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Abstract

The purpose of this paper is twofold. On the one hand, we provide sufficient conditions for
the excess wealth order. These conditions are based on properties of the quantile functions
which are useful when the dispersive order does not hold. On the other hand, we study
sufficient conditions for the comparison in the increasing convex order of spacings of
generalized order statistics. These results will be combined to show how we can provide
comparisons of quantities of interest in reliability and insurance.
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1. Introduction

In the context of stochastic orders the comparison of the dispersion of random variables is
usually carried out in terms of the so-called dispersive order; see Shaked and Shanthikumar
(2007). Given two random variables X and Y with distribution functions F and G, respec-
tively, X is said to be less than Y in the dispersive order, denoted by X ≤disp Y , if

G−1(p) − F−1(p) is increasing in p ∈ (0, 1),

where F−1 and G−1 are the quantile functions of X and Y , respectively, defined as F−1(p) ≡
inf{x ∈ R | F(x) ≥ p} for any value p ∈ (0, 1), and analogously for G−1.

The dispersive order is the strongest partial order to compare two random variables in terms
of their variability. When this order does not hold, it is possible to continue comparing the
random variables in these terms by means of some other criteria, such as the excess wealth
order. The excess wealth order is defined through the excess wealth transform. Given a random
variable X with distribution function F , the excess wealth transform, WX, associated to X is
defined as

WX(p) = E[(X − F−1(p))+] =
∫ 1

p

(F−1(q) − F−1(p)) dq for p ∈ (0, 1), (1.1)
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34 F. BELZUNCE ET AL.

where (x)+ = 0 if x < 0 and (x)+ = x if x ≥ 0. When X has a finite mean, WX is well
defined and measures the thickness of the upper tail from a fixed quantile F−1(p).

Now given two random variables X and Y , with finite means, X is said to be less than Y in
the excess wealth order, denoted by X ≤ew Y , if

WX(p) ≤ WY (p) for all p ∈ (0, 1).

The excess wealth order was independently introduced by Fernandez-Ponce et al. (1998) and
Shaked and Shanthikumar (1998) and has received great attention in the literature. Properties
and applications in several contexts such as reliability, risks, and auction theory can be found in
Belzunce (1999), Denuit and Vermandele (1999), Kochar et al. (2002), Li (2005), Sordo (2008),
(2009), Hu et al. (2012), Kochar and Xu (2013), Balakrishnan and Zao (2013), Singpurwalla
and Gordon (2014), and Sordo et al. (2015).

Among the previous criteria, we have the following relationship:

X ≤disp Y �⇒ X ≤ew Y. (1.2)

One of the main problems related to the applicability of the excess wealth is the evaluation of
incomplete integrals of quantile functions, which is not possible in most cases. As we see from
(1.2), in these cases, we can check the dispersive order as a sufficient condition for the excess
wealth order. However, there are examples, as we will see later, where the excess wealth order
holds but the dispersive order does not. Therefore, it is of interest to provide sufficient conditions
for the comparison of the excess wealth transforms, which do not involve the computation of
incomplete integrals of the survival or quantile functions, when the dispersive order does not
hold, which is one of the purposes of this paper.

In order to provide applications, these sufficient conditions are used to compare, in the
excess wealth order, the first generalized order statistics (GOSs) drawn from two independent
and identically distributed (i.i.d.) random samples. The order of the first GOS in the excess
wealth order turns out to be a sufficient condition for the comparison of spacings (or differences
between successive GOSs) in the increasing convex order.

The organization of this paper is as follows. In Section 2 we describe several sets of sufficient
conditions for the excess wealth order. These conditions are written in terms of the difference
of the quantile functions, and describe situations where the difference is nonmonotone. Appli-
cations to some parametric models are provided. In Section 3 we compare the minimum of two
random vectors of GOSs in terms of the excess wealth order and spacings of GOSs in terms of
the increasing convex order. In Section 4 we provide applications of these results to compare
interarrival times of repairs for items under a minimal repair policy and for the comparison of
reinsurance premiums of two portfolios of risks under the ECOMOR (excédent du coût moyen
relatif) treaty.

2. Some sufficient conditions for the excess wealth order

In this section we provide several results where we describe sufficient conditions for the
excess wealth order of two random variables. These results are of interest when there are
no closed expressions for the excess wealth transforms or such expressions are not easy to
deal with. It is worthwhile to mention that these conditions neither imply nor are implied
by the dispersive order. Examples where these results are applied are also given. First we
recall the definition of the stochastic order, which is required in the proof of the next theorem.
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Sufficient conditions for the excess wealth order and spacings 35

Let X and Y be two random variables, we say that X is less than Y in the stochastic order,
denoted by X ≤st Y , if

F−1(p) ≤ G−1(p) for all p ∈ (0, 1).

It is trivially verified that X ≤st Y implies that E[X] ≤ E[Y ].
Theorem 2.1. Let X and Y be two random variables, with distribution functions F and G, and
finite means. If there exists a value p0 ∈ (0, 1) such that G−1(p) − F−1(p) ≤ E[Y ] − E[X]
for all p ∈ (0, p0) and G−1(p) − F−1(p) is increasing on [p0, 1), then

X ≤ew Y.

Proof. First, we consider a value p ∈ [p0, 1). It is easy to see (see Belzunce et al. (2003))
that the quantile function of (X − F−1(p))+ is given by

F−1+ (q; p) = (F−1(q) − F−1(p))+ for q ∈ (0, 1),

and similarly for the quantile function of (Y − G−1(p))+. Now, given that G−1(p) − F−1(p)

is increasing in p ∈ [p0, 1), we have

(X − F−1(p))+ ≤st (Y − G−1(p))+

and, therefore,
E[(X − F−1(p))+] ≤ E[(Y − G−1(p))+].

We consider now a value p ∈ (0, p0) and observe that the quantile function of

min{X, F−1(p)} − E[X]
is given by

F−1
p (q) =

{
F−1(q) − E[X] if 0 < q < p,

F−1(p) − E[X] if p ≤ q < 1,

and similarly for min{Y, G−1(p)} − E[Y ]. Given that G−1(p) − F−1(p) ≤ E[Y ] − E[X] for
all p ∈ (0, p0), we have

min{X, F−1(p)} − E[X] ≥st min{Y, G−1(p)} − E[Y ]
and, therefore,

E[min{X, F−1(p)}] − E[X] ≥ E[min{Y, G−1(p)}] − E[Y ].
From the equality (x − t)+ = x − min{x, t}, we have

E[(X − F−1(p))+] ≤ E[(Y − G−1(p))+]. �

Remark 2.1. If there exists a point p0 such that G−1(p) ≤ F−1(p) for all p ∈ (0, p0) and
it holds that E[X] ≤ E[Y ], then the assumption G−1(p) − F−1(p) ≤ E[Y ] − E[X] for all
p ∈ (0, p0) is trivially satisfied.
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36 F. BELZUNCE ET AL.

We now give an example where we can apply the previous result. We consider the case of
two Davies distributed random variables, a generalization of the well known Pareto distribution
and, therefore, a more flexible model which can be used to provide a better fit; see Hankin and
Lee (2006).

Example 2.1. (Davies distributions.) We consider two Davies distributed random variables X

and Y with quantile functions given by

F−1(p) = C1
pλ1

(1 − p)θ1
for p ∈ (0, 1)

and

G−1(p) = C2
pλ2

(1 − p)θ2
for p ∈ (0, 1),

respectively, and denoted by X ∼ D(λ1, θ1, C1) and Y ∼ D(λ2, θ2, C2), where λ1, θ1, C1,
λ2, θ2, C2 > 0. Provided θ1, θ2 < 1, the means are finite and are given by E[X] = C1B(1 +
λ1, 1 − θ1) and E[Y ] = C2B(1 + λ2, 1 − θ2), where B(a, b) is the beta function.

Belzunce et al. (2014) proved that if λ1 ≤ λ2 and θ1 ≤ θ2, there exists a p0 such
that G−1(p) ≤ F−1(p) for all p ∈ (0, p0), and G−1(p) − F−1(p) is increasing on [p0, 1).
Therefore, if E[X] = C1B(1+λ1, 1−θ1) ≤ E[Y ] = C2B(1+λ2, 1−θ2), we have X ≤ew Y . It
is also possible to see that, under the previous conditions on the parameters, G−1(p) − F−1(p)

is decreasing on (0, p0) and, therefore, X 
≤disp Y or X 
≥disp Y .

In the previous example, we observe that the unimodality of G−1(p) − F−1(p) and the
condition limp→0+(G−1(p) − F−1(p)) ≤ E[Y ] − E[X] imply the conditions assumed in The-
orem 2.1, therefore we can establish the following result.

Corollary 2.1. Let X and Y be two random variables with distribution functions F and G,
respectively and finite means such that limp→0+(G−1(p) − F−1(p)) ≤ E[Y ] − E[X]. We
assume that there exists a value p0 ∈ (0, 1) such that G−1(p) − F−1(p) is decreasing on
(0, p0), G−1(p) − F−1(p) is increasing on [p0, 1), then

X ≤ew Y.

This is the case of two Weibull distributed random variables, as we see next.

Example 2.2. (Weibull distributions.) Let X and Y be twoWeibull distributed random variables
with strictly positive parameters α1, β1 and α2, β2, respectively, denoted by X ∼ W(α1, β1)

and Y ∼ W(α2, β2), with quantile functions

F−1(p) = α1(− log(1 − p))1/β1 for p ∈ (0, 1)

and
G−1(p) = α2(− log(1 − p))1/β2 for p ∈ (0, 1),

respectively.
Belzunce et al. (2014) proved that if β2 < β1, then G−1(p) − F−1(p) is initially de-

creasing and later increasing with limp→0+(G−1(p) − F−1(p)) = 0 and limp→1−(G−1(p) −
F−1(p)) = +∞. Therefore, if we assume that E[X] = α1�((β1 + 1)/β1) ≤ α2�((β2 +
1)/β2) = E[Y ] then X ≤ew Y but X 
≤disp Y or X 
≥disp Y .
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In the absolutely continuous case, for random variables with interval supports, taking
derivatives on the difference of the quantile functions, it is easy to see that the previous corollary
can be written as follows.

Corollary 2.2. Let X and Y be two random variables, with interval supports, with distribu-
tion functions F and G, density functions f and g, respectively and finite means such that
limp→0+(G−1(p) − F−1(p)) ≤ E[Y ] − E[X]. We assume that there exits a value p0 ∈ (0, 1)

such that g(G−1(p)) ≥ f (F−1(p)) on (0, p0) and g(G−1(p)) ≤ f (F−1(p)) on [p0, 1), then
X ≤ew Y.

Next we consider a model specified by the quantile function to show how the previous result
can be applied.

Example 2.3. (Govindarajulu distributions.) We consider two Govindarajulu distributed ran-
dom variables X and Y with quantile functions given by (see Govindarajulu (1977))

F−1(p) = θ1 + σ1((β1 + 1)pβ1 − β1p
β1+1) for p ∈ (0, 1)

and
G−1(p) = θ2 + σ2((β2 + 1)pβ2 − β2p

β2+1) for p ∈ (0, 1),

respectively, and denoted by X ∼ G(β1, σ1, θ1) and Y ∼ G(β2, σ2, θ2), where all param-
eters are nonnegative. We study the monotonicity of G−1(p) − F−1(p) in terms of the
crossing points of f (F−1(p)) and g(G−1(p)) or, equivalently, of the hazard rate functions
f (F−1(p))/(1 − p) and g(G−1(p))/(1 − p) evaluated at the quantiles, where f and g are the
density functions associated to F−1 and G−1, respectively.

It is not difficult to see that there is a crossing point at

p0 =
(

(β2 + 1)β2σ2

(β1 + 1)β1σ1

)1/(β1−β2)

∈ (0, 1),

in the sense stated in Corollary 2.2, if the following conditions hold:

β1 < β2, (β2 + 1)β2σ2 > (β1 + 1)β1σ1. (2.1)

In order to apply the previous theorem, we need limp→0+(G−1(p) − F−1(p)) ≤ E[Y ] −
E[X], which is equivalent to

σ1(β2 + 2) ≤ σ2(β1 + 2). (2.2)

Therefore, under (2.1) and (2.2), we have X ≤ew Y but X 
≤disp Y or X 
≥disp Y .
We observe that if β1 ≤ (>)β2 and (β1 + 1)β1σ1 ≥ (<)(β2 + 1)β2σ2, then X ≥disp Y

(X ≤disp Y ).

To finish we provide a generalization of the main theorem. This result is interesting from a
mathematical point of view rather than from a practical point of view, but we include it for the
sake of completeness.

Theorem 2.2. Let X and Y be two random variables with quantile functions F−1 and G−1,
respectively, and finite means. We assume that there exists a value p0 ∈ (0, 1) such that
G−1(p) − F−1(p) ≤ E[Y ] − E[X] on (0, p0) and G−1(p) − F−1(p) has n ≥ 1 relative
extremes on the interval (p0, 1) at points p0 < p1 < p2 < · · · < pn < 1. Then we
have X ≤ew Y if and only if one of the following sets of conditions is satisfied:
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(i) the number of relative extremes is even, n = 2m, such that p1 is a maximum, and for
j = 1, . . . , m we have

E[(X − F−1(p2j−1))+] ≤ E[(Y − G−1(p2j−1))+];
(ii) the number of relative extremes is odd, n = 2m + 1, such that p1 is a minimum, and for

j = 1, . . . , m, we have

E[(X − F−1(p2j ))+] ≤ E[(Y − G−1(p2j ))+].
Proof. Consider the functions

δ(q, p) = G−1(q) − F−1(p) − (G−1(p) − F−1(p)), 	(p) =
∫ 1

p

δ(u, p) du.

It is clear that if G−1(p) − F−1(p) is decreasing (increasing) over an interval (u, u′), then
δ(q, p) ≤ (≥)0 for every p, q ∈ (u, u′) such that p < q.

We show that under the initial set of conditions and the conditions stated in Theorem 2.2(i),
we have X ≤ew Y or, equivalently, by (1.1), that 	(p) ≥ 0 for every p ∈ (0, 1).

From the proof of Theorem 2.1, we have 	(p) ≥ 0 for any p in the intervals (0, p0)

and (pn, 1). Now, we show that 	(p) is increasing for p ∈ (pn−1, pn). Taking p < q ∈
(pn−1, pn), we have

	(p) ≤
∫ 1

q

δ(u, p) du ≤ 	(q),

where the first inequality follows from that fact that δ(u, p) ≤ 0 for any u ∈ (p, q) and
the second one from the fact that δ(u, p) − δ(u, q) = δ(q, p) ≤ 0. Therefore, 	(p) is
increasing in (pn−1, pn). Now given that we assume that 	(pn−1) ≥ 0 then 	(p) ≥ 0 in
(pn−1, pn). In a similar way it can be seen that 	(p) is decreasing in (pn−2, pn−1), and,
therefore, 	(p) ≥ 0 in (pn−2, pn−1). Repeating this argument, for the remaining intervals
(pi, pi+1) for i = 0, . . . , n − 3, we obtain 	(p) ≥ 0 for every p ∈ (0, 1).

The proof for the case Theorem 2.2(ii) follows under similar arguments. �

Remark 2.2. Note that the proof (and therefore the theorem) can be written by taking p0 = 0.
We have just to add the condition limp→0+(G−1(p) − F−1(p)) ≤ E[Y ] − E[X] in Theo-
rem 2.2(ii) in order to have limp→0+ 	(p) ≥ 0.

3. Stochastic comparisons of spacings

Order statistics, record values, and spacings (the differences between successive order statis-
tics or record values) have found important applications in many areas of science. An extensive
review of theoretical results and applications can be found in the volumes of Balakrishnan and
Rao (1998a), (1998b). Due to closed similarity between some distributional, structural, and
dependence properties of order statistics and record values, Kamps (1995a), (1995b) introduced
the model of GOSs which includes, as special cases, random vectors of order statistics and
record values and, moreover, some other models of interest such as sequential order statistics
and progressively type-II censored order statistics. In this section we consider the comparison
of spacings of GOSs. In the next section, as a particular case, we focus on the comparison of
the spacing of ordinary order statistics, which provides an interesting application in insurance.
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Now we present the definition of GOSs, due to Kamps (1995a), (1995b).

Definition 3.1. Let n ∈ N, k ≥ 1, m1, . . . , mn−1 ∈ R, Mr = ∑n−1
j=r mj , 1 ≤ r ≤ n − 1,

be parameters such that γr = k + n − r + Mr ≥ 1 for all r ∈ {1, . . . , n − 1}, and let
m̃ = (m1, . . . , mn−1) if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1). If the random variables U(r,n,m̃,k),
r = 1, . . . , n, possess a joint density of the form

h(u1, . . . , un) = k

(n−1∏
j=1

γj

)(n−1∏
j=1

(1 − uj )
mj

)
(1 − un)

k−1,

defined on the cone 0 ≤ u1 ≤ · · · ≤ un ≤ 1, then they are called uniform GOSs. Now, for a
given distribution function F , the random variables

X(r,n,m̃,k) = F−1(U(r,n,m̃,k)), r = 1, . . . , n,

are called the GOSs based on F and the random variables

DX
r,n = X(r,n,m̃,k) − X(r−1,n,m̃,k), r = 2, . . . , n,

are called the simple spacings of the GOSs {X(r,n,m̃,k), r = 1, . . . , n}.
Stochastic comparisons of GOSs and their spacings have been discussed rather extensively

during the past decade; see, for example, Franco et al. (2002), Belzunce et al. (2005), Hu and
Zhuang (2005), Belzunce et al. (2008), Zhuang and Hu (2009), Xie and Hu (2009), (2010),
Xie and Zhuang (2011), and Balakrishnan et al. (2012). In this section we are interested in
comparing the size of simple spacings of GOSs based on two independent distributions F

and G. In this respect, Belzunce et al. (2005) proved that

X ≤disp Y �⇒ DX
r,n ≤st DY

r,n, r = 2, . . . , n. (3.1)

Our purpose is to compare the size of simple spacings of GOSs based on two independent
distributions F and G when the underlying random variables X and Y fail to be ordered in the
dispersive order. One possibility is to use the following result of Qiu and Wang (2007):

X ≤ew Y �⇒ E[DX
n−1,n] ≤ E[DY

n−1,n].
Unfortunately, this result only compares the sizes of the last spacings. In addition, a more
informative comparison can be made in terms of the increasing convex order (also called stop-
loss order) which is defined as follows.

Definition 3.2. Given two random variables X and Y with distribution functions F and G,
respectively, we say that X is less than Y in the increasing convex order, denoted by X ≤icx Y ,
if

E[φ(X)] ≤ E[φ(Y )]
for every increasing convex function φ for which the previous expectations exist.

Kochar et al. (2007) investigated the increasing convex order of the last spacings of two
vectors of usual order statistics. Here we extend this study in two directions: firstly, we
consider GOSs rather than usual order statistics and secondly, we investigate the increasing
convex order among any simple spacing (not necessarily the last ones). We first prove some
results about the excess wealth order that will be used later on.
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Lemma 3.1. Let X and Y be two continuous random variables with strictly increasing dis-
tribution functions F and G, respectively. Let h = F−1G. Then, X ≤ew Y implies that

E[φ(h(Y ) − h(x)) | Y > x] ≤ E[φ(Y − x) | Y > x] for all x ∈ R (3.2)

and for any increasing convex function φ.

Proof. Suppose that X ≤ew Y and let φ be an increasing convex function. From Belzunce
(1999), it follows that

E[φ(X − F−1(p))+] ≤ E[φ(Y − G−1(p))+] for p ∈ (0, 1). (3.3)

Using the fact that

E[φ(X − F−1(p))+] = E[φ(X − F−1(p)) | X > F−1(p)](1 − p) + φ(0)p,

we see that (3.3) is the same as

E[φ(X − F−1(p)) | X > F−1(p)]
≤ E[φ(Y − G−1(p)) | Y > G−1(p)] for p ∈ (0, 1). (3.4)

Now, by setting p = G(x) and h = F−1 ◦ G it is obvious that (3.4) is equivalent to

E[φ(X − h(x)) | X > h(x)] ≤ E[φ(Y − x) | Y > x] for all x ∈ R. (3.5)

Using the fact that X ≡st h(Y ), with h strictly increasing, it follows that (3.5) can be written
as (3.2), which completes the proof of the lemma. �

The following result, concerning the minimum from two vectors of GOSs, parallels Balakr-
ishnan et al. (2012, Lemma 3.10) for the excess wealth order.

Lemma 3.2. Let X and Y be two continuous random variables with respective distribution
functions F and G. Let X(r,n,m̃,k) and Y(r,n,m̃,k), r = 1, . . . , n, be GOSs based on F and G,

respectively, with parameter γ1 = k+n−1+M1. Similarly, let X(r,n′,m̃′,k) and Y(r,n′,m̃′,k), r =
1, . . . , n′, be GOSs based on F and G, respectively, with parameter γ ′

1 = k + n′ − 1 + M ′
1.

Let γ ′
1 ≤ γ1. If X(1,n,m̃,k) ≤ew Y(1,n,m̃,k) then X(1,n′,m̃′,k) ≤ew Y(1,n′,m̃′,k).

Proof. Let F̄(1,n,m̃,k) and Ḡ(1,n,m̃,k) be the survival functions of X(1,n,m̃,k) and Y(1,n,m̃,k),

respectively. From Shaked and Shanthikumar (2007, Equation (3.C.1)), the condition that
X(1,n,m̃,k) ≤ew Y(1,n,m̃,k) is equivalent to

∫ ∞

F̄−1
(1,n,m̃,k)

(p)

F̄(1,n,m̃,k)(t) dt ≤
∫ ∞

Ḡ−1
(1,n,m̃,k)

(p)

Ḡ(1,n,m̃,k)(t) dt for all p ∈ (0, 1), (3.6)

where F̄(1,n,m̃,k) and Ḡ(1,n,m̃,k) are, respectively, the survival functions of

X(1,n,m̃,k) and Y(1,n,m̃,k),

given by
F̄(1,n,m̃,k)(t) = (F̄ (t))γ1 , Ḡ(1,n,m̃,k)(t) = (Ḡ(t))γ1 ,
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Sufficient conditions for the excess wealth order and spacings 41

and F−1
(1,n,m̃,k)

(p) and G−1
(1,n,m̃,k)

(p) are, respectively, the quantile functions of X(1,n,m̃,k) and
Y(1,n,m̃,k), given by

F̄−1
(1,n,m̃,k)

(p) = F̄−1((1 − p)1/γ1), Ḡ−1
(1,n,m̃,k)

(p) = Ḡ−1((1 − p)1/γ1) for p ∈ (0, 1).

Therefore, a condition equivalent to (3.6) is∫ ∞

F̄−1((1−p)1/γ1 )

(F̄ (t))γ1 dt ≤
∫ ∞

Ḡ−1((1−p)1/γ1 )

(Ḡ(t))γ1 dt for all p ∈ (0, 1)

which holds if and only if

∫ (1−p)1/γ1

0
uγ1 d[F̄−1(u) − Ḡ−1(u)] ≥ 0 for all p ∈ (0, 1),

which is equivalent to∫ q

0
uγ1 d[F̄−1(u) − Ḡ−1(u)] ≥ 0 for all q ∈ (0, 1).

From Barlow and Proschan (1975, Lemma 7.1(b), p. 120), it follows that∫ q

0
uγ ′

1 d[F̄−1(u) − Ḡ−1(u)] ≥ 0 for all q ∈ (0, 1), 1 ≤ γ ′
1 ≤ γ1,

which implies that

∫ (1−p)
1/γ ′

1

0
uγ ′

1 d[F̄−1(u) − Ḡ−1(u)] ≥ 0 for all p ∈ (0, 1), 1 ≤ γ ′
1 ≤ γ1,

or, equivalently, for all 1 ≤ γ ′
1 ≤ γ1,∫ ∞

F̄−1((1−p)
1/γ ′

1 )

(F̄ (t))γ
′
1 dt ≤

∫ ∞

Ḡ−1((1−p)
1/γ ′

1 )

(Ḡ(t))γ
′
1 dt for all p ∈ (0, 1),

and this means that X(1,n′,m̃′,k) ≤ew Y(1,n′,m̃′,k). �
Now we establish the main results of this section.

Theorem 3.1. Let X and Y be two continuous random variables with strictly increasing
distribution functions F and G, respectively. Let X(r,n,m̃,k) and Y(r,n,m̃,k), r = 1, . . . , n, be
GOSs based on F and G, respectively, with mi ≥ −1 for all i and let DX

r,n and DY
r,n, r =

2, . . . , n, be the corresponding spacings. If X(1,n,m̃,k) ≤ew Y(1,n,m̃,k) then

DX
r,n ≤icx DY

r,n for r = 2, . . . , n.

Proof. We consider an increasing convex function φ, and prove that

E[φ(X(r,n,m̃,k) − X(r−1,n,m̃,k))] ≤ E[φ(Y(r,n,m̃,k) − Y(r−1,n,m̃,k))] for 2 ≤ r ≤ n.

To establish this, consider the strictly increasing function h = F−1
(r,n,m̃,k)

G(r,n,m̃,k) = F−1G

for r = 1, . . . , n. Since X(r,n,m̃,k) ≡st h(Y(r,n,m̃,k)) for r = 1, . . . , n, and the vectors
(X(r−1,n,m̃,k), X(r,n,m̃,k)) and (h(Y(r−1,n,m̃,k)), h(Y(r,n,m̃,k))) for 2 ≤ r ≤ n have the same
copula (this follows from the fact that two random vectors of GOSs with the same set of
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parameters and possibly based on different distributions have the same copula; see Belzunce
et al. (2008) and from the strict increase of h), we obtain

φ(X(r,n,m̃,k) − X(r−1,n,m̃,k)) ≡st φ(h(Y(r,n,m̃,k)) − h(Y(r−1,n,m̃,k))) 2 ≤ r ≤ n.

Therefore, for r = 2, . . . , n, we have

E[φ(X(r,n,m̃,k) − X(r−1,n,m̃,k))] = E[φ(h(Y(r,n,m̃,k)) − h(Y(r−1,n,m̃,k)))]
=

∫
E[φ(h(Y(r,n,m̃,k)) − h(t)) | Y(r−1,n,m̃,k) = t]g(r−1,n,m̃,k)(t) dt, (3.7)

where g(r−1,n,m̃,k)(t) is the density function of Y(r−1,n,m̃,k). From Balakrishnan et al. (2012,
Equation (3.8)), it follows that

[Y(r,n,m̃,k) | Y(r−1,n,m̃,k) = t] �st [Y(1,n−r+1,m̃′,k) | Y(1,n−r+1,m̃′,k) > t], (3.8)

where m̃′ = (m′
1, . . . , m

′
n−r ) (recall that m̃ = (m1, . . . , mn−1)) is such that m′

j = mn−j for
j = 1, . . . , n−r . Using the fact that mi ≥ −1 for all i, it follows that m1 +· · ·+mr−1 ≥ 1−r ,
i.e. M1 − Mr ≥ 1 − r which implies that γ ′

1 = k + n − r + Mr ≤ k + n − 1 + M1 = γ1.
Then we can use Lemma 3.2 to find that the assumption X(1,n,m̃,k) ≤ew Y(1,n,m̃,k) implies

that
X(1,n−r+1,m̃′,k) ≤ew Y(1,n−r+1,m̃′,k)

which in turn implies, by Lemma 3.1, that

E[φ(h(Y(1,n−r+1,m̃′,k)) − h(t)) | Y(1,n−r+1,m̃′,k) > t]
≤ E[φ(Y(1,n−r+1,m̃′,k) − t) | Y(1,n−r+1,m̃′,k) > t], (3.9)

where h = F−1
(1,n−r+1,m̃′,k)

G(1,n−r+1,m̃′,k) = F−1G. Now, taking into account that φh is in-
creasing, it follows from (3.8) and (3.9) that (3.7) is equivalent to∫

E[φ(h(Y(1,n−r+1,m̃′,k)) − h(t)) | Y(1,n−r+1,m̃′,k) > t]g(r−1,n,m̃,k)(t) dt

≤
∫

E[φ(Y(1,n−r+1,m̃′,k) − t) | Y(1,n−r+1,m̃′,k) > t]g(r−1,n,m̃,k)(t) dt. (3.10)

By repeating the argument, we see that the right-hand side of (3.10) can be expressed as∫
E[φ(Y(r,n,m̃,k) − Y(r−1,n,m̃,k)) | Y(r−1,n,m̃,k) = t]g(r−1,n,m̃,k)(t) dt

= E[φ(Y(r,n,m̃,k) − Y(r−1,n,m̃,k))],
which completes the proof of the theorem. �

It is easy to see that X ≤disp Y implies that X(1,n,m̃,k) ≤ew Y(1,n,m̃,k). However, we know
from (3.1) that under the dispersive order, the spacings of GOSs are ordered in the stochastic
order (which is stronger than the increasing convex order). Therefore, our interest is to study
sufficient conditions for the comparisons of spacings in the increasing convex order when the
dispersive order does not hold. The following result addresses this issue.
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Corollary 3.1. Let X and Y be two continuous random variables with strictly increasing
distribution functions F and G, respectively. Let X(r,n,m̃,k) and Y(r,n,m̃,k), r = 1, . . . , n, be
GOSs based on F and G, respectively, with mi ≥ −1 for all i and let DX

r,n and DY
r,n, r =

2, . . . , n, be the corresponding spacings. If

E[X(1,n,m̃,k)] ≤ E[Y(1,n,m̃,k)]
and there exists a value p0 ∈ (0, 1) such that G−1(p) ≤ F−1(p) for all p ∈ (0, p0) and
G−1(p) − F−1(p) is increasing on [p0, 1), then

DX
r,n ≤icx DY

r,n r = 2, . . . , n.

Proof. Taking into account that G−1(F (x)) = G−1
(1,n,m̃,k)

(F(1,n,m̃,k)(x)), the proof follows
from Theorem 2.1. �

4. Applications

In this section we provide two applications of previous results.

4.1. Record values and interarrival times of a minimal repair process

Given a sequence of i.i.d. random variables with common distribution F , the record times
are defined by

L(1) = 1, L(n) = min{j > L(n − 1) | Xj > XL(n−1)}, n = 2, 3, . . . .

The sequence of record values is then defined as X(n) ≡ XL(n), n = 1, 2, . . . .A generalization
of record values is the case in which k ∈ N, resulting in the so-called k-records. In insurance,
the record values of a time series of claims data describe the successive largest insurance claims.
In reliability, record values are equally distributed as the times of repair of an item which is
being continuously minimally repaired.

Kochar (1990) showed that the dispersive order is a sufficient condition to compare spacings
of record values in the stochastic order. The following result shows that it is also possible to
compare spacings of record values in the increasing convex order when the underlying random
variables are ordered in the excess wealth order. The proof follows easily from Theorem 3.1 by
setting k = 1 and mi = −1 for all i = 1, . . . , n − 1 (which gives the first n record values) and
taking into account that the first record values are equally distributed as the distribution from
which the record values are arising from.

Corollary 4.1. Let X and Y be two random variables with continuous and strictly increasing
distribution functions F and G, respectively. Let XL(1), XL(2), . . . and YL(1), YL(2), . . . be the
sequences of record values arising from F and G, respectively. If X ≤ew Y then

XL(r) − XL(r−1) ≤icx YL(r) − YL(r−1) for all r = 1, 2, . . . .

4.2. Application to ECOMOR reinsurance treaty

The usual order statistics from a sample of i.i.d. random variables with common distribu-
tion F are a particular case of GOSs based on F when k = 1 and mi = 0 for all i = 1, . . . , n−1.
In this case, Theorem 3.1 states that given two random vectors of order statistics, if the
minima from the random vectors are ordered in the excess wealth order, then the corresponding
consecutive spacings are ordered in the increasing convex order. Specifically, we have the
following result.
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Corollary 4.2. Let X and Y be two continuous random variables with strictly increasing
distribution functions F and G, respectively. Let (X1:n, . . . , Xn:n) and (Y1:n, . . . , Yn:n) be two
random vectors of order statistics based on two i.i.d. samples drawn from F and G, respectively.
If X1:n ≤ew Y1:n then

Xr:n − Xr−1:n ≤icx Yr:n − Yr−1:n for 2 ≤ r ≤ n.

Observe, in particular, that X1:n ≤ew Y1:n implies that

E[Xr:n − Xr−1:n] ≤ E[Yr:n − Yr−1:n] for 2 ≤ r ≤ n

and, consequently, it also implies that

E[Xr:n − Xk:n] ≤ E[Yr:n − Yk:n] for all 1 ≤ k ≤ r ≤ n. (4.1)

We apply this result to the ECOMOR reinsurance treaty proposed by Thépaut (1950) and
studied, among others, by Embrechts et al. (1997) and Jiang and Tang (2008). Following
Asimit and Jones (2008), we consider a portfolio of n insurance contracts with associated i.i.d.
loss random variables Xi, i = 1, . . . , n. Let Xk:n ≤ · · · ≤ Xn:n the corresponding n − k + 1
order statistics for some 1 < k < n. Then the reinsurance amount covered by the ECOMOR
reinsurance treaty is given by

RX
k,n(t) =

n∑
r=k+1

(Xr:n − Xk:n)

and the corresponding net premium is

E[RX
k,n(t)] =

n∑
r=k+1

E(Xr:n − Xk:n).

From (4.1), it follows that

X1:n ≤ew Y1:n �⇒ E[RX
k,n(t)] ≤ E[RY

k,n(t)] for all 1 < k < n. (4.2)

From Shaked and Shanthikumar (2007, Theorem 3.B.26 and Equation (3.C.9)), it follows
that X ≤disp Y implies that X1:n ≤ew Y1:n for all n ≥ 1. By combining this fact with (4.2), we
see that

X ≤disp Y �⇒ E[RX
k,n(t)] ≤ E[RY

k,n(t)] for all 1 < k < n.

The following result follows from (4.2) and the Corollary 3.1. It is useful for comparing
ECOMOR net premiums of portfolios based on independent distributions which fail to be
ordered in the dispersive order.

Corollary 4.3. Let X and Y be two continuous random variables with strictly increasing
distribution functions F and G, respectively. Let X(r,n) and Y(r,n), r = 1, . . . , n, be the ordinary
order statistics based on F and G, respectively. If E[X(1,n)] ≤ E[Y(1,n)] and there exists a
value p0 ∈ (0, 1) such that G−1(p) ≤ F−1(p) for all p ∈ (0, p0) and G−1(p) − F−1(p) is
increasing on [p0, 1) then

E[RX
k,n(t)] ≤ E[RY

k,n(t)] for all 1 < k < n.
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Example 4.1. Suppose that X and Y are two Weibull distributed random variables with strictly
positive parameters α1, β1 and α2, β2, respectively, denoted, as in Example 2.2, by X ∼
W(α1, β1) and Y ∼ W(α2, β2). Now let X(1,n) and Y(1,n) be the first-order statistics of two
independent samples based on F and G, respectively. It is easy to see that X(1,n) and Y(1,n) are
also Weibull random variables, with X(1,n) ∼ W(α1n

β1 , β1) and Y(1,n) ∼ W(α2n
β2 , β2).

Therefore, using the Example 2.2, from the Corollary 4.3, it follows that

β1 > β2

α1n
β1�

(
β1 + 1

β1

)
≤ α2n

β2�

(
β2 + 1

β2

)
⎫⎪⎬
⎪⎭ �⇒ E[RX

k,n(t)] ≤ E[RY
k,n(t)]

for all 1 < k < n.
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