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Crossflow instability in rotor–stator flows with
axial inward throughflow

By S. PONCET AND M.-P. CHAUVE
IRPHE, UMR 6594, CNRS- Universités d’Aix-Marseille I & II, Technopôle Château-Gombert,

49, rue F. Joliot-Curie, 13384 Marseille cédex 13, France

(Received 20 May 2005 and in revised form 6 September 2005)

From visualizations and velocity measurements, we study the formation of new spiral
patterns at the periphery of a rotor–stator cavity when an axial inward throughflow
is superimposed. We determine the transition diagram for a given intermediate aspect
ratio in the plane (Re, Vz), where Re is the rotational Reynolds number and Vz

the axial velocity in the radial gap between the rotating disk and the shroud. Both
techniques are used to characterize the frequency, the azimuthal wavenumber, the
inclination angle of the spirals and to localize them axially and radially. We also
show that this new instability is a crossflow instability due to the strong competition
between rotation and throughflow.

1. Introduction
Rotating disk flows are not only a subject of academic interest as a model geometry

to study how rotation influences turbulence but have also a major application in
turbomachinery. Numerous recent experimental (Gauthier, Gondret & Rabaud 1999;
Schouvelier, Le Gal & Chauve 2001; Cros & Le Gal 2002) and numerical (Cousin-
Rittemard, Daube & Le Quéré 1998; Serre, Crespo del Arco & Bontoux 2001) studies
have been devoted to instabilities in rotating flows. In a closed rotor-stator cavity
of large aspect ratio G =h/R � 7.14 × 10−2 (h the interdisk space and R the disk
radius), the first instability, which appears by increasing the rotating disk speed, is
a viscous instability, which develops in the stator boundary layer (the Bödewadt
layer) and consists of circular rolls travelling through the centre of the cavity. On
increasing the Reynolds number, a second bifurcation leads to the development of a
system of spiral rolls denoted SR1 located at the periphery of the cavity. They are
characterized by a positive orientation angle ε � 25◦ with the tangential direction.
The angle ε is counted positive when spirals are rolled up towards the disk axis in
the rotation sense of the rotor. When the Reynolds number is further increased, the
flow results from the coexistence of these two modes. For intermediate values of the
aspect ratio in the range 1.79 × 10−2 � G < 7.14 × 10−2, Schouvelier et al. (2001) have
observed another instability, which consists again of a network of spiral rolls denoted
SR2 (12◦ � ε � 15◦). For lower aspect ratios, the flow is of torsional Couette type
with joined boundary layers. Cros & Le Gal (2002) have investigated the transition
from laminar to turbulent states for this kind of flow. By increasing the Reynolds
number, they observed three different bifurcations starting from spiral rolls denoted
SR3 (−5◦ � ε � −3◦), solitary waves and turbulent spots.

To our knowledge, the only study concerning the instabilities occurring in a rotor-
stator cavity when a centripetal throughflow is superimposed has been performed
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Figure 1. Schematic diagram of the experimental rig with relevant notation.

recently by Rémy (2004) using stereoscopic particle image velocimetry (PIV) and
Rémy, Gauthier & Buisine (2005) using a tomography technique. They have studied
the SR1 spiral rolls in a rotor-stator system with suction for large aspect ratios
G � 0.088. When the flow rate is increased, the thresholds of appearance and
disappearance of these patterns decrease rapidly. They have also observed a crossflow
instability, which takes place in the boundary layer of the cylindrical wall. This
crossflow instability has been confirmed by the stability analysis of Rémy (2004).

The aim of this work is to extend the known results determined in the case of a
closed cavity (Schouvelier et al. 2001) by introducing a flow-rate velocity as a new
parameter and to study its effect on the thresholds of appearance and disappearance
of the spiral structures SR2 and especially on the formation of new spiral rolls
denoted SRJ2, which are due to the combination of both rotation and throughflow
effects.

2. Experimental set-up
A sketch of the cavity is presented in figure 1. It consists of a smooth rotating disk

(the rotor) of radius R2 = 140 mm and a smooth fixed disk (the stator) enclosed by
a fixed cylinder (the shroud) of radius slightly larger than the rotor R3 = 140.85 mm.
The interdisk space h can vary between 0 and 21 ± 0.02 mm. The two gaps at the
outlet R1 = 10 mm and the inlet j = R3 − R2 = 0.85 ± 0.025 mm of the cavity enable
an axial inward throughflow Q > 0 up to 240 l/h (the experimental limitation) to
be superimposed. The water is contained in a lower tank and pumped to an upper
one situated 3 m above the rotor-stator cavity. By using several concentric tanks, the
fluid enters the experimental chamber by gravity to avoid any parasitical disturbance.
Then the throughflow Q is adjusted by a flowmeter. Another parameter is the rate of
rotation Ω of the rotating disk. It rotates at an uniform angular velocity Ω varying
between 0 and 200 rad s−1 with an accuracy of 0.2 %.

The cavity is filled with water maintained at a constant working temperature 20◦C
(kinematic viscosity of water ν � 10−6 m2 s−1). In order to visualize the hydrodynamic
structures, which develop in the flow during the transition from laminar to turbulent
states, the water is seeded with reflective anisotropic particles of ‘kalliroscope’ (size
30 × 6 × 0.07 µ m) in suspension, whose orientation depends upon the shear stress of
the flow. The stator is a 20 mm thick Plexiglas plate, so that the flow can be observed
through it. We illuminate the flow with an annular neon light and the surface of the
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Figure 2. Temporal evolution of the tangential velocity for Re= 2.05 × 104 and Vz =0.0754
at (r∗ = 0.964, z∗ = 0.567): (a) rough signal, (b) resampled signal.

stainless steel rotor is painted black to improve the visualizations. Images (768 × 576
pixels) are taken at a video frequency of 25 images per second using a CCD video
camera situated 1m above the fixed disk.

We also performed velocity measurements by means of a two-component laser
Doppler anemometer (LDA). This non-intrusive method is used to measure, from
above the stator, the mean tangential Vθ and radial Vr velocity components in the
vertical plane (r, z) at a given azimuthal angle. The seeding particles are the same
for both techniques (no influence of these type of flakes is found for small rates of
rotation).

The aim is to compare the frequency of the structures with the results obtained
from visualizations. In figure 2(a), we represent the rough signal (6 × 104 points)
of the tangential velocity component V ∗

θ = Vθ/(Ωr) versus the time t at the point
(r∗ = r/R2 = 0.964, z∗ = z/h =0.567) and for Re = 2.05 × 104 and Vz = 0.0754. Note
the periodicity of the signal: the high frequency corresponds in fact to the passage
of the SRJ2 spirals. The signal is then resampled (figure 2b) using a first-order
interpolation method (Piétry 1997). We choose the mean passing frequency of the
particles as the resample frequency. From the resampled signal, we calculate the power
spectral density DSP of the LDA data according to the frequency N (Hz).

3. Stability diagram for the aspect ratio G =0.0429

The flow is mainly controlled by three parameters: the aspect ratio of the cavity
G = h/R2, the rotational Reynolds number Re= ΩR2

2/ν based on the rotating disk
radius, and the mean axial velocity Vz =Q/(2πjR2) (m s−1) in the radial gap at the
inlet of the cavity under the assumption that j is small compared to R2 (that is
the case in the present study). The radial r∗ = r/R2 and axial z∗ = z/h locations are
also two important local parameters to characterize instabilities in open rotor-stator
flows. The aspect ratio is fixed at an intermediate value G =0.0429 (h = 6 mm), for
which the basic flow is of mixed type: a Batchelor type of flow pattern with separated
boundary layers above a critical radius and a torsional Couette type of flow pattern
with joined boundary layers below (Schouvelier et al. 2001). We recall that, for such
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Figure 3. Stability diagram in the (Re,Vz) plane for the aspect ratio G =0.0429.
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Figure 4. Visualization of the spiral patterns (a) SRJ2 for Re= 2.05 × 104 and Vz = 0.0754,
(b) SR2 or Re =5.13 × 104 and Vz = 0.0074.

an aspect ratio, Schouvelier et al. (2001) observed two kinds of spiral rolls, denoted
SR1 and SR2, which can coexist.

The transition diagram for the centripetal flow inside a rotor-stator cavity of aspect
ratio G =0.0429 is represented in figure 3 in the (Re,Vz)-plane. For example, for a given
axial velocity Vz = 0.03 m s−1, the basic flow is stable and loses its stability above a first
threshold Re � 1.64 × 104. This leads to the formation of spiral rolls SRJ2 (figure 4a)
located at the periphery of the cavity and which will be studied in more detail in the
next section. From a second threshold Re � 2.89 × 104, a second bifurcation occurs
and SR2 spiral rolls develop for r∗ <r∗

c , where r∗
c = rc/R2 is the critical radius, above

which the SRJ2 structures appear. For given Reynolds number and axial velocity,
both instabilities can coexist but have respectively their own extended radial domain.
For 4.29 × 104 � Re � 4.52 × 104, though the flow is turbulent for a broad band of
radius, the SRJ2 spirals exist at the periphery of the cavity but are quite difficult to
observe, when the Reynolds number is increased. Above this last threshold, the flow
is totally turbulent.

The SR2 spiral rolls (figure 4b) have been studied in detail by Schouvelier et al.
(2001). The axes of these structures have a positive angle ε with the azimuthal
direction: 12◦ � ε � 15◦. Their network is stationary in the reference frame of the
laboratory and occupies the whole cavity. In the case of a closed cavity (Vz = 0),
the appearance threshold of the SR2 spirals is in excellent agreement with the one
obtained by Schouvelier et al. (2001): Re � 4.4 × 104. On the other hand, there is a
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Figure 5. Space–time diagram for Re= 2.05 × 104 and Vz = 0.0754: (a) in terms of a fixed
half-circle at r∗ = 0.935, (b) in terms of a radius.

discrepancy for the disappearance threshold, which is probably due to the presence
of a radial gap j in our experiment. Schouvelier (1998) and Rémy (2004) have
shown that this small parameter is predominant for the appearance of instabilities
in rotor–stator flows. The SR2 spiral patterns are still observed when a centripetal
throughflow is superimposed. The spiral angle is almost the same: 15◦ � ε � 17◦ for
0 � Vz � 0.0372 and Re =4.31 × 104. Two effects should to be noticed: in the case
of a strong inward throughflow, the SR2 network exhibits defects due to the axial
jet. Secondly, the appearance and disappearance thresholds decrease as the inwardly
directed throughflow rises. This can be easily understood by considering a local
Reynolds number based on the tangential velocity in the core of the flow at the
critical radial location: Rerc

= KΩr2
c /ν, with K = Vθ/Ωrc the ratio between the mean

tangential velocity in the core of the flow and that of the disk at the same radius.
K is in fact the entrainement coefficient of the fluid. For a given rate of rotation Ω ,
increasing the axial velocity Vz (throughflow Q), increases K . This means that the
critical Reynolds number Rerc

increases too. It explains why the bifurcation leading
to these spirals occurs for lower rotational Reynolds numbers Re when the axial
velocity Vz is increased.

4. Description of the SRJ2 spiral rolls
Figures 5(a) and 5(b) represent two space–time diagrams respectively in terms of an

angle (θ∗ = θ/2π) and in terms of a radius (r∗ = r/R2) of the flow for Re= 2.05 × 104

and Vz = 0.0754. They correspond to the visualization of the SRJ2 spirals in figure 4a.
We define the dimensionless time as t∗ = 2πt/Ω . The diagonal lines in figure 5(a)
correspond to the SRJ2 spiral passing. It enables the phase velocity Vp = �θ/�t

of the structures to be determined. The space–time diagram in terms of a radius
(figure 5b) shows the critical radial location r∗

c for the appearance of the patterns, as
well as their frequency N and their azimuthal wavenumber k∗ = kR2, which is also
the number of structures by rotation. The inclination angle ε of the spirals is also
determined from the visualizations. Figure 5(b) shows clearly that the SRJ2 network
is located at the periphery of the cavity.

Figure 6(a–d) shows the main characteristics of the SRJ2 spiral rolls in terms of
the axial velocity Vz and to the rotational Reynolds number Re. There is a strong
competition between the effects of the rotation (in the tangential direction) and
those of the axial throughflow (in the radial direction). Figure 6(a) confirms the
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Figure 6. Characteristics of SRJ2 spiral rolls in terms of Vz for �, Re= 2.05 × 104 and ×,
Re= 2.87 × 104 and �, Re for Vz = 0.0892: (a) critical radius r∗

c , (b) inclination angle ε,
(c) azimuthal wavenumber k∗, (d) frequency N (Hz).

location of the spiral rolls at the periphery of the rotating disk and shows that the
critical radius r∗

c for their appearance depends slightly on the axial velocity Vz and
on the Reynolds number Re. The SRJ2 patterns appear for r∗

c � 0.82 in this range
of parameters. The value of r∗

c increases with increasing values of Vz or decreasing
values of Re. Some velocity measurements using the LDA technique at r∗ = 0.964
and for different flow parameters (see figure 2 for example) have shown that the
spirals are located at z∗ � 0.35. This instability is, then, not due to the destabilization
of the Ekman boundary layer. We compute the mean field for Re =2.5 × 104 and
Vz = 0.0892 (figure 9 below) by using the laminar numerical code derived from the
Reynolds stress modelling (RSM) of Poncet, Chauve & Schiestel (2005b). At the
radial location r∗ = 0.919, figure 9 shows that the flow is of Batchelor type with two
separated boundary layers. For z∗ � 0.4, the flow is centripetal (V ∗

r < 0).
For a given Reynolds number Re =(2.05 − 2.87) × 104, on increasing the axial

velocity Vz, the radial component of the flow increases. As a consequence, the
inclination angle ε (figure 6b) increases too and we observe the development of
more and more structures k∗ until a threshold k∗ = 90 is reached (figure 6c). On the
contrary, for a given axial velocity Vz = 0.0892, on increasing the Reynolds number,
the tangential component of the flow increases. Consequently, the inclination angle ε

(figure 6b) decreases. The azimuthal wavenumber k∗ � 90 is fixed by the value of the
axial velocity Vz and does not depend on the Reynolds number for this strong inward
throughflow (figure 6c). On increasing the throughflow Vz or the Reynolds number
Re, the entrainment coefficient K of the fluid is increased according to relation (4.1)
below. So the tangential velocity of the spirals increases too. This is confirmed in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

71
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005007147


Crossflow instability in rotor–stator flows with axial inward throughflow 287

10–1 100 101 102

10–1 100 101 102

0

0.2

0.4

0.6

0.8

1.0

D
S

P
(N

)

(a)

–0.2

0

0.2

0.4

0.6

0.8

N (Hz)

C

(b)

Nmax = 3.18

Nmax = 3.15

Figure 7. Frequency of the SRJ2 spirals for Re= 2.05 × 104 and Vz =0.0754 at r∗ = 0.964:
(a) power spectral density DSP of the LDA data, (b) correlation of the grey density on the
space–time diagram (figure 5b).

figure 6(d). The frequency N is indeed increased by a faster rotation of the disk or a
stronger axial jet.

In figure 7, we compare the frequency of the SRJ2 spirals obtained from
visualizations and velocity measurements for Re = 2.05 × 104 and Vz = 0.0754 at the
point (r∗ = 0.964, z∗ = 0.567). We first calculate the power spectral density (DSP) of
the LDA data in terms of the frequency N (Hz) (figure 7a): the maximum frequency
Nmax = 3.18 Hz is the frequency of the SRJ2 spiral rolls. To validate this result, we
have also calculated the correlation C of the grey density from the space–time diagram
(figure 5b) at the line r∗ =0.964. The first frequency peak (figure 7b) corresponds to
the frequency of the structures Nmax = 3.15 Hz. There is, then, an excellent agreement
between these two methods: the frequency of the SRJ2 patterns for Re= 2.05 × 104

and Vz =0.0754 is the same to within less than 1 %. This result is very satisfactory
because the visualizations give integrated values in the axial direction z, whereas the
LDA technique provides one-point measurements.

For a given axial velocity Vz = 0.0829, we have compared the phase velocity Vp

of the SRJ2 spirals to a mean velocity Vf = 0.5KΩrc at the periphery of the cavity
for different Reynolds numbers (figure 8). Vf is the average of the mean tangential
velocity Vθ (rc) = KΩrc in the core of the flow at the critical radial location and that
at the shroud Vθ (R3) = 0. To determine the entrainment coefficient K of the fluid, we
have extended, to the case of laminar flows, the law obtained by Poncet, Chauve &
Le Gal (2005a) with the following friction coefficient: Cf = 1.328 × Re−1/2 (Schlichting
1960). Finally, we obtain the following relation:

K = 0.41 + 0.88Cqlam (4.1)

where Cqlam = QRe1/3
r /(2πΩr10/3) is a local flow rate coefficient. As shown in figure 8,

the two velocities Vp and Vf are comparable but the phase velocity Vp is slightly
weaker than the mean tangential velocity Vf of the fluid especially for the highest
values of the Reynolds number. Even though there is always a shear stress between
the shroud and the core of the flow, it seems not to lead to the formation of these
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velocity Vf (�) at the periphery of the cavity for Vz = 0.0829 and different Reynolds numbers.
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θ = Vθ/(Ωr), −.−,

axial component V ∗
z = Vz/(Ωr).

spiral patterns. We conclude that the SRJ2 spiral rolls rotate at a rate lower than the
fluid.

For a weak inward throughflow, the characteristics of the spiral rolls are comparable
with the SR1 network observed by Schouvelier et al. (2001). The flow is then mainly
governed by the rotation. For high values of the axial velocity Vz, the flow is governed
by the throughflow and the SRJ2 patterns are comparable to the structures denoted 2
by Rémy (2004) and Rémy et al. (2005). The main characteristics of structures 2
are a high wavenumber 40 � k∗ � 70 and a weak frequency N � 3.5 Hz. We recall
also that they are located at the periphery of the rotating disk. Rémy et al. (2005)
proved that this instability is a crossflow instability: an azimuthal flow due to the
rotation is in competition with a radial flow due to the inward throughflow and the
radial profiles of the axial and azimuthal velocities exhibit inflection points. That is
also the case for the SRJ2 spirals. Figure 9 confirms that an azimuthal flow is in
competition with an radial inflow (the axial component is quasi-zero) and that the
mean velocity profiles also exhibit inflection points. The SRJ2 spirals are thus alos
due to a crossflow instability.
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5. Conclusion
We have studied experimentally the intermediate-aspect-ratio (G = 0.0429)

instabilities, which develop in a rotor-stator cavity when an axial inward throughflow
is superimposed. We performed both visualizations and velocity measurements using
a two-component LDA technique. Two instabilities appear as spiral rolls: the SR2
network observed by Schouvelier et al. (2001) and a new instability denoted SRJ2,
which is located at the periphery of the cavity and attached to the shroud. This
instability is in fact a crossflow instability: an azimuthal flow due to the rotation
is in competition with the radial flow due to the inward throughflow. Moreover we
showed that the mean radial and tangential velocity profiles exhibit inflection points,
which is a characteristic of this type of instability. We have also shown that the SRJ2
spiral rolls are comparable to the structures denoted 2 by Rémy et al. (2005), which
are a crossflow instability attached to the axial jet: spirals with a small wavelength
and a large wavenumber. The only discrepancy remains the inclination angle, which
is much larger in our experiment, up to 72◦, which could be due to the radial gap.

The authors wish to thank M. Amielh for helpful comments during the LDA
measurements.
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Schouvelier, L., Le Gal, P. & Chauve, M.-P. 2001 Instabilities of the flow between a rotating and
a stationnary disk. J. Fluid Mech. 443, 329–350.

Serre, E., Crespo del Arco, E. & Bontoux, P. 2001 Annular and spiral patterns in a flow between
a rotating and a stationary disk. J. Fluid Mech. 434, 65–100.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

71
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005007147

