
Proceedings of the Edinburgh Mathematical Society (2018) 61, 1–11

doi:10.1017/S0013091516000584

ON THE RANGE INCLUSION FOR NORMAL DERIVATIONS ON
C∗-ALGEBRAS

BOJAN MAGAJNA

Department of Mathematics, University of Ljubljana, Jadranska 21,
Ljubljana 1000, Slovenia (bojan.magajna@fmf.uni-lj.si)

(Received 28 August 2015)

Abstract For a von Neumann subalgebra A ⊆ B(H) and any two elements a, b ∈ A with a normal,
such that the corresponding derivations da and db satisfy the condition ‖db(x)‖ ≤ ‖da(x)‖ for all x ∈ A,
there exist completely bounded (a)′-bimodule map ϕ : B(H) → B(H) such that db|A = ϕda|A = daϕ|A.
(In particular db(A) ⊆ da(A).) Moreover, if A is a factor, then ϕ can be taken to be normal and these
equalities hold on B(H) instead of just on A. This result is not true for general (even primitive) C∗-
algebras A.
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1. Introduction

Derivations have continuously attracted attention (see for example, [2, Chapter 4]). Even
determining the norm of an inner derivation on a C∗-algebra A turned out to be a much
deeper and more interesting problem (connected with the structure of A) than it might
have seemed at first sight (see [3] and the references therein).

For a C∗-algebra A ⊆ B(H) and elements a, b ∈ A we consider the corresponding inner
derivations da and db on B(H), where da(x) := ax− xa. In particular, we study the
implications of the condition

‖db(x)‖ ≤ κ‖da(x)‖ (∀x ∈ A), (1.1)

where κ is a constant, in the case when a is normal. (Note that κ can be assumed to be
1 if we replace a by κa.) The first systematic study of the case when A = B(H) was by
Johnson and Williams in [12], who showed that, if a is normal, (1.1) is equivalent to the
range inclusion

db(B(H)) ⊆ da(B(H)). (1.2)

If a is not normal, (1.2) does not always imply (1.1), for by [11] it does not even imply that
b is in the bicommutant of a. Conversely, if A = B(H), it turned out that (1.1) implies (1.2)
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under milder requirements on a than normality [16]. The work of Johnson and Williams
was continued by several researchers (see example [5], [6], [8], [13]). In [13] Kissin and
Shulman proved that if A is a C∗-subalgebra of B(H) such that da(A) ⊆ A, db(A) ⊆ A
and a is normal, then the range inclusion db(A) ⊆ da(A) implies the inequality (1.1) with
a suitable constant κ. Here we consider the reverse question, whether (1.1) implies the
inclusion db(A) ⊆ da(A)? We have found, somewhat surprisingly, that contrary to the case
of B(H), in a general C∗-algebra A (even a homogeneous one) (1.1) does not necessarily
imply the range inclusion db(A) ⊆ da(A), but it does imply if A is a von Neumann algebra.
The latter fact is a part of the main result of §2 (Theorem 2.1). Condition (1.1) obviously
implies the existence of a unique bounded linear operator ϕ : da(A) → db(A) such that
ϕda = db. This map ϕmust be a bimodule homomorphism over the commutant (a)′ ∩A of
a in A since both da and db are such homomorphisms. When A = B(H) and a is normal,
(a)′ is locally cyclic. Therefore, ϕ is automatically completely bounded by a result of
Smith [21] and consequently can be extended to B(H) by [18, Theorem 8.2]. In Theorem
2.1 we will show that a similar conclusion holds in a general (not necessarily injective)
von Neumann algebra. Then in §3, we formulate an analogous, but weaker, result for
prime C∗-algebras.
S denotes the weak* closure of a subset S in B(H) and [a, x] := ax− xa.

2. The von Neumann algebra case

Theorem 2.1. Let A ⊆ B(H) be a von Neumann algebra and let a, b ∈ A be such that
a is normal and the corresponding derivations da and db satisfy the condition

‖db(x)‖ ≤ ‖da(x)‖ for all x ∈ A. (2.1)

Then there exists a completely bounded (a)′-bimodule map ϕ : B(H) → B(H) such that
ϕ(A) ⊆ A and db|A = ϕda|A = daϕ|A. (Hence in particular db(A) ⊆ da(A).) Moreover,
if A is a factor, then a weak* continuous ϕ can be found such that db = ϕda = daϕ on
B(H).

For a proof we need some preparation. The following lemma is proved in [16, 4.7].

Lemma 2.2. Let A ⊆ B(H) be a C∗-algebra, J a closed ideal in A, and let a, b ∈ A
satisfy ‖[b, x]‖ ≤ ‖[a, x]‖ for all x ∈ A. Then the same inequality holds for all x ∈ A and
also for all cosets ẋ ∈ A/J .

A function f : K → C defined on a subset K ⊆ C is called a Schur function if there
exists a constant κ such that for every sequence (λi) ⊆ K the (infinite) matrix with the
entries

μi,k :=
f(λi) − f(λk)

λi − λk
, where μi,k is interpreted as 0 if λi = λk,

is a Schur multiplier on B(�2) with the multiplier norm at most κ. The smallest such κ
is called the Schur constant of f .
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Now we can state a consequence of the main result of Johnson and Williams [12] and
Lemma 2.2.

Theorem 2.3. If A is a prime C∗-algebra and a, b ∈ A are such that ‖[b, x]‖ ≤ ‖[a, x]‖
for all x ∈ A and a is normal, then b = f(a) for a Schur function f on the spectrum σ(a)
of a. Moreover, the Schur constant of f is ≤ 2.

Proof. By [7, Proposition 3.1] there exists a separable prime C∗-subalgebra B of A
containing a and b (an elementary proof of this is in [15, Lemma 3.2]). Then B is primitive
by [19, p. 102], hence we may assume that B is an irreducible C∗-subalgebra of B(H)
for a Hilbert space H. By Lemma 2.2 ‖[b, x]‖ ≤ ‖[a, x]‖ for all x ∈ B = B(H), and hence
by [12, Theorem 3.6] there exists a Schur function f (with κ ≤ 2) on σ(a) such that
b = f(a). �

Proof of Theorem 2.1. Let Δ be the maximal ideal space of the center Z of A. For
each t ∈ Δ we denote by A(t) the quotient A/(tA) and by x(t) the coset in A(t) of an
element x ∈ A. By [9, Lemma 10] the function t 	→ ‖x(t)‖ is continuous. Also by [9] each
A(t) is a prime C∗-algebra (in fact, by [10] each A(t) is primitive, but the proof of that
is much harder). By Lemma 2.2 the condition (2.1) is also satisfied in A(t), and hence by
Theorem 2.3 there exists a Schur function ft on σ(a(t)) with Schur constant less than or
equal to 2 such that b(t) = ft(a(t)).

Given ε > 0 and t ∈ Δ, there is an element of the form at,ε =
∑
λiei ∈ A, where

λi ∈ σ(a(t)) and the ei are mutually orthogonal spectral projections of a in A with the
sum

∑
i ei = 1, such that ‖a(s) − at,ε(s)‖ < ε for all s in a clopen neighborhood Ut of t.

To show this, first choose μi ∈ σ(a) and (mutually orthogonal) projections ei ∈ A with the
sum 1 such that ‖a−∑i μiei‖ < ε/2. Then ‖a(t)ei(t) − μiei(t)‖ < ε/2 for each i, which
implies that the distance of μi to the spectrum of a(t)ei(t) in the algebra ei(t)A(t)ei(t)
is less than ε/2 whenever ei(t) 
= 0. Since this spectrum is contained in σ(a(t)), we
can choose for each such i an element λi ∈ σ(a(t)) such that |λi − μi| < ε/2. Then
‖∑(λi − μi)ei(t)‖ = maxi |λi − μi| < ε/2, hence also ‖a(t) −∑λiei(t)‖ < ε. By conti-
nuity this inequality persists in a neighborhood Ut of t. Moreover, since b(t) = ft(a(t))
and ft is continuous (in fact differentiable at each non-isolated point of σ(a) by [12]), we
can achieve (by choosing a possibly smaller neighborhood Ut) that ‖b(s) − bt,ε(s)‖ < ε for
all s ∈ Ut, where bt,ε :=

∑
ft(λi)ei. Covering Δ with finitely many such neighborhoods

Ut and considering the corresponding partition of Δ, we see that there exist finitely many
(say n) central projections pj ∈ A with the sum 1 and with the following property: for
each j there exist finitely many scalars λi,j ∈ σ(a(tj)), mutually orthogonal spectral pro-
jections ei,j of a with

∑
i ei,j = pj and a Schur function fj := ftj

(with the corresponding
Schur constant at most 2) such that∥∥∥∥∥

(
a−

∑
i

λi,jei,j

)
pj

∥∥∥∥∥ < ε and

∥∥∥∥∥
(
b−

∑
i

fj(λi,j)ei,j

)
pj

∥∥∥∥∥ < ε. (2.2)

Let aj,ε =
∑

i λi,jei,j , bj,ε =
∑

i fj(λi,j)ei,j and define ϕj,ε : B(H) → B(H) by

ϕj,ε(x) =
∑
i,k

fj(λi,j) − fj(λk,j)
λi,j − λk,j

pjei,jxek,jpj , (ek,jpj = ek,j),
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where the quotient is interpreted as 0 if λi,j = λk,j . Observe that

daj,ε
ϕj,ε = dbj,ε

= ϕj,εdaj,ε
. (2.3)

To prove that set {ϕj,ε : ε ∈ (0, 1]} is bounded, fix j and denote λi,j simply by λi, ei,j

by ei and fj by f . Set

μi,k =
f(λi) − f(λk)

λi − λk
.

Since f is a Schur function with the constant at most 2, by [18, Corollary 8.8] there exist
vectors ζk = (ζm,k) and τk = (τm,k) in �2 such that μi,k = 〈ζk, τi〉 and ‖ζk‖, ‖τk‖ ≤ 2.
Now, for all x ∈ B(H) with ‖x‖ = 1 and all vectors ξ, η ∈ H we can estimate (using the
Cauchy–Schwarz inequality several times)

|〈ϕj,ε(x)η, ξ〉| =

∣∣∣∣∣∣
∑
i,k

μi,k〈xekη, eiξ〉
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i,k

〈ζk, τi〉〈xekη, eiξ〉
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
i,k

∑
m

ζm,kτm,i〈xekη, eiξ〉
∣∣∣∣∣∣ =

∣∣∣∣∣
∑
m

〈
x
∑

k

ζm,kekη,
∑

i

τm,ieiξ

〉∣∣∣∣∣
� ‖x‖

∑
m

∥∥∥∥∥
∑

k

ζm,kekη

∥∥∥∥∥
∥∥∥∥∥
∑

i

τm,ieiξ

∥∥∥∥∥
=
∑
m

(∑
k

|ζm,k|2‖ekη‖2

)1/2(∑
i

|τm,i|2‖eiξ‖2

)1/2

�
(∑

m

∑
k

|ζm,k|2‖ekη‖2

)1/2(∑
m

∑
i

|τm,i|2‖eiξ‖2

)1/2

=

(∑
k

‖ζk‖2‖ekη‖2

)1/2(∑
i

‖τi‖2‖eiξ‖2

)1/2

� 4

(∑
k

‖ekη‖2‖
)1/2(∑

i

‖ηiξ‖2

)1/2

= 4‖η‖‖ξ‖.

This implies that 1
4ϕj,ε is a contraction and a similar computation (replacing x ∈ H with

x ∈ Hn, n ∈ N) shows that it is a complete contraction. Since the sum ϕε :=
∑n

j=1 ϕj,ε

is orthogonal (because the pj are mutually orthogonal), it follows that the map 1
4ϕε is

completely contractive and clearly it is an (a)′-bimodule map. Now let ϕ be a weak*
limit point of the net (ϕε)ε→0. Using (2.2) and (2.3) it is not hard to verify that ‖(ϕεda −
db)|A‖ → 0 as ε→ 0, hence ϕda|A = db|A = daϕ|A. Also, ϕ(A) ⊂ A follows from the
definition of ϕ.

Although the maps da, db and ϕ are defined on all of B(H), the identity db = daϕ can
be verified only on A since the projections pj do not commute with all B(H). However, if
A is a factor, then there is only one non-zero pj, which is equal to the identity, and in this
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case daϕ = db = ϕda on B(H). Moreover, if ϕ = ϕn + ϕs is the decomposition of ϕ into
the normal and singular parts, then writing the identity db = daϕ as db − daϕn = daϕs,
the left-hand side of this identity is normal while the right is singular, so both must be
0. Since ϕn is normal and an (a)′-bimodule map, it has the form ϕn(x) =

∑
j∈J

aixbj
for some index set J and elements aj , bj ∈ (a)′′ ⊆ A such that the sums

∑
j∈J

aja
∗
j and∑

j∈J
b∗j bj are weak* convergent [21], and hence ϕ(A) ⊆ A. Thus ϕ can be replaced by

ϕn. �

Remark 2.4. In Theorem 2.1, if A is not necessarily a factor, we may decompose
ψ := ϕ|A into the normal part ψn and the singular part ψs and we still have ψn(A) ⊆ A,
but ψn is not necessarily an (a)′-bimodule map (only an Ac-bimodule map, where Ac :=
(a)′ ∩A (since this hold for ψ).

A derivation d on a C∗-algebra A is called normal if d∗d = dd∗, where d∗(x) := d(x∗)∗.
If d is an inner derivation (that is, if d(x) = [a, x] for a fixed a ∈ A), then by a short
direct calculation one can show that the condition d∗d = dd∗ means that a∗a− aa∗ is in
the center Z of A. In the case Z = C it has been observed already in [13, p. 194] that
this implies that a is normal. The same conclusion holds in a general C∗-algebra, for
a∗a− aa∗ commutes in particular with a, hence by the Kleinecke–Shirokov theorem [4,
p. 91], a∗a− aa∗ is quasi-nilpotent, and hence 0 (since it is skew-adjoint).

If d1 and d2 are derivations on a C∗-algebra A ⊆ B(H) such that d2(A) ⊆ d1(A), then
by [13, Theorem 6.5] there exists a constant κ such that ‖d2(x)‖ � ‖d1(x)‖ for all x ∈ A.
The two derivations extend weak* continuously to derivations on A (see [20, Theorem
2.2.2]), which are necessarily inner [20, Theorem 2.5.1] and thus of the form da, db for
elements a, b ∈ A. Since d1 is normal so is its extension da, and hence by the previous
paragraph a must be normal. Thus from Theorem 2.1 and Lemma 2.2 we deduce the
following consequence.

Corollary 2.5. Let d1 and d2 be derivations on a C∗-algebra A ⊆ B(H) and assume
that d1 is normal. If d2(A) ⊆ d1(A), then there exists a completely bounded (a)′-bimodule
map ϕ on B(H) such that ϕ(A) ⊆ A and db|A = daϕ|A = ϕda|A, where da and db are
the weak* continuous extensions to A of d1 and d2.

Now we show by a simple example that Theorem 2.1 does not hold for general (even
homogeneous) C∗-algebras.

Example 2.6. Let A = C([−1, 1],M2(C)) be the C∗-algebra of all continuous functions
from the interval [−1, 1] into 2 × 2 complex matrices. Let a, b ∈ A be defined by a(t) = |t|u
and b(t) = tu (t ∈ [−1, 1]), where u ∈ A is the unitary

u(t) =
[

1 0
0 −1

]
.

For each x ∈ A we have

‖db(x)‖ = sup
−1�t�1

|t|‖ux(t) − x(t)u‖ = ‖ax− xa‖ = ‖da(x)‖.
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But nevertheless, db(A) is not contained in da(A). To show this, let

p =
1
2

[
1 1
1 1

]
, and hence db(p) = t

[
0 1

−1 0

]
.

Each x ∈ A is of the form

x =
1
2

[
α β
γ δ

]
,

where α, β, γ and δ are complex-valued continuous functions on [−1, 1], and

da(x) = |t|
[

0 β
−γ 0

]
.

If db(p) = da(x), then (considering elements in position (1, 2)) |t|β = t for all t ∈ [−1, 1],
which is impossible for a continuous function β.

3. The case of prime C∗-algebras

We will show by an example below that Theorem 2.1 cannot be generalized to primitive
C∗-algebras, but the following weaker result still holds.

Proposition 3.1. Let A ⊆ B(H) be a prime C∗-algebra and let a, b ∈ A with a normal.
Then there exists a constant κ such that

‖db(x)‖ ≤ κ‖da(x)‖ for all x ∈ A (3.1)

if and only if there exists a bounded net (ϕj) of completely bounded (a)′-bimodule

maps ϕj : B(H) → B(H) such that ‖ϕj(da(x)) − db(x)‖ j−→ 0 for each x ∈ B(H) and
ϕj(A) ⊆ A. In fact, if A is primitive, a sequence (ϕj) with the required properties can be

found such that ‖ϕjda − db‖cb
ε→0−→ 0.

Proof. If a net (ϕj) with the required properties exists, then clearly (3.1) is satisfied.
Conversely, suppose that (3.1) holds. It suffices to find a net (ϕj) with the required prop-
erties (and ‖ϕj‖cb ≤ 9) for each separable prime C∗-subalgebra of A containing a and b,
since each separable subalgebra of A is contained in a prime separable C∗-subalgebra
by [7]. Thus we may assume that A is primitive. By Lemma 2.2, b = f(a) for a Schur
function f and we may assume that the Schur constant of f is 1.

Now, to construct the appropriate maps ϕj : B(H) → B(H), we first cover the plane C

with a grid of small closed rectangles with sides parallel to the coordinate axes, so that the
intersection of any two rectangles is either empty or a common edge. Then each rectangle
intersects at most eight other rectangles. By taking slightly larger open rectangles, we
can cover σ(a) by finitely many such open rectangles {Ui}n

i=1, each still intersecting only
eight other rectangles. Further, given ε > 0, we may assume that the rectangles are so
small that |λ− μ| < ε and |f(λ) − f(μ)| < ε whenever λ and μ are both contained in a
union of two intersecting rectangles Ui. Let {gi}n

i=1 be a partition of unity subordinate
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to the covering {Ui}n
i=1. Choose, for each i, a point λi ∈ Ui; then a and b = f(a) are

approximated (in norm) by elements

aε =
n∑

i=1

λigi(a) and bε =
n∑

i=1

f(λi)gi(a).

Set

μi,k =
f(λi) − f(λk)

λi − λk

(regarded as 0 if λi = λk) and define

ϕε : B(H) → B(H), ϕε(x) =
n∑

i,k=1

μi,kgi(a)xgk(a).

To show that the net (ϕε) is bounded, as in the proof of Theorem 2.1 we use the fact
that there exist vectors ζk = (ζm,k), τk = (τm,k) ∈ �2 with ‖ζk‖, ‖τk‖ ≤ 1 such that μi,k =
〈ζk, τi〉 (since f has the Schur constant 1). Then for all x in the unit ball of B(H) and
ξ, η ∈ H we compute:

|〈ϕε(x)η, ξ〉| =

∣∣∣∣∣∣
∑
i,k

μi,k〈xgk(a)η, gi(a)ξ〉
∣∣∣∣∣∣ =

∣∣∣∣∣
∑
m

〈x
∑

k

ζm,kgk(a)η,
∑

i

τm,igi(a)ξ〉
∣∣∣∣∣

�
∑
m

∥∥∥∥∥
∑

k

ζm,kgk(a)η

∥∥∥∥∥
∥∥∥∥∥
∑

i

τm,igi(a)ξ

∥∥∥∥∥ .
For each k let L(k) = {i : gkgi 
= 0}; thus, by the definition of the functions gk the set
L(k) contains at most nine elements. We can now estimate∥∥∥∥∥

∑
k

ζm,kgk(a)η

∥∥∥∥∥
2

=
∑

k

∑
i∈L(k)

ζm,kζm,i〈gi(a)gk(a)η, η〉

�
∑

k

∑
i∈L(k)

‖ζm,kgk(a)η‖‖ζm,igi(a)η‖

� 1
2

∑
k

∑
i∈L(k)

(‖ζm,kgk(a)η‖2 + ‖ζm,igi(a)η‖2)

=
9
2

∑
k

‖ζm,kgk(a)η‖2 +
1
2

∑
k

∑
i∈L(k)

‖ζm,igi(a)η‖2.

Since each i is contained in at most nine sets L(k), the last double sum is dominated by
9
∑

k ‖ζm,kgk(a)η‖2, and hence it follows that∥∥∥∥∥
∑

k

ζm,kgk(a)η

∥∥∥∥∥
2

� 9
∑

k

‖ζm,kgk(a)η‖2.
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A similar inequality also holds for ‖∑i τk,igi(a)ξ‖2, and we can therefore continue the
above estimate of |〈ϕε(x)η, ξ〉| as

|〈ϕε(x)η, ξ〉| � 9
∑
m

(∑
k

|ζm,k|2‖gk(a)η‖2

)1/2(∑
i

|τm,i|2‖gi(a)ξ‖2

)1/2

� 9

⎛
⎝∑

m,k

|ζm,k|‖gk(a)η‖2

⎞
⎠

1/2⎛
⎝∑

m,i

|τm,i|2‖gi(a)ξ‖2

⎞
⎠

1/2

� 9

(∑
k

‖gk(a)η‖2

)1/2(∑
i

‖gi(a)ξ‖2

)1/2

.

Since the functions gkgi are non-negative,

∑
k

‖gk(a)η‖2 �
∑
k,i

〈gi(a)η, gk(a)η〉 =

∥∥∥∥∥
∑

k

gk(a)η

∥∥∥∥∥
2

= ‖η‖2,

and hence (with a similar estimate for
∑

i ‖gi(a)ξ‖2) we finally deduce that

|〈ϕε(x)η, ξ〉| ≤ 9‖η‖‖ξ‖.
This implies that ‖ϕε‖ � 9 and the same arguments also apply to ‖ϕε‖cb.

We will show that ‖ϕεdaε
− dbε

‖ → 0 as ε→ 0. Using the definition of aε and that∑
i gi(a) = 1, we have daε

(x) =
∑

i,k(λi − λk)gi(a)xgk(a) for each x ∈ A and a similar
formula also holds for dbε

(x). Using that
∑

m gm(a) = 1 and that gi(a)gm(a) = 0 if m /∈
L(i), we now compute

ϕε(daε
(x)) =

∑
i,k

f(λi) − f(λk)
λi − λk

gi(a)

⎛
⎝ ∑

m∈L(i),l∈L(k)

(λm − λl)gm(a)xgl(a)

⎞
⎠ gk(a)

and

dbε
(x) =

∑
i,k

(f(λi) − f(λk))gi(a)xgk(a)

=
∑
i,k

f(λi) − f(λk)
λi − λk

gi(a)

⎛
⎝ ∑

m∈L(i),l∈L(k)

(λi − λk)gm(a)xgl(a)

⎞
⎠ gk(a),

and hence

(ϕεdaε
− dbε

)(x)

=
∑
i,k

μi,kgi(a)t

⎛
⎝ ∑

m∈L(i),l∈L(k)

((λm − λi) − (λl − λk))gm(a)xgl(a)

⎞
⎠ gk(a).
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Since |λm − λi| < ε and |λl − λk| < ε ifm ∈ L(i) and l ∈ L(k), we conclude (by essentially
the same computation as above) that

‖ϕεdaε
− dbε

‖ � 2 · 9 · 9ε‖ϕε‖‖x‖ � 1458ε.

The required sequence of maps is therefore ϕ1/j (j = 1, 2, . . .). �

In the context of Proposition 3.1, in general db(A) 
⊆ da(A) (hence there does not exist
ϕ : A→ A satisfying db = daϕ), as shown by the following example.

Example 3.2. Let A = C∗(s) be the C∗-algebra generated by the unilateral shift s
on H = �2 and let a be the diagonal operator with the entries αn = 1

(2n+1)π/2 on the
diagonal. A is irreducible [17, Theorem 3.5.5] and contains all compact operators, and in
particular a ∈ A. It follows from [14, Theorem 3.8 and Corollary 3.6(ii)] that the function
f(t) = t2 sin(1/t) (with f(0) := 0) is a Schur function on any compact interval in R, and
thus the operator b := f(a) satisfies (3.1). Clearly, b is a diagonal operator with the entries

βn = f(αn) =
(−1)n

(2n+ 1)2π2/4

along the diagonal. For every matrix x = [xi,j ] ∈ B(�2), the matrix of da(x) is [(αi −
αj)xi,j ], and similarly db(x) = [(βi − βj)xi,j ]. We claim that db(s) /∈ da(A). Suppose
the contrary: that db(s) = da(x) for some x ∈ A; that is, that [(αi − αj)xi,j ] = [(βi −
βj)δi,j+1], where δi,j = 1 if i = j and δi,j = 0 if i 
= j. (We have used the fact that the
matrix of s is [δi,j+1].) Then x is the matrix that has the entries

xi+1,i = γi :=
βi+1 − βi

αi+1 − αi
=

(−1)i

π

(2i+ 1)2 + (2i+ 3)2

(2i+ 1)(2i+ 3)

just below the main diagonal and zeros elsewhere. However, since the quotient algebra
A/K(H) is commutative [17, Theorem 3.5.11], the operator [x, s] must be compact. In
particular, the entries on the positions (i+ 2, i) of the matrix of [x, s] must tend to 0 as
i→ ∞. But this entries are γi+1 − γi and have two accumulation points ±(4/π), which
is a contradiction.

Problem. Suppose that a, b are elements of a simple unital W ∗-algebra A such that
(1.1) holds and a is normal. Is it then necessarily the case that db(A) ⊆ da(A)?

Remark 3.3. The topic of range inclusion of derivations is connected with the per-
turbation theory of normal operators (see [1,14]), which works well for a quite general
class of functions (in a certain Besov space). In our context, if a function f on σ(a)
is sufficiently nice, then there exists a completely bounded map ϕ on B(H) such that
df(a) = ϕda = daϕ and ϕ(A) ⊆ A for every unital C∗-subalgebra A of B(H) containing
a. For example, if a∗ = a, then it suffices that f is a restriction of a compactly supported
function on R, denoted again by f , such that f ′′′ is continuous, hence t3f̂(t) is bounded,
where f̂ is the Fourier transform of f . For convenience we sketch the proof, although a
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similar argument has already been used by others in different contexts. We use that

f(a) =
1√
2π

∫
R

f̂(t)eita

to express

df(a)(x) = [f(a), x] =
1√
2π

∫
R

f̂(t)[eita, x] dt.

Then from

[eita, x] = (eitaxe−ita − x)eita =
∫ t

0

d
ds

(eisaxe−isa)dseita = i
∫ t

0

eisa[a, x]ei(t−s)a ds

it follows that [f(a), x] = ϕ([a, x]) = [a, ϕ(x)], where

ϕ(x) =
i√
2π

∫
R

f̂(t)
∫ t

0

eisaxei(t−s)a ds dt (x ∈ Mn(B(H)), n ∈ N). (3.2)

Thus

‖ϕ‖ � 1√
2π

(∫
R

|f̂(t)t|dt
)
<∞,

where the last inequality is a consequence of boundedness of t3f̂(t). Approximating the
first integral in (3.2) by an integral over a finite interval and then the double integral by
Riemann sums, we see that ϕ(A) ⊆ A. The condition that f ′′′ exists and is continuous is
probably much too strong and we may instead ask the following.

Problem. What minimal smoothness properties must a Schur function f have in order
that df(a)(A) ⊆ da(A) for all unital (simple) C∗-algebras A? Is it sufficient that f can be
extended to a continuously differentiable function on C?
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