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Abstract
This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular
setting as they relate to logic on words. In particular, we provide a general construction on recognisers
corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-
type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a
measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and
commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces
is the codensity monad of the finite powerset functor.

Keywords: Formal languages; logic on words; semiring quantifiers; stone duality; codensity monads; semiring-valued
measures

1. Introduction
It is well known that the combinatorial property of a language of being given by a star-free regular
expression can be described both by algebraic and by logical means. Indeed, on the algebraic side,
the star-free languages are exactly those languages whose syntactic monoids do not contain any
non-trivial groups as subsemigroups. On the logical side, properties of words can be expressed in
predicate logic by considering variables as positions in the word, relation symbols asserting that
a position in a word has a certain letter of the alphabet, and possibly additional predicates on
positions known as numerical predicates. As shown in McNaughton and Papert (1971), the class
of languages definable by first-order sentences over the numerical predicate < consists precisely
of the star-free ones.

The theory of formal languages abounds with such results showing the strong interplay
between logic and algebra. For instance, Straubing et al. introduced in (1995) a class of addi-
tional quantifiers, the so-called modular quantifiers ∃pmod q. (Recall that a word satisfies a formula
∃pmod qx.ϕ(x) provided the number of positions x for which ϕ(x) holds is congruent to p mod-
ulo q.) There it is shown, for example, that the languages definable using modular quantifiers of
modulus q are exactly the languages whose syntactic monoids are solvable groups of cardinality
dividing a power of q.

Studying modular quantifiers is relevant for tackling open problems in Boolean circuit com-
plexity, see, for example, Straubing and Thérien (2008) for a discussion. Since Boolean circuit

∗This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No.670624). This work was carried out while the third author was a
PhD student supported by Sorbonne Paris Cité (PhD agreement USPC IDEX – REGGI15RDXMTSPC1GEHRKE).

© The Author(s), 2021. Published by Cambridge University Press

https://doi.org/10.1017/S0960129521000074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000074
https://orcid.org/0000-0001-7331-7381
mailto:luca.reggio@cs.ox.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000074&domain=pdf
https://doi.org/10.1017/S0960129521000074


Mathematical Structures in Computer Science 1055

classes contain non-regular languages, expanding the automata theoretic techniques beyond the
regular setting is also relevant for addressing these problems.

A fundamental tool in studying the connection between algebra and logic in this setting is the
availability of constructions on monoids which mirror the action of quantifiers. That is, given
the syntactic monoid for a language with a free variable, one wants to construct a monoid that
recognises the quantified language. Constructions of this type abound, and are all versions of
semidirect products, with the block product playing a central rôle as it allows one to construct
recognisers for many different quantifiers (Tesson and Thérien, 2007).

The present article is an expanded and improved version of the publication (Gehrke et al.,
2017), where the main results were first announced. Its purpose is to expand the techniques
available for monoids and provide the topo-algebraic characterisation of adding one layer of var-
ious kinds of quantifiers, beyond the regular setting. The first step was made in Gehrke et al.
(2016), where (a) we introduced a topological notion of recogniser, which will be motivated in
the next subsection and (b) we gave a notion of unary Schützenberger product that corresponds,
on the recogniser side, to adding one layer of the existential quantifier for arbitrary languages
of words.

In Section 1.1, we provide a gentle introduction and motivate the duality-theoretic approach to
language recognition. In Section 1.2, we present codensity monads, our tool of choice for system-
atically obtaining the relevant topological constructions and briefly discuss related work. Finally,
in Section 1.3, we present the main contributions of this paper and provide an overview of the
remainder of the paper.

1.1 Duality for language recognition
Stone duality plays an important rôle and has a long tradition in many areas of semantics,
for example, in domain theory and modal logic. In Pippenger (1997), Pippenger made the
link between Stone duality and regular languages explicit, by proving that the Boolean alge-
bra of regular languages over a finite alphabet A is the dual of the free profinite monoid on
A. Yet, only recently, starting with the papers (Gehrke et al., 2008, 2010), the deep connec-
tion between this field and formal language theory started to emerge. In these papers a new
notion of language recognition, based on topological methods, was proposed for the setting of
non-regular languages. Moreover, the scene was set for a new duality-theoretic understanding
of the celebrated Eilenberg–Reiterman theorems, establishing a connection between varieties
of languages, pseudo-varieties of finite algebras and profinite equations. This led to an active
research area, where categorical and duality-theoretic methods are used to encompass notions
of language recognition for various automata models. See, for example, the monadic approach to
language recognition put forward by Bojańczyk (2015), or the series of papers on a category-
theoretic approach to Eilenberg–Reiterman theory (cf. Adámek et al., 2015 and references
herein).

Let us illustrate the interplay between duality theory and the theory of regular languages
by explaining the duality between the syntactic monoid of a regular language L on a finite
alphabet A, and the Boolean subalgebra B ↪→P(A∗) generated by the quotients of L, that is by
the sets

w−1Lv−1 = {u ∈A∗ |wuv ∈ L}
for w, v ∈A∗. In this setting, one makes use only of the finite duality between the category of finite
Boolean algebras and the category of finite sets which, at the level of objects, asserts that each finite
Boolean algebra is isomorphic to the powerset of its atoms.

Since the language L is regular, it has only finitely many quotients, say

{w−1
1 Lv−1

1 , . . . ,w−1
n Lv−1

n }.
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The finite Boolean algebra generated by this set has as atoms the non-empty subsets of A∗ of the
form ⋂

i∈I
w−1
i Lv−1

i ∩
⋂
j∈J

(w−1
j Lv−1

j )c

for some partition I ∪ J of {1, . . . , n}. We clearly see that such atoms are in one-to-one corre-
spondence with the equivalence classes of the Myhill syntactic congruence ∼L, and thus with the
elements of the syntactic monoid A∗/∼L of L.

However, the more interesting aspect of this approach is that one can also explain the monoid
structure of A∗/∼L and the syntactic morphism in duality-theoretic terms. For this, we have to
recall first the duality between the category of sets and the category of complete atomic Boolean
algebras. At the level of objects, every complete atomic Boolean algebra is isomorphic to the
powerset of its atoms. So the dual of A∗ is P(A∗), but the duality also tells us that quotients on one
side are turned into embeddings on the other. Thus, we have the duality between the following
morphisms:

B P(A∗) | A∗ A∗/∼L.

Also, the left action of A∗ on itself given by appending a word w on the left corresponds, on the
dual side, to a left quotient operation (which is a right action):

P(A∗) P(A∗) A∗ A∗

U w−1U v wv

�w lw

Since the Boolean algebra B is closed under quotients, the homomorphisms�w : P(A∗)→P(A∗)
restrict to homomorphisms B → B, that is we have commuting squares as the left one in dia-
gram (1) below. By duality, we obtain a left action of A∗ on A∗/∼L, whose component at w is as in
the right-hand diagram in (1). Reasoning in a similar manner, one also obtains a right action ofA∗
on A∗/∼L, and the two actions commute. It is a simple lemma, see Gehrke et al. (2016), that since
A∗/∼L is a quotient of A∗ and it is equipped with commuting left and right A∗-actions (called in
loc. cit. an A∗-biaction), then one can uniquely define a monoid multiplication on A∗/∼L so that
the quotient A∗ �A∗/∼L is a monoid morphism.

B P(A∗) A∗ A∗/∼L

B P(A∗) A∗ A∗/∼L

�w �w lw lw (1)

This approach paves the way to a notion of recogniser and syntactic object pertinent for
non-regular languages. In the case of a non-regular language L, the Boolean algebra B spanned
by the quotients of L is no longer finite, so the finite or discrete duality theorems we have
employed previously are no longer applicable. Instead, we use the full Stone duality, which estab-
lishes a dual equivalence between the category of Boolean algebras and the category BStone
of Boolean (Stone) spaces, that is, compact Hausdorff spaces whose clopen subsets form a
basis for the topology. In this setting, the dual of P(A∗) is the Stone–Čech compactification
β(A∗) of the discrete space A∗. The embedding of B into P(A∗) is turned by the duality the-
orem into a quotient of topological spaces as displayed below, where we denote the dual of
B by X.

B P(A∗) | β(A∗) X

The syntactic monoid of the language L, which is in general infinite, can be seen as a dense subset
of X, and is indeed the image of the composite map A∗ ↪→ β(A∗)� X where the first arrow is the
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embedding of A∗ in its Stone–Čech compactification. We thus obtain a commuting diagram as
follows:

β(A∗) X

A∗ A∗/∼L

Furthermore, one can show that the syntactic monoid acts (continuously) on X both on the left
and on the right, and these actions commute. This led us, in Gehrke et al. (2016), to the definition
of a Boolean space with an internal monoid (BiM) as a suitable notion for language recogni-
tion beyond the regular setting. We recall this (in fact a small variation of it) in Definition 2.2
below.

1.2 Profinite monads
Profinite methods have a long tradition in language theory, see, for example, Almeida and
Weil (1998). To accommodate these tools in his monadic approach to language recognition,
Bojańczyk (2015) has recently introduced a construction transforming a monad T on Set (the
category of sets and functions) into a so-called profinite monad, again on the category of sets. The
latter monad allowed him to study in this generic framework the profinite version of the objects
modelled by T such as profinite words, profinite countable chains and profinite trees.

A very much related construction of a profinite monad of T was introduced in Adámek et al.
(2016b), this time as a monad on the category of Boolean spaces, obtained as a so-called codensity
monad for a functor from the category of finitely carried T-algebras to Boolean spaces, that we
have described in the next section.

The codensity monad is a standard construction in category theory, which goes back to the
work of Kock in the 1960s. It is well known that any right adjoint functor G induces a monad
obtained by composition with its left adjoint, and this is exactly the codensity monad of G. In
general, the codensity monad of a functor that is not necessarily right adjoint, provided it exists,
is the best approximation to this phenomenon. For example, the codensity monad of the forgetful
functor | − | : BStone→ Set on Boolean spaces is the ultrafilter monad on Set obtained by com-
position with its left adjoint β : Set→ BStone. The same monad has yet another description as
a codensity monad, this time for the inclusion of the category Setf of finite sets into Set, a fact
proved in Kennison and Gildenhuys (1971) and recently revisited in the elegant paper (Leinster,
2013).

The starting point of the present paper is the observation that the unary Schützenberger prod-
uct (♦X,♦M) of a BiM (X,M) from our paper (Gehrke et al., 2016) hinges, at a deeper level, on
the fact that the Vietoris monad V on the category of Boolean spaces (which is heavily featured
in that construction) is the profinite monad of the finite powerset monad Pf on Set. Recall that
any Boolean space X is the cofiltered (or inverse) limit of its finite quotients Xi, see, for example,
Engelking (1989, 6.2.C.(a)). Then, one can check that the Vietoris space VX can be obtained as the
cofiltered limit of the finite discrete spaces Pf Xi.

In order to find suitable recognisers for languages quantified by, for example, modular exis-
tential quantifiers, we need a slightly different construction than (♦X,♦M) of Gehrke et al.
(2016). Specifically, we observe that the semantics of these quantifiers can be modelled, at least
at the level of finite monoids, by the free S-semimodule monad S , for a suitable choice of the
semiring S. It should be noted that Pf is also an instance of the free S-semimodule monad,
for the Boolean semiring 2. To obtain corresponding constructions at the level of Boolean
spaces with internal monoids, one needs to understand the analogue of the Vietoris construc-
tion for the monad S . A prime candidate, from a category-theoretic perspective, is the codensity
monad of S .
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1.3 Contributions
This paper contributes to the connection between the topological approach to language recogni-
tion and logical formalisms beyond the setting of regular languages, and furthers, along the way,
the study of profinite monads in formal language theory.

The main result of Section 3 allows one to extend finitary commutative Set-monads to the cat-
egory of Boolean spaces with internal monoids. A particular instance of this result is presented in
Section 4, where duality-theoretic insights are used to provide a concrete and useful description
of the constructions involved in terms of measures. In Section 5, we develop a generic approach
for mirroring operations on languages, such as modular quantifiers, associating to a BiM (X,M) a
new BiM (♦SX,♦SM). Finally, in Section 6, we explain how these constructions are indeed canon-
ical, and provide a Reutenauer-type result characterising the Boolean algebra generated by the
languages recognised by (♦SX,♦SM).

Let us note that all the operations on languages that we consider in this paper preserve regular
languages, that is they transform regular languages into regular languages. This is the case, for
example, for modular quantifiers. However, in our setting, the main source of non-regularity does
not reside in the application of logical quantifiers, but rather in the fact that we allow arbitrary
numerical predicates in logic on words. In this sense, we focus on the understanding of regular
quantifiers in the setting of non-regular languages.

2. Preliminaries
2.1 Logic on words
Fix an arbitrary finite set A, and write A∗ for the free monoid over A. A word over the alphabet A
(an A-word, for short) is an element w ∈A∗. In the logical approach to language theory, the word
w is regarded as a (relational) structure on the set {1, . . . , |w|}, where |w| denotes the length of
the word, equipped with a unary relation Pa for each a ∈A, which singles out the positions in the
word where the letter a appears. If ϕ is a sentence (i.e. a formula in which every variable is in the
scope of a quantifier) in a language interpretable over words, we denote by Lϕ the set of A-words
satisfying ϕ.

Assume now that ϕ(x) is a formula with a free first-order variable x (intuitively, this means
that ϕ(x) can talk about positions in the words). In the classical model-theoretic approach, in
order to interpret a free variable x, one considers structures equipped with an evaluation of x.
In our case, this amounts to looking at pointed A-words. In logic on words, these evaluations
are usually encoded by extending the alphabet, cf. Straubing (1994, II.2). Instead of A, we con-
sider the alphabet A× 2, which we think of as consisting of two copies of A, that is we identify
A× 2 with the set A∪ {a′ | a ∈A}, and we call the elements of the second copy of A marked let-
ters. Assuming w= a1 . . . an and 1≤ i≤ n, we write w(i) for the word a1 . . . ai−1a′

iai+1 . . . an,
that is for the word in (A× 2)∗ having the same shape as w but with the letter in position i
marked, and w0 for the word a1 . . . an seen as a word in (A× 2)∗. Then we define Lϕ(x) as
the set of all words in the alphabet A× 2 with only one marked letter such that the underly-
ing word in the alphabet A satisfies ϕ when the variable x points at the marked position. This
approach has the advantage of treating words with evaluations of the free variable as bona fide
words in an extended alphabet. However, the only words in the alphabet A× 2, which rep-
resent structures with an evaluation of the free variable are those with precisely one marked
letter.

Now, given L⊆ (A× 2)∗, denote by L∃ the language consisting of those words w= a1 . . . an
over A such that there exists 1≤ i≤ n with a1 . . . ai−1a′

iai+1 . . . an ∈ L. Observe that L= Lϕ(x)
entails L∃ = L∃x.ϕ(x), thus recovering the usual existential quantification.
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Example 2.1. Let A be the two-letter alphabet {a, b}. Consider the language L⊆ (A× 2)∗
defined by

L= {u ∈ (A× 2)∗ | |u|a + |u|a′ = |u|b + |u|b′ },
where |u|a is the number of a’s appearing in u, and similarly for |u|a′ , |u|b, and |u|b′ . Then,

L∃ = {w ∈A∗ | ∃1≤ i≤ |w| such that w(i) ∈ L}
= {w ∈A∗ | |w|a = |w|b}

is the language consisting of all those A-words in which the numbers of a’s equals the number
of b’s.

Amongst the generalisations of the existential quantifier are themodular quantifiers. Consider
the ring Zq of integers modulo q, and pick p ∈Zq. We say that an A-word w satisfies the sentence
∃pmod qx.ϕ(x) if there exist pmodulo q positions inw for which the formula ϕ(x) holds. Moreover,
for an arbitrary language L⊆ (A× 2)∗, we define L∃pmod q as the set of A-words w= a1 . . . an such
that the cardinality of the set

{1≤ i≤ n | a1 . . . ai−1a′
iai+1 . . . an ∈ L} (2)

is congruent to pmodulo q. Clearly, if the language L is defined by the formula ϕ(x), then L∃pmod q
is defined by the formula ∃pmod qx.ϕ(x).

Finally, generalising the preceding situations, we can consider an arbitrary semiring, that is a
tuple (S,+, ·, 0S, 1S) such that (S,+, 0S) is a commutative monoid, (S, ·, 1S) is a monoid, the oper-
ation · distributes over +, and 0S · s= 0S = s · 0S for all s ∈ S. If no confusion arises, we will denote
a semiring by S only. Given any semiring S and element k ∈ S, we can define a semiring quantifier
as follows. For L⊆ (A× 2)∗, an A-word w= a1 . . . an belongs to the quantified language, denoted
byQk(L), provided that

1S + · · · + 1S︸ ︷︷ ︸
m times

= k,

wherem is the cardinality of the set in (2).

2.2 Stone duality and the Vietoris hyperspace
Stone duality for Boolean algebras (Stone, 1936) establishes a categorical equivalence between the
category of Boolean algebras and their homomorphisms, and the opposite of the category BStone
of Boolean (Stone) spaces and continuous maps between them.

A Boolean space is a compact Hausdorff space in which the clopen (i.e. simultaneously
closed and open) subsets form a basis for the topology. There is an obvious forgetful functor
| − | : BStone→ Set. When clear from the context, we will omit writing | − |. The dual of a
Boolean space X is the Boolean algebra Clop(X) of its clopen subsets, equipped with set-theoretic
operations. Conversely, given a Boolean algebra B, the dual space X may be taken either as the set
of ultrafilters on B (i.e. those proper filters F satisfying a ∈ F or ¬a ∈ F for every a ∈ B), or equiv-
alently as the set of all Boolean algebra homomorphisms h : B→ 2, equipped with the topology
generated by the sets

â := {F | a ∈ F} ∼= {h | h(a)= 1}, for a ∈ B.

An example of Boolean space, central to our treatment, is the Stone–Čech compactification
of an arbitrary set K (regarded as a discrete space). This is the dual space of the Boolean
algebra PK, and is denoted by βK. It is well known that the assignment K �→ βK induces a
functor β : Set→ BStone, which is left adjoint to the forgetful functor | − | : BStone→ Set.
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Another functor, which played a key rôle in Gehrke et al. (2016) and will serve here as a lead-
ing example, is the Vietoris functor V : BStone→ BStone. Given a Boolean space X, consider
the collection VX of all closed subsets of X equipped with the topology generated by the clopen
subbasis

{V |V ∈ Clop(X)} ∪ {(V)c |V ∈ Clop(X)},
where V := {K ∈ VX |K ∩V �= ∅}. The resulting space is called the Vietoris (hyper)space of X,
and is again a Boolean space. Further, if f : X → Y is a continuous map in BStone, then so is
the direct image function VX → VY , K �→ f [K]. In fact, it is well known that this is the functor
part of a monad V on BStone. The Vietoris hyperspace of an arbitrary topological space was first
introduced by Vietoris (1922); for a complete account, including the results stated here without
proof, see Michael (1951).

2.3 Boolean spaces with internal monoids
In this section, we give the definition of a Boolean space with an internal monoid, or BiM for short
(see Definition 2.2 below), a topological recogniser well suited for dealing with non-regular lan-
guages. In Gehrke et al. (2016), a Boolean space with an internal monoid was defined as a pair
(X,M) consisting of a Boolean space X, a dense subspace M equipped with a monoid struc-
ture, and a biaction (i.e. a pair of compatible left and right actions) of M on X with continuous
components extending the obvious biaction of M on itself. Here, we use a small variation and
simplification of this notion. Instead of imposing that the monoid is a dense subset of the space,
we require a map from the monoid to the space with dense image.

In what follows, for a Boolean space X we will denote by [X, X] the set of continuous endo-
functions on X, which comes with the obvious monoid operation ◦ given by composition. Given
a monoid (M, ·), we will denote by r : M →MM and l : M →MM the two maps induced from the
monoid multiplication via currying, which correspond, respectively, to the obvious right and left
actions ofM on itself.

Definition 2.2. A Boolean space with an internal monoid, or BiM, is a tuple (X,M, h, ρ, λ),
where X is a Boolean space, M is a monoid, and h : M → X, λ : M → [X, X] and ρ : M → [X, X]
are functions such that h has a dense image and for all m ∈M the following diagrams commute
in Set.

M X M X

M X M X

h

l(m) λ(m)

h

r(m) ρ(m)
h h

(3)

If no confusion arises we write (X,M), or even just X, for the BiM (X,M, h, ρ, λ). A morphism
between two BiMs X and X′ is a pair (ψ̃ ,ψ), where ψ̃ : X → X′ is a continuous map and ψ : M →
M′ is a monoid morphism such that ψ̃ ◦ h= h′ ◦ψ . Note that since the image of h is dense in
X, given ψ , ψ̃ is uniquely determined if it exists. Accordingly, we will sometimes just write ψ
to designate the pair as well as each of its components. We denote the ensuing category of BiMs
by BiM.

Remark 2.3. If (X,M) is a BiM of the form (β(A∗),A∗), and (X′,M′) is any BiM, then every
monoid morphism ψ : A∗ →M′ yields a (unique) continuous extension ψ̃ : β(A∗)→ X′ making
the pair (ψ̃ ,ψ) into a BiM morphism. Thus, BiM morphisms (β(A∗),A∗)→ (X′,M′) are in one-
to-one correspondence with monoid morphisms A∗ →M′. For this reason, we will often treat
these two things as one and the same.
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Remark 2.4. It follows from Definition 2.2 that ρ and λ induce commuting right and left M-
actions on X, so that h is an M-biaction morphism. Indeed, since h has a dense image in X, it
follows that ρ(m) and λ(m) are the unique extensions to X of r(m) and l(m), respectively. But the
left and right actions ofM on itself commute, hence ρ and λmust enjoy the same properties. We
also obtain that (X, Im(h)) is a Boolean space with an internal monoid according to the definition
in Gehrke et al. (2016).

Remark 2.5. An equivalent way of saying that the diagrams in (3) commute for all m ∈M is to
say that the following two diagrams commute in Set.

[X, X] XM [X, X] XM

M MM M MM

−◦h −◦h

λ

l

h◦− ρ

r

h◦−

This will come in handy in the proof of Theorem 3.5.

To conclude, we recall the notion of recognition associated with BiMs. Under the bijection
between subsets of a given set K and clopens of its Stone–Čech compactification βK, we write L̂
for the clopen corresponding to the subset L ∈PK.

Definition 2.6. Let A be a finite alphabet, L ∈P(A∗) and (X,M, h, ρ, λ) a BiM. A morphism of
BiMs ψ : (β(A∗),A∗)→ (X,M) recognises the language L if there is a clopen C ⊆ X such that
ψ−1(C)= L̂. Moreover, the BiM (X,M) recognises the language L if there exists a BiM morphism
(β(A∗),A∗)→ (X,M) recognising L. Finally, if B ↪→P(A∗) is a Boolean subalgebra, the BiM
(X,M) is said to recognise B provided it recognises each L ∈ B.

Equivalently, a language L ∈P(A∗) is recognised by the morphism of BiMs ψ : (β(A∗),A∗)→
(X,M) when there exists a clopen C ⊆ X such that L=ψ−1(h−1(C)). This notion of topological
recognition is summarised in the following diagram.

L̂= ψ̃−1(C)⊆ β(A∗) X ⊇ C

L̂∩A∗ = L=ψ−1(h−1(C))⊆ A∗ M ⊇ h−1(C)

ψ̃

ψ

h

The topology on X specifies which subsets ofM can be used for recognition, namely the preim-
ages under h of the clopens in X. However, whenM is finite so is X. In fact, in this case X has the
same carrier set as M and is equipped with the discrete topology, therefore in the regular setting
we recover the usual notion of recognition.

To conclude this section, we provide an example to illustrate how language recognition works
concretely in this topological setting.

Example 2.7. Consider the alphabet A= {a, b} and the (non-regular) language L= {w ∈A∗ |
|w|a = |w|b} (cf. Example 2.1). The syntactic monoid A∗/∼L can be identified with (Z,+), and
L coincides with the preimage of {0} under the syntactic morphism ψ : A∗ �Z. Let Z∞ denote
the one-point (or Alexandroff ) compactification of the discrete space Z. The underlying set of Z∞
is Z∪ {∞}, and its open sets are precisely those subsets which are either cofinite (i.e. that have
finite complement), or do not contain ∞. It is not difficult to see that Z∞ is a Boolean space, and
(Z∞,Z) is a BiM. We have a commutative square as follows.
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β(A∗) Z∞

A∗
Z

ψ̃

ψ

The Boolean algebra B ⊆P(A∗) of languages recognised by the morphism of BiMs
ψ : (β(A∗),A∗)→ (Z∞,Z) is given by B = {ψ−1(C ∩Z) | C is a clopen subset of Z∞}. The sub-
sets of Z of the form C ∩Z, for C ⊆Z∞ a clopen, are precisely the finite or cofinite subsets (in
this sense, the topology of Z∞ specifies which subsets of the syntactic monoid can be used for
recognition). Note that the Boolean subalgebra of P(Z) consisting of the finite or cofinite subsets
is generated by the singletons {n} for n ∈Z. In turn, the languages of the formψ−1({n}), for n ∈Z,
are precisely the quotients of L. Therefore, B is the Boolean subalgebra of P(A∗) generated by the
quotients of L.

If we adopt the classical notion of recognition for monoids, and allow arbitrary subsets of Z
for recognition purposes, then the syntactic morphism ψ : A∗ �Z recognises also the majority
language

ψ−1(Z≥0)= {w ∈A∗ | |w|a ≥ |w|b}.
Thus, B is strictly contained in the Boolean algebra of languages recognised by the monoid mor-
phismψ in the classical sense. In fact, the syntactic monoid of the majority language is also (Z,+),
and the distinction between these recognisers can only be made at the topological level (cf. Gehrke
et al., 2010, Example 3.2).

2.4 Monads and algebras
We assume the reader is familiar with the basic notions of category theory, and especially with
monads as a categorical approach to general algebra. Concerning the latter, we refer the reader to,
for example, Mac Lane (1998, Chapter VI) or Borceux (1994, Chapters 3–4).

Consider a monad (T, η,μ) on a category C. Recall that an Eilenberg–Moore algebra for T (or
a T-algebra, for short) is a pair (X, h) where X is an object of C and h : TX → X is a morphism
in C, which behaves well with respect to the unit η and multiplication μ of the monad, that is,
h ◦ ηX = idX and h ◦ Th= h ◦μX . A morphism of T-algebras (X1, h1)→ (X2, h2) is a morphism
f : X1 → X2 in C satisfying f ◦ h1 = h2 ◦ Tf . Let CT denote the category of T-algebras. When T is
a monad on the category Set of sets and functions, categories of the form SetT are, up to equiva-
lence, precisely the varieties of (possibly infinite arity) algebras. This correspondence restricts to
categories of Eilenberg–Moore algebras for finitary monads (i.e. monads preserving filtered col-
imits) and varieties of algebras in types consisting of finite arity operations. A T-algebra (X, h) is
said to be finitely carried (or sometimes just finite) provided X is finite. We write SetTf for the full
subcategory of SetT on the finitely carried objects. The forgetful functor SetT → Set that sends
(X, h) to X restricts to the finitely carried algebras, and gives rise to a functor SetTf → Setf .

In Section 5.2, we shall see how several quantifiers in logic on words can be modelled by
considering a semiring S and the associated free S-semimodule monad, which we now recall:

Example 2.8. A semiring S induces a functor S : Set→ Set, which sends a set X to the set of all
functions X → S with finite support, that is

SX := {f : X → S | f (x)= 0 for all but finitely many x ∈ X}.
If ψ : X → Y is any function, define Sψ : SX → SY as f �→ (y �→∑

ψ(x)=y f (x)). Any element
f ∈ SX can be represented as a formal sum

∑n
i=1 sixi, where {x1, . . . , xn} is the support of f and
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si = f (xi) for each i. The functor S is part of a monad (S , η,μ) on Set, called the free S-semimodule
monad, whose unit is

ηX : X → SX, ηX(x)(x′)=
{
1 if x′ = x
0 otherwise

and whose multiplication is

μX : S2X → SX,
n∑
i=1

sifi �→
(
x �→

n∑
i=1

sifi(x)
)
,

where the latter is an ordinary sum in the semiring S. The category SetS is the category of modules
over the semiring S, also known as S-semimodules. For example, if S is the Boolean semiring 2
then S =Pf (the finite powerset monad), whose Eilenberg–Moore algebras are join semilattices.
If S is (N,+, ·, 0, 1) or (Z,+, ·, 0, 1), then the algebras for the monad S are, respectively, Abelian
monoids and Abelian groups.

2.5 Profinite monads
Throughout this subsection we fix a monad T on Set. We begin by recalling the definition of the
associated profinite monad T̂ on the category of Boolean spaces, following Adámek et al. (2016b).
First, we provide an intuitive idea of the construction, and then we give the formal definition.
Given a Boolean space X, one considers all continuous maps hi : X → Yi where the Yi’s are finite
sets equipped with Eilenberg–Moore algebra structures αi : TYi → Yi, as well as the algebra mor-
phisms uij : Yi → Yj satisfying uij ◦ hi = hj. Equipping the finite sets Yi with the discrete topology,
one obtains a cofiltered diagram (or inverse limit system) DX in BStone, and T̂X is the limit of
this system. It turns out that T̂ is the underlying functor of a monad (T̂, η̂, μ̂) on BStone, called
the profinite monad associated with T. For example, it is not difficult to see how to obtain its unit
η̂X from the universal property of the limit, as in the following diagram, where the morphisms
pi : T̂X → Yi are the limit maps.

X T̂X

Yi Yj
hi

hj

η̂X

pi

pjuij

To give the formal definition of T̂, we introduce the functor G : SetTf → BStone obtained as the
composition of the forgetful functor to Setf with the embedding of Setf into BStone:

G : SetTf Setf BStone.

The shape of the diagram we constructed above for a Boolean space X is the comma category
X ↓G whose objects are essentially the maps hi : X →G(Yi, αi), and whose arrows are the maps
uij as above. The diagram DX is then given by precomposing the functor G with the codomain
functor cod : X ↓G→ SetTf , which maps hi : X →G(Yi, αi) to the algebra (Yi, αi).

DX : X ↓G SetTf BStonecod G

Formally, for an arbitrary Boolean space X, we have T̂X := limDX .

https://doi.org/10.1017/S0960129521000074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000074


1064 M. Gehrke et al.

Note that this is the pointwise limit computation of the right Kan extension ofG along itself, cf.
Mac Lane (1998, X.3). That is, using standard category-theoretic notation, T̂ = RanG G. It is well
known, see, for example, Leinster (2013), that the right Kan extension of a functor G along itself,
when it exists, is the functor part of a monad, called the codensity monad for G.

Example 2.9. Let T =Pf be the finite powerset monad on Set, that is the semiring monad associ-
ated with the Boolean semiring 2. The finitely carried T-algebras are the finite join semilattices, cf.
Example 2.8. Using the pointwise limit computation described above, and the fact that the Vietoris
functor on BStone preserves codirected limits (Engelking, 1989, 3.12.27.(f)), it is not difficult to
see that the profinite monad T̂ of T is the Vietoris monad on BStone. Note that, because every
Boolean space X is T1, there is a canonical map Pf |X| → |VX|, which views a finite subset of X as
a closed subset. In fact, these are the components of a natural transformation. Next, we show that
this natural transformation, which ‘compares’ T and T̂, can be defined for any profinite monad.

The universal property of the right Kan extension, along with the fact that the underlying-set
functor | − | : BStone→ Set is right adjoint and thus preserves right Kan extensions, allows one
to define a natural transformation

τX : T|X| → |T̂X| (4)
which was also used in Adámek et al. (2016b). Here we give a presentation based on the limit
computation of T̂X. Notice that the maps |hi| : |X| → |Yi| are functions into the carrier sets of the
Eilenberg–Moore algebras αi : TYi → Yi and thus, by the universal property of the free algebra
T|X|, we can extend the maps |hi| to algebra morphisms h#i from T|X| to (Yi, αi). The functions
h#i form a cone for the diagram | − | ◦DX in Set whose limit is |T̂X|, by virtue of the fact that the
forgetful functor | − | : BStone→ Set preserves limits. By the universal property of the limit, this
yields a unique map τX as in (4).

The natural transformation τ behaves well with respect to the units and multiplications of
the monads T and T̂, in the sense that the next two diagrams commute, see Adámek et al.
(2016a, Proposition B.7). Thus, the pair (| − |, τ ) is a monad morphism, or monad functor in the
terminology of Street (1972).

T|X| |T̂X| T2|X| T|X|

|X| T|T̂X| |T̂2X| |T̂X|

τX

TτX

μ|X|

τX|̂ηX |η|X|
τ T̂X |μ̂X |

(5)

The fact that (| − |, τ ) is a monad functor entails that the functor | − | lifts to a functor |̂ − |
between the categories of Eilenberg–Moore algebras for the monads T̂ and T, as in the next
diagram.

BStoneT̂ SetT

BStone Set

|̂−|

|−|
(6)

As a consequence, we immediately obtain that the set |T̂X| admits a T-algebra structure, a result
also used in Adámek et al. (2016a) for finite algebras. This structure is essentially the one obtained
by applying the functor |̂ − | to the free T̂-algebra (T̂X, μ̂X). In more detail,

Lemma 2.10. Given a Boolean space X, the composite map

T|T̂X| |T̂2X| |T̂X|τ T̂X |μ̂X |
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is a T-algebra structure on |T̂X|. Moreover, τX is a morphism of T-algebras from the free T-algebra
on |X| to |T̂X| with the above structure.
Proof. This is a straightforward verification using the commutativity of the diagrams in (5).

Example 2.11. When applied to the finite powerset monad Pf , the previous lemma tells us that
the Vietoris space VX of a Boolean space X is a join semilattice when equipped with the binary
operation ∪. Further, the canonical inclusion map τX : Pf |X| → |VX| is a semilattice homomor-
phism. An important property of the map τX : Pf |X| → |VX| is that it has dense image, see, for
example, Kuratowski (1966, Theorem 4 p. 163). As we shall now see, this feature is common to all
profinite monads.

While in some proofs it is essential to keep track of the forgetful functor, we will sometimes
omit it in what follows and simply write τX : TX → T̂X. We recall a property of the natural
transformation τ , which will be crucial in the following.

Lemma 2.12. For any Boolean space X, the map τX : TX → T̂X has dense image. Further, the
composite

TM Th−→ TX τX−→ T̂X
has dense image whenever h : M → X is a function with dense image.

Proof. For a proof of the fact that τX has dense image, see Reggio (2020, Lemma 2.9). An easy
adaptation of the latter proof yields the second part of the statement.

Remark 2.13. Notice that, for an arbitrary monad T on Set, the components of the natural trans-
formation τ from (4) need not be injective. A counterexample is provided by the powerset monad
P on Set. Indeed, both P and Pf generate the same profinite monad, namely the Vietoris monad
on BStone. In the case of the monad P , τX : PX → VX sends a subset of the Boolean space X to
its closure, and this function is injective precisely when X is finite. However, the components of τ
are injective if T is finitary and restricts to finite sets, for example, if T is the finite powerset monad
on Set. For more details, we refer the reader to Reggio (2020, Section 2.2).

3. Extending Commutative Set-Monads to BiMs
In this section we study liftings of monads from the category of sets to the category of BiMs. Let
us fix, throughout the section, a monad T on Set. In Section 2.5, we have seen that the profi-
nite monad T̂ provides a canonical way of extending T to Boolean spaces. On the other hand, in
Section 3.1 we consider ways of lifting T to the category of monoids. The combination of these
two liftings, the topological and the monoid one, is considered in Section 3.2. In particular, in
Theorem 3.5 we give sufficient conditions for T to be extended in a canonical way to the category
of BiMs, by combining the aforementioned liftings.

3.1 Lifting Set-monads to the category of monoids
It is well known that there are two ‘canonical’ natural transformations of bifunctors

⊗,⊗′ : TX × TY → T(X × Y),
defined intuitively as follows. If we think of elements of TX as terms t(x1, . . . , xm), then
t(x1, . . . , xm)⊗ s(y1, . . . , yn) is defined as

t(s((x1, y1), . . . , (x1, yn)), . . . , s((xm, y1), . . . , (xm, yn))),
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whereas t(x1, . . . , xm)⊗′ s(y1, . . . , yn) is defined as

s(t((x1, y1), . . . , (xm, y1)), . . . , t((x1, yn), . . . , (xm, yn))).

In general⊗ and⊗′ do not coincide, and when they do the monad is called commutative, a notion
due to Kock (1970). We give a formal definition in the case of the monad T. Every Set-monad
has a unique strength, that is a natural transformation σX,Y : X × TY → T(X × Y) such that the
following diagrams commute.

X × Y X × TY X × T2Y T(X × TY) T2(X × Y)

T(X × Y) X × TY T(X × Y)

idX×ηY

ηX×Y
σX,Y

σX,TY

idX×μY

TσX,Y

μX×Y

σX,Y

(7)
This natural transformation can be explicitly described as follows. For any x ∈ X, write fx : Y →
X × Y for the function sending y to (x, y). Then, σX,Y : X × TY → T(X × Y) sends a pair (x, s) to
the image of s under Tfx : TY → T(X × Y). Associated with the strength σ , there is a costrength
σ ′
X,Y : TX × Y → T(X × Y) defined as the composition

TX × Y Y × TX T(Y × X) T(X × Y),
γTX,Y σY ,X TγY ,X

where γX,Y : X × Y → Y × X is the function sending (x, y) to (y, x). The costrength σ ′ enjoys
properties symmetric to those of the strength σ , which are expressed by the following commu-
tative diagrams.

X × Y TX × Y T2X × Y T(TX × Y) T2(X × Y)

T(X × Y) TX × Y T(X × Y)

ηX×idY

ηX×Y
σ ′
X,Y

σ ′
TX,Y

μX×idY

Tσ ′
X,Y

μX×Y
σ ′
X,Y

(8)
The monad T is said to be commutative if, for all sets X, Y , the following square commutes.

TX × TY T(TX × Y) T2(X × Y)

T(X × TY)

T2(X × Y) T(X × Y)

σTX,Y

σ ′
X,TY

Tσ ′
X,Y

μX×Y

TσX,Y
μX×Y

(9)

Note that the commutativity of this diagram formalises the aforementioned idea that the natu-
ral transformations ⊗ and ⊗′ coincide. Given a monoid (M, ·, 1), one has two possibly different
‘canonical’ ways of defining a binary operation on TM, obtained as either of the two composites

TM × TM T(M ×M) TM.
⊗′
⊗ T(·) (10)

If e : 1→M denotes the map selecting the unit of the monoid, we can also define a map 1→ TM
obtained as the composite Te ◦ η1. That these data (with either of the two binary operations) give
rise to monoid structures on TM is a direct consequence of a more general result by Kock (1970,
Theorem 2.1):
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Theorem 3.1. If T is a commutative Set-monad then ⊗ = ⊗′, and thus for every monoid (M, ·, 1)
the composition in (10) gives a monoid structure on TM. This yields a lifting of T to a monad on the
category of monoids and their homomorphisms.

3.2 Combining the topological andmonoid liftings
In Sections 2.5 and 3.1, respectively, we have seen that a Set-monad T can be lifted to a monad
T̂ on the category of Boolean spaces and, if it is commutative, it can also be lifted to a monad on
the category of monoids. In this section we show that, if T is commutative and finitary, then the
topological and monoid liftings can be combined to obtain a lifting of T to the category of BiMs
(see Theorem 3.5 below).

Let T be a commutative Set-monad, (X,M) a BiM and h : M → X the associated function with
dense image. We would like to define a structure of BiM on the pair (T̂X, TM). In particular, we
should give a function TM → T̂X with dense image. To this aim, we define ĥ : TM → T̂X as the
composition

TM TX T̂X.Th τX (11)

By Lemma 2.12, this function has dense image. Further, since both Th and τX are T-algebra mor-
phisms, ĥ is also a T-algebra morphism. In order to show that (T̂X, TM) carries a BiM structure, it
remains to define appropriate actions of TM on T̂X. This will occupy us for the rest of the section.

Remark 3.2. (i) If α : TB→ B is aT-algebra andA is any set, the set of functions BA carries a natu-
ral ‘pointwise’ Eilenberg–Moore algebra structure for T, which turns BA into theA-indexed power
of B in SetT . This T-algebra structure makes all projections BA → B algebra morphisms. In fact,
a function C → BA from a T-algebra C is an algebra morphism precisely when all compositions
with the projections BA → B are algebra morphisms.

(ii) If αi : TBi → Bi for i ∈ {1, 2} are Eilenberg–Moore algebras for T, and f : B1 → B2 is an
algebra morphism, then Set(A, f )= f ◦ −: BA1 → BA2 is a T-algebra morphism.

We obtain at once the following fact.

Lemma 3.3. For any Set-monad T, the sets TMTM and T̂XTM carry T-algebra structures and the
function

ĥ ◦ −: TMTM → T̂XTM

is a T-algebra morphism.

Proof. With the notation of Remark 3.2.(ii), consider A= TM, α1 =μM : T2M → TM, α2 the
T-algebra structure on T̂X given as in Lemma 2.10, and f = ĥ.

Thus, by Remark 3.2.(i), also the power algebra T̂XT̂X admits a T-algebra structure. Crucially,
if the monad T is finitary, the set [T̂X, T̂X] of continuous endofunctions on T̂X is a subalgebra of
T̂XT̂X . This is proved in the following proposition which will allow us to define, in the proof of
Theorem 3.5, a biaction of TM on T̂X.

Proposition 3.4. If T is a finitary Set-monad, then [T̂X, T̂X] is a subalgebra of the T-algebra
T̂XT̂X. With respect to this structure, the function

− ◦ ĥ : [T̂X, T̂X]→ T̂XTM

is a T-algebra morphism.
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Proof. It suffices to prove the first part of the statement, for then the function − ◦ ĥ is
a T-algebra morphism because it coincides with the following composition of T-algebra
morphisms:

[T̂X, T̂X] T̂XT̂X T̂XTM .T̂Xĥ

Recall from Section 2.5 that T̂X is the cofiltered limit of finite sets Yi which carry T-algebra
structures αi : TYi → Yi. We have the following isomorphisms in the category of sets:

[T̂X, T̂X]∼= [T̂X, limiYi]
∼= limi[T̂X, Yi]
∼= limi[limjYj, Yi]
∼= limi colimj [Yj, Yi].

The second isomorphism follows from the fact that the functor [T̂X,−] : BStone→ Set is
representable, hence it preserves all limits (Mac Lane, 1998, Theorem V.4.1). For the last
isomorphism, we have used the fact that the Yi are finite spaces, and consequently finitely cop-
resentable (i.e. finitely presentable when regarded as objects of BStoneop). Therefore, the functors
[−, Yi] : BStone→ Set turn cofiltered limits to filtered colimits.

The sets Yi carry T-algebra structures and so do the sets [Yj, Yi]∼= YYj
i with respect to point-

wise operations. Since T is finitary, the forgetful functor SetT → Set preserves and reflects both
filtered colimits and limits (see, e.g. Borceux, 1994, Propositions 3.4.1–3.4.2). Whence, [T̂X, T̂X]
carries a T-algebra structure. We claim that, with respect to this T-algebra structure, [T̂X, T̂X] is
a subalgebra of the power algebra T̂XT̂X .

For each x ∈ T̂X, write evx : [T̂X, T̂X]→ T̂X for the function sending f to f (x). By
Remark 3.2.(i), the natural inclusion

[T̂X, T̂X] ↪→ T̂XT̂X

is a T-algebra morphism if, and only if, each evx is a T-algebra morphism. Write {πi : T̂X →
Yi | i ∈ I} for the cone of continuous functions defining T̂X as the cofiltered limit of finite sets Yi
which carry T-algebra structures. It is not difficult to see that each πi is a T-algebra morphism;
for a proof, see Reggio (2020, Proposition 2.10). It suffices to show that each composition πi ◦
evx : [T̂X, T̂X]→ Yi is a T-algebramorphism, for then evx will coincide with the unique T-algebra
morphism induced by the universal property of T̂X. For any j ∈ I, denote by γj : T̂XYj → Yi the
composite

T̂XYj YYj
i Yi.

πi◦− evπj(x)

Themap evπj(x) is a product projection, hence a T-algebramorphism by Remark 3.2.(i). Moreover,
πi ◦ − is a T-algebra morphism by Remark 3.2.(ii). It follows that each γj is a T-algebra mor-
phism. Upon recalling that [T̂X, T̂X]∼= colimj [Yj, T̂X] in SetT , it is not difficult to see that πi ◦
evx : [T̂X, T̂X]→ Yi is the unique T-algebra morphism induced by the cocone {γj : [Yj, T̂X]→
Yi | j ∈ I}, thus concluding the proof.

Exploiting the previous observations we can prove the main result of this section:

Theorem 3.5. Any finitary commutative Set-monad T can be extended to a monad on BiM
mapping (X,M) to (T̂X, TM).

Proof. We first give the definition of the monad on an object (X,M, h, ρ, λ). We will show that
this is mapped to a BiM (T̂X, TM, ĥ, ρ̂, λ̂), where ĥ= τX ◦ Th (cf. equation (11)), and ρ̂ and
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λ̂ are defined as follows. Recall that [X, X] and [T̂X, T̂X] denote the sets of continuous end-
ofunctions on X and T̂X, respectively. To define ρ̂, consider the composite of the following
two maps, where T̂X,X is given by the application of the functor T̂ to a continuous function
in [X, X]:

M [X, X] [T̂X, T̂X].ρ T̂X,X (12)

By Proposition 3.4 we know that [T̂X, T̂X] is a T-algebra, hence the map in (12) admits a unique
extension to an algebra morphism ρ̂ : TM → [T̂X, T̂X]. The function λ̂ is defined similarly, as the
unique T-algebra morphism extending T̂X,X ◦ λ.

In order to prove that (T̂X, TM, ĥ, ρ̂, λ̂) is a BiM, it remains to prove that the functions ĥ, ρ̂
and λ̂ make the diagrams in Definition 2.2 commute. Equivalently, by virtue of Remark 2.5, that
the next square and the analogous one (with ρ̂ replaced by λ̂, and r̂ by l̂) commute,

[T̂X, T̂X] T̂XTM

TM TMTM

−◦̂h

ρ̂

r̂

ĥ◦− (13)

where r̂ and l̂ denote the right and left action, respectively, of TM on itself. To this end, notice that
the following diagram commutes.

[T̂X, T̂X] T̂XTM

[X, X] XM

M MM TMTM

−◦̂h

T̂X,X

−◦h

τX◦T−

ρ

r

h◦−
TM,M

ĥ◦− (14)

For the upper leftmost trapezoid, recalling that ĥ= τX ◦ Th, we must prove that for all f ∈ [X, X]
we have

τX ◦ T(f ◦ h)= T̂f ◦ τX ◦ Th.
In turn, this follows from the fact that τX ◦ Tf = T̂f ◦ τX by naturality of τ . The lower rightmost
trapezoid commutes by the very definition of ĥ, whereas the inner square is a reformulation of the
left commuting square in (3), cf. Remark 2.5.

We derive the commutativity of (13) using the universal property of the free T-algebra on M
and by observing that (a) in the outer square in (14), the right vertical and the top horizontal
arrows are morphisms of T-algebras by Lemma 3.3 and Proposition 3.4, respectively; (b) the map
ρ̂ was defined as the unique extension of T̂X,X ◦ ρ to the free algebra TM; (c) the map r̂ is the
unique algebra morphism extending TM,M ◦ r to TM. To settle item (c), notice that it is equivalent
to the commutativity of the following diagram:

TM ×M TM × TM

T(M ×M)

TM ×MM TM

idTM×ηM

idTM×r

⊗

T(·)
ε

(15)
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where ⊗ denotes either of the two compositions in diagram (9), ε(s, f )= TM,M(f )(s) for every
(s, f ) ∈ TM ×MM , and · : M ×M →M is the monoid operation of M. Now, observe that the
identity

⊗ ◦(idTM × ηM)= σ ′
M,M , (16)

where σ ′ is the costrength of T, holds provided the following two diagrams commute.

TM ×M TM × TM TM ×M T(TM ×M)

T(TM ×M) T2(M ×M)

T(M ×M)

idTM×ηM

ηTM×M
σTM,M

ηTM×M

σ ′
M,M

Tσ ′
M,M

μM×M

The left-hand triangle commutes by the leftmost diagram in (7). To see that the right-hand trian-
gle commutes, since (μM × idM) ◦ (ηTM × idM)= idTM×M , it suffices to show that the following
diagram commutes.

TM ×M

T2M ×M T(TM ×M)

T2(M ×M)

TM ×M T(M ×M)

ηTM×idM ηTM×M

μM×idM

σ ′
TM,M

Tσ ′
M,M

μM×M
σ ′
M,M

In turn, the top triangle commutes by the leftmost diagram in (8), while the lower square com-
mutes by the rightmost diagram in (8). Therefore, by equation (16), the commutativity of diagram
(15) is equivalent to the commutativity of the outer square below

TM ×M T(M ×M)

T(M ×MM)

TM ×MM TM

σ ′
M,M

idTM×r T(·)

T(idM×r)

T(ev)
σ ′
M,MM

ε

where ev : M ×MM →M sends (m, f ) ∈M ×MM to f (m). The upper leftmost triangle commutes
by naturality of σ ′, while the rightmost triangle and the lower one are easily seen to be commuta-
tive. Hence, item c) above is satisfied and diagram (13) commutes, as was to be proved. Reasoning
in a similar manner for the left action, one can see that (T̂X, TM, ĥ, ρ̂, λ̂) is indeed a BiM.

It is now a matter of straightforward computations to check that the assignment (X,M) �→
(T̂X, TM) yields a monad on the category of BiMs, with unit (̂ηX , ηM) : (X,M)→ (T̂X, TM) and
multiplication (μ̂X ,μM) : (T̂2X, T2M)→ (T̂X, TM).

Remark 3.6. Assume that the monad T is not commutative and we attempt to use, in the proof
of Theorem 3.5, the monoid multiplication on TM given by ⊗. All is fine for the right action and
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indeed the right action r̂ of TM on itself is the unique extension of TM,M ◦ r. However, this is not
the case for the left action. Symmetrically, if we chose the multiplication of TM stemming from
⊗′, then the left action l̂ would be the extension of the map TM,M ◦ l, but this property would fail
for the right action.

4. Extending the Free Semimodule Monad to BiMs
In Theorem 3.5, we showed how to lift any finitary commutative monad on Set to a monad
on BiM. The purpose of the present section is then twofold. On the one hand we pro-
vide an example of a family of Set-monads to which this result applies, and on the other
hand, we give explicit descriptions of the various objects, maps and actions of the associated
monads on BiM. This will be essential for our further work on recognisers in the following
sections.

Given a semiring S, recall fromExample 2.8 the free S-semimodulemonadS on Set. Notice that
S is a commutative monad if, and only if, S is a commutative semiring, that is the multiplication ·
is a commutative operation. Indeed, for a monoid M, the two monoid operations one can define
on SM are given as follows. If f , f ′ ∈ SM, then one can define ff ′(x) either by∑

mm′=x
f (m) · f ′(m′) or

∑
m′m=x

f ′(m′) · f (m),

and the two coincide precisely when the semiring is commutative. For this reason, for the rest
of the paper we will only consider commutative semirings S. We also consider the associated
Set-monad S , along with the profinite monad Ŝ on BStone (cf. Section 2.5).

Throughout this section, we fix an arbitrary finite and commutative semiring S. Let X be a
Boolean space, and denote by B its dual algebra. Next, we provide a concrete description of the
Boolean space ŜX in terms of measures on X. For more details and for the proofs of several facts
mentioned in this section, the interested reader is referred to Reggio (2020).

Definition 4.1. Let X be a Boolean space and B the dual algebra. An S-valued measure (or just a
measure when the semiring is clear from the context) on X is a function μ : B→ S which is finitely
additive, that is

(1) μ(0)= 0, and
(2) μ(K ∨ L)=μ(K)+μ(L) whenever K, L ∈ B are disjoint.

We remark that in item 1 the first 0 is the bottom of the Boolean algebra, while the second 0 is in S.
Also, one can express item 2 without reference to disjointness:

2’. μ(K ∨ L)+μ(K ∧ L)=μ(K)+μ(L) for all K, L ∈ B.

Note that our notion of measure is not standard, as we only require finite additivity. Also, the
measure is only defined on the clopens of the space X. Finally, it takes values in a (finite and
commutative) semiring.

Example 4.2. If the semiring S is idempotent (i.e. s+ s= s for all s ∈ S), hence a semilattice,
the measures μ : B→ S are precisely the homomorphisms of join semilattices which preserve
0. Equivalently, the monoid morphisms B→ S where (B,∨, 0) is viewed as the monoid part of a
Boolean ring. This is the case, for instance, when S= 2 is the Boolean semiring. In general, there
may be measures that are not monoid morphisms.
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Notation 4.3. Let X be a set and f : X → S a function. If Y ⊆ X is a subset such that the sum∑
x∈Y f (x) exists in S, then we write ∫

Y
f :=

∑
x∈Y

f (x).

If B⊆PX, and
∫
Y f exists for each Y ∈ B, then

∫
f : B→ S denotes the function taking Y to

∫
Y f .

Note that, whenever f : X → S is finitely supported, the function
∫
f : PX → S is well defined.

Suppose X is a Boolean space and B its dual algebra. Using the fact that SX is dense in ŜX, it is
not difficult to see that the Boolean algebra B̂ dual to ŜX is isomorphic to the subalgebra ofP(SX)
generated by the elements of the form

[L, k] := {f ∈ SX |
∫
L
f = k},

for L ∈ B and k ∈ S. For a proof of this fact, see Reggio (2020, Lemma 4.2). Regarding the elements
of ŜX as Boolean algebra homomorphisms ϕ : B̂→ 2, we can define a function

ŜX −→ {μ : B→ S |μ is a measure on X}, ϕ �→μϕ (17)
where μϕ is the measure sending L ∈ B to the unique k ∈ S such that ϕ[L, k]= 1. Such a k exists
and is unique because the sets [L, k′], where L is fixed and k′ varies in S, form a finite partition of
SX. In turn, the set of all measures on X is equipped with a natural topology, generated by the sets
of the form

[L, k]= {μ : B→ S |μ is a measure on X, μ(L)= k} (18)

for L ∈ B and k ∈ S (the notation [L, k] is justified by Proposition 4.6 below). With respect to this
topology, the space ŜX admits the following measure-theoretic characterisation.

Theorem4.4. (Cf. Reggio, 2020, Theorem 4.3). Let S be a finite and commutative semiring. For any
Boolean space X, the map in (17) yields a homeomorphism between ŜX and the space of S-valued
measures on X.

Example 4.5. In view of Examples 2.9 and 4.2, the previous theorem entails that, for any Boolean
space X with dual algebra B, the Vietoris space VX is homeomorphic to the space of all join
semilattice homomorphisms B→ 2 that preserve 0, with the topology defined in (18). An explicit
homeomorphism is given by sending a closed subsetC ⊆ X to the join semilattice homomorphism
B→ 2, which maps a ∈ B to 1 if â∩ C �= ∅, and to 0 otherwise.

The previous result allows for a concrete representation of the map τX in (4) which, in turn,
yields the following concrete instantiation of Lemma 2.12 (cf. also Remark 2.13).

Proposition 4.6. If X is a Boolean space, then the function

τX : SX → ŜX, f �→
∫
f

embeds SX in ŜX as a dense subspace. Moreover [L, k], as defined in (18), is the topological closure
of [L, k] whenever L is a clopen of X and k ∈ S.

As follows by the general results in Sections 2.5 and 3, respectively, ŜX is a module over the
semiring S and it is a Boolean space with an internal monoid if X is. Here, we identify the concrete
nature of this structure relative to the incarnation of ŜX as the space of measures on X. We state
these as lemmas and, indeed, one can prove them directly. However, the results in this section are
just special cases of the more general results in Sections 2.5 and 3.
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Lemma 4.7. Let X be a Boolean space and let μ, ν ∈ ŜX. Then
μ+ ν : K �→μ(K)+ ν(K)

is again a measure on X and the ensuing binary operation on ŜX is continuous. Further, for any
k ∈ S,

kμ : K �→ k ·μ(K)
is again a measure on X and the ensuing unary operation on ŜX is continuous.

This accounts for the S-semimodule structure on ŜX. Now, assume that X is not just a Boolean
space, but a BiM. To improve readability, we assume h : M → X is injective and identifyM with its
image. First, we observe thatSM sits as a dense subspace of ŜX by composing themapSh : SM →
SX with the integration map of Proposition 4.6. This is the concrete incarnation, in the case of
the monad S , of Lemma 2.12.

Lemma 4.8. Let (X,M) be a Boolean space with an internal monoid. Then

SM → ŜX, f �→
∫
f

is the map ĥ from (11) transporting SM into a dense subspace of ŜX.

We remark that, since we assumed h is injective, so is the map ĥ in the previous lemma (cf.
Remark 2.13). Now, to exhibit the BiM structure of ŜX, we start by identifying the actions of M
on ŜX.
Lemma 4.9. Let (X,M) be a Boolean space with an internal monoid. Further, let μ ∈ ŜX and
m ∈M. Then

mμ : K �→μ(m−1K),
where m−1K = {x ∈ X |mx ∈K} whenever K ⊆ X is clopen, is again a measure on X. This defines a
left action of M on ŜX with continuous components. Similarly,

μm : K �→μ(Km−1)
defines a right action of M on ŜX with continuous components, and these actions are compatible in
the sense that (mμ)n=m(μn).

Using the S-semimodule structure of ŜX (see Lemma 2.10), along with the biaction of M on
ŜX provided by the previous lemma, it is easy to obtain the biaction of SM on ŜX. The following
can be regarded as the specific incarnation of Theorem 3.5.

Proposition 4.10. Let (X,M) be a Boolean space with an internal monoid. The map

SM × ŜX → ŜX, (f ,μ) �→ fμ :=
∑
m∈M

f (m) ·mμ

is a left action of SM on ŜX with continuous components. A right action with continuous compo-
nents may be defined similarly. These two actions are compatible and provide the BiM structure on
(ŜX, SM).

Finally, we consider a restriction of the above action of SM on ŜX, which we will need for the
construction of the space ♦SX in Section 5. This is given by precomposing with the unit of the
monad Ŝ :

η̂X : X → ŜX, x �→μx

where μx(K)= 1 if x ∈K, and μx(K)= 0 otherwise. That is, μx = ∫
χx where χx is the character-

istic function of {x} into S. It is immediate that this map embeds X as a (closed) subspace of ŜX.
Thus, we obtain an ‘action’
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SM × X → ŜX, (f , x) �→ fμx.

Next, we observe that this ‘action’ factors through the map SX → ŜX defined in Proposition 4.6.

Lemma 4.11. Let (X,M) be a Boolean space with an internal monoid. Consider the map

SM × X → SX, (f , x) �→ fx,

where fx(y) :=∑
mx=y f (m). Then, we have

fμx =
∫
fx.

Furthermore, for each f ∈ SM, the assignment x �→ ∫
fx is continuous.

Example 4.12. We illustrate the actions in Lemma 4.9 and Proposition 4.10 in the case of the
Boolean semiring S= 2. If (X,M, h, ρ, λ) is any BiM, then ŜX is the Vietoris space VX and SM is
the monoid Pf M (with monoid operation ∪). For every m ∈M, the component λ(m) : X → X of
the left action ofM on X yields a continuous map

V(λ(m)) : VX → VX, C �→ λ(m)(C),

which is the component at m of the left action of M on VX given in Lemma 4.9. Similarly, the
components of the right action of M on VX are obtained by applying the functor V to the com-
ponents ρ(m) : X → X of the right action of M on X. The left action of Pf M on VX described in
Proposition 4.10 is

Pf M × VX → VX, (F, C) �→
⋃
m∈F

λ(m)(C).

(The right action of Pf M on VX is defined in a similar way.) Upon restricting the latter action to
X, we obtain the map Pf M × X → VX, (F, x) �→ {λ(m)(x) |m ∈ F} described in Lemma 4.11.

5. Recognisers for Operations Given by S-Valued Transductions
In this section we will see how we can use the extension of a Set-monad T to BiMs, obtained in
Section 3, to generate recognisers for languages obtained by applying an operation modelled by
the monad T.

It is by now a standard result in the theory of formal languages that many operations on lan-
guages can be modelled using transductions, that is maps of the formM →PN for two monoids
M and N, see Pin and Sakarovitch (1982). The starting point of this work is the observation that
the existential quantifier can also be modelled as a transduction, as we will see in Section 5.2.
Furthermore, modular quantifiers ∃pmod q of modulus q fit into the same pattern. The only dif-
ference is that, instead of using transductions of the form M →PN, one needs to replace the
powerset PN with the free Zq-semimodule over N. More generally, we are interested in opera-
tions that can be modelled as maps M → SN with S denoting as before the free S-semimodule
monad. In category theory these maps are known as Kleisli maps for S , the morphisms in the
so-called Kleisli category of S .

We start Section 5.1 by briefly recalling the definition of the Kleisli maps for a monad. Then we
present the blueprint of our approach, using an additional assumption on the T-Kleisli map under
consideration (namely that it is a monoid morphism), and in Section 5.2 we instantiate T to the
free S-semimodule monads for commutative semirings S and adapt the general theory developed
previously.
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5.1 Recognising operations modelled by amonad T
Consider a monad (T, η,μ) on a category C. The Kleisli category Kl(T) for T is equivalent to
the category of free T-algebras and has played a crucial rôle in program semantics for modelling
functions with side effects. Formally, the objects of Kl(T) are the objects in the underlying category
C, and a morphism X → Y in Kl(T) (called a T-Kleisli map) is a morphism X → TY in C. One can
think of an object X in Kl(T) as the generator of the free algebra TX. Notice that morphisms
X → Y in Kl(T) are in one-to-one correspondence with T-algebra morphisms TX → TY between
the corresponding free algebras.

Hereafter, we assume T is an arbitrary commutative and finitary monad on Set, and let A, B
be finite sets. We start by observing that a Kleisli map R : A∗ → T(B∗) could be used to transform
languages in the alphabet B into languages in the alphabet A. Assume that L= φ−1(P) for some
monoid morphism φ : B∗ →M and some P ⊆M. We consider the function

A∗ T(B∗) TM.R Tφ

Since T is a commutative monad, we know that it lifts to the category of monoids and thus we
can see Tφ as a monoid morphism. If R is also a monoid morphism, and we will assume this
only in this subsection, then so is Tφ ◦ R, and it could be used for language recognition in the
standard way. Assuming that we have a way of turning the recognising sets inM into recognising
sets in TM, that is that we have a predicate transformer PM →PTM mapping P to P̃, we obtain
a language L̃ in A∗ as the preimage of P̃ under the morphism Tφ ◦ R.
Remark 5.1. In the running example of the next subsection we will need maps R that are not
monoidmorphisms, and in that setting wewill have to use amatrix representation of the transduc-
tion instead. Nevertheless, the techniques used in the next subsection can be seen as an adaptation
of the theory developed here for the case when R is indeed a monoid morphism.

In this work we go beyond regular languages, so we are interested in languages recognised by a
BiM morphism as follows:

β(B∗) X

B∗ M

φ̃

φ

h (19)

We recall that to improve readability, and since φ̃ is uniquely determined by its restriction to
B∗, we sometimes denote such a morphism of BiMs simply by φ, instead of (φ̃, φ).

By Theorem 3.5, we know that (T̂X, TM) is a BiM, and in what follows we use it for recognising
A-languages by constructing another BiM morphism (β(A∗),A∗)→ (T̂X, TM) as in Lemma 5.2
below. To this end, we need a way of lifting the Kleisli map R : A∗ → T(B∗) to a Kleisli map for
the monad T̂. This can be done in a natural way using a natural transformation

τ # : βT → T̂β

obtained from the natural transformation τX : T|X| → |T̂X| defined in (4) using the unit ι and the
counit ε of the adjunction β � | − |. Explicitly, τ # is obtained as the composite

βT βT| − |β β| − |T̂β T̂β .βTι βτβ εT̂β (20)

(τ # is the mate of τ ; this is a rather standard construction in category theory, see for exam-
ple Street, 1972, Theorem 9.) In down-to-earth terms, the component of τ # at a set Y is the free
extension of the composite
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TY T|βY| |T̂βY|.TιY τβY

It follows that the natural transformation τ # : βT → T̂β also behaves well with respect to the units
and multiplications of the monads. That is, in the terminology of Street (1972), the pair (β , τ #) is
a monad opfunctor. This, in turn, implies that β can be lifted to a functor β̂ between the Kleisli
categories making the next square commute, where the vertical functors are the free functors from
the base to the Kleisli categories.

Kl(T) Kl(T̂)

Set BStone

β̂

β

The functor β̂ maps the Kleisli map R : A∗ → T(B∗) to the Kleisli map R̂ : β(A∗)→ T̂β(B∗) given
by

R̂ : β(A∗) βT(B∗) T̂β(B∗) .βR τ # (21)

Lemma 5.2. Assume R : A∗ → T(B∗) is a monoid morphism. If the pair (φ̃, φ) from (19) is a
morphism of BiMs, then so is the pair (T̂φ̃ ◦ R̂, Tφ ◦ R) described in the next diagram.

β(A∗) T̂β(B∗) T̂X

A∗ T(B∗) TM

R̂ T̂φ̃

ι

R Tφ
τX◦Th

Proof. In the statement of the lemma we have omitted writing the forgetful functor | − | on the
top line of the diagram. We will need it nevertheless in the proof. Using the definition of R̂, we
need to show that the next diagram commutes:

|β(A∗)| |βT(B∗)| |T̂β(B∗)| |T̂X|

T|β(B∗)| T|X|

A∗ T(B∗) TM

|βR| |τ #| |T̂φ̃|

T|φ̃|
τβ τ

ι

R

ιT
Tι

Tφ Th

The two rectangles in the diagram above commute by naturality of ι, respectively τ , and the
bottom right rhombus commutes because φ is a morphism of BiMs. To prove that the middle
trapezoid is commutative, we just have to recall how the transformation τ # is defined, see (20). In
a 2-categorical terminology, this is a simple exercise involving the mates τ and τ #:

| − |βT | − |βT| − |β | − |β| − |T̂β | − |T̂β

T T| − |β | − |T̂β

|−|βTι |−|βτβ |−|εT̂β

Tι

ιT
τβ

ιT|−|β ι|−|̂Tβ
id

The squares commute by naturality of ι, whilst the triangle commutes because
| − |ε ◦ ι| − | = id.
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5.2 Recognising quantified languages via S-transductions
Here we show how to construct BiMs recognising quantified languages. We point out that the
content of this subsection could be easily adapted to arbitrary Kleisli maps for the monads of
the form Ŝ , for commutative semirings S. We start with a language L in the extended alphabet
(A× 2)∗ recognised by a BiM morphism as in the following diagram.

β((A× 2)∗) X

(A× 2)∗ M

φ̃

φ

h

In other words, there exists a clopen C in X such that L= φ−1(C ∩M). The aim of this subsection
is to construct recognisers for the quantified languages L∃ and L∃pmod q , as defined in Section 2.1.
To this end, using the formal sum notation in the definition of the monad S , we consider the map

R : A∗ → S((A× 2)∗), w �→
|w|∑
i=1

1S ·w(i) (22)

wherew(i) is the word in (A× 2)∗ with the same shape asw but with the letter in position imarked
(see Section 2.1). If S is the Boolean semiring 2, then R simply associates with each word w the
set of all words in (A× 2)∗ with the same shape as w and with exactly one marked letter. The
framework developed in the previous subsection does not immediately apply, because R is not a
monoid morphism. So, the first step we have to take is to obtain a monoid morphism from R,
which will then be used to construct BiM recognisers for quantified languages.

Upon viewing R as an S-transduction (see Sakarovitch, 2009), we observe that it is realised by
the rational S-transducer TR, as shown in Figure 1, in which we have drawn transition maps only
for a generic letter a ∈A.

Figure 1. The S-transducer TR realising R. All the transitions have weights 1S,
and thus the transducer outputs value 1S for all pairs of the form (w,w(i)), with
w ∈ A∗ and 1≤ i≤ |w|.

This transducer provides the following representation of R in terms of a monoid morphism
R : A∗ →M2(S((A× 2)∗)), (23)

whereMn(S((A× 2)∗)) denotes the set of n× n-matrices over the semimodule S((A× 2)∗). For
a wordw ∈A∗, the matrix R(w) has at position (i, j) the formal sum of output words obtained from
the transducer TR by going from state i to state j while reading input word w. That is, R is given by

w �→
(
1S ·w0 ∑

i 1S ·w(i)

0S 1S ·w0

)
.

The next two examples provide the motivation for considering the particular transduction R in
the first place.

Example 5.3. Assume S is the Boolean semiring 2. Then S =Pf and R(w)= {w(i) | 1≤ i≤ |w|}.
The language L∃ ⊆A∗ is recognised by the following composite monoid morphism, that will be
denoted by φ∃.

A∗ M2(Pf ((A× 2)∗)) M2(Pf M)R M2(Pf φ)
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Just observe that, if L= φ−1(P) for some P ⊆M, then L∃ = φ−1
∃ (̃P), where P̃ is the set of matrices

inM2(Pf M) such that the finite set in position (1, 2) intersects P.

Example 5.4. Assume S is the semiring Zq. The language L∃pmod q ⊆A∗ is recognised by the
following composite monoid morphism, that will be denoted by φ∃pmod q .

A∗ M2(S((A× 2)∗)) M2(SM)R M2(Sφ)

Indeed, if L= φ−1(P) with P ⊆M then L∃pmod q = φ−1
∃pmod q

(̃P), where P̃ is the set of matrices in
M2(SM) such that the finitely supported function f : Zq →M in position (1, 2) has the property
that

∫
P f = p in Zq.

In view of Theorem 3.5, we know that whenever (X,M) is a BiM, then so is (ŜX, SM) with the
actions of the internal monoid as in Proposition 4.10. Using this fact, we can prove the following
lemma.

Lemma 5.5. If (X,M) is a BiM, then so is

(Mn(ŜX),Mn(SM))

for any integer n≥ 1.

Proof. The set Mn(ŜX) is a Boolean space with respect to the product topology of n× n copies
of ŜX. The statement then follows easily upon defining the actions of the monoid Mn(SM) on
Mn(ŜX) by using the actions of SM on ŜX via matrix multiplication, and the S-semimodule
structure of ŜX. For example, the left action of (fij)i,j ∈Mn(SM) on (μij)i,j ∈Mn(ŜX) yields a
matrix of measures in ŜX having at position (i, j) the measure

∑n
k=1 fikμkj.

We next prove a result which entails that themonoidmorphisms φ∃ and φ∃pmod q constructed in
Examples 5.3 and 5.4 can be extended to BiMmorphisms recognising L∃ and L∃pmod q , respectively.

Lemma 5.6. If the pair (φ̃, φ) from (19) is a morphism of BiMs and R : A∗ →Mn(S(B∗)) is a
monoid morphism, then the pair (Mn(Ŝφ̃) ◦ R̂,Mn(Sφ) ◦ R) described in the next diagram is a
BiMmorphism,

β(A∗) Mn(Ŝβ(B∗)) Mn(ŜX)

A∗ Mn(S(B∗)) Mn(SM)

R̂ Mn(Ŝφ̃)

R Mn(Sφ)
Mn(τX◦Sh)

where R̂ is the unique continuous extension of the following composite map:

A∗ Mn(S(B∗)) Mn(βS(B∗)) Mn(Ŝβ(B∗)).R Mn(ι) Mn(τ #)

Proof. This follows essentially by Lemma 5.2 by setting T = S , along with the functoriality of
Mn(− ). Note that the aforementioned lemma applies to this setting because R is a monoid
morphism.

If we apply the previous lemma to the monoid morphism R in equation (23) we obtain the BiM
(M2(ŜX),M2(SM)) which, when instantiated with the appropriate semiring S, recognises the
quantified languages L∃ and L∃pmod q .

For instance, suppose the semiring S is Zq. If L is recognised by a clopen C ⊆ X then, upon
recalling from (18) that subbasic clopens of ŜX are of the form [K, k] for K a clopen of X and
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k ∈ S, one can easily prove that the quantified language L∃pmod q is recognised by the clopen subset
ofM2(ŜX) given by the product ŜX × [C, p]× ŜX × ŜX, where the elements of the clopen [C, p]
should appear in position (1, 2) in the matrix view of the space.

However, notice that the image of the morphism M2(Sφ̃) ◦ R̂ is contained in the subspace of
M2(ŜX), which can be represented by the matrix(

X ŜX
0 X

)
.

As a consequence, we can use for the same recognition purpose a smaller BiM, through which the
morphismM2(Sφ̃) ◦ R̂ factors. We denote this BiM morphism by

♦Sφ : (β(A∗),A∗)→ (♦SX,♦SM),

where

♦SX := ŜX × X and ♦SM := SM ×M,

with monoid structure and biactions defined essentially by identifying the products above with
upper triangular matrices, and then using the matrix multiplication and the concrete descrip-
tion of several monoid actions from Lemmas 4.9 and 4.11. Using the notations described in these
lemmas, the left action of ♦SM on ♦SX can be described by(

m f
0 m

)(
x μ
0 x

)
=
(
mx mμ+ ∫

fx
0 mx

)
,

where (f ,m) ∈♦SM and (μ, x) ∈♦SX. Recall from Section 2.1 that the language Qk(L) in the
alphabet A is obtained by quantifying the language L⊆ (A× 2)∗ with respect to the quantifier
associated with a semiring S and an element k ∈ S. We summarise the preceding observations in
the following theorem.

Theorem 5.7. Let S be a commutative semiring, and k ∈ S. Suppose a language L⊆ (A× 2)∗
is recognised by the BiM morphism φ : (β((A× 2)∗), (A× 2)∗)→ (X,M). Then the quantified
languageQk(L)⊆A∗ is recognised by the BiMmorphism ♦Sφ : (β(A∗),A∗)→ (♦SX,♦SM).

As an immediate consequence, taking S= 2 the Boolean semiring and k= 1, we recover the
result in Gehrke et al. (2016, Proposition 13) on existential quantification:

Corollary 5.8. Consider a formula ϕ(x) with a free first-order variable x. If the language Lϕ(x) ⊆
(A× 2)∗ is recognised by the BiM morphism φ : (β((A× 2)∗), (A× 2)∗)→ (X,M), then the exis-
tentially quantified language L∃x.ϕ(x) ⊆A∗ is recognised by the BiMmorphism♦2φ : (β(A∗),A∗)→
(VX × X,Pf M ×M).

6. Duality-Theoretic Account of the Construction
In Section 5.2, the BiM ♦SX = ŜX × X was defined by means of a matrix representation of a
certain S-transduction. This may look like an ad hoc way to obtain a recogniser for the quantified
languages. In Sections 6.1 and 6.2, we show that both the space component of ♦SX and the actions
of its internal monoid can be derived in a natural way by using duality.

Let S be a finite and commutative semiring, and (X,M) a BiM. As earlier, we denote by B
the dual algebra of X. Further, let φ : (β((A× 2)∗), (A× 2)∗)→ (X,M) be a BiM morphism. We
denote by B the preimage under φ of B (equivalently, B is the image of the Boolean algebra homo-
morphism B→P((A× 2)∗) dual to φ). That is, B is the Boolean algebra, closed under quotients
in P((A× 2)∗), of languages recognised by the BiM morphism φ.
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In Section 5.2, we introduced themap♦Sφ as a recogniser for the quantified languages obtained
from the languages in B. Here we prove, by duality, that ♦Sφ is in fact the minimal possible BiM
recogniser for these quantified languages. This will allow us to obtain, in Section 6.3, a Reutenauer-
type theorem for ♦SX (see Theorem 6.13). The idea is the following. On the language side, we are
interested in the Boolean algebra generated by the languages of the form Qk(L), for k ∈ S and
L ∈B. This coincides with the Boolean algebra QB obtained as the preimage of B̂, the Boolean
algebra of clopens of ŜX, under the composite

φQ : A∗ S((A× 2)∗) SM ŜX,R Sφ
∫

(24)

where R is as in equation (22), and
∫ : SM → ŜX is the integration map (cf. Lemma 4.8). Indeed,

suppose L ∈B, that is L= φ−1(K) for some clopen subset K ⊆ X. Then, for every k ∈ S,

φQ
−1([K, k])= {w ∈A∗ |

∫
K

|w|∑
i=1

1S · φ(w(i))= k}

= {w ∈A∗ |w ∈Qk(φ−1(K))} =Qk(L).

The Boolean algebra QB is not closed under quotients. Since we want a BiM recogniser, and not
just a ‘Boolean space recogniser’, we want to recognise the Boolean algebra closed under quotients
generated by QB. Furthermore, from the viewpoint of logic we are adding one layer of quan-
tifiers. Thus, by inductive hypothesis, it makes sense to include also the languages of the form
L0 = {w ∈A∗ |w0 ∈ L}, for L ∈B. (Recall from Section 2.1 that w0 is the word in (A× 2)∗ having
the same shape as w and no marked positions.) These are the languages in the alphabet A, which
are recognised by φ upon composing with the embedding

A∗ (A× 2)∗ β((A× 2)∗),( )0 w �→w0.

Let B0 be the Boolean algebra that is the preimage of B under the latter embedding. We thus want
a BiM recogniser for B′, the closure under quotients of<QB∪B0>BA. We show that:

1. The Boolean algebra <QB∪B0>BA is already closed under quotients, whence B
′ =

<QB∪B0>BA.
2. This allows us to see B′ as a quotient of the coproduct ofQB and B0, hence also of B̂ and B.

By describing the quotienting operations on these subalgebras, we can define a compatible
quotienting operation on the coproduct, which makes the natural map B̂+ B→P(A∗) a
homomorphism of Boolean algebras with biactions.

3. Finally, dualising the quotienting operation on B̂+ Bwe get actions of♦SM on♦SX, which
coincide with those given by matrix multiplication in Section 5.2. Further, we recover ♦Sφ
as dual to the homomorphism B̂+ B→P(A∗).

To improve readability, throughout this section we omit reference to the semiring S, and write
♦φ,♦X,♦M instead of ♦Sφ,♦SX,♦SM.

6.1 The space♦X by duality
Recall from equation (24) the map

φQ : A∗ S((A× 2)∗) SM ŜX,R Sφ
∫
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which is given, for every w ∈A∗, by

φQ(w) :=
∫
fw,

where
fw := Sφ(R(w))=

∑
1≤i≤|w|

1S · φ(w(i)).

The unique extension of φQ to a continuous map β(A∗)→ ŜX, which we will denote again by φQ,
coincides with Ŝφ ◦ R̂, where R̂ : β(A∗)→ Ŝβ((A× 2)∗) is the Kleisli map from equation (21).

For any k ∈ S and L ∈B, the clopen in β(A∗) corresponding to Qk(L) is φQ−1([K, k]), where
K ⊆ X is the clopen in X recognising L via φ, and [K, k] is as in equation (18). By Theorem 4.4,
the clopens of ŜX are generated by the sets of the form [K, k] with k ∈ S and K ⊆ X clopen, thus
we have:

Proposition 6.1. The Boolean algebra QB of those languages over A which are inverse images of
clopens under φQ is generated by the quantified languagesQk(L), for k ∈ S and L ∈B.

Note thatQB, as defined in the previous proposition, is not closed under quotients. This is the
reason we had to make an adjustment between Sections 5.1 and 5.2 above.

We denote by B0 the Boolean algebra of languages closed under quotients, which is recognised
by the BiM morphism

φ0 : (β(A∗),A∗) ( )0−−→ (β((A× 2)∗), (A× 2)∗) φ−→ (X,M).
In other words, B0 consists of the languages of the form L0 := φ0

−1(K), obtained as the preimage
under ( )0 of languages L= φ−1(K) in B. Taking the product map, it now follows that

♦φ = φQ × φ0 : β(A∗)→ ŜX × X, (25)
viewed just as a map of Boolean spaces, ‘recognises’ the Boolean algebra generated byQB∪B0, in
the sense that the elements of the latter Boolean algebra are exactly those of the form ♦φ−1(C) for
some clopen C ⊆ ŜX × X. However, sinceQB is not closed under quotients,<QB∪B0>BA need
not be closed under quotients, a priori.

The Boolean algebra B
′ that we are interested in is the closure under quotients of <QB∪

B0>BA. The important observation is that <QB∪B0>BA is already closed under the quotient
operations, thus explaining why ŜX × X, along with the above product map, is the right recogniser
spacewise.

Proposition 6.2. The Boolean algebra generated byQB∪B0 is closed under quotients. That is,
B

′ =<Qk(L), L0 | L ∈B and k ∈ S>BA.

Proof. Since B0 is closed under quotients, it suffices to consider the quotienting of languages of
the form Qk(L)= φQ−1([K, k]) where K ⊆ X is the clopen recognising L via φ. For u ∈A∗, we
have

u−1Qk(L)= {w ∈A∗ | uw ∈Qk(L)}
= {w ∈A∗ |

∫
fuw ∈ [K, k]},

where we used the fact that Qk(L)= φQ−1([K, k])∩A∗. Since the free variable in the word uw
either occurs in u or in w,

fuw =
∑

1≤i≤|uw|
1S · φ((uw)(i))=

∑
1≤i≤|w|

1S · φ(u0w(i))+
∑

1≤i≤|u|
1S · φ(u(i)w0)= φ(u0)fw + fuφ(w0),
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where φ(u0)fw and fuφ(w0) are obtained from the left and right actions, respectively, ofM on SM,
cf. Lemma 4.9. Further, because

∫
(φ(u0)fw + fuφ(w0))= ∫

φ(u0)fw + ∫
fuφ(w0), we have

u−1Qk(L)= {w ∈A∗ |
∫
φ(u0)fw +

∫
fuφ(w0) ∈ [K, k]}

=
⋃

k1+k2=k
{w ∈A∗ |

∫
φ(u0)fw ∈ [K, k1] and

∫
fuφ(w0) ∈ [K, k2]}.

Now, ∫
φ(u0)fw ∈ [K, k1] ⇐⇒

∫
fw ∈ [φ(u0)−1K, k1] (26)

which in turn is equivalent to w ∈Qk1 ((u0)−1L), which is an element of QB. We now proceed
with the second condition. Writing Sup(fu)= {m ∈M | fu(m) �= 0} for the support of fu, we have∫

fuφ(w0) ∈ [K, k2] ⇐⇒
∫
fu ∈ [Kφ(w0)−1, k2] ⇐⇒

∫
J
fu = k2

where J =Kφ(w0)−1 ∩ Sup(fu). Whence,
∫
fuφ(w0) ∈ [K, k2] if, and only if, there is a set I ⊆

Sup(fu) with

•
∫
I fu = k2;

• mφ(w0) ∈K for eachm ∈ I;
• mφ(w0) ∈Kc for eachm ∈ Ic = Sup(fu) \ I.

Observe thatmφ(w0) ∈K if, and only if, w ∈ φ0−1(m−1K). Thus,

{w ∈A∗ |
∫
fuφ(w0) ∈ [K, k2]}

is equal to ⋃
I⊆Sup(fu)∫

I fu=k2

(
[
⋂
m∈I

φ0
−1(m−1K)]∩ [

⋂
m∈Ic

φ0
−1(m−1Kc)]

)
(27)

which is in B0. Hence, u−1Qk(L) belongs to the Boolean algebra generated byQB∪B0.

Corollary 6.3. The dual space of B′ is a closed subspace of ŜX × X. In particular, B′ is recognised
as a Boolean algebra by ŜX × X.

Proof. By the previous proposition, B′ =<QB∪B0>BA. But B0 is the preimage under φ0 of the
Boolean algebra dual to X, and QB is the preimage under φQ of the Boolean algebra dual to ŜX.
Thus, B′ is the preimage of the Boolean algebra dual to ŜX × X under the map ♦φ : β(A∗)→
ŜX × X from (25), and therefore B′ is recognised as a Boolean algebra by ŜX × X.

Now, since B
′ is the image of the Boolean algebra homomorphism dual to ♦φ : β(A∗)→

ŜX × X, the dual space of B′ is homeomorphic to the image of ♦φ, which is a closed subspace
of ŜX × X.

6.2 The internal monoid structure of♦X by duality
In Section 5.2, we have described the monoid operation of ♦M = SM ×M and the actions of
♦M on ♦X = ŜX × X in terms of matrix multiplication. This multiplication was introduced in
an ad hoc manner. Here we show that these actions (and, in particular, the monoid operation)
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need not be guessed, as they can be derived by duality. In fact, they are the appropriate actions on
♦X for making ♦φ : β(A∗)→ ŜX × X (see equation (25)) a BiM morphism. For this purpose, we
consider the homomorphism dual to ♦φ:

ϕ : B̂+ B→P(A∗), [K, k] �→ φQ
−1([K, k]), K �→ φ0

−1(K).
We already know, by Proposition 6.2, that the image of ϕ is closed under quotients. In fact,
Proposition 6.2 tells us that we can define a biaction of ♦M on B̂+ B so that ϕ becomes a homo-
morphism of Boolean algebras with biactions. Thus, for each (f ,m) ∈♦M, we want to define a ‘left
quotient’ by (f ,m), that is the component at (f ,m) of a right action on B̂+ B, and a ‘right quotient’
(which is a left action on B̂+ B), so that ϕ becomes a homomorphism of Boolean algebras with
biactions.

The monoid morphism from A∗ to ♦M is given by sending the internal monoid element
u ∈A∗ to the internal monoid element (fu, φ(u0)) ∈ SM ×M, where fu is defined as at the begin-
ning of Section 6.1. Now, the component at (f ,m) of a ‘left quotient’ operation on B̂+ B is a
homomorphism

�(f ,m) : B̂+ B→ B̂+ B.
Given the nature of coproducts, such a homomorphism is determined by its components
�1(f ,m) : B̂→ B̂+ B and�2(f ,m) : B→ B̂+ B. Our goal then, is to show that:

• the computation of quotient operations in the image of ϕ combined with wanting ϕ to be a
morphism of Boolean algebras with biactions, dictates what�1(f ,m) and�2(f ,m) must be;

• the left action of ♦M on ♦X dual to� coincides with the one defined in Section 5.2.

The symmetric facts for the ‘right quotient’ operation are similar and thus we only consider the
‘left quotient’. Also, note that we will not prove directly that the�(f ,m)’s that we define are com-
ponents of a right action on a Boolean algebra, as this will follow from the second bullet point
above.

So, we want to define the action such that ϕ becomes a homomorphism sending the action
of (fu, φ(u0)) ∈ SM ×M on B̂+ B to the action of the quotient operation u−1( ) on P(A∗). The
computations in the proof of Proposition 6.2 tell us the components of u−1φQ−1([K, k]) in QB

and in B0, respectively. SinceQB and B0 are precisely the images under ϕ of B̂ and B, respectively,
the computations tell us how to define �1(fu, φ(u0)) using components �11(f ,m) : B̂→ B̂ and
�12(f ,m) : B̂→ B.

By the computation in (26), we have that the component �11(f ,m) : B̂→ B̂ depends only on
the second coordinate of the pair (fu, φ(u0)) and it sends [K, k] to [(φ(u0))−1K, k]. Stating it for
an arbitrary element (f ,m) ∈ SM ×M, we have

�11(f ,m) : B̂→ B̂, [K, k] �→ [m−1K, k].
Similarly, the computation in (27), stated for an arbitrary element (f ,m) ∈ SM ×M, yields

�12(f ,m) : B̂→ B, [K, k] �→
⋃

I⊆Sup(f )∫
I f=k

(
[
⋂
n∈I

n−1K]∩ [
⋂
n∈Ic

n−1Kc]
)
. (28)

The above observations imply that:

Proposition 6.4. The map ϕ : B̂+ B→P(A∗) is a homomorphism of Boolean algebras with
biactions when the left quotient operation�(f ,m) of B̂+ B is defined on B̂ by

�1(f ,m) : [K, k] �→
∨

k1+k2=k
(�11([K, k1])∧�12([K, k2]))

and on B by�2(f ,m) : K �→m−1K.
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Next, we show that the maps �11(f ,m) and �12(f ,m) are dual to the summands of the first
component of the action of (f ,m) on ♦X, and that �1(f ,m) and �2(f ,m) are dual, respectively,
to

λ1(f ,m) : ŜX × X → ŜX, (μ, x) �→ mμ+
∫
fx

and

λ2(f ,m) : ŜX × X → X, (μ, x) �→ mx.

Lemma 6.5. The homomorphism �11(f ,m) : B̂→ B̂ given by [K, k] �→ [m−1K, k] is dual to the
continuous function λ11(f ,m) : ŜX → ŜX given by μ �→mμ, where

mμ : B→ S, K �→μ(m−1K).

Proof. The function λ11(f ,m) is dual to �11(f ,m) if, and only if, for all μ ∈ ŜX and all [K, k] ∈ B̂
we have

λ11(f ,m)μ ∈ [K, k] ⇐⇒ μ ∈�11(f ,m)[K, k].

But λ11(f ,m)μ=mμ, so

λ11(f ,m)μ ∈ [K, k] ⇐⇒ mμ ∈ [K, k]
⇐⇒ mμ(K)= k
⇐⇒ μ(m−1K)= k

⇐⇒ μ ∈ [m−1K, k]=�11(f ,m),

as was to be proved.

Lemma 6.6. The homomorphism �12(f ,m) : B̂→ B given as in (28) is dual to the continuous
function λ12(f ,m) : X → ŜX given by x �→ ∫

fx, where∫
fx : B→ S, K �→

∫
Kx−1

f .

Proof. Let x ∈ X and [K, k] ∈ B̂. Then,∫
fx ∈ [K, k] ⇐⇒

∫
K
fx= k

⇐⇒
∫
Kx

f = k

⇐⇒
∑

x∈n−1K

f (n)= k,

and the latter is true if, and only if, there exists I ⊆ Sup(f ) with
∫
I f = k, x ∈ n−1K for each n ∈ I,

and x �∈ n−1K for each n ∈ Sup(f ) \ I. That is,∫
fx ∈ [K, k] ⇐⇒ x ∈�12(f ,m)[K, k].

Therefore, the homomorphism�12(f ,m) is dual to the continuous map λ12(f ,m).

Lemma 6.7. The homomorphism �1(f ,m) : B̂→ B̂+ B given as in Proposition 6.4 is dual to the
continuous function λ1(f ,m) : ŜX × X → ŜX given by (μ, x) �→mμ+ ∫

fx.
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Proof. Let (μ, x) ∈ ŜX × X and [K, k] ∈ B̂. Then,

λ1(f ,m)(μ, x) ∈ [K, k] ⇐⇒ λ11(f ,m)μ + λ12(f ,m)x ∈ [K, k]
⇐⇒ ∃k1, k2

(
k1 + k2 = k, λ11(f ,m)μ ∈ [K, k1], and λ12(f ,m)x ∈ [K, k2]

)
⇐⇒ ∃k1, k2

(
k1 + k2 = k,μ∈�11(f ,m)[K, k1], and x ∈�12(f ,m)[K, k2]

)
⇐⇒ (μ, x) ∈�1[K, k],

as was to be shown.

It is straightforward to see that �2(f ,m) : K �→m−1K is dual to λ2(f ,m) : x �→mx. Since the
continuous map λ1(f ,m)× λ2(f ,m) : ♦X →♦X coincides with the component at (f ,m) of the
left action of ♦M on ♦X, defined in Section 5.2 through matrix multiplication, we conclude that:

Corollary 6.8. The dual of the left quotienting operation � on B̂+ B defined in Proposition 6.4 is
the left action of ♦M on ♦X defined in Section 5.2.

A similar result holds of course for the right action, and the monoid operation of ♦M can be
recovered by restricting the actions on ♦X to ♦M. As a consequence, we have

Theorem 6.9. Let φ : (β((A× 2)∗), (A× 2)∗)→ (X,M) be a BiMmorphism. The homomorphism
of Boolean algebras with biactions

ϕ : B̂+ B→P(A∗), [K, k] �→ φQ
−1([K, k]), K �→ φ0

−1(K)

obtained by equipping B̂+ B with the biaction of ♦M as indicated in Proposition 6.4, is dual to the
BiMmorphism

♦φ : (β(A∗),A∗)→ (♦X,♦M)

defined in Section 5.2.

6.3 A Reutenauer theorem for♦X
In Reutenauer (1979), Reutenauer characterised the Boolean algebra of languages recognised by
the Schützenberger product of two monoids. In this last subsection, we prove a Reutenauer-type
result (Theorem 6.13 below) characterising the Boolean algebra closed under quotients generated
by all languages recognised by the BiM ♦X through length preservingmorphisms.

Theorem 5.7 above tells us that the BiM ♦X recognises all the quantified languages. This
amounts to the ‘soundness’ of the construction. However, note that the BiM (β(A∗),A∗) also
recognises all the quantified languages; in fact, it recognises anyA-language whatsoever. Crucially,
the Reutenauer-type result ensures that the BiM ♦X is optimal with respect to recognising the
quantified languages, thus establishing the ‘completeness’ of the construction.

Definition 6.10. We call a BiM morphism ψ : (β(A∗),A∗)→ (♦X,♦M) length preserving
provided, for each a ∈A, we have that

π1 ◦ψ(a) : M → S

is the characteristic function χma for some single ma ∈M. That is, π1 ◦ψ(a)(ma)= 1 and π1 ◦
ψ(a)(m)= 0 for all m ∈M with m �=ma.

Remark 6.11. Amonoid morphism h : A∗ → C∗ is called length preserving provided h(a) ∈ C for
all a ∈A. In other words, h sends irreducible elements of the monoid A∗ to irreducible elements
of C∗. The irreducible elements of the monoid SM are precisely the characteristic functions of
single elements ofM, whence the definition above can be seen as an extension of the usual notion
of length preserving monoid morphism.
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Recall that, given any BiM morphism φ : (β((A× 2)∗), (A× 2)∗)→ (X,M), we obtain a BiM
morphism

♦φ : (β(A∗),A∗)→ (♦X,♦M), w �→
(∫

fw, φ(w0)
)
.

Upon defining fa := π1 ◦♦φ(a), we have fa = χma where ma = φ(a, 1). Hence, ♦φ is length
preserving. It is now amatter of a straightforward computation to prove the following proposition.

Proposition 6.12. Let (X,M) be a BiM. Every length preserving BiM morphism (β(A∗),A∗)→
(♦X,♦M) is of the form ♦φ for some BiMmorphism φ : (β((A× 2)∗), (A× 2)∗)→ (X,M).

Proof. Consider an arbitrary length preserving BiMmorphism ψ : (β(A∗),A∗)→ (♦X,♦M). We
define φ : (β((A× 2)∗), (A× 2)∗)→ (X,M) by

φ : (A× 2)∗ →M,
(a, 0) �→ π2 ◦ψ(a)
(a, 1) �→ma

where ma ∈M is such that π1 ◦ψ(a)= χma . The universal property of the Stone–Čech compact-
ification guarantees that φ is a BiM morphism with the topological component φ̃ = βφ. It now
suffices to show that ψ(a)=♦φ(a) for each a ∈A:

♦φ(a)= (fa, φ0(a))= (χφ(a,1), φ(a, 0))= (χma , π2 ◦ψ(a))= (π1 ◦ψ(a), π2 ◦ψ(a))=ψ(a).

We thus obtain the following Reutenauer-type result for the BiM ♦X:
Theorem 6.13. Let X be a BiM, and A a finite alphabet. The Boolean subalgebra closed under
quotients of P(A∗) generated by all languages over A, which are recognised by a length preserving
BiM morphism into ♦X is generated as a Boolean algebra by the languages over A recognised by X,
and the languagesQk(L) for L a language over A× 2 recognised by X.

Proof. Let us denote by B′′ the Boolean algebra generated by the languages over A recognised by
X, and the languages Qk(L) for L a language over A× 2 recognised by X. We must prove that B′′
coincides with the Boolean subalgebra closed under quotients ofP(A∗) generated by all languages
over A, which are recognised by a length preserving BiM morphism into ♦X.

If L′ ∈P(A∗) is recognised by a length preserving BiM morphism ψ : (β(A∗),A∗)→
(♦X,♦M), then by Proposition 6.12 there is a BiM morphism φ : (β((A× 2)∗), (A× 2)∗)→
(X,M) such that ♦φ =ψ . That is, L′ lies in the Boolean algebra called B

′ in the beginning of
this section. Since B′ ⊆B

′′ by Proposition 6.2, we have L′ ∈B
′′.

For the other direction, if L is a language over A× 2 recognised by X, then Qk(L) is recog-
nised by ♦X through a length preserving morphism in view of Theorem 5.7. Finally, suppose L
is a language over A recognised by η : β(A∗)→ X through the clopen K. Consider any function
φ : β((A× 2)∗)→M satisfying φ(a, 0)= η(a) for each a ∈A. Then L=♦φ−1(ŜX ×K), showing
that L is recognised by ♦X through a length preserving morphism.

7. Conclusion
In this paper, we have provided a general construction for recognisers, which captures the action
of quantifier-like operations on arbitrary languages of words, drawing heavily on a combination
of categorical and duality-theoretic tools.

This paper is a stepping stone in a long-term research programme aimed at finding meaningful
ultrafilter equations that characterise logically defined classes of non-regular languages. The next
step is to understand the effect on equations of the constructions introduced here.
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The generic development of Section 5 allows this work to be extended to encompass a
wider range of operations on languages modelled by rational transducers which, by the Kleene–
Schützenberger theorem (see, e.g. Sakarovitch, 2009), admit a matrix representation. Also, the
duality-theoretic account in Section 6 leads to a Reutenauer-type characterisation theorem, akin
to the one in Gehrke et al. (2016). It would be interesting to identify a common framework for our
contributions and the recent work (Chen and Urbat, 2016).
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