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We study both numerically and experimentally the steady cone-jet mode of
electrospraying close to the stability limit of minimum flow rate. The leaky
dielectric model is solved for arbitrary values of the relative permittivity and the
electrohydrodynamic Reynolds number. The linear stability analysis of the base
flows is conducted by calculating their global eigenmodes. The minimum flow
rate is determined as that for which the growth factor of the dominant mode
becomes positive. We find a good agreement between this theoretical prediction and
experimental values. The analysis of the spatial structure of the dominant perturbation
may suggest that instability originates in the cone-jet transition region, which shows
the local character of the cone-jet mode. The electric relaxation time is considerably
smaller than the residence time of a fluid particle in the cone-jet transition region
(defined as the region where the surface and bulk intensities are of the same order
of magnitude) except for the high-polarity case, where these characteristic times
are commensurate with each other. The superficial charge is not relaxed within
the cone-jet transition region except for the high-viscosity case, because significant
inner electric fields arise in the cone-jet transition region. However, those electric
fields are not large enough to invalidate the scaling laws that do not take them into
account. Viscosity and polarization forces compete against the driving electric shear
stress in the cone-jet transition region for small Reynolds numbers and large relative
permittivities, respectively. Capillary forces may also play a significant role in the
minimum flow rate stability limit. The experiments show the noticeable stabilizing
effect of the feeding capillary for diameters even two orders of magnitude larger than
that of the jet. Stable jets with electrification levels higher than the Rayleigh limit
are produced. During the jet break-up, two consecutive liquid blobs may coalesce
and form a bigger emitted droplet, probably due to the jet acceleration. The size
of droplets exceeds Rayleigh’s prediction owing to the stabilizing effect of both the
axial electric field and viscosity.
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Cone-jet mode electrospraying close to the minimum volume stability limit 143

1. Introduction

Electrostatic fields have been used to spray liquids since the 17th century (Gilbert
1600). In the most typical configuration, the liquid is injected at flow rates in the
range 1 µl–10 ml through a metallic capillary hundreds of microns in diameter,
where an electric potential of the order of kilovolts is imposed with respect to a
grounded electrode located some millimetres downstream of the capillary. Among the
varied electrospray regimes (Jaworek & Krupa 1999), the steady cone-jet mode has
attracted most attention because of its applicability in fields like analytical chemistry
(Yamashita & Fenn 1984; Banerjee & Mazumdar 2012), food industry (Xie et al.
2015), material technologies (Jaworek 2007) and aerospace engineering (Huberman
et al. 1968; Gamero-Castaño & Hruby 2001). In this mode, the meniscus adopts a
stable quasi-conical shape whose apex steadily ejects a thin jet. This jet eventually
breaks up into droplets due to capillary forces (Rayleigh 1878), which gives rise to
a charged mist.

The steady cone-jet mode of electrospraying is the result of delicate balances
among the electrohydrodynamic forces driving and opposing to the flow in the
critical cone-jet transition region. This region is defined as that where the conduction
and surface convection contributions to the electric current are of the same order
of magnitude (Gañán-Calvo 1999). It does not necessarily coincide with the electric
relaxation zone considered by Fernandez de la Mora & Loscertales (1994) where,
by definition, the fluid particle residence time becomes of the order of the electric
relaxation time. The balances mentioned above and, therefore, the cone-jet mode,
only occur within a relatively narrow window of the operational parameters, i.e. only
for appropriate values of the feeding capillary diameter, injected flow rate, electric
field intensity and liquid conductivity, permittivity and viscosity.

The injected flow rate plays a fundamental role in the steady cone-jet mode stability
(Cloupeau & Prunet-Foch 1989). For a given applied voltage, if the flow rate exceeds
a critical value, the cone jet develops an oscillating or pulsatile regime caused either
by the high level of charge carried by the jet or by the inability of the latter to
evacuate the injected volume of liquid. If the flow rate falls below its minimum value,
the equilibrium between the forces driving and opposing the liquid ejection breaks up
in the cone-jet transition region (Gañán-Calvo, Rebollo-Muñoz & Montanero 2013).

The diameter of the jet emitted in the cone-jet mode, and thus the size of the
droplets resulting from its capillary break-up, decreases as the injected flow rate
decreases (Cloupeau & Prunet-Foch 1989). Close to the minimum flow rate stability
limit, a relatively monodisperse stream of droplets is produced with their minimum
size. This stability limit reduces the applicability of electrospraying in analytical
chemistry, whose standards of sensitivity and discrimination are continuously
increasing. It is also important for thruster systems, which operate at or near minimum
flow rate conditions. Therefore, understanding the origin of the minimum flow rate
stability limit is of great relevance at both fundamental and practical levels.

Gañán-Calvo et al. (2013) rationalized previous and their own experimental results
for the minimum flow rate of the steady cone-jet mode in terms of the balance
between the forces affecting the flow in the critical cone-jet transitional region.
For very viscous liquids, that region spans a length scale comparable to the nozzle
diameter, and the minimum flow rate can also be affected by that diameter (Scheideler
& Chena 2014). Cherney (1999) studied the structure of Taylor cone jets in the limit
of low flow rates by matching the solutions to the asymptotic equations in the
meniscus, jet and surrounding gas regions. Higuera (2010, 2017) pointed out the
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144 A. Ponce-Torres and others

critical role played by the electric shear (tangential) stresses in driving the liquid into
the jet. These stresses arise in front of the cone-jet transition region for apolar liquids,
and become dominant in a leading region of the jet for large polarity (Higuera 2017).
Numerical simulations for very viscous liquids also show hysteresis at the minimum
flow rate (Higuera 2010).

A rigorous stability analysis of the steady cone-jet mode involves the calculation of
its linear global eigenmodes from an appropriate theoretical model (Theofilis 2011).
If all the eigenvalues are in the stable complex half-plane, the corresponding base
flow is asymptotically stable. Assuming that the operator associated with the linearized
model is normal, asymptotic stability implies linear stability (Schmid 2007). In this
case, any initial small-amplitude perturbation will decay monotonically in time, i.e. not
only in the asymptotic regime dominated by the most unstable mode, but also during
the system’s short-term response when the excited modes collaborate with each other.
On the contrary, the growth of small-amplitude perturbations in linearly unstable base
flows can lead to two possible scenarios: (i) self-sustained oscillations of the entire
system if the nonlinear terms of the hydrodynamic equations manage to stabilize those
perturbations, and (ii) intermittent emission of droplets/threads if perturbations grow
without bound, pinching the jet’s free surface next to or in the liquid source. This
latter scenario is observed in the electrospraying experiments below the minimum flow
rate limit.

The Taylor–Melcher leaky dielectric model (Saville 1997) essentially relies on a
twofold approximation: (i) the transport of free charges driven by the electric field
across the bulk obeys the ohmic model, and (ii) the volumetric density of net free
charge is negligible. This model has been successfully used to study the evolution
of capillary systems with sizes much larger than the Debye layer thickness, and on
time scales much longer than the electric relaxation time (Yan, Farouk & Ko 2003;
Higuera 2010; Herrada et al. 2012; Rahmanpour, Ebrahimi & Pourrajabian 2017). In
particular, Higuera (2010) and Herrada et al. (2012) have calculated numerically the
base flow of the cone-jet mode from the leaky dielectric model in the Stokes limit and
for arbitrary viscosities, respectively. The free surface contour and current intensity
satisfactorily agreed with experimental results far from the minimum flow rate stability
limit (Herrada et al. 2012). In these studies, the base flow was implicitly assumed to
be stable if the numerical method converged to a proper solution. To the best of our
knowledge, the asymptotic global stability analysis of that base flow has not as yet
been conducted. This probably constitutes the major contribution of the present study.

In this work, we will analyse both numerically and experimentally the steady
cone-jet mode of electrospraying at flow rates close to its minimum value. The
axisymmetric eigenmodes of the corresponding base flows will be calculated from the
leaky dielectric model to examine the system’s asymptotic stability. The comparison
with experimental data will show that this procedure allows one to predict the
cone-jet mode instability for a wide range of both the relative permittivity and
electrohydrodynamic Reynolds number. We will investigate the physical mechanisms
responsible for the breakdown of the steady cone-jet mode, and will quantify
superficial charge relaxation effects. The numerical results will show that polarization
and viscous forces oppose the driving electric shear stress at small flow rates for
large relative permittivity and small Reynolds numbers, respectively. Images acquired
at 5× 106 frames per second will allow us to describe the formation of droplets from
the break-up of low-conductivity jets emitted at the minimum flow rate stability limit.
The coalescence of two consecutive proto-droplets gives rise to bimodal droplet size
distributions.
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Cone-jet mode electrospraying close to the minimum volume stability limit 145

The paper is organized as follows. We formulate the problem, review the general
scaling laws of electrospray, and discuss the charge relaxation phenomenon in § 2.
The leaky dielectric model and the numerical method used to solve it are described
in § 3. The experimental method is presented in § 4. We devote § 5 to showing both
the numerical and experimental results. The paper closes in § 6 with some concluding
remarks.

2. The cone-jet mode of electrospray
2.1. Formulation

The parameters which essentially characterize the steady cone-jet mode are the issued
rate of flow Q, the liquid properties (density ρ, viscosity µ, surface tension γ ,
electrical conductivity K and electrical permittivity εi) and the outer environment
properties. If the outer environment is either vacuum or a gas, its dynamical effect on
the system can be neglected, and the only parameter characterizing its influence is its
electrical permittivity εo. There is a narrow interval of applied voltage V within which
the steady cone-jet mode can be established. One typically selects that quantity within
that interval so that the apparent semiangle of the conical meniscus is approximately
that of Taylor’s solution, i.e. 49◦ (Taylor 1964). Therefore, the applied voltage V is
not regarded as an independent variable.

In the steady cone-jet mode, conduction gives way to a dominant charge convection
over the liquid surface within the so-called cone-jet transition region (Gañán-Calvo
1999), whose size is typically much smaller than that of the electrospray device. Due
to its local character, the device geometrical features and associated lengths play
a secondary role in electrospray. On this condition, one defines the characteristic
radial length do = [γ ε

2
o/(ρK2)]1/3, axial velocity vo = [γK/(ρεo)]

1/3, electric field
Eo= (γ

2ρK2/ε5
o)

1/6 and current intensity Io=γρ
−1/2ε1/2

o in terms of the electrodynamic
properties of the fluids exclusively.

Three governing parameters can be formed with the first three characteristic
quantities introduced above: the relative permittivity β= εi/εo, the electrohydrodynamic
Reynolds number δµ = ρvodo/µ = [γ

2ρεo/(µ
3K)]1/3 and the relative flow rate Qr =

Q/Qo, where Qo = vod2
o = γ εo/(ρK). The Buckingham π theorem (Barenblatt 2003)

shows that any dimensionless number describing the steady cone-jet mode behaviour
must be a function of those governing parameters. In particular, Qr min =Qr min(β, δµ),
where Qr min =Q min/Qo and Q min is the minimum flow rate.

When the radial and/or axial dimension of the cone-jet transition region commen-
surate with the Taylor meniscus size, the latter may affect some features of the cone-
jet mode. In this case, one defines the diameter ratio Λ= 2Ri/do= 2[ρK2R3

i /(γ ε
2
o)]

1/3,
where Ri is the radius of the triple contact line anchored at the feeding capillary end.
For Λ . 102, the cone-jet mode stability can be influenced by the feeding capillary
size (Scheideler & Chena 2014). For instance, it is well known that feeding capillaries
stabilize the cone-jet mode of electrospray in nanoelectrospray (Carlier et al. 2005;
Yuill et al. 2013).

2.2. Scaling laws
Some useful scaling laws can be straightforwardly obtained from the balance equations
valid for the steady cone-jet mode operating sufficiently far away from the minimum
flow rate stability limit. The tangential component Et of the electric field in the
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cone-jet transition region is essentially determined by the Taylor cone (Gañán-Calvo,
Barrero & Pantano 1993; Gañán-Calvo 1999; Fernández de la Mora 2007), i.e.

Et '

(
γ

εoL

)1/2

, (2.1)

where L is the length of that region. The energy consumed by surface tension and
dissipated by both viscosity and Joule effect in the cone-jet transition region is at most
comparable with the increase of kinetic energy in that region (Gamero-Castaño 2010).
Therefore, the power I1V (I∼Kd2

j Et, 1V ∼EtL) supplied by the electric field to the
fluid system is essentially converted into kinetic energy, Kd2

j Et(EtL)∼ ρv2
j Q, where I,

dj and vj ∼ Q/d2
j are the current intensity and jet diameter and velocity, respectively.

Taking into account these expressions, those quantities scale as

dj ∼ doQ1/2
r and vj ∼ vo. (2.2a,b)

Conduction gives way to charge surface convection in the cone-jet transition region,
Kd2

j Et ∼ εoEo
nvjdj. Here, we have taken into account that Eo

n − βEi
n ∼ Eo

n (see § 2.3),
where Eo

n and Ei
n are the outer and inner normal components of the electric field at the

free surface, respectively. Interestingly, equations (2.1) and (2.2) allow one to re-write
the balance between the two charge transport mechanisms as

ρQ2d−4
j ∼ LεoEo

nEt/dj. (2.3)

This means that the jet’s kinetic energy essentially comes from the work done by the
electric shear stress εoEo

nEt (Gañán-Calvo 1999). This stress acts over the free surface
of the cone-jet transition region, whose area scales as Ldj. Either of the above two
relationships for the balance between the two charge transport mechanisms leads to

Et ∼ Eo
nQ−1/2

r . (2.4)

One concludes that Et�Eo
n because Qr� 1 in most steady cone-jet mode realizations.

For small and moderate polarity, experiments show that (Gañán-Calvo 1999)

I ∼ IoQ1/2
r . (2.5)

Taking into account that I ∼ εoEo
nvjdj in the cone-jet transition region, one gets that

Eo
n ∼ Io(εodovo)

−1
= Eo. (2.6)

Finally, equation (2.3) shows that the axial characteristic length L scales as

L∼ doQr ∼ djQ1/2
r . (2.7)

According to the above scaling analysis, vj and Eo
n are intrinsic properties of the

liquid, while dj, Et, I and L depend on the injected flow rate as well. In addition,
the work done by the electric shear stress εoEo

nEt in the cone-jet transition region is
commensurate with that conducted by the so-called electrostatic suction ε(Eo

n)
2 despite

the fact that Et�Eo
n. The reason lies in the disparity between the areas of the surfaces

where those stresses are applied. While the shear stress acts over the lateral surface of
the slender cone-jet transition region, the electrostatic suction pushes the liquid across
the jet cross-section. The ratio Ldj/d2

j of the former to the later scales as Q1/2
r .
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Cone-jet mode electrospraying close to the minimum volume stability limit 147

The scaling law (2.2) differs from that derived by Fernandez de la Mora &
Loscertales (1994) who assumed that the flow corresponds to a spherically symmetric
sink in a region of the cone tip with size of the order of dj, and that the electric
relaxation time is of the same order of magnitude as that of the fluid particle residence
time in that region.

The above scaling laws apply for flow rates sufficiently larger than those leading
to instability. Our simulations will show that they are qualitatively valid close to
the minimum flow rate stability limit too, even when viscous effects are important.
However, there will be a significant deviation between the above scaling law for the
current intensity and the simulation result in the case of a very polar liquid. In fact,
Gañán-Calvo (2004) proposed an alternative scaling for this case with good accord
with experiments.

As mentioned above, dimensional analysis shows that Qr min =Qr min(β, δµ) as long
as the stability of the cone-jet mode essentially relies on the local flow arising in the
cone-jet transition region. It is natural to hypothesize that Qr min depends essentially
on β (δµ) for β� δ−1

µ (β� δ−1
µ ). Experimental results are consistent with the simple

scaling laws Qr min ∼ β and Qr min ∼ δ
−1
µ for the polar and viscous limits, respectively.

This agreement can be explained in terms of the forces opposing the liquid ejection
in those limits (Gañán-Calvo et al. 2013). The scaling law Qr min ∼ β coincides
with that proposed by Fernandez de la Mora & Loscertales (1994) and Higuera
(2017). However, the scaling laws derived by Higuera (2017) for small δµ differ from
Qr min ∼ δ

−1
µ .

2.3. Charge relaxation
The theoretical studies on the steady cone-jet mode of electrospraying have assumed
that the liquid exhibits a uniform electrical conductivity K (the ohmic conduction
model) (Higuera 2003, 2010; Fernández de la Mora 2007; Gamero-Castaño 2010;
Herrada et al. 2012). In fact, the inclusion of electrokinetic effects to account for
variations of this property is expected not to lead to significantly different results
(Saville 1997). In addition, the steady cone-jet mode of electrospraying only occurs
if the electric relaxation time te = εi/K is at most comparable to the residence
time tr ∼ vj/L of the fluid particle in the cone-jet transition region (Gañán-Calvo
et al. 2013). In this case, net free charge accumulates onto the free surface, and
the electrostatic mass force becomes negligible as compared to those resulting
from the Maxwell stresses at that surface. The combination of this model for
charge transport/distribution with the Navier–Stokes equations for the fluid motion is
commonly referred to as the leaky dielectric model (Melcher & Taylor 1969; Saville
1997).

The surface charge conservation equation in its Lagrangian formulation can be
derived as follows. Consider the electric current Is= 2πFvsσ convected by an annular
free surface element of radius F(s). Here, s and vs are the intrinsic coordinate and
velocity along the free surface, respectively, while σ = εo(Eo

n − βEi
n) is the surface

charge density. The (electrostatic) surface current Ise(s) = 2πFvsεoEo
n is the value

for zero inner electric field. Neglecting both conduction and diffusion of electrical
charges over the free surface in the cone-jet transition region, the surface charge
conservation equation reads dIs = 2πFKEi

n ds, where dIs stands for the increment
along ds of the current convected by the surface element. Taking into account that
ds = vs dt, the temporal integration of that conservation equation leads to the linear
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relaxation relationship (Fernandez de la Mora & Loscertales 1994)

te
dIs

dt
=−(Is(t)− Ise(s(t))). (2.8)

This equation is not sufficient to calculate Is(t), but shows how the convected current
Is tries to adapt to the local electrostatic value Ise while travelling along the free
surface. The speed at which this adaptation takes places is inversely proportional
to the electric relaxation time te. Therefore, the latter must be compared with the
residence time tr of the surface element in the cone-jet transition region to determine
to what extent that adaptation takes place. For te � tr, Is would remain constant
(the surface current would ‘freeze’ (Fernández de la Mora 2007)) throughout the
surface element motion. As mentioned above, this situation does not occur in any
stable electrospraying realization. For te � tr, the current transported by the surface
element relaxes to its local electrostatic value almost instantaneously and, therefore,
Is(s)' Ise(s) (βEi

n�Eo
n). One cannot predict a priori whether significant inner normal

electric fields will arise in the cone-jet transition region in the intermediate case
te∼ tr. In this work, we will calculate the ratios te/tr and βEi

n/E
o
n from the numerical

solution of the leaky dielectric model to analyse quantitatively this aspect of the
problem.

3. The leaky dielectric model and numerical method
In this section, we present the equations defining the leaky dielectric model and

describe the numerical method used to calculate both the base flows and their linear
stability. Figure 1 represents the geometrical and electrical configurations considered
in the simulations. The red rectangle corresponds to the computational domain. A
cylindrical capillary is held at a constant voltage V . The capillary is brought face to
face up close to a planar grounded electrode located at a distance H′. A liquid of
density ρ, viscosity µ, electrical conductivity K and permittivity εi is injected through
the capillary at a constant flow rate Q. The flow is fully developed inside the capillary,
so that there is a parabolic Hagen–Poiseuille velocity profile upstream at a distance
Ln from the capillary’s exit. The triple contact line anchors at a distance Ri from
the capillary axis. The ambient medium is a perfect dielectric gas of permittivity εo
equal to that of the vacuum. The gas dynamic effects are neglected. The gas–liquid
surface tension is γ . The gravitational Bond number takes sufficiently small values
for the gravity effects to be negligible. In this section, all the quantities are made
dimensionless with the triple contact line radius Ri, the liquid density ρ, the surface
tension γ and the applied voltage V , which yields the characteristic time, velocity,
pressure and electric field scales tc= (ρR3

i /γ )
1/2, vc= Ri/tc, pc= γ /Ri and Ec= V/Ri,

respectively.

3.1. Governing equations
The axisymmetric and incompressible Navier–Stokes equations are

(ru)r + rwz = 0, (3.1)
∂u
∂t
+ uur +wuz =−pr +Oh[urr + (u/r)r + uzz], (3.2)

∂w
∂t
+ uwr +wwz =−pz +Oh[wrr +wr/r+wzz], (3.3)

where t is the time, r/z is the radial/axial coordinate, u/w is the radial/axial velocity
component, p is the pressure field and Oh = µ(ργRi)

−1/2 is the Ohnesorge number.
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r

z

H

™ƒ/™r = 0

FIGURE 1. (Colour online) Sketch of the problem’s formulation. The rectangle (red online)
denotes the limits of the computational domain.

The subscripts r and z here and henceforth denote the partial derivatives with respect
to the corresponding spatial variables. The electric potentials φi and φo in both the
inner (liquid) and outer (gas) domains obey the Laplace equation

φi,o
zz + φ

i,o
rr + φ

i,o
r /r = 0. (3.4)

The boundary conditions at the free surface r= F(z, t) are:

∂F
∂t
+ Fzw− u= 0, (3.5)

p+
FFzz − 1− F2

z

F(1+ F2
z )

3/2
−

2Oh[ur − Fz(wr + uz)+ F2
z wz]

1+ F2
z

=
χ

2

[
(Eo

n)
2
− β(Ei

n)
2
]
+ χ

β − 1
2

(Et)
2, (3.6)

Oh
(1− F2

z )(wr + uz)+ 2Fz(ur −wz)

(1+ F2
z )

1/2
= χσEt, (3.7)

where χ = εoV2/(Riγ ) is the electric Bond number. Equation (3.5) is the kinematic
compatibility condition, while (3.6) and (3.7) express the balance of normal and
tangential stresses on the two sides of the free surface, respectively. The right-hand
sides of these equations are the Maxwell stresses resulting from both the accumulation
of free electric charges at the interface and the jump of permittivity across this surface.

The electrical field at the free surface and the surface charge density are calculated
as

Ei
n =

Fzφ
i
z − φ

i
r√

1+ F2
z

, Eo
n =

Fzφ
o
z − φ

o
r√

1+ F2
z

, (3.8a,b)

Et =
−Fzφ

o
r + φ

o
z√

1+ F2
z

=
−Fzφ

i
r + φ

i
z√

1+ F2
z

, (3.9)

σ = χ(Eo
n − βEi

n). (3.10)
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It must be noted that the continuity of the electric potential across the free surface,
φi
= φo, has been considered in (3.9).
The free surface equations are completed by imposing the surface charge

conservation at r= F(z),

∂σ

∂t
+∇s · (σv)= αχEi

n, (3.11)

where ∇s is the tangential intrinsic gradient along the free surface, and α =

K
[
ρR3

i /(γ ε
2
o)
]1/2 is the dimensionless electrical conductivity.

As mentioned above, the Hagen–Poiseuille velocity profile is prescribed at the
entrance of the liquid domain z= 0:

u= 0, w= 2Q(1− r2), (3.12a,b)

where Q=Q/(πR2
i vc). At the capillary wall, we fix the electric potential and impose

no-slip boundary conditions, i.e.

φi
= φe
= 1 and u=w= 0. (3.13a,b)

The triple contact line is anchored at the end of the capillary:

F= 1 at z= Ln. (3.14a,b)

The standard regularity conditions

φi
r = u=wr = 0 (3.15)

are prescribed on the symmetry axis, and the outflow conditions

uz =wz = Fz = σz = 0 (3.16)

are considered at the right-hand end ze =H + Ln of the computational domain.
The analytical solution for the far-field electric potential (Gañán-Calvo et al. 1994),

φ1(r′, z′)=
−Kv

log(4H′)
log
{
[r′2 + (1− z′)2]1/2 + (1− z′)
[r′2 + (1+ z′)2]1/2 + (1+ z′)

}
, (3.17)

is imposed at the boundary r = Re. Here, r′ and z′ are cylindrical coordinates
with origin at the intersection between the symmetry axis and the grounded planar
electrode (see figure 1), while Kv is a dimensionless constant which depends on H′.
A logarithmic drop of voltage

φ2 = 1− [1− φ1(re, z
′

e)] log r/ log Re, z
′

e ≡H′ + Ln, (3.18a,b)

is applied at the boundary z= 0 and 1< r< Re. Finally, the condition

φz = (φ1)z (3.19)

is imposed at the right-hand end z = ze of both the liquid and gas computational
domains.

The governing equations are formulated in terms of the dimensionless numbers
{Oh, χ, β, α,Q} and those characterizing the rest of boundary conditions. The former
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can be combined to decouple the dimensionless numbers {β, δµ, Qr} defined in
§ 1 from the rest of parameters; specifically, δµ = α−1/3Oh1/2 and Qr = παQ. As
explained in § 1, the influence of the geometrical parameters can be neglected if one
takes into account both the locality of the jet emission phenomenon and the secondary
role of the electrical potential. In particular, the results are not expected to depend
on the length H of the computational domain for sufficiently large values of this
parameter. We set H = 12 and verified that neither the base flow nor its eigenmodes
significantly varied when that parameter was considerably increased. In addition, the
length of the feeding capillary was Ln = 1.5, the distance between the two electrodes
was H′ = 20, and the radial distance of the outer boundary from the symmetry axis
was Re = 6.

The base flow of the steady cone-jet mode is calculated as the solution of the above
equations eliminating the partial derivatives of the unknowns with respect to time. The
simulation allows one to calculate the total intensity I as the sum of the contributions
due to the bulk conduction Ib and surface convection Is. These contributions can be
calculated at any axial position z along the cone-jet as

Ib(z)= 2παχ

∫ F(z)

0
Ei

z(r, z)r dr, Is(z)= 2πF(z)σ (z)vs(z), (3.20a,b)

where Ei
z is the axial component of the inner electric field. The free surface position

and electric intensity have been calculated and compared with experimental data for
1-octanol, showing good agreement (Herrada et al. 2012).

To calculate the linear axisymmetric global modes, one assumes the temporal
dependence

U(r, z; t)=U0(r, z)+ εδU(r, z) e−iωt (ε� 1). (3.21)

Here, U(r, z; t) represents any hydrodynamic quantity, U0(r, z) and δU(r, z) stand for
the base (steady) solution and the spatial dependence of the eigenmode, respectively,
while ω = ωr + iωi is the eigenfrequency. Both the eigenfrequencies and the
corresponding eigenmodes are calculated as a function of the governing parameters.
The dominant eigenmode is that with the largest growth factor ωi. If that growth
factor is positive, the base flow is asymptotically unstable (Theofilis 2011).

3.2. Numerical method
In order to calculate both the base flows and the corresponding eigenmodes, we apply
the boundary fitted method. The inner (liquid) and outer domains are mapped onto
two quadrangular domains through a coordinate transformation. The hydrodynamic
equations are discretized in the radial direction with 10 and 101 Chebyshev spectral
collocation points (Khorrami, Malik & Ash 1989) in the inner and outer domains,
respectively. In the axial direction, we use fourth-order finite differences with 500
equally spaced points. Figure 2 shows the grid used in the simulations. We conducted
simulations for different mesh sizes to ensure that the results did not depend on that
choice. For the sake of illustration, the symbols in figure 9 show the results when
the number of collocation points in the radial direction was doubled. Details of the
numerical procedure can be found elsewhere (Herrada & Montanero 2016).

One of the main characteristics of this procedure is that the elements of the
Jacobian J (p,q) of the discretized system of equations J (p,q)U(q)

0 = F (p) for the base
flow unknowns U(q)

0 (q = 1, 2, . . . , n × N stands for the values of the n unknowns
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FIGURE 2. (Colour online) Details of the grid used in the simulations. Only a portion of
the jet section is included in the right-hand inset due to the large magnification used.

at the N grid points) are computed via standard symbolic software at the outset,
before running the simulation. The resulting functions are evaluated numerically over
the Newton–Raphson iterations, which reduces considerably the required CPU time.
In each of those iterations, we first evaluate the Jacobian J (p,q)

0 = J (p,q)(U(q)
0 ) for

the updated value of U(q)
0 , and then calculate the inverse matrix J −1(q,p)

0 with any
algorithm which takes advantage of the high sparsity of the matrix. The correction
vector is obtained as δÛ(q)

0 = −J
−1(q,p)

0 F (p), where the functions F (p) are evaluated
at the corresponding grid point in the previous iteration.

The above numerical procedure can be easily adapted to solve the eigenvalue
problem which determines the linear global modes of the system. The spatial
dependence of the linear perturbation δU(q) is the solution to the generalized
eigenvalue problem J (p,q)

0 δU(q)
= iωQ(p,q)

0 δU(q), where J (p,q)
0 is the Jacobian of

the system evaluated with the base solution U(q)
0 , and Q(p,q)

0 accounts for the temporal
dependence of the problem. As explained by Herrada & Montanero (2016), this
matrix is calculated with essentially the same procedure as that for J (p,q)

0 . Therefore,
the numerical algorithm developed for the base flow problem can also be applied to
the linear stability analysis.

4. Experimental method

The experimental set-up is shown schematically in figure 3. A liquid was injected at
a constant flow rate Q by a syringe pump (Harvard Apparatus PHD 4400) connected
to a stepping motor through a cylindrical capillary (A). In most of the experiments, the
capillary was approximately 105 (110) µm in inner (outer) radius, and was located
at a distance of 1 mm from a metallic plate. Some experiments were conducted with
capillaries of different sizes and for several capillary-to-plate distances to examine the
effect of these parameters on the cone-jet mode stability. The plate had an orifice
(B) of 200 µm in diameter in front of the capillary. The plate covered the upper
face of a metallic cubic cell (C). We used a high-precision orientation system (D)
and a translation stage (E) to ensure the correct alignment of these elements, and to
set the capillary-to-orifice distance. An electric potential V was applied to the end
of the feeding capillary through a DC high voltage power supply (Bertan 205B-10R)
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FIGURE 3. Experimental set-up: (A) capillary, (B) plate with orifice, (C) suction cell, (D)
orientation systems, (E) translation stage, (F) high voltage power supply, (G) picoammeter,
(H) camera, (I) optical lenses, (J) triaxial translation stage, (K) optical fibre connected to
a laser source and (L) anti-vibration isolation system.

Liquid ρ (kg m−3) µ (mPa s) γ (mN m−1) K (S m−1) β δµ

1-decanol 828 11.8 28.0 3× 10−7 7.6 2.27
1-octanol 827 7.20 23.5 9× 10−7 10 2.29
1-butanol 808 2.54 23.0 6× 10−6 17.8 3.38
3-ETG+ LiCl 0.00005M 1121 40.1 45.4 6.0× 10−5 23.7 0.174
3-ETG+ LiCl 0.0001M 1121 40.1 45.4 7.0× 10−5 23.7 0.166
3-ETG+ LiCl 0.0005M 1121 40.1 45.4 1.0× 10−4 23.7 0.147
3-ETG+ LiCl 0.001M 1121 40.1 45.4 4.0× 10−4 23.7 0.0926
3-ETG+ LiCl 0.002M 1121 40.1 45.4 5.0× 10−4 23.7 0.0859
3-ETG+ LiCl 0.005M 1121 40.1 45.4 9.0× 10−4 23.7 0.0706
3-ETG+ LiCl 0.007M 1121 40.1 45.4 1.1× 10−3 23.7 0.0661

TABLE 1. Properties of the working liquids.

(F), and the cubic cell was used as ground electrode. A prescribed negative gauge
pressure (approximately 10 mbar) was applied in the cubic cell by using a suction
pump to produce an air stream coflowing with the jet. Both the liquid jet and the
coaxial air stream crossed the plate orifice, which prevented liquid accumulation on
the metallic plate. In this way, all the electric charges were collected in the cubic cell.
The electric current transported by the liquid jet was measured using a picoammeter
(Keithley model 6485) (G) connected to the cell. Because the full scale of typical
electric current measurements was in the nanoampere range, special care was taken
with electrical shielding and grounding. The properties of the working liquids are
displayed in table 1.

Digital images of the liquid jets and drops were acquired at 5 × 106 frames per
second with an exposure time of 100 ns using a ultra-high-speed camera (Kirana-5M)
(H) equipped with optical lenses (an Optem HR 10X magnification zoom-objective
and an Optem Zoom 70XL set of lenses) (I). The magnification was adjusted in each
experiment within the range 0.417–676 nm pixel−1. The camera could be displaced
both horizontally and vertically using a triaxial translation stage (J) to focus the
liquid meniscus. The fluid configuration was illuminated from the back by infrared
light provided by an optical fibre (K) connected to a laser source (SI-LUX 640)
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(a) (b) (c) (d) (e) ( f ) (g) (h) (i)

FIGURE 4. Images of the emitted jet at the minimum flow rate: (a) 1-decanol, Q =
0.4 ml h−1, V = 1740 V, dj = 6.6 µm; (b) 1-octanol, Q = 0.5 ml h−1, V = 1600 V,
dj = 7.5 µm; (c) 3-ETG + LiCl 0.00005M, Q = 0.09 ml h−1, V = 2158 V, dj = 1.7 µm;
(d) 3-ETG + LiCl 0.0001M, Q = 0.09 ml h−1, V = 2231 V, dj = 2.0 µm; (e) 3-ETG +
LiCl 0.0005M, Q = 0.1 ml h−1, V = 2277 V, dj = 1.7 µm; ( f ) 3-ETG + LiCl 0.001M,
Q = 0.2 ml h−1, V = 2400 V, dj = 2.5 µm; (g) 3-ETG + LiCl 0.002M, Q = 0.1 ml h−1,
V = 2400 V, dj = 1.7 µm; (h) 3-ETG + LiCl 0.005M, Q = 0.08 ml h−1, V = 2441 V,
dj = 1.3 µm; (i) 3-ETG+ LiCl 0.007M, Q= 0.06 ml h−1, V = 2283 V, dj = 1.7 µm. In
all the cases, the inner diameter of the feeding capillary was 210 µm. The images show
only a small portion of the liquid meniscus.

synchronized with the camera. To check that the fluid configuration was axisymmetric,
we also acquired images of the liquid meniscus using an auxiliary CCD camera (not
shown in figure 3) with an optical axis perpendicular to that of the main camera.
All these elements were mounted on an optical table with a pneumatic anti-vibration
isolation system (L) to damp the vibrations coming from the building.

In the experiments, the liquid flow rate was reduced in steps of 0.1 ml h−1. For
each flow rate, the electric potential was adjusted so that the apparent semiangle of the
conical meniscus was approximately 49◦. This process was repeated until the steady
cone-jet mode could not be established. The flow rate of the last steady cone-jet mode
was taken as the minimum flow rate. Figure 4 shows images of the emitted jet at the
minimum flow rate for all the working liquids. As will be shown in § 5.2, whipping
was observed in all the experiments with ETG+LiCl 0.007M. In the rest of the cases,
that jet instability did not occur.

5. Results
5.1. Numerical results

In the first part of this section, we present the simulation results obtained for two
representative configurations among those examined experimentally in this work: 3-
ETG+ LiCl 0.0005M with Ri = 105 µm and 1-octanol with Ri = 550 µm. Then, we
study the superficial charge relaxation in all the electrospraying realizations considered
in this work. This section closes with some results for the viscosity- and polarity-
dominated configurations. In all the cases, we will present results for flow rates very
close to its corresponding minimum value. As will be shown in § 5.2, the applied
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0 6 12 0 6 12
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FIGURE 5. (Colour online) Base flows for (a) β = 23.7, δµ = 0.174 and Qr = 7.74, and
(b) β = 10, δµ= 2.29 and Qr = 2.98. The lines in the inner and outer domains correspond
to the streamlines and equipotential lines, respectively.

voltages were selected for the minimum flow rates predicted from the linear stability
analysis to coincide with those determined experimentally (when available).

Figure 5 shows the base flows calculated for β = 23.7, δµ = 0.174 and Qr = 7.74
(3-ETG + LiCl 0.0005M), and β = 10, δµ = 2.29 and Qr = 2.98 (1-octanol). In the
former case, the viscous stresses arrange the flow towards the meniscus tip, which
prevents the formation of recirculation cells. These cells arise in the latter case due
to the accumulation of momentum at the cone apex, which increases the stagnation
pressure there, and pushes back the liquid along the meniscus symmetry axis. This
is a common behaviour in tip streaming (Tseng & Prosperetti 2015) close to the
minimum flow rate stability limit (Vega et al. 2010). The ratios between the jet and
capillary diameters are 0.00434 and 0.0117 for 3-ETG+LiCl 0.0005M and 1-octanol,
respectively and, therefore, the local character of the jet emission can be assumed. As
will be shown in § 5.2, these values are consistent with those predicted by the scaling
law (2.2). The equipotential lines show that the drop of voltage across the Taylor
meniscus is negligible as compared to that taking place in the cone-jet transition
region. A significant tangential electric field survives downstream far away from the
meniscus. The fact that the equipotential lines become almost parallel to the jet’s free
surface indicates that Eo

n� Et on that surface.
It is sometimes implicitly assumed that a base flow is stable if the numerical

algorithm used to calculate it converges to a physically meaningful solution. In
fact, this occurs with our method and capillary systems like liquid bridges (Vega
et al. 2014), and seems quite reasonable in general if the algorithm is a time
marching method. However, this assumption is not valid for our numerical procedure
and the electrospray realizations analysed in this work. Figure 6 shows the eight
eigenvalues with the larger growth factors ωi characterizing the linear stability of the
two base flows described above (open symbols). As can be observed, the spectrum of
eigenvalues remains in the stable half-plane. On the contrary, the dominant eigenvalue
crosses the boundary ωi = 0 for Qr = 6.0 and 2.32 in the 3-ETG + LiCl 0.0005M
and 1-octanol case, respectively. This loss of stability has an oscillatory character
because the real part ωr of the dominant eigenvalue is different from zero. In the
two cases considered, ωr ∼ 1, which indicates that the period of the oscillation
responsible for instability scales with the meniscus capillary time tc. This result
suggests that the unstable mode perturbs not only the region where is originated but
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FIGURE 6. (a) Eigenvalues for β = 23.7, δµ = 0.147 and Qr = 7.74 (open symbols) and
6.0 (solid symbols). (b) Eigenvalues for β = 10, δµ = 2.29 and Qr = 2.98 (open symbols)
and 2.32 (solid symbols).
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FIGURE 7. Real (a) and imaginary (b) part of the eigenvalue responsible for instability as
a function of Qr. The results were calculated for β = 23.7 and δµ= 0.147 (solid symbols),
and for β = 10 and δµ = 2.29 (open symbols).

also the whole liquid meniscus shape. It must be noted that one cannot anticipate the
stability/instability from the simple inspection of the base flows because they exhibit
essentially the same features independently of their stability character. In fact, we do
not observe any bifurcation when the numerical solution crosses the stability limit.

The dependence of the eigenvalue responsible for instability with respect to the
ejected flow rate is shown in figure 7. The minimum flow rate corresponds to the
intersection between the curve ωi(Qr) and the axis ωi = 0. As can be observed, the
oscillation frequency depends slightly on the injected flow rate, and is considerably
smaller for 3-ETG+ LiCl 0.0005M.

As will be seen below, the driving electric shear stress survives and accelerates
the jet downstream over a long distance from the electrified meniscus. To make sure
that the outflow boundary conditions do not produce significant errors, the numerical
simulation must consider a very long computational domain. For this reason, the loss
of stability of the base flow can be caused by either the destabilization of the liquid
source or the convective instability associated with the growth of capillary waves
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FIGURE 8. (Colour online) (a,b) Perturbation amplitude of the kinetic energy |δek| along
the free surface relative to its value ek in the base flow. The perturbations are normalized
so that the maximum value of |δek|/ek is equal to one. (c,d) Free surface position F, bulk
current intensity Ib and surface current intensity Is as a function of the axial position z.
The results were calculated for β = 23.7, δµ = 0.147 and Qr = 7.74 (a,c), and β = 10,
δµ = 2.29 and Qr = 2.98 (b,d).

far away from that source. The former case does correspond to the breakdown of
the steady cone-jet mode, while the latter is associated with the classical Rayleigh
instability in a steadily emitted jet (Rayleigh 1878).

In order to distinguish the two phenomena mentioned above, the eigenmode
responsible for instability at the minimum flow rate must be analysed. Figure 8
shows the magnitude |δek| = |uoδu + w0δw| of the perturbation kinetic energy per
unit mass, δek = (u0δu + w0δw)e−iωt, along the free surface and relative to its value
ek=1/2 (u2

0+w2
0) in the base flow. In these expressions, u0 (w0) and δu (δw) represent

the base flow value and perturbation amplitude of the radial (axial) component of
the velocity field, respectively. The kinematic compatibility condition (3.5) links the
oscillation amplitude of the two components of the velocity field at the free surface to
the oscillation of that surface. In fact, the slenderness approximation of that condition
reduces to F̂ = δu/(iω), where F̂ stands for the perturbation amplitude of the free
surface position. This equation suggests that |δek|/ek may constitute a good indicator
of where the free surface deformation becomes greater at the initial phase of the
instability growth. Other variables could be used for that purpose too.

In the two cases analysed in figure 8, |δek|/ek reaches its maximum value in the
cone-jet transition region, close to the jet section where the conduction intensity
equals the surface convection of charges. This result indicates that the electrified
meniscus does become unstable for flow rates smaller than the threshold, and may
suggest the critical role played by the singular fluidic structure arising in the cone-jet
transition region. The relative amplitude |δek|/ek also takes large values in the liquid
meniscus contour, which confirms that the perturbation causes the oscillation of the
entire meniscus.

The values of Et and Eo
n in the two cases analysed in figure 9 are consistent with

the scaling laws. Specifically, Et/(Eo
nQ−1/2

r )∼1 (2.4) and Eo
n/Eo∼1 (2.6) at the section

Ib = Is in the two simulations. This consistency was also obtained for the other three
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FIGURE 9. (Colour online) (a,b) Free surface position F, bulk current intensity Ib and
surface current intensity Is as a function of the axial position z. (c,d) Tangential and
normal components of the inner and outer electric fields at the free surface. The results
were calculated for β = 23.7, δµ = 0.147 and Qr = 7.74 (a,c), and for β = 10, δµ = 2.29
and Qr = 2.98 (b,d). The symbols correspond to the results obtained when the number of
collocation points in the radial direction was doubled.

cases not dominated by either viscosity or polarity. In this work, we define the cone-
jet transition region as that corresponding to the interval −0.56 log10(Is/Ib)6 0.5 (i.e.
Is and Ib are of the same order of magnitude). According to the results shown in 9,
L/(d0Qr)∼ 1 (2.7) in both cases.

As mentioned in § 2.3, there is a general consensus about the absence of net free
charge in the cone-jet bulk. In fact, this constitutes the essential approximation of
the leaky dielectric model solved in this work and by other researchers (Yan et al.
2003; Higuera 2003, 2010). Fernández de la Mora (2007) defined the lack of charge
relaxation as the inability of the electric conduction from the bulk into the free surface
to establish the electrostatic charge density σe = εoEo

n in the meniscus tip; in other
words, to screen the electric field normal to the free surface so that βEi

n � Eo
n in

that region. Figure 9 shows that the values of βEi
n are considerably smaller than, but

non-negligible as compared to, Eo
n in the cone-jet transition region for both 1-octanol

and 3-ETG+ LiCl 0.0005M. The maximum value (βEi
n/E

o
n)max over the free surface

of the ratio βEi
n/E

o
n is reached very close to the section Is = Ib.

As explained in § 2.3, one may expect βEi
n to be commensurate with Eo

n when
the charge relaxation time te is commensurate with the residence time tr of a free
surface element in the cone-jet transition region. In order to verify this expectation
quantitatively, we calculate the residence time tr of the free surface element in that
interval as

tr =

∫ sf

si

ds
vs
, (5.1)

where si and sf are the intrinsic coordinates of the inlet and outlet sections of the
cone-jet transition region. The values of the ratio te/tr for 3-ETG + LiCl 0.0005M
and 1-octanol are 0.32 and 0.098, respectively. Interestingly, (βEi

n/E
o
n)max = 0.322 for
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FIGURE 10. Ratios te/tr (open symbols) and (βEi
n/E

o
n)max (solid symbols) at the minimum

flow rate stability limit. The values of β, δµ and Qr are shown in table 2 (for 1-octanol,
we chose the case with largest value of Λ).

3-ETG+LiCl 0.0005M and, therefore, βEi
n cannot be neglected as compared with Eo

n
even though the electric relaxation time is one order of magnitude smaller than the
residence one. Therefore, one can safely assume that βEi

n is negligible in the cone-
jet transition region only if there is true disparity (two or more orders of magnitude)
between the two characteristic times.

Figure 10 shows the ratios te/tr and (βEi
n/E

o
n)max for all the simulations at the

minimum flow rate stability limit. As can be observed, te is considerably smaller than
tr in all the realizations except for the high-polarity case, where te ' tr (Gañán-Calvo
et al. 2013). However, βEi

n is truly negligible as compared to Eo
n only in the

high-viscosity case, for which te� tr. It must be noted that the existence of significant
inner electric fields in our simulations do not invalidate the scaling laws σ ∼ εoEo

n and
I∼ (Eo

n)
2 (I is the electrostatic term introduced in (5.2)), because Eo

n ∼ Eo
n − βEi

n and
(Eo

n)
2
∼ (Eo

n)
2
− β(Ei

n)
2 in all the cases analysed. We have verified that the disparity

between the electric and hydrodynamic characteristic times increases with the flow
rate. For instance, te/tr = 0.12 for 3-ETG+ LiCl 0.0005M and Qr = 77.4.

One may conclude that te ∼ tr does not hold in general for the cone-jet transition
region. Fernandez de la Mora & Loscertales (1994) assumed that te ∼ tr in a cone
tip zone with size of the order of dj. Our result does not necessarily contradict that
assumption because the size of that zone and that of the cone-jet transition region
defined here are not generally commensurate with each other (2.7). In fact, caution
must be taken when discussing the relative magnitude of the electric relaxation time
and the residence time because the latter significantly depends on the definition of the
cone-jet transition region.

In the one-dimensional (slenderness) approximation, the momentum equation in the
z-direction becomes (Gañán-Calvo 1999):

χ

2

[
(Eo

n)
2
− β(Ei

n)
2
]

z︸ ︷︷ ︸
I

+ χ
β − 1

2

[
(Et)2

]
z︸ ︷︷ ︸

II

+
2σEt

F︸ ︷︷ ︸
III

=

(
1
F

)
z︸ ︷︷ ︸

IV

+

(
Q2

2F4

)
z︸ ︷︷ ︸

V

+
6OhQ

F2

(
Fz

F

)
z︸ ︷︷ ︸

VI

.

(5.2)
The terms of (5.2) have been grouped into driving (left-hand side) and resistant (right-
hand side) forces. The first, second, and last addends on the left-hand side of (5.2)
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FIGURE 11. (Colour online) (a–f ) Terms I–VI of the slenderness model (5.2) as a
function of the axial position z. (g,h) Free surface position F, bulk current intensity Ib
and surface current intensity Is as a function of the axial position z. The results were
calculated for β = 23.7, δµ= 0.147 and Qr = 7.74 (a,c,e,g), and for β = 10, δµ= 2.29 and
Qr = 2.98 (b,d, f,h).

are generally referred to as the electrostatic, polarization and electric tangential forces
per unit volume, respectively (Gañán-Calvo 1999). The terms on the right-hand side
of (5.2) correspond to surface tension, inertia and viscosity, respectively. Figure 11
shows the values taken by the six terms of (5.2) for 3-ETG + LiCl 0.0005M and
1-octanol. The area enclosed by the curves equals the work done/energy consumed
per unit volume by the corresponding term.

The electric tangential force is the major source of energy both in the cone-jet
transition region and throughout the jet. The dominant role played by this force was
already pointed out by Higuera (2010) using numerical simulations in the Stokes
limit. Both the electrostatic and polarization forces are subdominant. The fact that
the electrostatic suction transfers much less energy than the tangential force differs
from the scaling analysis prediction for large flow rates (§ 2.1), which concludes that
these effects commensurate with each other. Most of the work done by the electric
forces is converted into kinetic energy. The viscous force arises against the liquid
ejection for δµ = 0.147, while surface tension becomes the largest resistant force for
δµ = 2.29. The electrostatic and polarization forces push the liquid in the cone-jet
transition region, while stand against the liquid ejection behind that region. Graph
(c) shows the accuracy of the one-dimensional approximation throughout the whole
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FIGURE 12. Free surface position F(z) (a) and eigenvalues (b) for β = 23.7, δµ = 0.147
and Qr = 7.74. In (a) the solid and dashed lines correspond to the exact solution and that
calculated when the electric shear stress is not considered, respectively. In (b) the open
and solid symbols correspond to the exact solution and that calculated when the electric
shear stress is not taken into account, respectively.

liquid domain even for the least viscous case, which exhibits recirculation in the
electrified meniscus (figure 5).

In order to elucidate the role played by the electrostatic and tangential forces, we
run simulations ‘switching off’ the terms χ/2[(Eo

n)
2
− β(Ei

n)
2
] and χσEt in (3.6)

and (3.7), respectively. When the electrostatic suction is switched off, the numerical
method does not converge to a steady solution. This result indicates the importance
of this force in stretching the meniscus and forming the ‘liquid nozzle’ through which
the jet is emitted. It also shows that the cone-jet mode stability cannot be analysed
just in terms of the balance between the dominant driving and resistant forces because
subdominant stresses are also necessary to produce steady jetting. If the electric shear
stress χσEt is turned off, the numerical algorithm for 1-octanol does not converge
either, while the 3-ETG+ LiCl 0.0005M jet losses most of its kinetic energy and the
cone-jet mode becomes linearly unstable (figure 12).

We analyse the forces arising for large values of δµ and β in figure 13. The electric
tangential force III is dominant in the cone-jet transition region of the two cases,
although the polarization force exhibits a sharp peak in front of that region in the
high-polarity case. The polarization force stretches the transition region and moves
the zone dominated by charge convection away from the meniscus. In fact, the section
where Ib = Is is shifted beyond the cone apex in the high-polarity case. As claimed
by Gañán-Calvo et al. (2013), the viscous force VI becomes of the order of inertia in
the cone-jet transition region for small δµ. The increase of this resistant force as the
flow rate decreases may explain the cone-jet mode instability originated in that region.
As mentioned above, the polarization force becomes the dominant driving force in
front of the jet emission region for large β. The liquid acceleration caused by this
force shortens the liquid meniscus, sharply reducing the free surface radius in front
of the apex, which increases the capillary stress there. However, the polarization force
opposes to the ejection (II becomes negative) and is of the order of inertia in the cone-
jet transition region (Gañán-Calvo et al. 2013). As shown in figure 10, the integral
(5.1) gives te/tr = 0.643 and 1.06 for the viscous and polarization case, respectively.
The fact that te becomes of the order of tr for very polar liquids close to the minimum
flow rate stability limit can be anticipated from the scaling laws in § 2.2 (Gañán-Calvo
et al. 2013).
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FIGURE 13. (Colour online) (a–f ) Terms I–VI of the slenderness model (5.2) as a
function of the axial position z. (g,h) Free surface position F, bulk current intensity Ib
and surface current intensity Is as a function of the axial position z. The results were
calculated for β = 23.7, δµ = 0.0108 and Qr = 66.2 (a,c,e,g), and for β = 70, δµ = 2.29
and Qr = 7.49 (b,d, f,h).

5.2. Experimental results
For sufficiently small values of the ratios dj/Ri and L/Ri, the flow in the critical
cone-jet transition region is not essentially affected by the boundary conditions and,
therefore, one expects that Qr min = Qr min(β, δµ). As explained in § 2.1, experimental
values of Qr min obtained by different authors have been explained in terms of
the scaling law Qr min ∼ β

θ1δθ2
µ for βδµ � 1 and βδµ � 1, assuming self-similarity

(Barenblatt 2003) in those two limiting regimes (Gañán-Calvo et al. 2013). Because
the experimental values for the intermediate range βδµ ∼ 1 are scarce, we measured
the minimum flow rate in that range. Also, we examined the break-up of the emitted
jet at the minimum flow rate stability limit with a very high spatio-temporal resolution.
The results are presented and compared with numerical simulations in this section.

We define the jet’s level of electrification (the Taylor number) as the ratio of
the electric stress normal to the jet’s free surface, εo(Eo

n)
2, to the capillary pressure

γ /(dj/2), i.e.

Γ =
εo(Eo

n)
2

γ /(dj/2)
. (5.3)

Sufficiently far away from the meniscus, the superficial charge relaxes to its
electrostatic value (βEi

n � Eo
n) and conduction vanishes (I ' Is) (figure 9). In that
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region, Eo
n ' σ/εo, σ = Idj/(4Q) and, therefore, the level of electrification (5.3) can

be calculated as

Γ =
I2d3

j

32Q2γ εo
. (5.4)

The jet emitted by a Taylor cone in a hydrodynamically passive dielectric medium
may develop the so-called whipping instability for sufficiently large values of the
Taylor number (figure 4i) (Hohman et al. 2001; Eggers & Villermaux 2008; Yang
et al. 2014). This instability gives rise to non-axisymmetric (lateral) oscillations
which cause the fast and violent lashes of the charged jet. Rayleigh (1881) originally
explained this phenomenon in terms of the balance between the decrease of electric
energy and increase of interfacial energy caused by the lateral displacement of a
charged jet. His calculations for a perfectly conductor, apolar and inviscid cylinder
in the absence of an externally applied electric field led to the so-called Rayleigh
limit ΓR = 3/2 for the electrification level of that cylinder. The whipping instability
in a perfectly conductor jet can also be explained as follows: if a small portion of
the jet moves slightly off its axis, the charge re-distributes instantaneously along the
jet surface accumulating in the ridges and valleys of the deformed interface, in such
a way that the electrical forces will push that portion farther away from the axis
(Hohman et al. 2001).

Figure 14(a) shows the jet’s electrification level (5.4) in all the cone-jet mode
experimental realizations. Whipping was observed for Γ & 3 (in this case, the jet
diameter was measured in front of the whipping instability region). This value
clearly exceeds the Rayleigh limit, which can be explained in terms of the complex
interplay among charge relaxation, viscosity, polarization force and the external axial
field taking place in our problem (Mestel 1996). In the stable jets with levels of
electrification exceeding the Rayleigh limit, the jet’s capillary time tcj = (ρd3

j /γ )
1/2

took similar values to those of the electric relaxation time te, while the jet’s Ohnesorge
number Ohj = µ(ρdjγ )

−1/2 increased up to values of the order of 10. For instance,
tcj ' 0.217 µs, te ' 0.223 µs and Ohj ' 5.16 for the case of figure 4(h). According
to the scaling laws (2.2) and (2.5), Γ should scale as Q1/2

r (with a small prefactor).
The deviation of the experimental data from that prediction can be explained in terms
of the lack of accuracy of those scaling laws for Qr . 1, which is magnified by the
exponents of I and dj in (5.4).

The convective instability of the electrified jet emitted in electrospraying is a
prerequisite to achieving the steady cone-jet mode (Huerre & Monkewitz 1990).
Figure 14(b) shows the values of the jet’s capillary and Reynolds numbers,

Caj =
vjµ

γ
and Rej =

ρvjdj

2µ
, (5.5a,b)

in all the cone-jet mode experimental realizations. The line shows the convective-to-
absolute instability transition calculated for a non-electrified jet (Leib & Goldstein
1986). Although this transition is affected by the electrification level, axial electric
field intensity and permittivity, the classical Leib and Goldstein prediction is expected
to constitute a good approximation for a significant part of the parameter space
(López-Herrera, Gañán-Calvo & Herrada 2010). In fact, all the jets produced in our
experiments were convectively unstable according to that approximation. The cloud
of points corresponding to previous works, and collected by López-Herrera et al.
(2010), are generally located farther away from the Leib and Goldstein curve than
those of the present work. In some cases, this could be due to the fact that the
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FIGURE 14. (a) Jet electrification level Γ as a function of the dimensionless flow
rate Qr in all the cone-jet mode realizations. The open and solid symbols correspond
to steady jetting and whipping, respectively. The solid line indicates the slope of the
power law Γ ∝ Q1/2

r . (b) Jet capillary number Caj and Reynolds number Rej in all the
cone-jet mode realizations. The open and solid symbols correspond to steady jetting and
whipping, respectively (the labels are those in the left-hand graph). The grey symbols
correspond to previous experimental results gathered by López-Herrera et al. (2010). The
line corresponds to the convective–absolute instability transition for a non-electrified jet
(Leib & Goldstein 1986).

authors did not intend to reach the minimum flow rate in their experiments. In other
cases, the instability arose in the cone-jet transition region long before the jet became
absolutely unstable. Very few of those points cross the instability transition curve for
an non-electrified jet, probably because of the stabilizing electric effects occurring in
those cases.

The jet’s diameter dj and electric intensity I in all the experimental cone-jet mode
realizations are plotted as a function of the dimensionless flow rate Qr in figure 15.
The scaling laws (2.2) and (2.5) reasonably fit the experimental data, although the
prefactor of dj/do(Qr) for small Qr seems to be slightly different from that for
large Qr. The diameters in the experiments where whipping took place significantly
deviated from the scaling law, probably because they were measured before the jet
stretching ended. The diameters and electric currents calculated from the simulation
also approximately match the scaling laws, even for small δµ (large Qr). The only
exception is the intensity of the high-polarity case, which deviates significantly from
the trend of the rest of simulations. In fact, the current intensity for very polar
liquids is expected to follow a different law from that for low and moderate polarity,
as predicted by Gañán-Calvo (2004).

Figure 16 shows the values of Qr/β and βδµ of steady cone-jet mode realizations.
The grey symbols represent the data gathered from different authors and plotted in
figure 2 of Gañán-Calvo et al. (2013). The open symbols correspond to experimental
realizations conducted in the present work with a capillary Ri = 105 µm in radius.
The new experiments with 3-ETG allows one to draw the instability curve between
the polarization and viscous regimes obtained for (βδµ)−1

� 1 and (βδµ)
−1
� 1,

respectively. The big white circles show the experiments conducted with 1-octanol
and Ri= 550 µm. The comparison with the small circles shows the stabilization effect
achieved when the diameter of the feeding capillary is reduced. It must be noted that
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FIGURE 15. (Colour online) The jet’s diameter (a) and current intensity (b) as a function
of the dimensionless flow rate Qr in all the cone-jet mode realizations. The open and solid
symbols correspond to steady jetting and whipping, respectively. The big red circles are
simulation results. The arrows indicate the results for large polarity (β = 70). The solid
lines are the functions dj/do = 0.85Q1/2

r and I/Io = 2.5Q1/2
r (scaling laws (2.2) and (2.5),

respectively).

the minimum flow rate is expected to be sensitive to the capillary diameter only if the
ratio 2Ri/dj is of the order of or smaller than, say, 102. This only occurs for small
enough conductivities and feeding capillary diameters. In our work, this twofold
condition was verified only for the three alcohols, and not for the 3-ETG + LiCl
solutions. Similarly, the jets produced by other authors and represented on the right
side of figure 16 were sufficiently small in terms of the feeding capillary diameter,
and the latter is not expected to affect the results. Only the results on the left side
of the figure could be influenced by the capillary diameter, which might partially
explain the small flow rates achieved in that part of the figure. The dashed and solid
lines are the scaling laws Qr min = 0.2β and Qr min = δ

−1
µ for the polar and viscous

limits, respectively (Gañán-Calvo et al. 2013). Both the new experimental results and
the numerical ones are consistent with those laws. The stabilization effect due to the
size of the feeding capillary explains why the prefactor of the scaling law Qr min ∼ β
derived by Gañán-Calvo et al. (2013) was much smaller than unity.

The feeding capillary stabilization effect is illustrated in more detail in figure 17,
which shows that the minimum flow rate becomes independent of the capillary
radius only for Λ & 80, which corresponds to diameters 2Ri & 1 mm (two orders
of magnitude larger than the jet diameter). This conclusion is valid for a constant
capillary-to-counterelectrode distance (H′/d0 = 71.4), and when that distance was
proportional to the capillary diameter (H′/(2Ri) = 4.76). We also verified that the
minimum flow rates were essentially the same when polarity was inverted.

The electric boundary conditions prescribed in the simulations (the analytical
solution for the far-field electric potential) do not coincide with those imposed
experimentally (an electric potential applied to the end of the feeding capillary in
front of a ground electrode). For this reason, we adjusted the applied voltage in
the simulations for the numerical and experimental values of the minimum flow
rate to coincide with each other. The resulting numerical voltages deviated from
the experimental ones between approximately 8 % and 25 %, depending on the case
(see table 2). Based on these results, one can conclude that there is good agreement
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FIGURE 16. (Colour online) Steady cone-jet mode realizations. The grey symbols are the
data gathered from different authors (figure 2 in Gañán-Calvo et al. (2013)). The white
symbols correspond to the experimental results obtained in this work with a capillary Ri=

105 µm in radius. The big white circles show the experiments conducted with 1-octanol
and Ri = 550 µm. The big red circles and big blue squares are marginally stable basic
flows corresponding to Ri=105 µm and Ri=550 µm, respectively, for the voltages shown
in table 2. The dashed and solid lines are the scaling laws Qr min = 0.2β and Qr min = δ

−1
µ

for the polar and viscous limits, respectively.
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FIGURE 17. (Colour online) Minimum flow rate Qr min = Q min/Qo as a function of the
feeding capillary diameter Λ = 2Ri/do for β = 10 and δµ = 2.29 (1-octanol). The solid
and open symbols correspond to H′/(2Ri)= 4.76 and H′/d0 = 71.4, respectively. The red
big circles are the corresponding marginally stable basic flows for the voltages shown in
table 2.

between the stability limits predicted from the asymptotic linear stability analysis
and the corresponding experimental values. This indicates that the loss of stability is
caused by the long-term growth of the dominant global mode, as implicitly assumed
in that analysis (Theofilis 2011). In this sense, electrospray behaves differently from
other steady jetting configurations like gaseous flow focusing, where instability can
also be caused by the short-term superposition of the linear perturbations (Cruz-Mazo
et al. 2017).
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Liquid Λ β δµ Qr min χ exp χ num dexp
j /do dnum

j /do Iexp/Io Inum/Io

1-decanol 6.79 7.6 2.27 0.111 8.74 11.8 0.215 0.166 0.829 0.771
1-octanol-Ri = 105 µm 15.0 10 2.29 0.497 9.19 12.2 0.535 0.378 1.65 1.36
1-octanol-Ri = 550 µm 78.5 10 2.29 2.98 6.02 7.92 1.01 0.92 4.03 3.52
3-ETG+ LiCl 0.00005M 219 23.7 0.174 4.18 8.65 9.44 1.74 1.00 3.79 3.62
3-ETG+ LiCl 0.0005M 308 23.7 0.147 7.74 9.63 11.6 2.44 1.33 7.68 5.31
high-polarity case 78.5 70 2.29 7.49 — 8.70 — 2.09 — 2.68
high-viscosity case 2152 23.7 0.0108 66.2 — 9.61 — 4.02 — 18.0

TABLE 2. Jet diameter, current intensity and minimum flow rate measured experimentally
and calculated numerically. The superscripts ‘exp’ and ‘num’ stand for the values obtained
experimentally and numerically, respectively. The voltages in the numerical simulations
were selected so that the numerical and experimental minimum flow rates coincide with
each other.

The ultra-fast imaging used in our experiments allowed us to observe, for the first
time, the formation of droplets a few microns in diameter from the capillary break-
up of jets emitted at the minimum flow rate stability limit. The jet break-up in the
experiments with the alcohols (see figure 18) can be seen as a combination of the
Rayleigh–Plateau break-up of an infinite jet (Rayleigh 1878) and the so-called ‘end-
pinching’ process for short/viscous liquid threads, where droplets separate from an
inner thread at its contracting end (Castrejón-Pita, Castrejón-Pita & Hutchings 2012).
Figure 18 shows an interesting phenomenon which took place roughly periodically
in the experiments with the alcohols: the coalescence of two ‘proto-drops’ before
the resulting droplet is emitted. The origin of this phenomenon lies in the fact that
the jet is still accelerating in the break-up region due to the electric tangential force
(Hartman et al. 2000). Capillary instability gives rise to small-amplitude perturbations
over the jet’s free surface. The growth of these perturbations forms a liquid blob at
the front of the capillary jet and another behind it. A liquid thread connects these
two blobs. The surface tension acting along this thread tends to join them. Due to
the electric tangential force, liquid is pumped into the leading blob across that thread.
For this reason, the thread does not contracts radially while recoiling, contrary to what
happens when the tangential force is not present. The leading blob slows down while
growing owing to capillary forces, and is finally caught by the rear blob. We have
also observed this phenomenon for flow rates much larger than the minimum one. It is
not unique to electrospray, but also takes place in, for instance, flow-focused (Herrada
et al. 2008) and gravitational jets (Ambravaneswaran et al. 2004). It resembles the
no-break-up regime in contracting liquid threads (Castrejón-Pita et al. 2012), or the
escape from pinch-off in the recoil of a liquid filament described by Hoepffner & Paré
(2013).

The coalescence phenomenon described above explains why the 1-octanol jet
break-up produced a bimodal-like size distribution (figure 19a). The diameters of the
droplets were significantly larger than Rayleigh’s prediction (Rayleigh 1878). This can
be explained in terms of the stabilizing effects of both the axial electric field (Mestel
1994) and viscosity (Tomotika 1935) (Ohj ' 0.6 for the 1-octanol jet in figure 18),
as well as the influence of the end-pinching mechanism on the jet break-up. No
satellite droplets were observed in the experiments. In fact, the last two images of
the sequence in figure 18 show that the liquid thread between two non-coalescending
drops retracts before the satellite droplet forms.
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FIGURE 18. Break-up of a 1-octanol jet produced at the minimum flow rate.
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FIGURE 19. Probability distribution P(dd) for the diameter dd of 1-octanol (a) and
1-decanol (b) droplets produced at their corresponding minimum flow rates. The dashed
lines indicate Rayleigh’s prediction dd ' 1.89× dj.

6. Conclusions

The minimum flow rate stability limit of the steady cone-jet mode of electrospraying
is very interesting at both fundamental and technological levels. Understanding the
physical mechanisms responsible for this instability may help to design new methods
to suppress it, which will enhance the applicability of electrospraying in several
fields. Due to the difficulties inherent to the problem, experiments have provided
only qualitative information about it, like the minimum flow rate values, the contour
of the electrified meniscus, the size of the emitted droplets and the total electric
current carried by those droplets. Essential information about electric fields, surface
charge densities or even flow patterns in the meniscus tip has not as yet been
obtained experimentally. On the other side, scaling analyses are based on hypotheses
whose validity throughout the parameter space is questionable, and provide qualitative
information too. There is general consensus about the reliability of the leaky dielectric
model to describe electrohydrodynamic problems where the electric relaxation time
is at most comparable with the hydrodynamic temporal scale. Solutions of this
model can be regarded as ‘numerical experiments’ which enable the quantitative
determination of all electrospray properties of interest. The calculation of the steady
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base flows close to the stability limits must be accompanied by their linear stability
analyses to ensure that those flows represent stable realizations.

In this work, we have run numerical simulations of the full leaky dielectric
model to study the steady cone-jet mode of electrospraying close to the minimum
flow rate stability limit. These simulations are valid for arbitrary values of the
physical properties, including the viscosity and the electrical conductivity. We have
also calculated the linear eigenmodes to determine the asymptotic stability of the
system. There is good agreement between the numerical minimum flow rates and
those measured both in previous experiments and in the ones conducted here. This
confirms the validity of the leaky dielectric model, and indicates that instability is
caused by the growth of the dominant eigenmode, contrary to what can happen in
other similar configurations (Cruz-Mazo et al. 2017). Instability seems to originate in
the cone-jet transition region, and causes the oscillation of whole liquid meniscus. This
result reveals the local nature of the cone-jet mode, which permits the approximate
description of this phenomenon in terms of β, δµ and Qr exclusively. The electric
relaxation time is considerably smaller than the fluid particle residence time within the
cone-jet transition region (defined as the region where the surface and bulk intensities
are of the same order of magnitude) for all the cases analysed, except for the
high-polarity configuration (Gañán-Calvo et al. 2013), in which those characteristic
times commensurate with each other. Despite the important difference between the
electric and residence times for 1-octanol, there is significant inner electric field in
that case too, which implies that the superficial charge is not fully relaxed in the
cone-jet transition region. The liquid ejection is essentially powered by the electric
shear stress applied on the free surface in the cone-jet transition region. For small
(large) values of βδµ, viscous (polarization) forces rise against the ejection in that
region. Capillary forces may also play a significant role in the minimum flow rate
stability limit.

Both numerical simulations and experiments have shown the stabilizing role played
by the feeding capillary when its diameter is not sufficiently large as compared to that
of the cone-jet region. Stable jets with electrification levels higher than the Rayleigh
limit were produced. The high-speed visualization of the jet break-up allowed us
to describe the coalescence of two consecutive liquid blobs to give rise to a bigger
emitted droplet. The size of droplets exceeded Rayleigh’s prediction due to the
stabilizing effect of both the axial electric field and viscosity. We did not observe the
formation of satellite droplets.

The present work supports the scaling laws dj/do ∼ Q1/2
r and I/Io ∼ Q1/2

r (Gañán-
Calvo 1999) corresponding to the so-called ‘IE’ regime described by Gañán-Calvo
(2004). No significant influence of the liquid permittivity has been observed, except
for very high polarities corresponding to the ‘IP’ regime (Gañán-Calvo 2004). The
results presented here are also consistent with the scaling laws for the minimum flow
rate in the viscous βδµ � 1 and high-polarity βδµ � 1 limits (Gañán-Calvo et al.
2013). In the latter case, the flow rates below the limit Qr min = 0.2β correspond to
a capillary diameter comparable to the transition region size. The stabilization effect
due to the small size of the feeding capillary explains why the prefactor of the scaling
law derived by Gañán-Calvo et al. (2013) was much smaller than unity. In this case,
there is not a well distinguishable Taylor cone, and an additional parameter must
be considered in the analysis (Scheideler & Chena 2014). It must be noted that the
existence of significant inner electric fields in our simulations do not invalidate the
scaling laws σ ∼ εoEo

n and I ∼ (Eo
n)

2 (I is the electrostatic term in (5.2)), because
Eo

n ∼ Eo
n − βEi

n and (Eo
n)

2
∼ (Eo

n)
2
− β(Ei

n)
2 in all the cases analysed.
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