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IMPROVEMENTS ON THE DISTRIBUTION
OF MAXIMAL SEGMENTAL SCORES
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Abstract

Let (Ai)i≥0 be a finite-state irreducible aperiodic Markov chain and f a lattice score
function such that the average score is negative and positive scores are possible. Define
S0 := 0 and Sk := ∑k

i=1 f (Ai) the successive partial sums, S+ the maximal non-negative
partial sum, Q1 the maximal segmental score of the first excursion above 0, and Mn :=
max0≤k≤�≤n (S� − Sk) the local score, first defined by Karlin and Altschul (1990). We
establish recursive formulae for the exact distribution of S+ and derive a new approx-
imation for the tail behaviour of Q1, together with an asymptotic equivalence for the
distribution of Mn. Computational methods are explicitly presented in a simple appli-
cation case. The new approximations are compared with those proposed by Karlin and
Dembo (1992) in order to evaluate improvements, both in the simple application case
and on the real data examples considered by Karlin and Altschul (1990).
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1. Introduction

A large number of biological sequences are currently available. The local score in sequence
analysis, first defined in [8], quantifies the highest level of a certain quantity of interest,
e.g. hydrophobicity, polarity, etc., that can be found locally inside a given sequence. This
allows us, for example, to detect atypical segments in biological sequences. In order to dis-
tinguish significantly interesting segments from ones that may have appeared by chance alone,
it is necessary to evaluate the p-value of a given local score. Different results have already
been established using different probabilistic models for sequences: independent and identi-
cally distributed (i.i.d.) variables model [2, 8, 9, 12], Markovian models [7, 9], and hidden
Markov models [4]. In this article we will focus on the Markovian model.

An exact method was proposed in [7] to calculate the distribution of the local score for a
Markovian sequence, but this result is computationally time-consuming for long sequences
(>103). Karlin and Dembo [9] established the limit distribution of the local score for a
Markovian sequence and a random scoring scheme depending on the pairs of consecutive
states in the sequence. They proved that, in the case of a non-lattice scoring scheme, the dis-
tribution of the local score is asymptotically a Gumble distribution, as in the i.i.d. case. In the
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lattice case, they gave asymptotic lower and upper bounds of Gumbel type for the local score
distribution. In spite of its importance, their result in the Markovian case is unfortunately very
little cited or used in the literature. A possible explanation could be that the random scoring
scheme defined in [9] is more general than the ones classically used in practical approaches.
In [5] and [6], the authors verify by simulations that the local score in a certain dependence
model follows a Gumble distribution, and use simulations to estimate the two parameters of
this distribution.

In this article we study the Markovian case for a more classical scoring scheme. We propose
a new approximation, given as an asymptotic equivalence when the length of the sequence
tends to infinity, for the distribution of the local score of a Markovian sequence. We compare
it to the asymptotic bounds of [9] and illustrate the improvements both in a simple application
case and on the real data examples proposed in [8].

1.1. Mathematical framework

Let (Ai)i≥0 be an irreducible and aperiodic Markov chain taking its values in a finite set
A containing r states denoted α, β, . . . for simplicity. Let P = (pαβ )α,β∈A be its transition
probability matrix and π its stationary frequency vector. In this work we suppose that P is
positive (for all α, β, pαβ > 0). We also suppose that the initial distribution of A0 is given by
π , so that the Markov chain is stationary. Pα will stand for the conditional probability given
{A0 = α}. We consider a lattice score function f : A→ dZ, with d ∈N being the lattice step.
Note that, since A is finite, we have a finite number of possible scores. Since the Markov
chain (Ai)i≥0 is stationary, the distribution of Ai is π for every i ≥ 0. We will simply denote by
E[ f (A)] the average score.

In this article we make the hypothesis that the average score is negative, i.e.

Hypothesis (1): E[ f (A)] =
∑
α

f (α)πα < 0. (1)

We will also suppose that for every α ∈A we have

Hypothesis (2): Pα( f (A1)> 0)> 0. (2)

Note that, thanks to the assumption pαβ > 0 for all α, β, Hypothesis (2) is equivalent to the
existence of β ∈A such that f (β)> 0.

Let us introduce some definitions and notation. Let S0 := 0 and Sk := ∑k
i=1 f (Ai) for

k ≥ 1 be the successive partial sums. Let S+ be the maximal non-negative partial sum:
S+ := max{0, Sk : k ≥ 0}.

Further, let σ− := inf{k ≥ 1 : Sk < 0} be the time of the first negative partial sum. Note
that σ− is an almost surely (a.s.) finite stopping time due to Hypothesis (1), and let Q1 :=
max0≤k<σ− Sk.

First introduced in [8], the local score, denoted Mn, is defined as the maximum segmental
score for a sequence of length n: Mn := max0≤k≤�≤n (S� − Sk).

Note that in order to study the distributions of the variables S+, Q1, and Mn, which all take
values in dN, it suffices to focus on the case d = 1. We will thus consider d = 1 throughout the
article.

Remark 1.1. Karlin and Dembo [9] considered a more general model, with a random score
function defined on pairs of consecutive states of the Markov chain: they associated with
each transition (Ai−1, Ai) = (α, β) a bounded random score Xαβ whose distribution depends on
the pair (α, β). Moreover, they supposed that, for (Ai−1, Ai) = (Aj−1, Aj) = (α, β), the random
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scores XAi−1Ai and XAj−1Aj are independent and identically distributed as Xαβ . Their model is
also more general in that the scores are not restricted to the lattice case and may be continuous
random variables.

The framework of this article corresponds to the case where the score function is
deterministic and lattice, with XAi−1Ai = f (Ai).

Note also that in our case Hypotheses (1) and (2) assure so-called cycle positivity, i.e. the
existence of some state α ∈A and of some m ≥ 2 satisfying P(

⋂m−1
k=1 {Sk > 0} | A0 = Am = α)>

0. In [9], in order to simplify the presentation, the authors strengthened the assumption of cycle
positivity by assuming that P(Xαβ > 0)> 0 and P(Xαβ < 0)> 0 for all α, β ∈A (see (1.19) of
[9]), but in fact cycle positivity is sufficient for their results to hold.

In Section 2 we first introduce a few more definitions and some notation. We then present
the main results: in Theorem 2.1, we propose a recursive result for the exact distribution of the
maximal non-negative partial sum S+ for an infinite sequence, and in Theorem 2.3, based on
the exact distribution of S+, we further propose a new approximation for the tail behaviour of
the height of the first excursion Q1. We also establish in Theorem 2.4 an asymptotic equiva-
lence result for the distribution of the local score Mn when the length n of the sequence tends
to infinity. Section 3 contains the proofs of the results of Section 2 and of some useful lem-
mas which use techniques of Markov renewal theory and large deviations. In Section 4 we
propose a computational method for deriving the quantities appearing in the main results. A
simple scoring scheme is developed in Section 4.4, for which we compare our approximations
to those proposed by Karlin and Dembo [9] in the Markovian case. In Section 4.5 we also show
the improvements brought by the new approximations on the real data examples of [8].

2. Statement of the main results

2.1. Definitions and notation

Let K0 := 0 and, for i ≥ 1, Ki := inf{k>Ki−1 : Sk − SKi−1 < 0} be the successive decreasing
ladder times of (Sk)k≥0. Note that K1 = σ−.

We now consider the subsequence (Ai)0≤i≤n for a given length n ∈N \ {0}. Denote by
m(n) := max{i ≥ 0 : Ki ≤ n} the random variable corresponding to the number of decreasing
ladder times arrived before n. For every i = 1, . . . ,m(n), we call the sequence (Aj)Ki−1<j≤Ki

the ith excursion above 0.
Note that due to the negative drift we have E[K1]<∞ (see Lemma 3.7) and m(n) → ∞ a.s.

when n → ∞. With every excursion i = 1, . . . ,m(n) we associate its maximal segmental score
(also called height) Qi defined by Qi := maxKi−1≤k<Ki (Sk − SKi−1 ).

Note that Mn = max(Q1, . . . ,Qm(n),Q∗), with Q∗ being the maximal segmental score of the
last incomplete excursion (Aj)Km(n)<j≤n. Mercier and Daudin [12] gave an alternative expression
for Mn using the Lindley process (Wk)k≥0 describing the excursions above zero between the
successive stopping times (Ki)i≥0. With W0 := 0 and Wk+1 := max(Wk + f (Ak+1), 0), we have
Mn = max0≤k≤n Wk.

For every α, β ∈A, we denote qαβ := Pα(AK1 = β) and Q := (qαβ )α,β∈A. Define A− :=
{α ∈A : f (α)< 0} and A+ := {α ∈A : f (α)> 0}. Note that the matrix Q is stochastic, with
qαβ = 0 for β ∈A \A−. Its restriction Q̃ to A− is stochastic and irreducible, since qαβ ≥
pαβ > 0 for all α, β ∈A−. The states (AKi )i≥1 of the Markov chain at the end of the successive
excursions define a Markov chain on A− with transition probability matrix Q̃.

For every i ≥ 2 we thus have P(AKi = β | AKi−1 = α) = qαβ if α, β ∈A− and 0 otherwise.
Denote by z̃> 0 the stationary frequency vector of the irreducible stochastic matrix Q̃, and let
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z := (zα)α∈A, with zα = z̃α > 0 for α ∈A− and zα = 0 for α ∈A \A−. Note that z is invariant
for the matrix Q, i.e. zQ = z.

Remark 2.1. Note that in Karlin and Dembo’s Markovian model of [9] the matrix Q is
irreducible, thanks to their random scoring function and to their hypotheses recalled in
Remark 1.1.

Using the strong Markov property, conditionally on (AKi)i≥1 the random variables (Qi)i≥1
are independent, with the distribution of Qi depending only on AKi−1 and AKi .

For every α ∈A, β ∈A−, and y ≥ 0, let FQ1,α,β (y) := Pα(Q1 ≤ y | Aσ− = β) and FQ1,α(y) :=
Pα(Q1 ≤ y). Note that for any α ∈A− and i ≥ 1, FQ1,α,β represents the cumulative distribution
function (CDF) of the height Qi of the ith excursion given that it starts in state α and ends in
state β, i.e. FQ1,α,β (y) = P(Qi ≤ y | AKi = β, AKi−1 = α), whereas FQ1,α represents the CDF of
Qi conditionally on the ith excursion starting in state α, i.e. FQ1,α(y) = P(Qi ≤ y | AKi−1 = α).
We thus have FQ1,α(y) = ∑

β∈A FQ1,α,β (y)qαβ .
We also introduce the stopping time σ+ := inf{k ≥ 1 : Sk > 0} with values in N∪ {∞}. Due

to Hypothesis (1) we have Pα(σ+ <∞)< 1 for all α ∈A.
For every α, β ∈A and ξ > 0, let Lαβ (ξ ) := Pα(Sσ+ ≤ ξ, σ+ <∞, Aσ+ = β). Note

that Lαβ (ξ ) = 0 for β ∈A \A+, and Lαβ (∞) ≤ Pα(σ+ <∞)< 1, therefore
∫ ∞

0 dLαβ (ξ ) =
Lαβ (∞)< 1.

Let us also denote by Lα(ξ ) := ∑
β∈A+ Lαβ (ξ ) = Pα(Sσ+ ≤ ξ, σ+ <∞) the conditional

CDF of the first positive partial sum, when it exists, given that the Markov chain starts in
state α, and Lα(∞) := limξ→∞ Lα(ξ ) = Pα(σ+ <∞).

For any θ ∈R we introduce the matrix �(θ ) := (
pαβ · exp(θ f (β))

)
α,β∈A. Since the transition

matrix P is positive, by the Perron–Frobenius theorem the spectral radius ρ(θ )> 0 of the matrix
�(θ ) coincides with its dominant eigenvalue, for which there exists a unique positive right
eigenvector u(θ ) = (ui(θ ))1≤i≤r (seen as a column vector) normalized so that

∑r
i=1 ui(θ ) = 1.

Moreover, θ 	→ ρ(θ ) is differentiable and strictly log convex (see [3, 10, 11]). In Lemma 3.5
we prove that ρ′(0) = E[ f (A)], hence ρ′(0)< 0 by Hypothesis (1). Together with the strict log
convexity of ρ and the fact that ρ(0) = 1, this implies that there exists a unique θ∗ > 0 such
that ρ(θ∗) = 1 (see [3] for more details).

2.2. Main results: Improvements on the distribution of the local score

Let α ∈A. We start by giving a result which allows us to recursively compute the CDF of
the maximal non-negative partial sum S+. We denote by FS+,α the CDF of S+ conditionally
on starting in state α: FS+,α(�) := Pα(S+ ≤ �) for all � ∈N, and for every k ∈N \ {0} and β ∈
A, L(k)

αβ
:= Pα(Sσ+ = k, σ+ <∞, Aσ+ = β). Note that L(k)

αβ = 0 for β ∈A \A+ and Lα(∞) =∑
β∈A+

∑∞
k=1 L(k)

αβ .
The following result gives a recurrence relation for the double sequence (FS+,α(�))α,�

involving the coefficients L(k)
αβ , which can be computed recursively (see Section 4.2).

Theorem 2.1. (Exact result for the distribution of S+). For all α ∈A and �≥ 1:

FS+,α(0) = Pα(σ+ = ∞) = 1 − Lα(∞),

FS+,α(�) = 1 − Lα(∞) +
∑
β∈A+

�∑
k=1

L(k)
αβ FS+,β (�− k).

The proof will be given in Section 3.
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In Theorem 2.2 we obtain an asymptotic result for the tail behaviour of S+ using
Theorem 2.1 and ideas inspired from [9] adapted to our framework (see also the discussion
in Remark 1.1). Before stating this result we need to introduce some more notation.

For every α, β ∈A and k ∈N we denote

G(k)
αβ

:= uβ (θ∗)

uα(θ∗)
eθ

∗kL(k)
αβ, Gαβ (k) :=

k∑
�=0

G(�)
αβ, Gαβ (∞) :=

∞∑
k=0

G(k)
αβ .

The matrix G(∞) := (Gαβ (∞))α,β is stochastic, using Lemma 3.3; the subset A+ is a recurrent
class, whereas the states in A \A+ are transient. The restriction of G(∞) to A+ is stochastic
and irreducible; we denote by w̃> 0 the corresponding stationary frequency vector. Define w =
(wα)α∈A, with wα = w̃α > 0 for α ∈A+ and wα = 0 for α ∈A \A+. The vector w is invariant
for G(∞), i.e. wG(∞) = w.

Remark 2.2. Note that in Karlin and Dembo’s Markovian model of [9] the matrix G(∞) is
positive, hence irreducible, thanks to their random scoring function and to their hypotheses
recalled in Remark 1.1.

Remark 2.3. In Section 4.3 we detail a recursive procedure for computing the CDF FS+,α ,

based on Theorem 2.1. Note also that, for every α, β ∈A, there are a finite number of L(k)
αβ

terms different from zero, and therefore there are a finite number of non-null terms in the sum
defining Gαβ (∞).

The following result is the analogue, in our setting, of Lemma 4.3 of [9].

Theorem 2.2. (Asymptotics for the tail behaviour of S+.) For every α ∈A we have

lim
k→+∞

eθ
∗kPα(S+ > k)

uα(θ∗)
= 1

c
·

∑
γ∈A+

wγ
uγ (θ∗)

∑
�≥0

(Lγ (∞) − Lγ (�))eθ
∗� := c(∞), (3)

where w = (wα)α∈A is the stationary frequency vector of the matrix G(∞) and

c :=
∑

γ,β∈A+

wγ
uγ (θ∗)

uβ (θ∗)
∑
�≥0

� · eθ
∗� L(�)

γβ .

The proof is deferred to Section 3.

Remark 2.4. Note that there are a finite number of non-null terms in the above sums over �.
We also have the following alternative expression for c(∞):

c(∞) = 1

c(eθ∗ − 1)
·

∑
γ∈A+

wγ
uγ (θ∗)

{
Eγ

[
eθ

∗Sσ+ ; σ+ <∞] − Lγ (∞)
}
.

Indeed, by the summation by parts formula

k∑
�=m

f�(g�+1 − g�) = fk+1gk+1 − fmgm −
k∑

�=m

( f�+1 − f�)g�+1,
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we obtain

∞∑
�=0

(Lγ (∞) − Lγ (�))eθ
∗� = 1

eθ∗ − 1

∞∑
�=0

(Lγ (∞) − Lγ (�))(eθ
∗(�+1) − eθ

∗�)

= 1

eθ∗ − 1

×
{

lim
k→∞ (Lγ (∞) − Lγ (k))eθ

∗k − Lγ (∞) −
∞∑
�=0

(Lγ (�) − Lγ (�+ 1))eθ
∗(�+1)

}

= 1

eθ∗ − 1

{
− Lγ (∞) +

∞∑
�=0

eθ
∗(�+1) Pγ (Sσ+ = �+ 1, σ+ <∞)

}

= 1

eθ∗ − 1

{
Eγ

[
eθ

∗Sσ+ ; σ+ <∞] − Lγ (∞)
}
.

Before stating the next results, let us denote, for every integer � < 0 and α, β ∈A, Q(�)
αβ

:=
Pα(Sσ− = �, Aσ− = β). Note that Q(�)

αβ = 0 for β ∈A \A−. In Section 4 we give a recursive
method for computing these quantities.

Using Theorem 2.2 we obtain the following result, where the notation fk ∼
k→∞ gk means

fk − gk = o(gk), or equivalently
fk
gk

→
k→∞ 1.

Theorem 2.3. (Asymptotic approximation for the tail behaviour of Q1.) We have the following
asymptotic result on the tail distribution of the height of the first excursion: for every α ∈A
we have

Pα(Q1 > k) ∼
k→∞ Pα(S+ > k) −

∑
�<0

∑
β∈A−

Pβ
(
S+ > k − �

) · Q(�)
αβ . (4)

The proof will be given in Section 3.

Remark 2.5. Note that, as a straightforward consequence of Theorems 2.2 and 2.3, we recover
the following limit result of Karlin and Dembo [9] (Lemma 4.4):

lim
k→+∞

eθ
∗kPα(Q1 > k)

uα(θ∗)
= c(∞)

{
1 −

∑
β∈A−

uβ (θ∗)

uα(θ∗)

∑
�<0

eθ
∗�Q(�)

αβ

}
.

Using Theorems 2.2 and 2.3, we finally obtain the following result on the asymptotic
distribution of the local score Mn for a sequence of length n.

Theorem 2.4. (Asymptotic distribution of the local score Mn.) For every α ∈A and x ∈R

we have:

Pα

(
Mn ≤ log (n)

θ∗ + x

)
∼

n→∞ exp

{
− n

A∗
∑
β∈A−

zβPβ
(
S+ >

⌊
log (n)/θ∗ + x

⌋) }

× exp

{
n

A∗
∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log (n)/θ∗ + x

⌋ − k
) ·

∑
β∈A−

zβQ(k)
βγ

}
, (5)
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where z = (zα)α∈A is the invariant probability measure of the matrix Q defined in
Section 2.1, and

A∗ := lim
m→+∞

Km

m
= 1

E( f (A))

∑
β∈A−

zβEβ [Sσ− ] a.s.

Remark 2.6.

• Note that the asymptotic equivalent in (5) does not depend on the initial state α.

• We recall, for comparison, the asymptotic lower and upper bounds of [9] for the
distribution of Mn:

lim inf
n→+∞ Pα

(
Mn ≤ log (n)

θ∗ + x

)
≥ exp

{−K+exp(−θ∗x)
}
, (6)

lim sup
n→+∞

Pα

(
Mn ≤ log (n)

θ∗ + x

)
≤ exp

{−K∗exp(−θ∗x)
}
, (7)

with K+ = K∗exp(θ∗) and K∗ = v(∞) · c(∞), where c(∞) is given in Theorem 2.2 and
is related to the defective distribution of the first positive partial sum Sσ+ (see also
Remark 2.4), and v(∞) is related to the distribution of the first negative partial sum
Sσ− (see (5.1) and (5.2) of [9] for more details). A more explicit formula for K∗ is given
in Section 4.4 for an application in a simple case.

• Even if the expression of our asymptotic equivalent in (5) seems more cumbersome
than the asymptotic bounds recalled in (6) and (7), the practical implementations are
equivalent.

3. Proofs of the main results

3.1. Proof of Theorem 2.1

FS+,α(�) = Pα(σ+ = ∞) + Pα(S+ ≤ �, σ+ <∞)

= 1 − Lα(∞) +
∑
β∈A+

�∑
k=1

Pα(S+ ≤ �, σ+ <∞, Sσ+ = k, Aσ+ = β)

= 1 − Lα(∞) +
∑
β∈A+

�∑
k=1

L(k)
αβ Pα(S+ ≤ � | σ+ <∞, Sσ+ = k, Aσ+ = β).

It then suffices to note that

Pα(S+ − Sσ+ ≤ �− k | σ+ <∞, Sσ+ = k, Aσ+ = β) = Pβ (S+ ≤ �− k),

by the strong Markov property applied to the stopping time σ+. �

3.2. Proof of Theorem 2.2

We first prove some preliminary lemmas.

Lemma 3.1. limk→∞ Pα(S+ > k) = 0 for every α ∈A.

https://doi.org/10.1017/jpr.2019.75 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.75


36 S. GRUSEA AND S. MERCIER

Proof . With FS+,α defined in Theorem 2.1, we introduce, for every α and �≥ 0,

bα(�) := 1 − FS+,α(�)

uα(θ∗)
eθ

∗�, aα(�) := Lα(∞) − Lα(�)

uα(θ∗)
eθ

∗�.

Theorem 2.1 allows us to obtain the following renewal system for the family (bα)α∈A:

for all � > 0, for all α ∈A, bα(�) = aα(�) +
∑
β

�∑
k=0

bβ (�− k)G(k)
αβ . (8)

Since the restriction G̃(∞) of G(∞) to A+ is stochastic, its spectral radius equals 1 and the cor-
responding right eigenvector is the vector having all components equal to 1; the left eigenvector
is the stationary frequency vector w̃> 0.

Step 1: For every α ∈A+, a direct application of Theorem 2.2 of [1] gives the formula in
(3) for the limit c(∞) of bα(�) when �→ ∞, which implies that lim

k→∞ Pα(S+ > k) = 0.

Step 2: Now consider α /∈A+. By Theorem 2.1 we have

Pα(S+ > �) = Lα(∞) −
∑
β∈A+

�∑
k=1

L(k)
αβ

{
1 − Pβ (S+ > �− k)

}
.

Since Pβ (S+ > �− k) = 1 for k> � and Lα(∞) = ∑
β∈A+

∑∞
k=1 L(k)

αβ , we deduce that

Pα(S+ > �) =
∑
β∈A+

∞∑
k=1

L(k)
αβ Pβ (S+ > �− k). (9)

Note that for fixed α and β there are a finite number of non-null terms in the above sum over
k. Using the fact that for fixed β ∈A+ and k ≥ 1 we have Pβ (S+ > �− k) → 0 when �→ ∞,
as shown previously in Step 1, the stated result follows. �

Lemma 3.2. Let θ > 0. With u(θ ) defined in Section 2.1, the sequence of random variables
(Um(θ ))m≥0 defined by U0(θ ) := 1 and

Um(θ ) :=
m−1∏
i=0

[
exp(θ f (Ai+1))

uAi (θ )
· uAi+1 (θ )

ρ(θ )

]
= exp(θSm)uAm (θ )

ρ(θ )muA0 (θ )
, for m ≥ 1,

is a martingale with respect to the canonical filtration Fm = σ (A0, . . . , Am).

Proof . For every m ∈N and θ > 0, Um(θ ) is clearly measurable with respect to Fm and
integrable, since A is finite. We can write

Um+1(θ ) = Um(θ )
exp(θ f (Am+1))uAm+1 (θ )

uAm(θ )ρ(θ )
.

Since Um(θ ) and uAm (θ ) are measurable with respect to Fm, we have

E[Um+1(θ ) |Fm] = Um(θ )
E[exp(θ f (Am+1))uAm+1 (θ ) |Fm]

uAm (θ )ρ(θ )
.
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By the Markov property we further have

E[exp(θ f (Am+1))uAm+1 (θ ) |Fm] = E[exp(θ f (Am+1))uAm+1 (θ ) | Am],

and by definition of u(θ ),

E[exp(θ f (Am+1))uAm+1 (θ ) | Am = α] =
∑
β

exp(θ f (β))uβ (θ )pαβ = uα(θ )ρ(θ ).

We deduce that E[exp(θ f (Am+1))uAm+1 (θ ) | Am] = uAm (θ )ρ(θ ), and hence E[Um+1(θ ) |Fm] =
Um(θ ), which finishes the proof. �

Lemma 3.3. With θ∗ defined at the end of Section 2.1 we have, for all α ∈A,

1

uα(θ∗)

∑
β∈A+

∞∑
�=1

L(�)
αβ eθ

∗� uβ (θ∗) = 1.

Proof . The proof uses Lemma 3.1 and ideas inspired by [9] (Lemma 4.2). First note that the
above equation is equivalent to Eα[Uσ+ (θ∗); σ+ <∞] = 1, with Um(θ ) defined in Lemma 3.2.
By applying the optional sampling theorem to the bounded stopping time τn := min (σ+, n)
and to the martingale (Um(θ∗))m, we obtain

1 = Eα[U0(θ∗)] = Eα[Uτn (θ∗)] = Eα[Uσ+ (θ∗); σ+ ≤ n] + Eα[Un(θ∗); σ+ > n].

We will show that Eα[Un(θ∗); σ+ > n] → 0 when n → ∞. Passing to the limit in the previous
relation will then give the desired result. Since ρ(θ∗) = 1 we have

Un(θ∗) = exp(θ∗Sn)uAn (θ∗)

uA0 (θ∗)
,

and it suffices to show that limn→∞ Eα[exp(θ∗Sn); σ+ > n] = 0.
For a fixed a> 0 we can write

Eα[exp(θ∗Sn); σ+ > n] = Eα[exp(θ∗Sn); σ+ > n, there exists k ≤ n : Sk ≤ −2a]

+ Eα[exp(θ∗Sn); σ+ > n,−2a ≤ Sk ≤ 0, for all 0 ≤ k ≤ n]. (10)

The first expectation on the right-hand side of (10) can be bounded further:

Eα[exp(θ∗Sn); σ+ > n, there exists k ≤ n : Sk ≤ −2a]

≤ Eα[exp(θ∗Sn); σ+ > n, Sn ≤ −a]

+ Eα[exp(θ∗Sn); σ+ > n, Sn >−a, there exists k< n : Sk ≤ −2a]. (11)

We obviously have

Eα[exp(θ∗Sn); σ+ > n, Sn ≤ −a] ≤ exp(−θ∗a). (12)
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Let us further define the stopping time T := inf{k ≥ 1 : Sk ≤ −2a}. Note that T <∞
a.s., since Sn → −∞ a.s. when n → ∞. Indeed, by the ergodic theorem, we have Sn/n →
E[ f (A)]< 0 a.s. when n → ∞. Therefore we have

Eα[exp(θ∗Sn);σ+ > n, Sn >−a, there exists k< n : Sk ≤ −2a] ≤ Pα(T ≤ n, Sn >−a)

=
∑
β∈A−

Pα(T ≤ n, Sn >−a | AT = β)Pα(AT = β)

≤
∑
β∈A−

Pα(Sn − ST > a | AT = β)Pα(AT = β) ≤
∑
β∈A−

Pβ (S+ > a)Pα(AT = β),

by the strong Markov property. For every a> 0 we thus have

lim sup
n→∞

Eα[exp(θ∗Sn); σ+ > n, Sn >−a, there exists k< n : Sk ≤ −2a]

≤
∑
β∈A−

Pβ (S+ > a). (13)

Considering the second expectation on the right-hand side of (10), we have

lim
n→∞ Pα(−2a ≤ Sk ≤ 0, for all 0 ≤ k ≤ n) = Pα(−2a ≤ Sk ≤ 0, for all k ≥ 0) = 0, (14)

again since Sn → −∞ a.s. when n → ∞.
Equations (10)–(14) imply that, for every a> 0, we have

lim sup
n→∞

Eα[exp(θ∗Sn); σ+ > n] ≤ exp(−θ∗a) +
∑
β∈A−

Pβ (S+ > a).

Using Lemma 3.1 and taking a → ∞ we obtain limn→∞ Eα[exp(θ∗Sn);σ+ > n] = 0. �

Proof of Theorem 2.2. For α ∈A+ the formula has already been shown in Step 1 of the
proof of Lemma 3.1. For α /∈A+ we prove the stated formula using Theorem 2.1. Equation (9)
implies the formula in (8).

Note that for every α and β there are a finite number of non-null terms in the above sum
over k. Moreover, as shown in Step 1 of the proof of Lemma 3.1, we have, for all β ∈A+ and
k ≥ 0,

eθ
∗(�−k)Pβ (S+ > �− k)

uβ (θ∗)
−→
�→∞ c(∞).

We finally obtain

lim
�→+∞

eθ
∗�Pα(S+ > �)

uα(θ∗)
= c(∞)

uα(θ∗)

∑
β∈A+

∞∑
k=1

L(k)
αβ eθ

∗k uβ (θ∗),

which equals c(∞), as desired, by Lemma 3.3. �

3.3. Proof of Theorem 2.3

Since S+ ≥ Q1, for every α ∈A we have

Pα(S+ > k) = Pα(Q1 > k) + Pα(S+ > k, Q1 ≤ k).
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By applying the strong Markov property to the stopping time σ− we can further decompose
the last probability with respect to the values taken by Sσ− and Aσ− :

Pα(S+ > k, Q1 ≤ k) =
∑
�<0

∑
β∈A−

Pα(S+ > k, Q1 ≤ k, Sσ− = �, Aσ− = β)

=
∑
�<0

∑
β∈A−

Pα(S+ − Sσ− > k − � | Aσ− = β, Q1 ≤ k, Sσ− = �)

× Pα(Q1 ≤ k, Sσ− = �, Aσ− = β)

=
∑
�<0

∑
β∈A−

Pβ (S+ > k − �) · {Q(�)
αβ − Pα(Q1 > k, Sσ− = �, Aσ− = β)}.

We thus obtain

Pα(S+ > k) −
∑
�<0

∑
β∈A−

Pβ (S+ > k − �) · Q(�)
αβ − Pα(Q1 > k)

= −
∑
�<0

∑
β∈A−

Pβ (S+ > k − �) Pα(Q1 > k, Sσ− = �, Aσ− = β).

By Theorem 2.2 we have Pβ (S+ > k) = O(e−θ∗k) as k → ∞ for every β ∈A−, from which we
deduce that the left-hand side of the previous equation is o(Pα(Q1 > k)) when k → ∞. The
stated result then easily follows. �

3.4. Proof of Theorem 2.4

We will first prove some useful lemmas.

Lemma 3.4. There exists a constant C> 0 such that, for every α ∈A, β ∈A−, and y> 0, we
have Pα(Q1 > y | Aσ− = β) ≤ Ce−θ∗y.

Proof . The proof is partly inspired by [9]. Let y> 0 and denote by σ (y) the first exit time of
Sn from the interval [0,y]. Applying the optional sampling theorem to the martingale (Um(θ∗))m

(see Lemma 3.2) and to the stopping time σ (y), we get

Eα[Uσ (y)(θ
∗)] = Eα[U0(θ∗)] = 1. (15)

The applicability of the optional sampling theorem is guaranteed by the fact that there exists
C̃> 0 such that, for every n ∈N, we have 0<Umin (σ (y),n)(θ∗) ≤ C̃ a.s. Indeed, this follows
from the fact that when σ (y)> n we have 0 ≤ Sn ≤ y, and when σ (y) ≤ n either Sσ (y) < 0 or
y< Sσ (y) < y + max

{
f (α) : α ∈A+}

.
We deduce from (15) that, for some constant K > 0, we have

1 = Eα

[
eθ

∗Sσ (y)
uAσ (y) (θ

∗)

uA0 (θ∗)

]
≥ Keθ

∗y Eα[eθ
∗(Sσ (y)−y)) | Sσ (y) > y] · Pα(Sσ (y) > y)

≥ Keθ
∗y Pα(Sσ (y) > y) ≥ Keθ

∗y Pα(Sσ (y) > y | Aσ− = β)qαβ .

Note further that, A being finite, there exists c> 0 such that for all α ∈A and β ∈A− we have
qαβ = Pα(Aσ− = β) ≥ pαβ ≥ c. In order to obtain the bound in the statement, it remains to note
that Pα(Q1 > y | Aσ− = β) = Pα(Sσ (y) > y | Aσ− = β). �
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Lemma 3.5. ρ′(0) = E[ f (A)]< 0.

Proof . By the fact that ρ(θ ) is an eigenvalue of the matrix �(θ ) with corresponding
eigenvector u(θ ), we have ρ(θ )uα(θ ) = (�(θ )u(θ ))α = ∑

β pαβeθ f (β)uβ (θ ).
When differentiating the previous relation with respect to θ we obtain

d

dθ
(ρ(θ )uα(θ )) =

∑
β

pαβ ( f (β)eθ f (β)uβ (θ ) + eθ f (β)u′
β (θ )).

We have ρ(0) = 1 and u(0) =t (1/r, . . . , 1/r). For θ = 0 we then get
∑
α

πα
d

dθ
(ρ(θ )uα(θ ))

∣∣∣∣
θ=0

= 1

r
E[ f (A)] +

∑
α,β

παpαβu′
β (0) = 1

r
E[ f (A)] +

∑
β

πβu′
β (0). (16)

On the other hand,
∑
α

πα
d

dθ
(ρ(θ )uα(θ )) = d

dθ

( ∑
α

παρ(θ )uα(θ )

)
= ρ′(θ )

∑
α

παuα(θ ) + ρ(θ )
∑
α

παu′
α(θ ).

For θ = 0 we get
∑
α

πα
d

dθ
(ρ(θ )uα(θ ))

∣∣∣∣
θ=0

= ρ′(0)

r
+ ρ(0) ·

∑
α

παu′
α(0). (17)

From (16) and (17) we deduce that ρ
′(0)
r + ∑

α παu′
α(0) = 1

r E[ f (A)] + ∑
β πβu′

β (0), from
which the stated result follows easily. �

Lemma 3.6. There exists n0 ≥ 0 such that for all n ≥ n0 and for all α ∈A we have

Pα(Sn ≥ 0) ≤ (
inf
θ∈R+ ρ(θ )

)n
, with 0< inf

θ∈R+ ρ(θ )< 1.

Proof . By a large deviation principle for additive functionals of Markov chains (see

Theorem 3.1.2 in [3]) we have lim supn→+∞ 1
n log

(
Pα

(
Sn
n ∈ �

))
≤ −I, with � = [0,+∞)

and I = infx∈�̄ supθ∈R (θx − log ρ(θ )). Since A is finite, it remains to prove that I > 0.
For every x ≥ 0, let us denote gx(θ ) := θx − log ρ(θ ) and I(x) := supθ∈R gx(θ ). We will first

show that I(x) = supθ∈R+ gx(θ ). Indeed, we have gx
′(θ ) = x − ρ′(θ )/ρ(θ ). By the strict con-

vexity property of ρ (see [3, 10]) and the fact that ρ′(0) = E[ f (A)]< 0 (by Lemma 3.5), we
deduce that ρ′(θ )< 0 for every θ ≤ 0, implying that gx

′(θ )> x ≥ 0 for θ ≤ 0. The function gx

is therefore increasing on R
−, and hence I(x) = supθ∈R+ gx(θ ). As a consequence, we deduce

that x 	→ I(x) is non-decreasing on R
+. We thus obtain I = infx∈R+ I(x) = I(0).

Further, we have I(0) = supθ∈R (− log ρ(θ )) = − infθ∈R+ log (ρ(θ )). Again using the fact
that ρ′(0)< 0 (Lemma 3.5), the strict convexity of ρ, and the fact that ρ(0) = ρ(θ∗) = 1, we
finally obtain I = − log ( infθ∈R+ ρ(θ ))>− log ρ(0) = 0. �

Lemma 3.7. Eα[K1]<∞ for every α ∈A.

Proof . Note that Pα(K1 > n) ≤ Pα(Sn ≥ 0). With n0 ∈N defined in Lemma 3.6, using a
well-known alternative formula for the expectation we get

Eα[K1] =
∑
n≥0

Pα(K1 > n) ≤
∑
n≥0

P(Sn ≥ 0) ≤ C +
∑
n≥n0

(
inf
θ∈R+ ρ(θ )

)n
,

where C> 0 is a constant and 0< infθ∈R+ ρ(θ )< 1. The statement follows easily.
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Lemma 3.8. The sequence
(Km

m

)
m≥1 converges a.s. when m → ∞. Therefore, A∗ :=

limm→∞ Km
m appearing in the statement of Theorem 2.4 is well defined. Moreover, we have

A∗ = ∑
β zβEβ [K1] a.s.

Proof . Recall that K1 = σ−. We can write

Km

m
= K1

m
+ 1

m

m∑
i=2

(Ki − Ki−1) = K1

m
+

∑
β

1

m

m∑
i=2

(Ki − Ki−1)1{AKi−1=β}. (18)

First note that K1
m → 0 a.s. when m → ∞, since K1 <+∞ a.s. By the strong Markov property

we have that, conditionally on (AKi−1 )i≥2, the random variables (Ki − Ki−1)i≥2 are all inde-
pendent, the distribution of Ki − Ki−1 depends only on AKi−1 , and P(Ki − Ki−1 = � | AKi−1 =
α) = Pα(K1 = �). Therefore, the couples Yi := (AKi−1 ,Ki − Ki−1), i ≥ 2, form a Markov chain
on A− ×N with transition probabilities P(Yi = (β, �) | Yi−1 = (α, k)) = qαβPβ (K1 = �). Recall
that the restriction Q̃ of the matrix Q to the subset A− is irreducible. Since z is invariant for Q,
we easily deduce that

∑
α,k π (α, k) · qαβPβ (K1 = �) = π (β, �), and hence the Markov chain

(Yi)i is also irreducible, with invariant distribution π (α, k) := zαPα(K1 = k).
For fixed β, by applying the ergodic theorem to the Markov chain (Yi)i and to the function

ϕβ (α, k) := k1{α=β} we deduce that

1

m

m∑
i=2

(Ki − Ki−1)1{AKi−1=β} −→
m→∞

∑
α,k

ϕβ (α, k)π (α, k) = zβEβ (K1) a.s.

Taking the sum over β and using (18) gives the result in the statement. �

Proof of Theorem 2.4.
Step 1: The proof of this step is partly inspired by [9]. We will prove that for any convergent

sequence (xm)m we have

Pα

(
MKm ≤ log (m)

θ∗ + xm

)
∼

m→∞ exp

{
− m

∑
β∈A−

zβPβ (S+ >
⌊

log (m)/θ∗ + xm
⌋

)

}

× exp

{
m

∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log (m)/θ∗ + xm

⌋ − k
) ·

∑
β∈A−

zβQ(k)
βγ

}
.

Given (AKi )i≥0, the random variables (Qi)i≥1 are independent and the CDF of Qi is
FAKi−1 AKi

. Therefore, for any y> 0,

Pα
(
MKm ≤ y

) = Eα

[ m∏
i=1

FAKi−1 AKi
(y)

]

= Eα

[
exp

{ ∑
β,γ∈A

mψβγ (m) log (Fβγ (y))

}]
,

with ψβγ (m) := #{i : 1 ≤ i ≤ m, AKi−1 = β, AKi = γ }/m. Given that A0 = α ∈A−, the (AKi )i≥0

form an irreducible Markov chain on A− of transition matrix Q̃ = (qβγ )β,γ∈A− and stationary
frequency vector z̃ = (zβ )β∈A− > 0. Consequently, for β, γ ∈A− the ergodic theorem implies
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thatψβγ (m) → zβqβγ a.s. when m → ∞. On the other hand, for any α ∈A, if β ∈A \A− then
ψβγ (m) equals either 0 or 1/m, and thus ψβγ (m) → 0 a.s. when m → ∞ for any γ ∈A. With
zβ = 0 for β ∈A \A−, we thus have ψβγ (m) → zβqβγ a.s. when m → ∞ for every β, γ ∈A.

We will use the Taylor series expansion of the log function. Let us define

dβγ (m) := m

[
1 − Fβγ

(
log (m)

θ∗ + xm

)]
for every m ≥ 1.

Thanks to Lemma 3.4, the dβγ (m) are uniformly bounded in m, β, and γ . Since 0≤ψβγ (m)≤1,
we obtain

Pα

(
MKm ≤ log (m)

θ∗ + xm

)
∼

m→∞ Eα

[
exp

(
−

∑
β,γ∈A

ψβγ (m)dβγ (m)

)]

∼
m→∞ exp

(
−

∑
β,γ∈A

zβqβγ dβγ (m)

)
.

Since

∑
γ∈A

qβγ dβγ (m) = m

[
1 − Fβ

(
log (m)

θ∗ + xm

) ]
,

Pα

(
MKm ≤ log (m)

θ∗ + xm

)
∼

m→∞ exp

(
−m

∑
β∈A−

zβ

[
1 − Fβ

(
log (m)

θ∗ + xm

)] )
.

But

1 − Fβ

(
log (m)

θ∗ + xm

)
= Pβ

(
Q1 >

log (m)

θ∗ + xm

)
= Pβ

(
Q1 >

⌊
log (m)/θ∗ + xm

⌋)
,

and using Theorem 2.3 we get

1 − Fβ

(
log (m)

θ∗ + xm

)
∼

m→∞ Pβ
(
S+ >

⌊
log (m)/θ∗ + xm

⌋)

−
∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log (m)/θ∗ + xm

⌋ − k
) · Q(k)

βγ .

This then leads to

Pα

(
MKm ≤ log (m)

θ∗ + xm

)
∼

m→∞ exp

{
− m

∑
β∈A−

zβPβ
(
S+ >

⌊
log (m)/θ∗ + xm

⌋) }

× exp

{
m

∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log (m)/θ∗ + xm

⌋ − k
) ·

∑
β∈A−

zβQ(k)
βγ

}
.

Step 2: We now deduce the stated asymptotic equivalent for the distribution of Mn. Since
going from the distribution of MKm to the distribution of Mn is more delicate in our case than
in [9], we present the proof of this step in detail.
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Let x ∈R. Since Km(n) ≤ n ≤ Km(n)+1 and (Mn)n is non-decreasing, we have

Pα

(
MKm(n)+1 ≤ log (n)

θ∗ + x

)
≤ Pα

(
Mn ≤ log (n)

θ∗ + x

)

≤ Pα

(
MKm(n) ≤ log (n)

θ∗ + x

)
. (19)

Since m(n) → ∞ a.s., Lemma 3.8 implies that m(n)
n → 1

A∗ a.s., with A∗ = limm→∞ Km
m .

Now fix ε > 0. We have

Pα

(
MKm(n) ≤ log (n)

θ∗ + x

)

≤ Pα

(
MKm(n) ≤ log (n)

θ∗ + x,

∣∣∣∣m(n)

n
− 1

A∗

∣∣∣∣ ≤ ε
)

+ Pα

(∣∣∣∣m(n)

n
− 1

A∗

∣∣∣∣> ε
)

≤ Pα

(
MK�n/A∗−nε ≤ log (n)

θ∗ + x

)
+ Pα

(∣∣∣∣m(n)

n
− 1

A∗

∣∣∣∣> ε
)

. (20)

Using the result of Step 1, we obtain

Pα
(

MK�n/A∗−nε ≤ log (n)
θ∗ + x

)
En

∼
n→∞ Rn(ε), (21)

where En is the asymptotic equivalent given in the statement

En := exp

{
− n

A∗
∑
β∈A−

zβPβ
(
S+ >

⌊
log (n)/θ∗ + x

⌋) }

× exp

{
n

A∗
∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log (n)/θ∗ + x

⌋ − k
) ·

∑
β∈A−

zβQ(k)
βγ

}
,

and

Rn(ε) := exp

{
ε · n

∑
β∈A−

zβPβ
(
S+ >

⌊
log (n)/θ∗ + x

⌋) }

× exp

{
− ε · n

∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log (n)/θ∗ + x

⌋ − k
) ·

∑
β∈A−

zβQ(k)
βγ

}
.

Using Theorem 2.2 we obtain

lim sup
n→∞

Rn(ε) ≤ exp{ε · c(∞)e−θ∗xD∗}, (22)

with
D∗ := eθ

∗ ∑
β∈A−

zβuβ (θ∗) −
∑

β,γ∈A−
zβuγ (θ∗)

∑
k<0

ekθ∗
Q(k)
βγ .

Equations (19)–(22), together with the fact that m(n)
n → 1

A∗ a.s., imply that

lim sup
n→∞

Pα
(

Mn ≤ log (n)
θ∗ + x

)
En

≤ exp{ε · c(∞)e−θ∗xD∗}. (23)
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In a similar manner, we can show that

lim inf
n→∞

Pα
(

Mn ≤ log (n)
θ∗ + x

)
En

≥ exp{−ε · c(∞)e−θ∗xG∗}, (24)

with
G∗ :=

∑
β∈A−

zβuβ (θ∗) − eθ
∗ ∑
β,γ∈A−

zβuγ (θ∗)
∑
k<0

ekθ∗
Q(k)
βγ .

Taking the limit ε→ 0 in (23) and (24) gives

1 ≤ lim inf
n→∞

Pα
(

Mn ≤ log (n)
θ∗ + x

)
En

≤ lim sup
n→∞

Pα
(

Mn ≤ log (n)
θ∗ + x

)
En

≤ 1,

and hence Pα
(
Mn ≤ log (n)

θ∗ + x
) ∼

n→∞ En, with En the asymptotic equivalent given in the
statement.

Step 3: The last step is to prove the stated expression for A∗. Recall that σ− = K1. In
Lemma 3.8 we proved that A∗ = ∑

α zαEα(σ−). Let n ∈N. By applying the optional sam-
pling theorem to the martingale (Um(θ ))m and to the bounded stopping time min (σ−, n), we
get Eα

[
Umin (σ−,n)(θ )

] = Eα [U0(θ )] = 1. Furthermore, we have

1 = Eα
[
Uσ− (θ ); σ− ≤ n

] + Eα
[
Un(θ ); σ− > n

]
. (25)

We will show that Eα
[
Un(θ ); σ− > n

] → 0 when n → ∞. It suffices to prove that

Eα

[
eθSn

ρ(θ )n
; σ− > n

]
→ 0.

By the Cauchy–Schwartz inequality, we have

Eα

[
eθSn

ρ(θ )n
; σ− > n

]
≤

(
Eα

[
e2θSn

])1/2
(

Pα(σ− > n)

ρ(θ )2n

)1/2

.

Further, using Theorem 2.2 we can easily see that Eα[e2θS+
]<∞ if 0 ≤ θ < θ∗

2 . Moreover, by
Lemma 3.6 we have Pα(σ− > n) ≤ Pα(Sn ≥ 0) ≤ ( infθ̃∈R+ ρ(θ̃ ))n.

Since ρ(θ ) → 1 when θ → 0, for sufficiently small θ we will have both θ < θ∗
2 and ρ(θ )2 >

infθ∈R+ ρ(θ ), implying that

Eα

[
eθSn

ρ(θ )n
; σ− > n

]
→ 0 when n → ∞.

When passing to the limit as n → ∞ in (25), we deduce that for θ sufficiently small we have
Eα [Uσ− (θ )] = Eα [U0(θ )] = 1. Consequently,

1 = Eα

[
exp (θ · Sσ− )

uAσ− (θ )

uA0 (θ )

1

ρ(θ )σ−

]
= Eα

[
exp (θ · Sσ− )

uAσ− (θ )

uα(θ )

1

ρ(θ )σ−

]

=
∑
β

Eα

[
exp (θ · Sσ− )

uβ (θ )

uα(θ )

1

ρ(θ )σ− | Aσ− = β

]
· Pα(Aσ− = β)

=
∑
β

uβ (θ )

uα(θ )
Eα

[
exp (θ · Sσ− )

ρ(θ )σ− | Aσ− = β

]
· qαβ .
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We deduce that for θ sufficiently small we have

uα(θ ) =
∑
β

Eα

[
exp (θ · Sσ− )

ρ(θ )σ− | Aσ− = β

]
· uβ (θ )qαβ .

For θ sufficiently small, by differentiating the above relation we obtain

u′
α(θ ) =
∑
β

qαβuβ (θ )Eα

[
Sσ− exp (θ · Sσ− )ρ(θ )σ

− − exp (θ · Sσ− )σ−ρ(θ )σ
−−1ρ′(θ )

ρ(θ )2σ− | Aσ− = β

]

+
∑
β

qαβu′
β (θ )Eα

[
exp (θ · Sσ− )

ρ(θ )σ− | Aσ− = β

]
.

Since ρ(0) = 1, we obtain, for θ = 0,

u′
α(0) =

∑
β

qαβuβ (0)
(
Eα [Sσ− | Aσ− = β] − ρ′(0)Eα

[
σ− | Aσ− = β

]) +
∑
β

qαβu′
β (0).

Because u(0) =t (1/r, . . . , 1/r), we further get

u′
α(0) = 1

r
Eα[Sσ− ] − ρ′(0)

r
Eα[σ−] +

∑
β

qαβu′
β (0).

From the last relation we deduce that

∑
α

zαu′
α(0) = 1

r

∑
α

zαEα [Sσ− ] − ρ′(0)

r

∑
α

zαEα[σ−] +
∑
α

∑
β

zαqαβu′
β (0). (26)

On the other hand, since z is invariant for Q, we obtain
∑
α

zαu′
α(0) =t z · u′(0) =t (zQ) · u′(0) =

∑
β

t(zQ)β · u′
β (0) =

∑
β

∑
α

zαqαβu′
β (0). (27)

Equations (26) and (27) imply that
∑
α zαEα [Sσ− ] = ρ′(0) · ∑α zαEα[σ−], and thus A∗ =∑

α zαEα[σ−] = 1
ρ
′(0)

∑
α zαEα [Sσ− ]. Using the fact that ρ′(0) = E[ f (A)] (see Lemma 3.5)

gives the stated expression for A∗.

4. Applications and computational methods

Let −u, . . . , 0, . . . , v be the possible scores, with u, v ∈N. For −u ≤ j ≤ v, we introduce
the matrix P( j) with entries P( j)

αβ
:= Pα(A1 = β, f (A1) = j) for α, β ∈A. Note that P( f (β))

αβ =
pαβ , P( j)

αβ = 0 if j �= f (β), and P = ∑v
j=−u P( j), where P = (pαβ )α,β is the transition probability

matrix of the Markov chain (Ai)i.
In order to obtain the asymptotic result on the tail distribution of Q1 given in Theorem 2.3,

we need to compute the quantities Q(�)
αβ for −u ≤ �≤ v, α, β ∈A. This is the topic of the next

subsection. We denote by Q(�) the matrix (Q(�)
αβ )α,β∈A.
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4.1. Computation of Q(�) for −u ≤ � ≤ v, and of Q

Recall that Q(�)
αβ = Pα(Sσ− = �, Aσ− = β), and hence Q(�)

αβ = 0 if �≥ 0 or β ∈A \A−. Note
also that σ− = 1 if f (A1)< 0. Let −u ≤ �≤ −1. Decomposing with respect to the possible
values j of f (A1), we obtain

Q(�)
αβ = Pα(A1 = β, f (A1) = �) + Pα(Sσ− = �, Aσ− = β, f (A1) = 0)

+
v∑

j=1

Pα(Sσ− = �, Aσ− = β, f (A1) = j).

Note that the first term on the right-hand side is exactly P(�)
αβ defined at the beginning of this

section. We further have, by the law of total probability and the Markov property,

Pα(Sσ− = �, Aσ− = β, f (A1) = 0) =
∑
γ

P(0)
αγ Pα(Sσ− = �, Aσ− = β | A1 = γ, f (A1) = 0)

=
∑
γ

P(0)
αγ Pγ (Sσ− = �, Aσ− = β) = (P(0)Q(�))αβ .

Let j ∈ {1, . . . , v} be fixed. We have

Pα(Sσ− = �, Aσ− = β, f (A1) = j) =
∑
γ

P( j)
αγ Pα(Sσ− = �, Aσ− = β | A1 = γ, f (A1) = j).

For every possible s ≥ 1, we denote by Ts the set of all possible s-tuples t = (t1, . . . , ts)
satisfying −u ≤ ti ≤ −1 for i = 1, . . . , s, t1 + · · · + ts−1 ≥ −j> 0, and t1 + · · · + ts =
�− j> 0. Decomposing over all the possible paths from −j to � gives

Q(�)
αβ = P(�)

αβ + (P(0)Q(�))αβ +
v∑

j=1

(
P( j)

∑
s

∑
t∈Ts

s∏
i=1

Q(ti)
)
αβ

,

hence

Q(�) = P(�) + P(0)Q(�) +
v∑

j=1

P( j)
∑

s

∑
t∈Ts

s∏
i=1

Q(ti).

Recalling that Q = (qαβ )α,β with qαβ = Pα(Aσ− = β) = ∑
�<0 Q(�)

αβ , we have

Q =
∑
�<0

Q(�).

Example 1. In the case where u = v = 1, we only have the possible values �= −1, j = 1, s = 2,
and t1 = t2 = −1, thus

Q(−1) = P(−1) + P(0) · Q(−1) + P(1)(Q(−1))2 and Q = Q(−1). (28)

4.2. Computation of L(�)
αβ

for 0 ≤ � ≤ v, and of Lα(∞)

Recall that L(�)
αβ = Pα(Sσ+ = �, σ+ <∞, Aσ+ = β). Denote L(�) := (L(�)

αβ )α,β . First note that

L(�)
αβ = 0 for �≤ 0 or β ∈A \A+. Using a similar method to that used to obtain Q(�)

αβ in
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the previous subsection, we denote, for every possible s ≥ 1, T ′
s as the set of all s-tuples

t = (t1, . . . , ts) satisfying 1 ≤ ti ≤ v for i = 1, . . . , s, t1 + · · · + ts−1 ≤ k, and t1 + · · · + ts =
�+ k> 0.

For every 0< �≤ v we then have

L(�) = P(�) + P(0)L(�) +
u∑

k=1

P(−k)
∑

s

∑
t∈T ′

s

s∏
i=1

L(ti). (29)

Since Lα(∞) = Pα(σ+ <∞) = ∑
β

∑v
�=1 L(�)

αβ , and denoting by L(∞) the column vector
containing all Lα(∞) for α ∈A, and by 1r the column vector of size r with all components
equal to 1, we can write

L(∞) =
v∑
�=1

L(�) · 1r.

Example 2. In the case where u = v = 1, (29) gives

L(1) = P(1) + P(0) · L(1) + P(−1) · (L(1))2, (30)

L(�) = 0 for � > 1, thus L(∞) = L(1) · 1r. (31)

4.3. Computation of FS+,α(�) for � ≥ 0

For �≥ 0 let us denote FS+,·(�) := (FS+,α(�))α∈A, seen as a column vector of size r. From
Theorem 2.1 we deduce that for �= 0 and every α ∈A we have FS+,α(0) = 1 − Lα(∞).

For �= 1 and every α ∈A we get FS+,α(1) = 1 − Lα(∞) + ∑
β∈A L(1)

αβ FS+,β (0). With
L(∞) = (Lα(∞))α∈A, seen as a column vector, we can write

FS+,·(1) = 1 − L(∞) + L(1)FS+,·(0),

FS+,·(�) = 1 − L(∞) +
�∑

k=1

L(k)FS+,·(�− k), for all �≥ 1.

See Section 4.2 for how to compute L(k) for k ≥ 1 and L(∞).

4.4. Numerical application in a simple case

Let us consider the simple case where the possible score values are −1, 0, and 1, corre-
sponding to the case u = v = 1. We will use the results in the previous subsections (see (28, 30,
31)) to derive the distribution of the maximal non-negative partial sum S+. This distribution
can be determined using the following matrix equalities:

L(∞) =
( ∑

β

L(1)
αβ

)
α

= L(1) · 1r,

with L(1) given in (29) and

FS+,·(0) = 1 − L(∞),

FS+,·(�) = 1 − L(∞) + L(1)FS+,·(�− 1).

This allows to further derive the approximation results on the distributions of Q1 and Mn given
in Theorems 2.3 and 2.4.
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FIGURE 1: Cumulative distribution function of S+ for the simple scoring scheme (−1, 0,+1) and A0 = A.
Left panel: Comparison between the approximation of [9], a Monte Carlo estimation with sequences of
length n = 300, and the exact formula proposed in Theorem 2.1. Right panel: Comparison, for different
values of n, of the Monte Carlo empirical cumulative distribution function and the exact one given in

Theorem 2.1.

We now present a numerical application for the local score of a DNA sequence. We sup-
pose that we have a Markovian sequence whose possible letters are {A,C,G, T} and whose
transition probability matrix is given by

P =

⎛
⎜⎜⎝

1/2 1/6 1/6 1/6
1/4 1/4 1/4 1/4
1/6 1/6 1/6 1/2
1/6 1/6 1/2 1/6

⎞
⎟⎟⎠.

We choose the respective scores −1, −1, 0, 1 for the letters A, C, G, T for which Hypotheses (1)
and (2) are verified. We use the successive iteration methodology described in (5.12) of [9]
in order to compute L(1) and Q(−1), solutions of (28) and (30), from which we derive the
approximate formulas proposed in Theorems 2.1, 2.3, and 2.4 for the distributions of S+, Q1,
and Mn, respectively. We also compute the different approximations proposed in [9]. We then
compare these results with the corresponding empirical distributions computed using a Monte
Carlo approach based on 105 simulations. We can see in the left panel of Figure 1 that for
n = 300 the empirical CDF of S+ and that obtained using Theorem 2.1 match perfectly. We
can also visualize the fact that Theorem 2.1 improves the approximation of Lemma 4.3 of [9]
for the distribution of S+ (see Theorem 2.2 for the analogous formula in our settings). The
right panel of Figure 1 allows us to compare, for different values of the sequence length n, the
empirical CDF of S+ and the exact CDF given in Theorem 2.1: we can see that our formula
performs very satisfactorily in this example, even for the sequence length n = 100.

In this simple example, the approximate formula for the tail distribution of Q1 given in
Theorem 2.3 and the one given in Lemma 4.4 of [9] give quite similar numerical values. In
Figures 2 and 3 we compare three approximations for the CDF of Mn: Karlin and Dembo’s
[9] asymptotic bounds (the lower bound, depending on K+ and recalled in (6), and the upper
bound, depending on K∗ and recalled in (7)), the approximation proposed in Theorem 2.4, and
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FIGURE 2: Comparison of the different approximations for p(n, x) = P
(

Mn ≤ log (n)
θ∗ + x

)
as a function

of n, for fixed x and for the simple scoring scheme (−1, 0,+1): the asymptotic lower and upper bounds
of [9] (see (6) and (7)), the approximation proposed in Theorem 2.4, and a Monte Carlo estimation. Left

panel: p(n, x) for x = −5. Right panel: p(n, x) for x = −8.
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FIGURE 3: Comparison of the different approximations for p(n, x) = P
(

Mn ≤ log (n)
θ∗ + x

)
as a func-

tion of x, for fixed n = 100, and for the simple scoring scheme (−1, 0,+1): the asymptotic lower and
upper bounds of [9] (see (6) and (7)), the approximation proposed in Theorem 2.4, and a Monte Carlo

estimation.

a Monte Carlo estimation. For the simple scoring scheme of this application, the parameter K∗
appearing in the asymptotic bounds of [9] is given by their (5.6):

K∗ = (e−2θ∗ − e−θ∗
) · E[ f (A)] ·

∑
β

zβuβ (θ∗) ·
∑
γ

wγ /uγ (θ∗).

More precisely, in Figure 2 we plot the probability p(n, x) := P
(
Mn ≤ log (n)

θ∗ + x
)

as a function
of n, for two fixed values x = −5 and −8. This illustrates the asymptotic behaviour of this
probability with growing n. We can also observe the fact that Karlin and Dembo’s asymptotic
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bounds do not depend on n. In Figure 3, we compare the asymptotic bounds of [9] for the same
probability p(n, x) with our approximation, for varying x and fixed n = 100. We observe that
the improvement brought by our approximation is more significant for negative values of x. For
fixed n and extreme deviations (large x) the two approximations are quite similar and accurate.

4.5. Numerical applications on real data

We consider the examples presented in [8] for which we could recover the given sequences.
On each sequence separately we learn the score frequencies fx for each possible score x, as
well as the transition probability matrix P, for which we give each row Px. For each example
we also show the corresponding invariant probability π , which is in general close to the score
frequencies, as expected. Biologists have warned us that since 1990 the sequences referenced
in [8] may have changed a little bit due to the evolution of sequencing, which can explain some
small differences in score frequencies between our sequences and those in [8]. Note that our
Hypotheses (1) and (2) are both satisfied in all the following applications.

For each example we computed the corresponding p-values of the observed local score
using the asymptotic lower and upper bounds of [9] (pKDe refers to the bound with K∗ based
on (7), and pKDe−K+ refers to the bound with K+ based on (6)), the approximation proposed in
Theorem 2.4 (pGMe), and an empirical Monte Carlo estimation (pMC) based on 105 simulations
of sequences of the given length. Note that in all examples we have pMC ≤ pGMe ≤ pKDe ≤
pKDe−K+ , except in Example (d)(ii), where we have pGMe ≤ pMC ≤ pKDe ≤ pKDe−K+ . In order
to simplify the presentation, in what follows we only show the results based on the best of the
two bounds of Karlin and Dembo, which is pKDe. We also compute the percentage of relative
error for both theoretical methods:

RE(KDe) = 100 · pKDe − pMC

pMC
, RE(GMe) = 100 · pGMe − pMC

pMC
. (32)

The p-value given by [8] in the i.i.d. model (pKDe-iid) is recalled.
We also computed two classical measures of dissimilarity between the theoretical approx-

imate distribution of the local score (the one we propose, denoted GMe, respectively the one
given by the asymptotic upper bound of [9], denoted KDe), and the empirical distribution
obtained by Monte Carlo simulations, denoted MC:
the Kolmogorov–Smirnov distance:

dKS(GMe) := max
x

(|PGMe(Mn ≤ x) − PMC(Mn ≤ x)|); (33)

the Kullback–Leibler divergence:

dKL(GMe) :=
∑

x

PMC(Mn = x) · log

(
PMC(Mn = x)

PGMe(Mn = x)

)
. (34)

Similarly, We define dKS(KDe) and dKL(KDe) using the asymptotic upper bound of [9] for the
distribution of the local score (see (7)).

We gather the relative errors and the two distance computations in Table 1.
Examples (c)(i) and (c)(iii) have not been considered, since we did not recover the sequences

presented in [8]. Note that the sequence in Example (a)(i) has one supplementary amino acid
compared with [8], and the local score is equal to 21 instead of 24 in [8]. Example (e) has not
been studied because one of the transition probabilities is equal to 0 and does not satisfy our
hypotheses.
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TABLE 1. Numerical comparison between our approximation for the local score distribution and the one
from [9], using relative errors (see (32)) and two classical dissimilarity measures recalled in (33) and (34).

Example dKS(KDe) dKS(GMe) dKL(KDe) dKL(GMe) RE(KDe) RE(GMe)

(a)(i) 0.44 0.03 1.14 <0.01 259% 7%
(a)(ii) 0.48 0.06 1.32 0.02 307% 12%
(b) 0.81 0.01 12.85 ≈10−3 1043% 3%
(c)(ii) 0.80 0.13 11.6 0.07 562% 5%
(d)(i) 0.66 0.06 4.78 0.01 870% 22%
(d)(ii) 0.84 0.20 5.64 0.29 307% −18%
(d)(iii) 0.69 0.06 5.37 0.01 1061% 64%

Example (a). Mixed charge segment: s = 2 for the amino acids aspartate (D), glutamate (E),
histidine (H), lysine (K), and arginine (R), and s = −1 otherwise.

(i) Human keratin cytoskeletal type II (UniProtKB-P04264): n = 644, Mn = 24, positions
238–292. f−1 = 82.2%; f2 = 17.8%. P−1 = (0.784, 0.216); P2 = (0.821, 0.179). pKDe = 5.06 ·
10−3; pGMe = 1.51 · 10−3; pMC = 1.41 · 10−3. π = [0.792; 0.208].

(ii) Human c-jun, nuclear transcription factor (UniProtKB-P05412): n = 331, Mn =
29, positions 246–285. f−1 = 79.5%; f2 = 20.5%. P−1 = (0.805, 0.195); P2 = (0.754, 0.246).
pKDe = 2.2 · 10−3; pGMe = 6.03 · 10−4; pMC = 5.4 · 10−4; pKDe-iid < 2 · 10−4. π = [0.795;
0.205].

Example (b). Acidic charge segments: s = 2 for aspartate (D) and glutamate (E); s = −2 for
lysine (K) and arginine (R); s = −1 otherwise.

Zeste protein (UniProtKB-P09956): n = 575, Mn = 11, positions 194–209. f−2 = 8.0%;
f−1 = 82.8%; f2 = 9.2%. P−2 = (0.109, 0.696, 0.195); P−1 = (0.078, 0.853, 0.069); P2 =
(0.075, 0.717, 0.208). pKDe = 5.76 · 10−1; pGMe = 5.21 · 10−2; pMC = 5.04 · 10−2; pKDe-iid =
3.7 · 10−3. π = [0.080; 0.828; 0.092].

Example (c). High-scoring basic charge segments: s = 2 for lysine (K), arginine (R), and
histidine (H); s = −2 for aspartate (D) and glutamate (E); s = −1 otherwise.

(ii) Zeste protein (UniProtKB-P09956): n = 575, Mn = 12, positions 78–86. f−2 = 9.2%;
f−1 = 79.7%; f2 = 11.1%. P−2 = (0.208, 0.698, 0.094); P−1 = (0.068, 0.827, 0.105); P2 =
(0.172, 0.656, 0.172). pKDe = 13.9 · 10−2; pGMe = 2.2 · 10−2; pMC = 2.1 · 10−2; pKDe-iid = 4 ·
10−3. π = [0.093; 0.796; 0.111].

Example (d). Strong hydrophobic segments: s = 1 for isoleucine (I), leucine (L), valine (V),
phenylalanine (F), methionine (M), cysteine (C), alanine (A); s = −1 for glycine (G), ser-
ine (S), threonine (T), tryptophan (W), tyrosine (Y), proline (P); s = −2 for arginine (R),
lysine (K), aspartate (D), glutamate (E), histidine (H), asparagine (N), glutamine (Q).

(i) Drosophila engrailed (UniProtKB-P02836): n = 552, Mn = 17, positions 63–88.
f−2 = 34.6%; f−1 = 33.7%; f1 = 31.7%. P−2 = (0.466, 0.230, 0.304); P−1 =
(0.254, 0.449, 0.297); P1 = (0.314, 0.337, 0.349). pKDe = 5.82 · 10−4; pGMe = 7.31 · 10−5;
pMC = 6 · 10−5; pKDe-iid = 1.8 · 10−5. π = [0.346; 0.338; 0.316].

(ii) Human c-mas, angiotensin receptor factor (UniProtKB-P04201): n = 325, Mn =
15, positions 186–212. f−2 = 23.4%; f−1 = 29.8%; f1 = 46.8%. P−2 = (0.381, 0.316, 0.303);
P−1 = (0.206, 0.289, 0.505); P1 = (0.179, 0.298, 0.523). pKDe = 8.77 · 10−1; pGMe = 1.77 ·
10−1; pMC = 2.15 · 10−1; pKDe-iid = 0.80 · 10−1. π = [0.234; 0.3; 0.466].
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(iii) Cystic fibrosis (UniProtKB-P13569): n = 1480, Mn = 21, positions 986–
1029. f−2 = 31.55%; f−1 = 26.9%; f1 = 41.55%. P−2 = (0.355, 0.270, 0.375); P−1 =
(0.322, 0.271, 0.407); P1 = (0.282, 0.267, 0.451). pKDe = 22.5 · 10−3; pGMe = 3.19 · 10−3;
pMC = 1.94 · 10−3; pKDe-iid = 10−3. π = [0.316; 0.269; 0.415].
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