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Modulated rotating convection: radially
travelling concentric rolls
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Recent experiments in rotating convection have shown that the spatio-temporal bulk
convective state with Küppers–Lortz dynamics can be suppressed by small-amplitude
modulations of the rotation rate. The resultant axisymmetric pulsed target patterns
were observed to develop into axisymmetric travelling target patterns as the mo-
dulation amplitude and Rayleigh number were increased. Using the Navier–Stokes–
Boussinesq equations with physical boundary conditions, we are able to numerically
reproduce the experimental results and gain physical insight into the responsible
mechanism, relating the onset of the travelling target patterns to a symmetry-restoring
saddle-node on an invariant circle bifurcation. Movies are available with the online
version of the paper.

1. Introduction
It is well known that temporal forcing in dynamical systems can stabilize states

that are otherwise unstable, as well as producing new phenomena not present in the
unforced problem (Davis 1976). Recent examples in fluid dynamics include Taylor–
Couette flow with axial harmonic oscillations of the inner cylinder that substantially
shift the transition to Taylor vortices to faster rotation rates of the inner cylinder
(Weisberg, Kevrekidis & Smits 1997; Marques & Lopez 1997). In that problem,
when the transition does occur, it takes place in a complex catastrophic way (Sinha,
Kevrekidis & Smits 2006; Avila et al. 2007). Another striking example is vortex
breakdown in a cylindrical container driven by the rotation of one endwall. In that
case, the oscillations of the vortex breakdown bubbles are quenched by a small-
amplitude harmonic modulation of the rotation (Lopez et al. 2008). These are all
examples of how the oscillatory Stokes layers produced by the harmonic modulations
inhibit instabilities of the unmodulated state.

Rayleigh–Bénard convection has been, and continues to be, a very popular
hydrodynamic system in which to study the effects of temporal forcing (Davis
1976; Bodenschatz, Pesch & Ahlers 2000). The early studies either modulated the
vertical acceleration or the temperature applied at a horizontal boundary, and were
primarily concerned with shifts in the threshold for the onset of convection due to the
modulation. Both of these modes of modulation suffer from experimental limitations
in their implementation (Bodenschatz et al. 2000) as well as theoretical issues arising
from the forced breaking of the mid-plane reflection symmetry, commonly referred
to as the Boussinesq symmetry (Roppo, Davis & Rosenblat 1984).

Rotating Rayleigh–Bénard convection (RRBC) in a cylinder, where the rotation
rate is modulated, has been studied theoretically (Bhattacharjee 1990) and experiment-
ally (Niemela, Smith & Donnelly 1991) with regards to threshold shifts. Thompson,
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Bajaj & Ahlers (2002) experimentally observed synchronous spiral and axisymmetric
pulsed target patterns (the observed type of pattern depending on experimental
protocols) at low modulation amplitudes of the rotation rate in parameter regimes
where the unmodulated state manifested spatio-temporal Küppers–Lortz (KL)
dynamics (Küppers & Lortz 1969). At larger modulation amplitudes, the axisymmetric
pulsed target patterns undergo transition to a modulated travelling target pattern in
which the innermost convective roll collapses in on itself and a new convective
roll develops at larger radii as the entire pattern drifts radially inward. The target
and spiral patterns have been qualitatively computed using a model based on the
Swift–Hohenberg equation (Roxin & Riecke 2002). The model essentially treated
the problem as a two-dimensional pattern-forming system, neglecting its vertical
structure. The qualitative nature of the model precluded quantitative comparisons
with the experiments. Furthermore, the radially travelling target patterns could not
be simulated using that model and the origin of the radial drift remained unidentified.

Similar radially travelling target patterns have been simulated using the Navier–
Stokes–Boussinesq equations in axisymmetric subspaces of both non-rotating
(Tuckerman & Barkley 1988) and rotating (Lopez, Rubio & Marques 2006) Rayleigh–
Bénard convection in cylinders. In both cases, the travelling target patterns were found
to originate at a SNIC (saddle-node on an invariant circle) bifurcation. Here, we have
simulated the conditions corresponding to the experiments of Thompson et al. (2002)
using the Navier–Stokes–Boussinesq equations and have reproduced the various
observed states, including the radially travelling target patterns. By considering how
the period of the travelling target pattern varies with the forcing amplitude and
the Rayleigh number, we show that the travelling target patterns in the modulated
rotation problem also arise via a SNIC bifurcation in which the Boussinesq symmetry
plays a central role. Furthermore, it is apparent that it is not the modulated rotation
that is responsible for the radial drift, but rather the restriction of the dynamics to an
axisymmetric subspace in which the SNIC bifurcation of pulsed target patterns leads
to the radially travelling circular rolls.

The nature of this problem captures the competition and nonlinear interactions
between thermal convective instabilities and the large-scale circulation mechanically
driven by the modulated rotation of the cylinder. In the absence of modulation,
for large enough Rayleigh number, the base state consists of Küppers–Lortz spatio-
temporal chaos. On the other hand, for small Rayleigh number, the base state
consists of the oscillatory axisymmetric large-scale circulation originating in the
Stokes layers at the top and bottom boundaries. When both mechanisms are of
comparable strength, the numerical simulations show that the Küppers–Lortz chaotic
state is replaced by pulsed and travelling target patterns, in agreement with the
aforementioned experimental results.

2. Governing equations, symmetries and numerical technique
2.1. Governing equations

Consider the flow in a circular cylinder, with no-slip boundary conditions, of radius
r0 and depth d , with a modulated rotation ω(t∗) = ω0 + ω1 sin(ωmt∗), where t∗ is
dimensional time in seconds. The endwalls are maintained at constant temperatures,
T0 −�T/2 at the top and T0 +�T/2 at the bottom, and the sidewall is insulating. The
Boussinesq approximation is implemented, treating all fluid properties as constant
except for the density in the gravitational term, which varies linearly with temperature.
The centrifugal buoyancy (Lopez et al. 2006; Marques et al. 2007) is ignored in this
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paper since in the experiments (Thompson et al. 2002), the Froude number was very
small (Fr = ω2

0r0/g < 0.016, where r0 is the cylinder radius, ω0 is the mean rotation
rate and g is the acceleration due to gravity. The system is non-dimensionalized using
d as the length scale, d2/ν as the time scale (ν is the kinematic viscosity), ν2ρ0/d

2 as
the pressure scale (ρ0 is the density at mean temperature T0), and �T (the difference
in temperature between the top and bottom) as the temperature scale. In a frame
of reference rotating at the mean rotation rate ω0, the non-dimensional governing
equations are

(∂t + u · ∇)u = −∇P + ∇2u +
Ra

σ
(Θ − z)ẑ + 2Ω0u × ẑ − RaFr

σγ
(Θ − z)r, (2.1)

(∂t + u · ∇)Θ = w + σ −1∇2Θ, ∇ · u = 0, (2.2)

where u = (u, v, w) is the velocity field in cylindrical coordinates (r, θ, z), P is the
dynamic pressure and ẑ is the vertical unit vector in the z-direction. As noted above,
Fr = 0 in this study. Θ is the temperature deviation with respect to the conductive
linear temperature profile; the relationship between Θ and the temperature T (both
non-dimensional) is given by

T = T0/�T − z + Θ, (2.3)

where T0/�T − z is the conductive temperature profile.
There are six non-dimensional parameters:

Rayleigh number : Ra = αgd3�T /κν,

Coriolis number : Ω0 = ω0d
2/ν,

Prandtl number : σ = ν/κ,

aspect ratio : γ = r0/d,

modulation amplitude : Ω1 = ω1d
2/ν,

modulation frequency : Ωm = ωmd2/ν,

where α is the coefficient of volume expansion, and κ is the thermal diffusivity. The
boundary conditions (in a frame of reference rotating at the mean rotation rate ω0)
are:

r = γ : Θr = u = w = 0, v = γΩ(t),

z = ±0.5 : Θ = 0, u = w = 0, v = rΩ(t),

where Ω(t) = Ω1 sin(Ωmt) is the angular velocity of the container in the reference
frame rotating with the mean angular velocity Ω0. To simplify the discussion, we
introduce the relative modulation amplitude A= Ω1/Ω0 to allow for comparison
between states with differing Ω0. A will be used instead of Ω1, except in the particular
case when Ω0 = 0, as then A is not defined.

2.2. Symmetries

The governing equations and boundary conditions are invariant under arbitrary
rotations about the axis, Rα , whose action is

Rα(u, v, w, Θ)(r, θ, z, t) = (u, v, w, Θ)(r, θ + α, z, t). (2.4)

They are also reflection-symmetric about the cylinder half-height. The action Kz of
this so-called Boussinesq symmetry is

Kz(u, v, w, Θ)(r, θ, z, t) = (u, v, −w, −Θ)(r, θ, −z, t). (2.5)
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The symmetry group of the system is G = SO(2) × Z2, with SO(2) generated by Rα

and Z2 by Kz. The basic state is G-invariant and τm-periodic, where τm =2π/Ωm.
In the absence of any rotation (Ω0 =Ω1 = 0), the system is also invariant under

reflections on meridional planes (θ constant), that together with the invariance to
rotations about the axis generate the O(2) = SO(2) � Z2 symmetry group; the Z2

component is generated by the reflection (angle flip) symmetry

Kθ (u, v, w, Θ)(r, θ, z, t) = (u, −v, w, Θ)(r, −θ, z, t). (2.6)

The symbol � indicates the semidirect product of the symmetry groups; it is not
the direct product (×) because the flip symmetry Kθ does not commute with axial
rotations Rα: KθRα = R−αKθ . The symmetry group of the system in the absence of
any rotation is G = O(2) × Z2. Note further that when the modulated rotation has
zero mean (Ω0 = 0, but Ω1 �= 0), the angle flip Kθ is no longer a symmetry of the
problem, but the system is still invariant under a space–time symmetry H , whose
action is the composition of Kθ with an evolution of half the modulation period:

H (u, v, w, Θ)(r, θ, z, t) = (u, −v, w, Θ)(r, −θ, z, t + τm/2). (2.7)

In particular, when restricting the Ω0 = 0 problem to the axisymmetric subspace, the
symmetry group of the system in the zero mean modulation case is Z2 ×Z2, generated
by H and Kz. Although in this paper we consider only non-zero mean rotations,
Ω0 �= 0, some of the solutions obtained exhibit characteristics of the symmetry H

being slightly broken, since the values of Ω0 considered are relatively small. Finally,
it is useful to introduce a global Poincaré map which is the stroboscopic map of the
periodically forced system

P (u, v, w, Θ)(r, θ, z, t0) �→ (u, v, w, Θ)(r, θ, z, t0 + τm). (2.8)

For any function of time f (t), we can analogously define the action of P on it as
(Pf )(t0) = f (t0 + τm); the time phase t0 can be chosen arbitrarily, resulting in different
Poincaré maps, all of them equivalent. To be specific, in this paper we will use the
phase t0 = 0. For any variable f (t), the discrete orbit generated by P , starting at f (0),
is given by P nf = f (nτm); it is obtained by strobing f (t) at the beginning of each
forcing period.

To describe the heat transfer properties of a solution we use the Nusselt number,
the ratio between the heat transfer of the solution considered, and the heat transfer
of the conductive state, both through the top lid. It is given by the negative average
of the derivative of the temperature field at the top lid,

Nu = −〈∂T /∂z〉|z=0.5 = 〈1 − ∂Θ/∂z〉|z=0.5. (2.9)

We could also compute the heat transfer at the bottom lid, Nub = 〈∂T /∂z〉|z = −0.5.
The Kz reflection relates Nu and Nub; the relationship depends on how the solution
considered transforms under Kz. The breaking of Kz-symmetry will be one of the
focuses of this paper, resulting in pairs of Kz-symmetry related states. Integrating
the temperature equation (2.2) in the fluid domain and using the divergence theorem
and the boundary conditions of the problem, the following relationship between both
Nusselt numbers is obtained,

Nub − Nu = σ
d

dt
〈T 〉V , (2.10)

where 〈 〉V means the volume average in the fluid domain. For steady solutions,
the time derivative is zero, and the Nusselt-numbers coincide: Nu = Nub; therefore,
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Kz-related steady solutions must have the same Nusselt-number value. For periodic
solutions, both Nusselt numbers are time-dependent; their instantaneous values are
not necessarily the same, but their time-averaged values are still identical (because the
average of the time derivative in (2.10) is zero). Therefore, Kz-related periodic solutions
have different instantaneous Nusselt-number values, and so different P n(Nu) values.
However, their time-averaged values are the same. For periodically forced flows, as in
the present problem, it is very convenient to use the Nusselt number averaged over a
forcing period, Nu.

2.3. Numerical technique

The governing equations have been solved using the second-order time-splitting
method proposed in Hugues & Randriamampianina (1998) combined with a pseudo-
spectral method for the spatial discretization, using a Galerkin–Fourier expansion
in the azimuthal coordinate θ and Chebyshev collocation in r and z. In order to
handle the coordinate singularity at the axis due to the use of polar coordinates, and
avoid unnecessary clustering of grid points near the axis, the prescription in Fornberg
(1998) has been followed. The expansion for the thermal perturbation is given by

Θ(r, θ, z) = Re

2nr+1∑
m=0

nz∑
n=0

nθ /2−1∑
k=−nθ /2

ΘmnkTm(r/γ )Tn(2z)eikθ . (2.11)

The expansions for the velocity components u, v and w are analogous. Fornberg’s
prescription is that Θmnk = wmnk = 0 when k + m is odd, and umnk = vmnk = 0 when
k + m is even; there are precisely nr + 1 non-zero coefficients for fixed n and k in
(2.11). Owing to the expansion (2.11) the origin is never a collocation point, and the
equations are solved in the physical domain (r, θ, z) = (0, γ ] × (0, 2π] × [−1/2, 1/2].
Following Orszag & Patera (1983), we have used the combinations u+ = u + iv
and u− = u − iv in order to decouple the linear diffusion terms in the momentum
equations. For each Fourier mode, the resulting Helmholtz equations for Θ , w, u+

and u− have been solved using a diagonalization technique in the two coordinates
r and z. Fornberg’s prescription guarantees the regularity conditions at the origin
required in order to solve the Helmholtz equations (Mercader, Net & Falqués 1991).

We have tested the code on a number of convection problems in rotating cylinders
(Lopez et al. 2006, 2007; Marques et al. 2007); establishing resolution requirements
over a wide range of parameter regimes. For the problems considered in this paper,
we have used nr = 64 and nz = 24 Chebyshev modes. For cases where the solution is
non-axisymmetric, we have used up to nθ = 184 Fourier modes. We have used time
steps δt � 10−3 viscous time units (depending on the modulation frequency). We have
fixed the aspect ratio γ = 11.8 and Prandtl number σ =4.5 to correspond to those in
the experiments of Thompson et al. (2002), and consider variations in A and Ωm for
selected values of Ra and Ω0 in the range considered in the experiments. To simulate
the experimentally observed axisymmetric patterns, we restrict our computations to
the axisymmetric subspace. This restriction affords a detailed exploration of the
dynamics over an extensive range of parameter space.

3. Results
We begin by briefly describing the unmodulated RRBC state which is being

quenched by the modulated rotation. It is a state of spatio-temporal complexity
which arises essentially directly from the conduction state as Ra is increased (for the
rotation rates considered here).
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Figure 1. Snap-shot of isotherms at mid-height of a Küppers–Lortz state at Ra = 2868.8,
Ω0 = 23.6, γ = 11.8 and A = 0. Movie 1 shows the spatio-temporal characteristics of the
isotherms at mid-height of this state over 450 viscous times at a rate of 20 frames per second,
with each frame being 0.45 viscous times apart.

3.1. Unmodulated RRBC: Küpper–Lortz state

In the absence of modulation (A= 0), for Ra less than a critical value Rac that depends
on Ω0, γ and σ , the system is in a state of solid-body rotation with a linear temperature
profile in z, i.e. the trivial conduction state. For Ra >Rac, KL spatio-temporal chaos
is observed. This consists of patterns of convection rolls that break up into domains
of various orientations with propagating fronts between the domains, and defects that
nucleate at the cylinder wall evolving into growing patches of rolls oriented at angles
different from the rolls nearby in the interior, all occurring with temporal irregularity.
Figure 1 shows computed isotherms at mid-height of a KL state at Ra = 2868.8 and
Ω0 = 23.6, corresponding to the experimental conditions of the KL state in figure 1(a)
of Thompson et al. (2002). Movie 1, available with the online version of the paper,
shows the spatio-temporal characteristics of the isotherms at mid-height of this state
over 450 viscous times at a rate of 20 frames per second, with each frame being 0.45 vis-
cous times apart. This state is typical for the range of Ra and Ω0 considered in this pa-
per when A= 0. The associated spatio-temporal chaos has been the subject of extensive
experimental and amplitude equation investigations (see Knobloch 1998; Bodenschatz
et al. 2000, and references therein), and more recently it has also been studied
numerically using the Navier–Stokes–Boussinesq equations with no-slip boundary
conditions (Sánchez-Álvarez et al. 2005; Scheel & Cross 2005; Becker et al. 2006).

3.2. Modulated basic state

In the modulated problem (A �= 0), there is no trivial conduction state for any Ra �= 0
as the modulated rotation induces a mechanically driven large-scale flow. Without
modulation, for Ra <Rac(Ω0, γ, σ ), the flow is in a state of solid-body rotation with
a linear temperature profile vertically across the layer (Θ = 0). For any modulation,
A �= 0, Stokes layers (analogues of the boundary layer on a plate oscillating in its own
plane; see Stokes 1851; Batchelor 1967; Kerczek & Davis 1974; Davis 1976; Yih 1977)
form on the top and bottom boundaries, whose thicknesses scale with 1/

√
Ωm. These

Stokes layers arise as the vortex lines, which for A=0 are parallel to the rotation
axis, are displaced in the layers radially outward (inward) during the acceleration
(deceleration) phase of the modulation. This bending of the vortex lines in the Stokes
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Figure 2. Snap-shots in a meridional plane (r ∈ [−γ, γ ], z ∈ [−0.5, 0.5]) of the stream-
function of basic states, all at the same phase of the imposed modulation, at Ra = 2600,
Ω0 = Ωm = 23.6 and indicated A. Five contours are spaced linearly with Ψ ∈ [−5, 5]; black
(grey) contours are negative (positive) and the zero contour is dashed.

layers gives rise to a secondary flow which centrifuges fluid in the layers radially
outward (inward) with the acceleration (deceleration) of the rotation of the cylinder.
The modulated rotation also drives fluid into and out of the Stokes layers from the
interior (the associated Ekman pumping phenomenon). However, the major impact
on the interior flow comes from the fluid in the top and bottom Stokes layers being
deflected into the sidewall layer and forming a radial jet at mid-height (z = 0). This
radial jet injects fluid with high angular momentum (acquired in the Stokes layers)
into the interior at mid-height during the acceleration phase. During the deceleration
phase, the fluid flows in the opposite direction: fluid from the interior is sucked into
the sidewall layer and transported into the top and bottom Stokes layers. In figure 2,
we show the development of the Stokes layers and sidewall jet with increasing A

at Ra = 2600 with Ω0 = Ωm = 23.6, at a fixed phase of the modulation (during the
acceleration phase, when the radial outflow in the Stokes layer is greatest). For small
A, the actions of the Stokes layers and sidewall jet are restricted to the vicinity of the
sidewall. As A is increased, this action extends deeper in toward the axis, roughly as√

A. The flow in the centre of the cell remains essentially in solid-body rotation out
to a radius that depends on both A and Ωm.

Figure 3 illustrates the hydrodynamics of the modulated basic state in the
neighbourhood of the sidewall, r ∈ [0.8γ, γ ], for Ra = 2600, Ω0 = Ωm = 23.6 and
A= 0.05 (under these conditions, the basic state is stable). Shown in the first column
of the figure is the vortex line bending driving the secondary flow and sidewall jet
(illustrated by the radial velocity in the second column, and instantaneous streamlines
in the third column), which drive a time-dependent temperature perturbation (shown
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Time rv + Ω0r2 u Ψ Θ

τm/8

2τm/8

3τm/8

4τm/8

5τm/8

6τm/8

7τm/8

τm

Figure 3. Contours of the angular momentum rv + Ω0r
2, radial velocity u, streamfunction

Ψ , and the temperature deviation Θ in a part of a meridional plane near the sidewall
(r ∈ [0.8γ, γ ], z ∈ [−0.5, 0.5]) over one forcing period τm = 2π/Ωm, for a modulated basic
state at Ra = 2600, Ω0 = Ωm = 23.6 and A =0.05. Five contour levels are linearly spaced for
Θ ∈ [−0.025, 0.025] and u ∈ [−10, 10], and five contour levels are quadratically spaced for
Ψ ∈ [−1.25, 1.25] and ten contours are quadratically spaced for rv + Ω0r

2 ∈ [9500, 14 250].

in the fourth column). This temperature deviation, consisting of relatively hot and
cold axisymmetric rolls at the lower and upper corners of the sidewall, alternating
synchronously with the forcing, exists for all Ra when A �= 0. Their presence leads to
a heat flux across the layer enhanced from that due purely to conduction, i.e. for any
Ra > 0 and A> 0, the Nusselt number is Nu > 1.

The modulated basic state is both axisymmetric and Kz-reflection symmetric about
z = 0, i.e. the symmetry group of the basic state is SO(2) × Z2, and it is synchronous
with the modulation frequency. The usual Nu > 1 criterion for the onset of thermal
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τ u Ψ Θ

τm/8

2τm/8

3τm/8

4τm/8

5τm/8

6τm/8

7τm/8

τm

Figure 4. Contours of the radial velocity u, streamfunction Ψ and temperature deviation Θ in
a meridional plane (r ∈ [0.74γ, γ ], z ∈ [−0.5, 0.5]) over one forcing period of the pulsed target
pattern at Ra = 2700, Ω0 = Ωm = 23.6, and A = 0.05. Five contours are quadratically spaced
for Ψ ∈ [−1.25, 1.25] and are linearly spaced for Θ ∈ [−0.025, 0.025] and u ∈ [−10, 10].

convection cannot be used to determine the instability of the basic state. Instead, we
detect the onset of axisymmetric thermal convection by monitoring the temperature
on the axis at mid-height Θm(t) = Θ(r = 0, θ = 0, z = 0, t). For the basic state, Θm = 0,
and the onset of axisymmetric convection breaks the Boussinesq reflection symmetry
Kz, giving states with Θm �= 0.

3.3. Onset of thermal convection: axisymmetric pulsed target patterns

For a given A �= 0, on increasing Ra beyond Rac =2627, the modulated basic state
loses stability via a pitchfork bifurcation that breaks the Boussinesq reflection
symmetry Kz. At this bifurcation, a pair of states synchronous with the modulation
period emerge. Near the sidewall, the hydrodynamics of these bifurcating pulsed
target patterns is very similar to that of the modulated basic state (illustrated in
figure 3), although the symmetry Kz has been broken by the onset of convection, as
can be seen in figure 4. This symmetry breaking is characterized by the development
of a thermal plume at the axis, which comes in two varieties: one is a hot plume
rising and the other is a cold plume descending on the axis. These plumes can be
seen in figures 5 and 6, which show snap-shots at increasing Ra of Θ-isotherms in a
meridional plane, at a fixed phase of the modulation, for Ω0 = Ωm =23.6 and A= 0.18
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Ra Θ
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2700

2720

2740

2760

2780

2800

2820

2840

Figure 5. Snap-shots in a meridional plane of Θ for pulsed target states, all at the same
phase of the imposed modulation, at A = 0.18 and Ω0 = Ωm = 23.6 for Ra as indicated. Ten
contours are evenly spaced with Θ ∈ [−0.5, 0.5].

Ra Θ

2630

2640

2650

2660

2670

2680

2690

2700

Figure 6. Snap-shots in a meridional plane of Θ for pulsed target states, all at the same
phase of the imposed modulation, at A = 0.05 and Ω0 = Ωm = 23.6 for Ra as indicated. Ten
contours are evenly spaced with Θ ∈ [−0.5, 0.5].

and 0.05, respectively, illustrating the development of the pulsed target patterns. With
increasing Ra , concentric rolls develop, growing out from the axis; the sidewall jet
displaces the nearby rolls alternately closer to and further from the axis of rotation
with no net movement over the course of a forcing period (figure 4). The isotherms
corresponding to the symmetrically related branch correspond to reflecting those in
figures 5 and 6 about the mid-height z = 0 and changing the sign of Θ , i.e. applying
the action of Kz. Figure 7 shows snap-shots of the isotherms at the mid-plane z = 0
of two target states with warm cores at Ω0 = Ωm = 23.6, and Ra = 2840, A= 0.18 and
Ra = 2700, A= 0.05. The synchronous pulsation and lack of net radial movement is
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(a) (b)

Figure 7. Snap-shots of isotherms at mid-height for axisymmetric pulsed target patterns at
(a) Ra = 2840 and A = 0.18, and at (b) Ra = 2700 and A =0.05, both with Ω0 = Ωm = 23.6 (ten
forcing periods of the Ra = 2700 pattern are shown in movie 2.

A Ψ

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Figure 8. Snap-shots in a meridional plane of streamfunction for pulsed target states, all at
the same phase of the imposed modulation, at Ra = 2680, Ω0 = Ωm = 23.6 and A as indicated.
Ten contours are spaced quadratically with Ψ ∈ [−5, 5].

illustrated in movie 2 available with the online version of the paper, which shows the
pulsed target pattern state from figure 7(b) over ten modulation periods.

The development with A of the radial velocity of pulsed target patterns at
Ω0 = Ωm = 23.6 and Ra = 2680 is illustrated in figure 8. The state at A= 0 is the
steady target pattern of the axisymmetric subspace of the unmodulated problem
(which is unstable to the KL state). It is evident that the action of the oscillatory
Stokes layers is stronger for larger r and that the Stokes layers tend to quench the
convective rolls from the sidewall to smaller and smaller radii as A increases. For
large enough A, the pulsed target patterns are completely quenched at the pitchfork
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(b)(a)
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_
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Figure 9. (a) Bifurcation diagrams at Ω0 = Ωm = 23.6 for A = 0.05 and A = 0.18, together
with (b) the corresponding variations of Nu − 1 with Ra .

(a) (b)
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Figure 10. Time series of Θm at Ω0 = Ωm = 23.6, A = 0.05 and Ra =2700 and 2705. The
solutions at Ra = 2700 are Kz-conjugate pulsed target patterns and the solution at 2705 is a
travelling target pattern. The box where the two curves cross at about t = 1967 is the close-up
in (b) which includes a Poincaré strobing P n(Θm) =Θm(nτm), n integer, of these solutions
shown as symbols superimposed on the continuous Θm(t).

bifurcation and the basic state is stabilized. In figure 8, this stabilized basic state is
shown at A= 0.2.

The pitchfork bifurcation (using Ra as the bifurcation parameter) is illustrated in
figure 9(a) for Ω0 =Ωm = 23.6 at A= 0.05 and A= 0.18. The measure of the flow state
used in these bifurcation diagrams is Θm(0), the mid-point temperature strobed at a
particular phase in the modulation (corresponding to t = 0). For Ra < Rac(A, Ω0, Ωm),
the basic state (dashed line at Θm(0) = 0) is stable, and for Ra > Rac it is unstable. At
Ra = Rac, two branches of pulsed target patterns emerge at the pitchfork bifurcation
as the Kz symmetry is broken, one with a hot plume rising at the axis (Θm(0) > 0)
and the other with a cold plume descending at the axis (Θm(0) < 0). For these states,
Θm(t) has a small-amplitude oscillation synchronous with the imposed modulation,
(figure 10). The close-up in figure 10(b) details this oscillation and shows the phase
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at which the solution is strobed, P n(Θm), used in figure 9 and in subsequent analyses.
The heat transfer properties of these states can be seen in figure 9(b), showing the
time-averaged Nusselt number values, Nu , corresponding to figure 9(a). Notice that
the Nu curve changes slope (it increases discontinuously) at the bifurcation point,
so the slope of the Nu(Ra) curve can also be used for the determination of the
bifurcation point.

3.4. Travelling target pattern: the SNIC bifurcation

With increasing Ra for A � 0.04 or increasing A for Ra � 2700, the pulsed target
patterns give way to the travelling target patterns which are distinguished by being
quasi-periodic. Figure 10 shows Θm(t) for the two Kz-conjugate pulsed target patterns
at Ω0 =Ωm = 23.6, A= 0.05 and Ra = 2700 (approximately straight lines at Θm ±0.15)
and the travelling target pattern state at the same Ω0, Ωm and A, but at slightly larger
Ra = 2705 (curved line). The travelling target pattern has a very low frequency Ωw

in addition to the imposed modulation frequency Ωm. The ratio of the corresponding
periods for the travelling target pattern state shown in figure 10(a) is τw : τm ≈ 8800.
The periods of these travelling wave states diverge as onset is approached from above,
making it clear that the travelling target pattern solutions emerge at an infinite period
bifurcation.

Strobing the travelling target patterns with the Poincaré map P reveals the new
second period, which corresponds to the time, τw , for the target pattern to repeat
itself as the rolls recede in towards the axis. Figure 11(a) shows reconstructed phase
portraits using delays, (P n(Θm), P n+100(Θm)), of states at Ω0 = Ωm = 23.6 and A= 0.18
at various Ra . The basic state is a fixed point at the origin and the pulsed target
patterns are symmetrically related fixed points along the diagonal (since the pulsed
target pattern is a fixed point of P ). The phase portrait of the travelling target pattern
at Ra = 2844 consists of open circles drawn every fourth iterate of P over one period
τw . The τw-oscillation is of a slow–fast nature, where the oscillation slows significantly
in the neighbourhood of the ghosts of the pulsed target patterns that were present
at slightly lower Ra . The travelling target pattern in figure 11(a) is symmetric to a
half turn, indicating that the Kz-symmetry has been restored in the infinite period
bifurcation (which the following results identify as a SNIC). Moreover, the travelling
target pattern shows a weaker slowing down at two additional points in between the
ghosts of the pulsed target patterns, and the travelling target pattern is close to being
symmetric by a 90◦ rotation. This reflects the fact that the problem has an exact
Z2 × Z2 symmetry when the mean rotation is zero (Ω0 = 0).

Figure 11(b) shows the discrete Poincaré orbit P n(Θm) (at the discrete times
t = nτm) for the travelling target pattern in figure 11(a), while figure 11(c) shows the
corresponding Nu − 1 time series. The period of Nu − 1 is half the period of P n(Θm).
This is because the two halves of the period in P n(Θm) correspond to Kz-symmetric
states (see figure 13), and therefore have the same value of Nu , as explained in § 2.

Further away from onset, the secondary oscillations in the travelling target patterns
(corresponding to their radial drift) take on more of a uniform oscillator character,
but this drift is still very slow compared to the imposed modulation. The space–
time diagrams in figure 12 show P (Θ) at the midplane over 2500 viscous time
units corresponding to 9400τm; this is equivalent to almost 9 h in the laboratory
experiments conducted by Thompson et al. (2002). Very near the SNIC curve (case
a), the travelling target pattern remains essentially unchanged for a long time (about
4500τm) resembling one of the pulsed target patterns, then rapidly evolves to a state
resembling the corresponding Kz-conjugate state. In case b, the state is a little further
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Figure 11. (a) Reconstructed phase portraits using delays, (P n(Θm), P n+100(Θm)), of the basic
state (filled diamond at the origin), pulsed target patterns (open diamonds) for Ra = 2700,
2760 and 2820, and one travelling target pattern (dots) at Ra = 2844, all for Ω0 = Ωm = 23.6
and A = 0.18. For visual clarity only every fourth iterate of the Poincaré map over one period
of the travelling target pattern is shown (τw = 2312τm in this case). Time series of (b) P n(Θm)
and (c) Nu − 1 for the travelling target pattern state in (a).

removed from the SNIC curve so that the rolls drift radially inward faster, but the
slow–fast characteristics are still evident. In case c, the state is even further away
from the SNIC curve and the τw oscillations are faster and more uniform. Note
that case b is at relatively large Ra and A, and so the sidewall jet driven by the
modulation quenches the rolls near the sidewall to a much greater extent than in case
c at relatively smaller Ra and A. Movies 3, 4 and 5 available with the online version
of the paper show these three states over several τw periods strobed at τm.

Figures 13 and 14 show eight snapshots equally spaced over the travelling-wave
period τw at the same phase in the imposed τm modulation. Figure 13 shows a large
A= 0.18 case in which the strong Stokes layers have suppressed the convection rolls
away from the axis region, and the modulation-driven cells at the corners provide
non-trivial heat exchange at the sidewall. This is the same solution as shown in
figure 12(b). Far from the axis there are weak concentric ring plumes that emerge up to
several d from the sidewall, gaining strength as they drift toward the axis. At the axis,
the innermost plume weakens and disappears entirely before being replaced by the
adjacent roll. Figure 14 shows an A= 0.05 case in which the travelling target pattern
fills the whole cell. This is the same solution as shown in figure 12(a). The sidewall
jet perturbs the nearby velocity and temperature fields, resulting in small inward and
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(a)

(b)

(c)

Figure 12. Space–time plot of travelling target states at Ω0 =Ωm =23.6 for various Ra and
A, showing Θ at z =0 with time running from top to bottom over 2500 viscous times. (a)
Ra = 2705 and A = 0.05; (b) Ra = 2844 and A = 0.18; (c) Ra =2840 and A = 0.06. Movies 3, 4
and 5 show these three states over several τw periods strobed at τm.

Time Θ

τw/8

2τw/8

3τw/8

4τw/8

5τw/8

6τw/8

7τw/8

τw

Figure 13. Contours of temperature deviation in a meridional plane (r ∈ [−γ, γ ], z ∈
[−0.5, 0.5]) over one period of the travelling target pattern at Ra = 2844, Ω0 = Ωm = 23.6
and A = 0.18, the same solution as shown in figure 12(b). Five contours are shown linearly
spaced between −0.2 and 0.2.

outward motions of the outermost cells as well as a mechanically driven heat transport.
Both take place on the τm time scale, as do those in the nearby pulsed target pattern
(figure 4). Close-ups of the radial velocity and Θ near the sidewall region for this case
are shown in figure 15. The sequence shown in figure 15 is over the much slower τw time
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Time Θ

τw/8

2τw/8

3τw/8

4τw/8

5τw/8

6τw/8

7τw/8

τw

Figure 14. Contours of temperature deviation in a meridional plane (r ∈ [−γ, γ ], z ∈
[−0.5, 0.5]) over one period of the travelling target pattern at Ra = 2705, Ω0 = Ωm = 23.6
and A =0.05, the same solution as shown in figure 12(a). Eight contours are shown linearly
spaced between −0.2 and 0.2.

τ u Ψ Θ

τw/8

2τw/8

3τw/8

4τw/8

5τw/8

6τw/8

7τw/8

τw

Figure 15. Snapshots of u, Ψ and Θ , all at the same phase of the imposed modulation
in a meridional plane (r ∈ [0.74γ, γ ], z ∈ [−0.5, 0.5]) over one period τw at Ra = 2705,
Ω0 = Ωm = 23.6 and A =0.05. Five contours are quadratically spaced for Ψ ∈ [−0.25, 0.25]
and linearly spaced for Θ ∈ [−0.025, 0.025] and u ∈ [−10, 10].
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Figure 16. Variation of τw (a) with Ra for A =0.18 and Ω0 = Ωm = 23.6, and (b) with A
for Ra = 2958, Ω0 = 19.7 and Ωm as indicated. The symbols are numerical estimates and the
curves are fits to the first four data points for each Ωm set of the form τw = a/

√
(Ra − RaSNIC ).

The inset in (a) is τ−2
w (Ra).

scale (τw ≈ 8800τm), and each frame is taken at the same phase in the τm modulation.
This is why the relatively hot (cold) cell is always at the top (bottom) corner in these
figures. During the τw cycle, the concentric rolls making up the target pattern drift
radially inward. A new roll is formed as the void left by the outermost receding roll
is filled by relatively warm (cool) fluid seeping out from the bottom (top) corner cell
each half τw period. The modulation-driven Stokes layers and the corresponding mid-
plane jet (all characterized by the radial velocity) do not appear to play a significant
role in the drift dynamics at the τw time scale, although their action on the τm time
scale continues to be essentially the same as for the pulsed target patterns described
earlier.

Figure 16(a) shows the variation of τw for different Ra with A= 0.18 and Ω0 =
Ωm = 23.6. As Ra → RaSNIC from above, τw → ∞ following the 1/

√
(Ra − RaSNIC )

scaling associated with the saddle-node on an invariant circle (SNIC) bifurcation.
Figure 16(b) shows the variation of τw with respect to A for Ra = 2958, Ω0 = 19.7
and various Ωm.

In general, a SNIC bifurcation consists of a saddle-node bifurcation taking place
on a limit cycle, as shown schematically in figure 17(a). Before the bifurcation (left-
hand diagram), the period of the limit cycle tends to infinity as the bifurcation is
approached, and the periodic solution spends more and more time near the place
where the saddle-node will appear. The periodic solution becomes a homoclinic
orbit at the bifurcation point (central diagram). After the bifurcation, the periodic
solution no longer exists and there remains a pair of fixed points, one a saddle
(unstable, hollow in the figure) and the other a node (stable, solid in the figure), and
stable and unstable manifolds connecting them. This is a codimension-one bifurcation
(Kuznetsov 2004). In the presence of a Z2 symmetry, if the limit cycle is not pointwise
Z2-invariant, a pair of saddle-nodes appear simultaneously on the invariant circle
(figure 17b). This is what happens in our problem, but instead of a limit cycle we
have quasi-periodic solutions (a two-torus) (figure 17c). In this case, the two saddle-
nodes become saddle-nodes of limit cycles; the two Z2-symmetric saddle-nodes at the
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(b)

(a)

(c)

Figure 17. Schematic of the SNIC bifurcation on an invariant circle in (a) a generic system,
and (b) a Z2-symmetric system; left, central and right diagrams correspond to before, during
and after the SNIC bifurcation. (c) Schematic of the SNIC bifurcation on an invariant
two-torus; the planar section (a Poincaré section) corresponds to case (b) centre.

bifurcation point are shown as thick lines. Analogous Z2-symmetry breaking between
rotating and modulated rotating waves in Taylor–Couette flow via a SNIC bifurcation
has been computed and observed experimentally (Abshagen et al. 2005a,b). In the
Poincaré section of a quasi-periodic solution (the planar section of the two-torus in
figure 17c), the bifurcation occurs as a Z2-symmetric collision of saddle-nodes shown
in figure 17(b). The invariant circle C on the Poincaré section is Kz invariant as a
set; i.e. given a point a ∈ C, Pa ∈ C although a �=Pa. The continuous quasi-periodic
solution starting at a becomes a discrete orbit on C made of the iterates of a under
P (a, Pa, P 2a, P 3a, . . .). This discrete orbit densely fills C when τw/τm is not rational
(the generic case) and in this case, the Kz reflections of the iterates do not belong to
the discrete orbit, i.e. the discrete orbit is not Kz invariant. This is clearly illustrated
in figure 11(a), where we have plotted every fourth iterate of P over one period τw .
These iterates are on the invariant circle C, and almost fill it near the ghosts of the
saddle nodes. If we keep iterating P , the result would be the invariant circle C.

When τw/τm = p/q is rational, the solution is strictly periodic, of period qτw = pτm,
and if p is even, the discrete orbit is Kz invariant, i.e. applying Kz is the same as
advancing in time by the half-period τw/2. Therefore, in this case, the solution is
invariant under a space–time symmetry consisting of applying Kz and advancing in
time by half the travelling-wave period. In the case illustrated in figure 11(a), there
are approximately 6000 iterates of P in a travelling-wave period τw , and so Kza plus
a τw/2 advance in time is very close to an iterate of P , and the space–time symmetry
is very nearly satisfied, as can be seen in figures 12, 14 and 15.

In the continuous time system, the bifurcation occurs as a Z2-symmetry-restoring
SNIC on an invariant two-torus, as illustrated in figure 17(c). By measuring τw near
onset for assorted values of (Ra, A) and applying the scaling law, the location of the
SNIC bifurcation curve shown in figure 18 was estimated. To the left of the pitchfork
bifurcation curve (dark grey in the figure), the basic state is stable, to the right (white
in the figure) the pair of Kz-conjugate pulsed target patterns are stable, and beyond
the SNIC bifurcation curve (light grey in the figure) the travelling target pattern is
stable.
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Figure 18. Regime diagram for Ω0 = Ωm = 23.6, showing the pitchfork and SNIC bifurcation
curves. States in the different regions: modulated basic state (dark grey), pulsed target patterns
(white), and travelling target patterns (light grey).

4. Discussion and conclusions
The spatio-temporal chaos associated with Küppers–Lortz instability in rotating

convection can be greatly mitigated by small-amplitude high-frequency modulations
of the rotation rate, as observed experimentally by Thompson et al. (2002). In this
paper, we have investigated the responsible mechanisms by employing simulations of
the Navier–Stokes–Boussinesq equations with the corresponding physical boundary
conditions, and analysed the nonlinear solutions with the aid of equivariant
bifurcation theory. The imposed modulation drives Stokes layers at the top and
bottom endplates of the cylinder. The flow in these Stokes layers is fed into the interior
by the presence of the cylinder sidewall, where a radial jet forms at mid-height. These
oscillatory Stokes layers and jet tend to quench instabilities to three-dimensional
flow, and as observed experimentally, axisymmetric target pattern states result. The
main dynamic role of the modulation is to drive the system toward the axisymmetric
subspace, but the subsequent dynamics of the axisymmetric states is apparently
decoupled from the modulations. The use of a stroboscopic map restricts the analysis
of the dynamics to a Poincaré section which is transverse to the modulations and
provides a clearer picture of the dynamics. In the Poincaré section, the modulated basic
state is a Z2 reflection symmetric fixed point that first loses stability at a pitchfork
bifurcation, breaking the Z2 symmetry, where a pair of pulsed target pattern states are
born. These are also fixed points in the Poincaré section and are Z2 reflections of each
other. They lose stability at a saddle-node on an invariant circle (SNIC) bifurcation,
which results in the birth of the travelling target pattern state that motivates this
study. The new frequency introduced by this bifurcation goes to zero at onset and
corresponds to the time scale associated with the slow drift of the concentric rolls
radially inward. After the SNIC bifurcation, the quasi-periodic solution (travelling
target pattern) lives on a two-torus, which is Z2 reflection symmetric. The Poincaré
section of the two-torus results in an invariant circle C, which is also Z2 reflection
symmetric. The travelling target pattern becomes a discrete orbit on the invariant
circle, densely filling it (except when the two frequencies are commensurate). As
the two-torus and the invariant circle C are Kz reflection symmetric, the SNIC
bifurcation is a symmetry-restoring bifurcation. However, individual solutions are not
Kz-symmetric, but in many cases, and in particular close to the SNIC bifurcation,
the Kz-symmetry is very approximately satisfied, taking the form of a space–time
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symmetry: advancing half the travelling-wave period and applying the Kz-symmetry
leaves the solution invariant.

The mechanism for the onset of the travelling target patterns was not identified
in the experimental study (Thompson et al. 2002) and the Swift–Hohenberg (SH)
amplitude equations model (Roxin & Riecke 2002) was unable to reproduce such
travelling target patterns. They surmised that their model equations lacked some
non-variational terms to permit such persistent dynamics. This SH model is two-
dimensional in (r, θ), and since the z-coordinate is absent, the model lacks any
vertical information. By solving the full problem described by the Navier–Stokes
equations incorporating the Boussinesq approximation, we were able to reproduce
the travelling target patterns in the parameter regimes where they were observed
experimentally, and having the same spatio-temporal characteristics as those observed
experimentally. Our analysis of these solutions indicates that the breaking of the so-
called Boussinesq symmetry (a Z2 reflection symmetry) plays a crucial role in the
drift dynamics. Roxin & Riecke (2002) included odd terms in their SH model in
order to impose a generic Z2 invariance in their amplitude equation, which they
claimed mimicked the Boussinesq symmetry. However, the amplitude equations lack
any vertical information (the spatial differential operators are only horizontal), and
the Z2 invariance imposed in the SH model cannot have any relationship with the
vertical reflection Kz (z → −z). Furthermore, we have found that the transition to
the travelling target patterns is a symmetry-restoring SNIC bifurcation where the
resultant travelling target pattern inherits a spatio-temporal Z2 symmetry from the
pair of Z2-related asymmetric pulsed target patterns which are annihilated at the
SNIC bifurcation. So even though it is tempting to think of these states as essentially
two-dimensional (horizontal (r, θ) patterns), their structure in the vertical direction
is crucial in determining their dynamics. In particular, the manner in which the
Boussinesq symmetry is broken and then restored as a spatio-temporal symmetry
holds the key to understanding the onset of the travelling target patterns.

In the physical experiments (Thompson et al. 2002) and in the Swift–Hohenberg
amplitude equations model (Roxin & Riecke 2002) of the modulated rotating
convection problem, when the initial condition before the modulation is imposed was
a KL state, the modulations generically result in imperfect spiral patterns. In order to
obtain axisymmetric target patterns, both the experiments and the SH model needed
to generate these ‘with care’ using convoluted initial conditions, etc. However, once
a target pattern was obtained, it persisted for long times. Our results are consistent
with these observations, in that if we start with a KL state and then start modulating
the rotation, the flow evolves to an imperfect spiral state. When we computed in the
axisymmetric subspace, however, the target patterns are obtained. If we add a small
non-axisymmetric perturbation to the target patterns it takes a long time (depending
on the magnitude of the perturbation) for the perturbation to grow, but it does grow.
Our preliminary indications are that the target patterns may not be stable to three-
dimensional perturbations. In fact, in the limit of vanishing modulation (A → 0), the
stable state is the three-dimensional KL state. Therefore if the target patterns are stable
when A �= 0, there must be a critical A below which the target patterns are unstable. To
address the stability of the target patterns to three-dimensional perturbations is not
trivial. We must compute the time-periodic axisymmetric target pattern state (which
we have done in this paper) and then perform a Floquet stability analysis to general
three-dimensional perturbations, which is beyond the scope of this paper. Very closely
related is the question of whether the spiral patterns or the target patterns bifurcate
first from the modulated basic state as Ra is increased, for a given modulation A �= 0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

22
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002206


Modulated rotating convection 377

In summary, the effects of harmonic modulations on rotating convection have
been investigated numerically, and the numerical solutions have been analysed
using bifurcation-theoretical techniques and in particular equivariant dynamical
systems theory. The role of symmetry-breaking in the SNIC bifurcation is central to
understanding the onset of the travelling target patterns, a phenomenon which had
remained completely unexplained up to now.
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