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SUMMARY
The robotic motion planning criteria has evolved from
kinematics to dynamics in recent years. Many research
achievements have been made in dynamic motion planning,
but the externally applied loads are usually limited to the
gravity force. Due to the increasing demand for generic
tasks, the motion should be generated for various functions
such as pulling, pushing, twisting, and bending. In this
paper, a comprehensive form of equations of motion, which
includes the general external loads applied at any point of
branched tree structures, is implemented. An optimization-
based algorithm is then developed to generate load-effective
motions of redundant tree-structured systems for generic
tasks. A highly articulated dual-arm human model is used
to generate different effective motions to sustain different
external load magnitudes. The results also provide a new
scientific insight of human motion.

KEYWORDS: Motion planning; Equation of motion; Load-
effective; Optimization; Redundant; General external load;
Tree structure.

1. Introduction
One of the major applications of robotic technologies lies
in improving human life by utilizing robots in jobs that are
hazardous, difficult, or undesirable for humans. Recently,
dependency on robots for the tasks associated with these jobs
has been growing very rapidly. The robots are also used for
providing services in the public and private sectors. Broaden-
ing the applications of robots usually requires adding func-
tions and increasing accuracies and capabilities. One way to
achieve this is to increase the mobility of robots such that mul-
tiple alternate motions exist for performing an assigned task.
In other words, higher-level robots must possess redundancy.
The redundancy of robots will provide higher flexibility, dex-
terity, manipulability, and controllability. Good examples of
these higher-level robots are seen in the recent developments
of humanoids, bio-inspired robots, and space robots.

Despite great achievements in the research on motion
planning, the methodologies in the current literature do not
extensively address the exertion of general external loads
(forces and moments) other than gravity. Nonredundant
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systems have only one possible configuration at a time, and
whether a task can be accomplished or not is determined
by that configuration; redundant systems can possess an
infinite number of configurations at a time, and successful
task accomplishment depends on the proper choice
of configurations. Thus, it is important to investigate
appropriate methods of generating redundant system
motions that provide the desired results.

While most of the motion planning methods in the
literature had been based on spatial kinematics,1,2 the recent
research on dynamics-based motion planning has shown
huge achievement. This is because motion planning based
on kinematic constraints alone is not always satisfactory in
real execution. Since the planned motions are supposed to be
executed in a real physical environment, the selection of the
motion should incorporate the dynamic constraints. Incor-
porating the dynamics in motion generation is facilitated and
widened especially by the recent developments of efficient
dynamics algorithms. Many numerical strategies (mostly
recursive) have been invented to improve the efficiency
of the forward and inverse dynamics. Some examples are:
system coordinate partitioning method,3,4 spatial operator
factorizations of mass matrix,5 symbolic decomposition
of the inertia matrix by Gaussian elimination,6 low-order
parallelization,7,8 reduced-dimension formulations using
pseudo-inverse Jacobian,9 state space form using stable
feedback inverse systems,10 and mass matrix inversion based
on Lie group and Fixman’s theorem.11

The redundancy of a system requires the selection of the
best configuration among many admissible ones, and thus
the majority of the studies used optimization methods. Some
studies used gradient-based numerical optimization; some
derived the pseudo-inverse analytically from optimization;
and others used a mixture of the pseudo-inverse and numer-
ical optimization.12 Due to the closed form and low-cost
computations, the pseudo-inverse, or generalized inverse,
of the Jacobian matrices are popular tools for resolution
of kinematic redundancy. Most of the Jacobian pseudo-
inverse matrices in literature were derived from minimum
kinetic energy criteria.13,14 Nedungadi and Kazerouinian15

optimized weighted torque and kinetic energy by the
method of calculus of variation combined with the pseudo-
Jacobian matrix, where local and global optimal forms were
demonstrated for comparison. Chung et al.16 introduced a
Jacobian pseudo-inverse that represents a minimization of
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the pseudo-elastic potential energy due to actuator stiffness.
A control scheme for redundant manipulators is developed
by optimizing a norm of actuator torques using the weighted
generalized inverses of the Jacobian matrix.17 In this method,
the equation of motion that includes the contact forces due
to target impedance was used, where the contact is modeled
with inertia, damping, and stiffness.

Many methods on redundant system motion planning
have been developed based on gradient-based numerical
optimization. Shiller and Dubowsky18,19 developed al-
gorithms of local and global time-optimal motion planning
for manipulators with obstacle avoidance, where the
robot dynamics, actuator constraints, and singularities are
considered. Also, various approximate forms of energy
consumption or effort were minimized while the dynamic
equations of motion were used either to derive the cost
function or to impose dynamic constraints.20–22 Bobrow
et al.23 developed the dynamics and optimal control of
manipulators using rigorous mathematics, in which the
recursive robot dynamics are represented based on Lie
groups and Lie algebras. They proposed the linear quadratic
algorithm that is numerically stable and efficient for optimal
motion planning with multibody dynamics. On the other
hand, more exact forms of energy consumption of electric
motors and hydraulic actuators were derived by combining
the equations of motion, and these were minimized for
optimal motion planning subject to dynamic constraints.24,25

The equations of motion used in these studies include the
inertia, Coriolis, centrifugal, and gravity terms, and thus
the external loads are limited to the weights of the links
or the objects at the end-effector. In all the aforementioned
studies, however, the general form of external loads such
as pushing/pulling forces and bending/twisting moments are
not incorporated in the dynamic motion planning application.

Some researchers investigated the methods of determining
manipulator configurations to sustain general external loads
(wrench) for static postures or quasi-static motions.26–28

Papadopoulos and Gonthier27,28 developed a method of
determining the base position and configuration of the
manipulator that guarantees the execution of a large-
force task under limited actuator torques. The maximum
normalized torque to generate the manipulator postures is
minimized subject to general external loads and gravity in
static and quasi-static states, while the dynamic effects of
the accelerations and velocities are not taken into account.
Although the quasi-static evaluation of actuator torques
gives reasonable approximate values for manipulators
with relatively small link masses and low velocities, the
inaccuracy of the calculation increases as the link masses,
the velocities, or the accelerations of the motion become
larger (e.g., manipulators used for construction) due to the
significant contributions of the inertia forces.

In recent years, many studies on human dynamics and
motion planning have been presented. McLean et al.29 used
a variable step fourth-order Runge–Kutta method to solve
the forward dynamics problem of the human knee. The
muscle stimulation patterns as well as the initial conditions
are given as inputs, where the muscle forces are calculated
from the muscle stimulation via a muscle activation model
and measured data. The resulting lower-body motions were

reliable compared with the experimental measurement.
Blajer and Czaplicki30 proposed a compact and systematic
way of human multibody dynamics that does not involve
matrix inversion, which is thus suited for both symbolic and
computational implementations. Hirashima et al.31 used the
Newton–Euler dynamics for human model with prescribed
motions, where some simple motions of shoulder, elbow,
and wrist joints are given as inputs. As for predictive human
motion simulation, many optimization-based methodologies
have been shown to be valuable tools due to the high
redundancy of human model.32–35 This is based on the
underlying assumption that a human moves in a way that
minimizes a cost function (e.g., energy consumption) subject
to several constraints. However, the implementation of
general external loads is not considered explicitly in literature
for the human motion problem. For realistic physics-based
human motion planning, it is essential to consider all
components of dynamics so that the task categories should be
extended from simple lifting and moving (against gravity) to
generic tasks such as pulling, pushing, and twisting. The ob-
jectives and contribution of this research are summarized as
follows:

1. A general form of dynamics will be derived for branched
tree structures. The equations of motion for robotic
systems are well known and have been widely used
in literature for a long time, and the external contact
forces are implemented in some control-based articles.17

However, in addition to the interaction with external
contacts, exertion of various general loads such as pulling
forces and twisting moments are usually required. So
far, the comprehensive form of dynamics that includes
inertia, Coriolis, centrifugal, gravity, and general external
loads applied at any point of interest on a tree-structured
system has not been explicitly treated in literature.
Although various formulations for the dynamics of tree
structure were developed, each is based on its own
kinematic representation without explicit terms of general
external loads.36–39 Also, the dynamic contribution of the
connection link is not rigorously formulated. In this paper,
the dynamics of tree-structured systems is modeled within
the framework of the proposed approach, i.e., based on
the Denavit–Hartenberg (DH) representation method40,41

and generalized coordinates. The complete form of the
equations of motion will be used as a critical module for
motion planning.

2. The methodology of planning load-effective motions of
tree-structured redundant systems will be proposed. We
define the load-effective motions as the generated motions
that guarantee the execution of a task with given general
external loads of a broad range of magnitudes. As seen
earlier, although many authors have treated the gravity
forces (weights), motions with external loads other than
the gravity have not been extensively addressed in the
literature. By implementing the comprehensive dynamics,
it is possible to generate optimal motions in which
the general external loads are incorporated. A dual-arm
human model with high degrees of freedom (DOFs) will
be used to generate realistic human motions. Different
human motions associated with different magnitudes
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Fig. 1. An n-DOF open-loop kinematic chain.

of external load will demonstrate how humans react
effectively to perform a task.

In the following sections, the DH kinematic modeling and the
comprehensive form of dynamics of tree-structured chains
are briefly described. Next, the structure and components
of the optimal motion planning problem are presented in
detail. Finally, examples for a tree-structured human model
are illustrated and discussed.

2. Kinematic and Dynamic Modeling
Given an open-loop kinematic chain (Fig. 1), the transform
from frame {i} to frame {i − 1} can be represented by
the homogeneous transformation matrix i−1Ti(qi) and DH
notation, which describes the configuration of a kinematic
chain.40,41 qi is the joint variable of i−1Ti , and the set of joint
variables (or generalized coordinates) q = [q1, . . . , qn]T ∈
Rn uniquely determine the configuration of a kinematic chain
system with n DOFs.

As for the kinematic modeling method of tree-structured
systems (Fig. 2) using DH representation, the numbering
method is the same as a regular serial chain for one loop
(loop A, for example). For the other loop (B), the link that
is attached to the connection link (link i in Fig. 2) can be
given any arbitrary number j, as long as it is greater than

Fig. 2. A tree-structured kinematic chain.

or equal to the last link number of loop A plus two, i.e.,
j ≥ n + 2. Then the numbering system of the joints and the
local coordinate frames follow the usual convention. Note,
however, that since there are three joints at the connection
link, different transformation matrices are assigned to each
loop. For loop A, the usual transformation matrix i−1Ti is
used to relate the local coordinate frames {i − 1} and {i}.
To relate the local coordinate frames {i − 1} and {j − 1}
for loop B, another transformation matrix i−1Tj−1 should
be constructed. Since the local frames {i} and {j − 1} are
attached to the connection link, whereas the local frame
{i − 1} is attached to the link {i − 1}, the transformation
matrix i−1Tj−1 for loop B is also a function of the ith joint
variable (i−1Tj−1 = i−1Tj−1(qi)). Whenever there are more
than two branches connected with the connection link, a
similar process can be used.

Human body is a typical example of tree-structured
systems with multiple limbs. The 30-DOF SantosTM human
model of a torso, right arm, and left arm is shown in
Fig. 3. Using the DH notation, the global Cartesian position
vectors xR and xL of the right-arm and left-arm end-effectors,

Fig. 3. A dual-arm human model.
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respectively, can be calculated.

xR(q) = (Ttorso)
(

11T12
) (

21∏
i=13

i−1Ti

)
xRn;

xL(q) = (Ttorso)
(

11T22
) (

31∏
i=23

i−1Ti

)
xLn; (1)

Ttorso =
11∏
i=1

i−1Ti

where xRn and xLn are the 4 × 1 local frame position vectors
for the right-arm and left-arm end-effectors, respectively.
Ttorso is the transformation matrix of the last local coordinate
frame of the torso with respect to the global coordinate frame.
11T12 and 11T22 are the transformation matrices for the first
local coordinate frame of the right arm and the left arm,
respectively, in terms of the last local coordinate frame of the
torso.

∏21
i=13

i−1Ti and
∏31

i=23
i−1Ti are the transformation

matrices for the last local coordinate frame of the right arm
and the left arm, respectively, in terms of the first local
coordinate frame of the limb.

To generate the motions where the externally applied
forces and moments are taken into account, it is essential
to formulate a comprehensive expression of the equations
of motion that govern the dynamics of open-loop kinematic
chains. Consider the case where a general form of external
loads (force and moment) [FT

k MT
k ]T is applied to the point

at krk location of link k. The Lagrangian equation of motion
for a general open-loop kinematic chain with several external
loads is as follows35:

τ = M(q)q̈ + V(q, q̇)

+
∑

i

JT
i mig+

∑
k

JT
k

[ −Fk

−Mk

]
+ T(q, q̇) (2)

where τ = [τ1, τ2, . . . , τn]T is the actuator torque vector,
M(q) is the generalized mass-inertia matrix, V(q, q̇) is the
Coriolis and centrifugal force vector,

∑
JT

i mig is the joint
torque vector due to gravity, Ji is the Jacobian matrix of the
position vector for the center of mass of ith link, and Jk is the
augmented Jacobian matrix of the position vector krk with
respect to {k} local frame. T(q, q̇) is the torque vector due to
the joint stiffness and the dissipative forces such as viscous
damping and Coulomb friction.

Equation (2) is derived for a single-loop kinematic chain
where the first joint is rigidly attached to the global reference
frame. To apply the equations of motion module that is coded
for single-loop chains to tree structures, consider a tree-
structured system with three branches (Fig. 2) under a set
of forces and moments. This tree structure is composed of
three local branch chains, C1, C2, and C3. The branch chain
C1 is composed of links from link 1 to link i, C2 from link i +
1 to link n, and C3 from link j to link m.

The Lagrangian function of the whole system is a scalar
quantity and is thus calculated as the summation of the
Lagrangian function L of each branch. Therefore, the
Lagrange’s equation of motion for the tree structure is written
as the summation of the actuator torque vector at each branch

chain.

τ =
3∑

i=1

(
d

dt

∂L

∂q̇
− ∂L

∂q
−

∑
JT

k

[
Fk

Mk

])
Ci

+ T(q, q̇).

(3)

Since the branch chains C1 and C2 constitute loop A, and
C1 and C3 constitute loop B, Eq. (3) can be written in the
following form:

τ = τ |loopA + τ |loopB − τ |C1
+ T(q, q̇) (4)

where τ |loopA is the actuator torque vector with all elements
zero except for those of the open-loop chain A, i.e., from 1st
to nth element. The vectors τ |loopB and τ |C1

are defined in a
similar manner.

τ |l =
(

M(q)q̈ + V(q, q̇)+
∑

i

JT
i mig +

∑
k

JT
k

[ −Fk

−Mk

])
l

(l = loopA, loopB,C1). (5)

For dual-arm human motion, assume that the only genera-
lized torque vector due to the joint internal characteristics is
the restoring torque vector τRestoring from the joint stiffness.

T(q, q̇) = −τRestoring = K(q − qN ) (6)

where K is a diagonal stiffness matrix, and qN is the neutral
joint variable vector.35 Then the equations of motion for a
human model subject to several external loads can be written
as follows:

τ = τ |loopA + τ |loopB − τ |C1
+ K(q − qN ). (7)

3. Problem Definition and Optimization Formulation
The problem of motion planning for redundant systems is
defined as follows: The inputs to the algorithm are the link
parameters, dynamic parameters (such as mass, centers of
mass, moments and products of inertia, joint stiffness, and
damping coefficients), joint variable limits, actuator torque
limits (possibly as functions of joint velocity), points of
application and components of external loads, and task-
specific constraints (such as the time desired to perform the
task, end-effector path, and orientations). Then it is desired
to generate the joint profiles that guarantee the execution
of the task, where the external loads can have broad ranges
of magnitudes. To resolve the redundancy, the problem is
formulated as an optimization problem, where the outputs are
the joint variable profiles, the required actuator torques, and
the energy rates as functions of time. For human model, this
is based on the assumption that humans naturally generate
effective motion to accomplish a given task in such a way as to
minimize certain cost function(s). The optimization variables
are the control points of the joint B-spline curves of degree
3, which have many beneficial properties such as continuity,
differentiability, endpoint interpolations, local control, and
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convex hull.42 A total of 11 distinct knots are assigned and
13 control points are used for each joint.

It should be emphasized that the general external loads
term, as well as the inertia and gravity, must be included in the
calculation of actuator torques to guarantee the execution of
the planned motion. Then the load-effective motions are the
feasible motions where the general external loads are taken
into account for the calculation of required actuator torques
that are used for the constraints and/or the cost function. The
energy consumption used as the cost function will result in the
most efficient motion. The details of the energy consumption
and constraints are described in the following sections.

Since the proposed methodology framework is based on
optimization, the numerical performance and complexity of
the proposed algorithm depend on the components and the
specific techniques of optimization. Although the dynamic
model (2) is included in the optimization components
(cost function and constraint), its effect on the overall
computational complexity is not significant. This is because
the current formulation does not require integration or matrix
inversion of the equations of motion. Thus, the overall
numerical performance depends mainly on the optimization
technique. We use the sequential quadratic programming
(SQP) method that uses quasi-Newton approximations to
the Hessian of the Lagrange function and obtains search
directions from a sequence of quadratic programming sub-
problems. The second-order information about the problem
functions is approximated using first-order information only,
and this provides the high rate of convergence of the
algorithm because the curvature information for the functions
is used in determining the search direction. SQP methods
have been proved to be most efficient and reliable for solving
large-scale constrained optimization problems with smooth
nonlinear cost function and constraints.43,44 Thus the SQP
method is suitable for the current problem that deals with the
motions of highly articulated human model.

3.1. Energy consumption
Energy has a unifying property, into which the dynamic
as well as the kinematic characteristics of motion are
incorporated. The actual formula representing the energy
consumption for a system varies depending on the specific
properties of the system, as well as the types of actuators.
Many simplified forms of the general energy consumption
are widely used in literature. For human motion planning,
the metabolic energy consumption from time t1 to t235 will
be used as a cost function for the optimization problem.

EMetabolic ≈
∫ t2

t1

n∑
i=1

|τi(t)q̇i(t)| dt

+
∫ t2

t1

n∑
i=1

hi
m |τi(t)| dt +

∫ t2

t1

Ḃdt (8)

where hi
m(i = 1, . . . , n) are the coefficients of the

generalized maintenance heat, and Ḃ is the basal metabolic
rate. The actuator torques are obtained from the equations of
motion. It had been shown that hi

m is inversely proportional
to the maximum torque limit of joint i. Therefore, for small

joint velocities, the human motion of minimum energy (thus
minimum weighted torques) implies that humans tend to use
the stronger joints to accomplish a given task rather than
the weaker ones. This means that the actuator torques are
distributed so that the larger torques are exerted at the stronger
joints and vice versa, which can be observed in real-world
human tasks.

The use of energy consumption as a cost function
implies several important points. Firstly, minimum energy
consumption indicates minimum fuel usage. Secondly, for
smooth movement of each joint, the magnitude of the second
derivatives of the joint curves needs to be minimized to avoid
an abrupt change in the joint velocity. Although minimum
jerk has been used in literature as a stronger criterion (e.g.,
refs. [2, 45]), the second derivatives of the joint variables in
the energy cost function provide a natural way to ensure the
smooth movement of each joint by reducing unnecessary
fluctuations in the joint curves. Finally, minimizing energy
consumption implicitly indicates minimizing required
actuator torques and joint stress.

3.2. Constraints
The following is a list of basic constraints that are typically
given from the system properties and the task requirements.
Depending on the task definition and the environment,
various other constraints can be imposed in addition.

1. Joint variable limits: Each joint variable has bilateral
constraints imposed in the form of

qL
i ≤ qi ≤ qU

i (i = 1, . . . , n) (9)

where qL
i and qU

i are the lower and upper limits for each joint
variable, respectively.

2. Actuator torque limits: The torque limit is usually a
function of the joint velocity (even for real human), which
is represented as a torque–speed curve of each actuator. The
torque–speed curves depend on the class and capacity of the
actuators.

τL
i (q̇i(t)) ≤ τi ≤ τU

i (q̇i(t)) (i = 1, . . . , n) (10)

where τL
i and τU

i are the lower and upper limits, respectively,
for each actuator torque. Generally, τL

i is negative and τU
i is

positive.
3. Position and orientation constraints: The configuration

of a rigid link of a system in space can be described uniquely
by assigning it three independent position coordinates and
three independent orientation angles. Depending on the
task requirements, some of these six coordinates can be
constrained, while the rest are left as free DOFs. For position
constraints, the Cartesian coordinates of the point as a
function of the joint variables are constrained. For orientation
constraints, the direction of the unit vectors of the link local
frame is constrained in terms of the global frame.

4. Path constraints: The end-effector path in Cartesian
space may be either constrained by task requirements or
naturally unconstrained. Usually, the path is given as task
requirement. For example, the end-effector paths of drawing
a straight line or welding on a surface are predetermined from
the task requirements. Suppose the end-effector path for the
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task is assigned as a parametric curve in Cartesian space such
as

path(t) = [xpath(t), ypath(t), zpath(t) ]T . (11)

To ensure that the end-effector point characterized by x =
[x, y, z]T as a function of joint variables stays on the path
during the motion, the distance from the end-effector point
to the desired path in the Cartesian space is enforced as a
constraint:

||x(q(t)) − path(t)|| ≤ ε (12)

where 0 ≤ t ≤ tf and ε is a small positive number as a
specified tolerance (e.g., 0.001).

4. Example Results and Discussion
The proposed formulation will be demonstrated using the
highly articulated dual-arm human model with 30 DOFs. A
computer with Intel R© XeonTM 3.06 GHz processor is used
for calculation. Each task is simulated for two different load
magnitudes, and the time duration for the task is given as 2 s.
Although simple tasks are illustrated as examples in this
paper, the proposed method can be easily applied to more
complicated tasks.

Lever-pulling: We consider the dual-arm motion of pulling
a lever with constant load from a given initial position to a
given final position. The initial position of the lever is (0, 19,
70) (cm), and the final position of the lever is (0, 19, 40) (cm)
in the global coordinate frame where the path of the lever
between the initial and final positions is given as a straight
line. Two different pulling forces are tested: 1 N and 800
N. Figures 4–6 show the generated motions and calculated
results of several notable joints for both cases (with run-time

Fig. 4. Motions of dual-arm lever-pulling.

Fig. 5. Actuator torque profiles for dual-arm lever-pulling.

around 75 min and 265 major iterations). The total metabolic
energy consumed for the 1-N lever-pulling is 301.21 J, and
that for the 800-N lever-pulling is 1440.55 J. These values
also represent how much effort is required to perform each
task.

It is observed that the human model generates different
motions for different magnitudes of external load. For the
lever load of 1 N, the torso is almost vertical, while for the
larger load of 800 N, the torso is extended backward to use
its own body weight to counter-balance the large pulling
load at both hands. In Fig. 5(b), the large negative actuator
torque values for torso extension (joint 2) and shoulders
(joints 16 and 25) for the 800-N lever-pulling indicate the
major contributions of these joints to the pulling motion.
These large actuator torques are used to generate the torso
motion while sustaining the large pulling force in the forward
direction. In this way, the human can also straighten both its
arms in the final posture to minimize the actuator torques at
the wrists and elbows.

Experimental measurements on the similar tasks of actual
human subjects were reported in the literature,46 where the
effects of hand force magnitudes and direction on body
postures have been studied. It has been observed that the
subjects lean back (torso inclination) into the direction of
pulling force. Their study shows similar features as our
predicted motions, and serves as a partial validation of our
calculated results. In fact, it is often observed in the real
world that, when pulling or dragging a very heavy object,
a human usually leans the body in the desired direction
of pulling. In other words, to accomplish a given task,
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Fig. 6. Metabolic rate profiles for dual-arm lever-pulling.

humans naturally generate effective motion that minimizes
the required actuator torques within the actuator capacities
(torque limits). A similar argument can be made for the
motion of pushing a heavy object, where it is frequently
observed that a human leans the body in the direction of
pushing.
Rope-pulling: The next task is to pull a rope using two hands
with light (1 N) and heavy (100 N) weights. The rope is
stretched toward the human’s right side. The initial positions
of the right and left hands are (−60, 40, 20) (cm) and (−20,
40, 20) (cm), respectively, and the final positions are (−30,
40, 20) (cm) and (10, 40, 20) (cm), respectively, in the global
Cartesian frame. The resulting motions, actuator torques, and
metabolic rates for both cases are shown in Figs. 7–9. The
computation time is around 23 min and the number of major
iterations is 80.

The torso is tilted toward the left for the 100-N pulling,
while it remains upright for the 1-N pulling. Again, this
can be explained by analyzing the configuration at each
time step. By bending its torso laterally toward the left,
the human can use its own body weight to counter-balance
the large force on its right side; it can thus reduce or

Fig. 7. Motions of dual-arm rope-pulling.

Fig. 8. Actuator torque profiles of dual-arm rope-pulling.

minimize the required actuator torques. The right arm for
large-force pulling is nearly straight during the initial stage
of the motion, while this is not notable in small-force pulling.
For the large-force pulling, the left arm motion is generated
such that the wrist and elbow joints are located as close as
possible to the line of pulling-force application. This motion
is generated in an effort to minimize the actuator torques
and is usually observed in the real-world human motions for
large-force pulling. It can be seen that the large actuator
torque values for the torso left lateral bending (joint 1)
and the torso left axial rotation (joint 3) in Fig. 8(b) are
mainly used to sustain the large pulling force. The total
metabolic energy consumption for the 1-N rope-pulling is
241.75 J, and that for 100 N is 516.41 J. Then the average
energy consumption rate is 241.75 (J)/2 (s) = 120.87 (J/s)
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Fig. 9. Metabolic rate profiles of dual-arm rope-pulling.

and 516.41 (J)/2 (s) = 258.20 (J/s), respectively, which are
reasonable values for human activities. Again, the human
model generated different effective motions for different
magnitudes of external load.

5. Conclusions
In past motion planning problems, general external loads
other than gravity were not considered extensively. In
this paper, a method for planning load-effective dynamic
motions for redundant systems, especially highly articulated
human model, is proposed. A comprehensive form of the
equations of motion for tree-structured systems is formulated
in which the general external loads, as well as the inertia
and gravity terms, are incorporated. The comprehensive
dynamics model is then implemented into the constraints
and/or the cost function of the optimal motion planning
problem. The physics-based motions generated for tree-
structured human model demonstrates different effective
dual-arm human motions for different magnitudes of external
load. The results provide a new scientific insight of natural
human motion. Although the simulated features are validated
in the literature, more rigorous quantitative experimental
study for comparison is suggested as future research. Overall,
the proposed optimization-based methodology is broadly
applicable for any type of kinematic chain systems with
general external loads.
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