifications obtained from LIA for a range of shock strengths and varying ratio
of upstream vortical to entropic fluctuations. The enstrophy equation is then used to
develop a model for the solenoidal dissipation rate, and the resulting k–ε equations
are employed to simulate the interaction of homogeneous isotropic turbulence with
normal shock waves. The model predictions match the amplification of solenoidal
dissipation rate in the DNS closely. There are however appreciable differences in the
post-shock evolution of turbulence, possibly due to nonlinear effects not included in
the current model. The model equations are further used to propose a modification
to the eddy-viscosity transport equation in the SA turbulence model. Application to a
canonical shock–boundary layer interaction shows that including the baroclinic effects
on enstrophy generation at the shock results in a significantly closer match with
experimental measurements.
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Appendix
This Appendix presents the scaling of the different terms in the enstrophy equation

at the shock wave. The vorticity transport equation in a compressible flow is given by

∂ωi

∂t
+ uj

∂ωi

∂xj
= ωj

∂ui

∂xj
− ωi

∂uj

∂xj
+ ν ∂

2ωi

∂x2
j

− (∇ρ−1 ×∇p)i+ψi, (A 1)

where the terms on the left-hand side represent unsteady and convection effects. The
first term on the right-hand side corresponds to vortex stretching and tilting, and the
second term brings in the effect of non-zero dilatation in a compressible flow. The
third term is viscous diffusion and the fourth term represents baroclinic torques. The
last term brings in additional effects due to variation in fluid viscosity and is given by

ψi = εijk
∂ν

∂xj

∂2uk

∂x2
l

+ εijk

3
∂ν

∂xj

∂2ul

∂xk∂xl
+ εijk

∂

∂xj

[
1
ρ

∂µ

∂xl

(
∂uk

∂xl

∂ul

∂xk

)
− 2

3ρ
∂µ

∂xk

∂ul

∂xl

]
, (A 2)
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where ν is the kinematic viscosity of the fluid and εijk is the third-order alternating
tensor.

In the current problem with one-dimensional mean flow and zero mean vorticity,
(A 1) can be written for the fluctuating vorticity components ω′i. For the transverse
vorticity fluctuations ω′z, we have

∂ω′z
∂t
+ (ū+ u′)

∂ω′z
∂x
+ v′ ∂ω

′
z

∂y
+ w′

∂ω′z
∂z
= ω′x

∂w′

∂x
+ ω′y

∂w′

∂y
+ ω′z

∂w′

∂z

−ω′z
(
∂ ū

∂x
+ ∂u′

∂x
+ ∂v

′

∂y
+ ∂w′

∂z

)
+ ν̄

(
∂2ω′z
∂x2
+ ∂

2ω′z
∂y2
+ ∂

2ω′z
∂z2

)
+ 1
ρ̄2

∂ρ̄

∂x

∂p′

∂y
− 1
ρ̄2

∂ p̄

∂x

∂ρ ′

∂y
(A 3)

where the baroclinic terms that are nonlinear in fluctuating pressure and density are
neglected. Also, the ψ3 term representing the effects of gradients and fluctuations in
fluid viscosity has been dropped. These are assumed to be small compared to the
diffusion due to mean viscosity that is included in the equation.

The scaling of the different terms is given below. The temporal variations in ω′z at a
fixed point caused by the turbulent fluctuations scale with the turbulent time scale û/`,
and are smaller than those due to the unsteady shock passing through the point. The
unsteady shock motion is caused by the incoming turbulent fluctuations, and therefore
the instantaneous shock speed ξt is taken to be of order û in magnitude. This along
with the instantaneous shock thickness δ gives the following estimate for the time rate
of change in vorticity at the shock wave:

∂ω′z
∂t
∼ ξt

δ

û

`
∼ û2

δ`
, (A 4)

where ω′z is assumed to be of order û/` in magnitude. The convection due to mean and
fluctuating velocities scales as

ū
∂ω′z
∂x
∼ ûU

δ`
, u′

∂ω′z
∂x
∼ û2

δ`
and v′

∂ω′z
∂y
∼ w′

∂ω′z
∂z
∼ û2

`2
. (A 5)

The vortex stretching/tilting terms for ω′z do not have a contribution from the mean
velocity gradient, and therefore are relatively small in magnitude.

ω′x
∂w′

∂x
∼ û2

δ`
and ω′y

∂w′

∂y
∼ ω′z

∂w′

∂z
∼ û2

`2
. (A 6)

The effect of mean and fluctuating dilatation on the transverse vorticity fluctuations
scales as

ω′z
∂ ū

∂x
∼ ûU

δ`
, ω′z

∂u′

∂x
∼ û2

δ`
and ω′z

∂v′

∂y
∼ ω′z

∂w′

∂z
∼ û2

`2
. (A 7)

The baroclinic torque due to the mean pressure gradient is estimated as

1
ρ̄2

∂ρ ′

∂y

∂ p̄

∂x
∼ 1
ρ̄2

1

ρ̄1

`

û

U

ρ̄1U2

δ
∼ ûU

δ`
, (A 8)
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where ρ̄1 is the characteristic mean density. The normalized density fluctuations are
assumed to be comparable to the normalized velocity fluctuations, i.e. ρ ′/ρ̄1 ∼ û/U,
and the mean pressure scales as ρ̄1U2. The second baroclinic term due to mean density
gradient, on the other hand, scales as

1
ρ̄2

∂ρ̄

∂x

∂p′

∂y
∼ U2

δ

p′

p̄1
. (A 9)

Noting that the pressure fluctuations are small compared to the density fluctuations in
the test flows considered in this work, we have

1
ρ̄2

∂ρ̄

∂x

∂p′

∂y
� U2

δ

ρ ′

ρ̄1
∼ ûU

δ`
. (A 10)

The viscous diffusion terms scale as

ν̄
∂2ω′z
∂x2
∼ ν̄1

δ2

û

`
and ν̄

∂2ω′z
∂y2
∼ ν̄ ∂

2ω′z
∂z2
∼ ν̄1

`2

û

`
, (A 11)

where ν̄1 is the characteristic mean kinematic viscosity of the fluid. It can be easily
seen that the ratio of the leading inertial terms in (A 5) to the largest viscous term is
Uδ/ν̄1, which is assumed to be of order unity in § 2. Thus, the dominant terms in (A 2)
are

ū
∂ω′z
∂x
+ ω′z

∂ ū

∂x
− 1
ρ̄2

∂ρ̄

∂x

∂p′

∂y
+ 1
ρ̄2

∂ p̄

∂x

∂ρ ′

∂y
− ν̄ ∂

2ω′z
∂x2
= 0 (A 12)

where the baroclinic term due to the mean density gradient is retained for the sake
of generality. Taking a moment with ω′z and Reynolds averaging yields the following
equation for ω′2z :

ū
∂

∂x

(
ω′2z
2

)
=−ω′2z

∂ ū

∂x
− ω′zρ ′,y

1
ρ̄2

∂ p̄

∂x
+ ω′zp′,y

1
ρ̄2

∂ρ̄

∂x
+ ν̄ ∂

2

∂x2

(
ω′2z
2

)
− ν̄ ∂ω

′
z

∂x

∂ω′z
∂x
,

(A 13)

where the last two terms correspond to viscous diffusion and dissipation. The scaling
of these terms is similar to those in the instantaneous equation, except for a change
in the characteristic length in the shock-normal direction. The variation across the
time-averaged shock wave is taken over a length scale δ̄ (see figure 1), which is the
mean shock thickness obtained by averaging across a fluctuating shock wave.

The magnitudes of the convection and viscous terms in (A 13) are thus

ū
∂

∂x

(
ω′2z
2

)
∼ U

δ̄

û2

`2
, (A 14)

ν̄
∂2

∂x2

(
ω′2z
2

)
∼ ν̄ ∂ω

′
z

∂x

∂ω′z
∂x
∼ ν̄1

δ̄2

û2

`2
, (A 15)

and the ratio of the inertial to viscous effects scales as

Uδ̄

ν̄1
∼ Uδ

ν̄1

δ̄

δ
∼ δ̄
δ
� 1. (A 16)

Thus, shock compression and baroclinic torques play a dominant role in the
amplification of ω′2z across the shock. The viscous diffusion and dissipation effects
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are relatively small in the region of the shock wave. The same is true for the enstrophy
equation (2.25) presented in § 2. The inviscid mechanisms are modelled in § 3.
The viscous dissipation term is later added (§ 4) to capture the turbulence decay
on each side of the shock.
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