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We give characterizations of the positive Borel measures p on S™ so that the
weighted Hardy—Sobolev spaces HY (w) are imbedded in L9(dpu), for a range of s > 0,
0 < p,q < 400, q # p, where w is a doubling weight in the unit sphere of C™.

1. Introduction

This paper is devoted to the study of trace inequalities for some weighted Hardy—
Sobolev spaces H?(w) on the unit ball B". Before we state our main results, we
introduce some notation. We shall write (7 to indicate the complex inner product
in C" given by ¢7j = 21" Gi7i if ¢ = (C1y---5Cn)y 1= (15 7n). I ¢ € S™, the
unit sphere in C”, and r > 0, then the non-isotropic ball is given by B((,r) = {n €
S™, |1 — (7| < r}. For any « > 1, and ¢ € S™, the admissible region D, (¢) is given
by
Do(¢) ={z € B"; [1 - 2(| < sa(l — |2[*)}.

If f is a function defined on B™, the admissible maximal function M, f is the
function on " defined by M, f(¢) = sup.ep, () [f(2)]-

If w is a weight in S™, the weighted Hardy—Sobolev space H?(w), 0 < 5,0 < p <
+00, consists of those functions f holomorphic in B™ such that if f(2) =", fu(2)
is its homogeneous polynomial expansion, and

R f(z) = (I +R) f(z) = Y (14 k) ful2),
k
we have that
112 oy = [ MalRE Fll oy < +5.
Observe that, for s =1, R = I + R, where R is the usual radial derivative operator.

We shall say that a finite positive Borel measure on S” is a g-trace measure for
HP(w) if and only if there exists C' > 0 such that, for any f € HP(w),

1Ml flllzaan < Clf a2 w)- (1.1)

The main goal of this work is to obtain characterizations for the g-trace measures
for H?(w). This will be done for a certain range of indices and properties of the
weight w.
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If 0 < s <nand p > 1, for any function g in H?(w) there exists f € LP(w) such

that O
9(2) = Culf) = [ e do(0), (1.2

sn (1= 2()
and ||g[l g7 (w) = | fll v (w) (see, for example, [5]). Consequently, u is a g-trace mea-

sure for HP(w) if there exists C' > 0 such that

IMa[Cs[ Tl La(any < CllfllLr(w)- (1.3)

We next recall the relationship between the above problem and its real non-
isotropic counterpart. We denote by K the non-isotropic potential operator defined,
if v is a finite positive Borel measure on S”, by

1 _
KSVC:/ 77'(11/ 5 CEIBn
MO = | g )
When dv = f do, we shall just write K;[f] := K,[f do].

Any measure p on S™ for which there exists C' > 0 such that

1K s[f)lLaan) < CUfllLew) (1.4)

will be called a g-trace measure for the non-isotropic weighted potential space
K [LP(w)]. Since My [Cs[f]] < CK;|f|], it is clear that any g-trace measure for
the space K [LP(w)] is also a ¢-trace measure for the weighted Hardy—Sobolev
space HP(w). On the other hand, the two problems are not, in general, equivalent,
as was observed in [5].

The g-trace measures for the Riesz potentials on R™ for any relative position of
q and p have been thoroughly studied. We recall that, when 0 < s < n, I;(z) =
¢(n, s)|xz|°~™ is the Riesz kernel on R™, and I * LP(R™) is the potential space of
functions defined by

LUf@) = [ Ll =) (0) d

A positive Borel measure on R” is a g-trace measure for I « LP(R™) if and only if

L) <ol [ irwpa) (1.5
(L ) <e(].

When 1 < p < ¢, it was shown by Adams [2, theorem 7.2.2] that the characteri-
zation for a measure u to satisfy (1.5) is that

/‘(B(xv 7“))

ey < 400, (1.6)

sup
z€R >0 T

where here B(z,r) is the Euclidean ball of radius r > 0 centred at x € R™.
In the case p = ¢, a capacitary characterization in this case can be found in [2,
theorem 7.2.1]: (1.5) holds for p = ¢ if and only if
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where the supremum is taken over all open sets G C R™ of positive Riesz capacity.
Other non-capacitary characterizations have been given in [11].

We observe that, for the case ¢ = 1, duality gives that (1.5) holds if and only if
the energy,

Esplp] := ||IS[:“]||LP’(dz) < too.

In the upper triangle case 1 < ¢ < p, a capacitary characterization was obtained
n [14]. We also recall a non-capacitary condition [6, p. 393] in terms of the real
Wolff potential defined by

Walido) = [ (“(B(x”)d

rn—sp r
where p’ = p/(p — 1). Namely, (1.5) holds if and only if
Wl € LAP=1/r=a)(q,).

In recent years there has been some work concerning weighted versions of the real
g-trace problems. In [1] an extension was obtained of the characterization of the ¢-
trace measures for the weighted space I[LP(w)] for the case when 1 < p < 400, p <
g, where w is a weight in the Muckenhoupt class A, (R™). In [7] a characterization
was obtained, for ¢ < p and p > 1, that extends the corresponding unweighted case
and includes the case ¢ < 1.

For the more difficult problem of the characterization of ¢-trace measures for
the Hardy—Sobolev spaces H? on the unit ball, the results have so far remained
incomplete and only include some particular ranges of s, ¢ and p. For the case
when p < 1, the p-trace measures for H? were considered in [3]. If 1 < p = ¢
and n — sp < 1, the p-trace measures for H? coincide with the p-trace measures
for K [LP] [10]. If 1 < ¢ < p and n — sp < 1, a characterization in terms of a
non-isotropic Wolff potential was obtained in [6] (see the proof of theorem 1.4,
below). Interesting results for a related problem on 2-Carleson measures for H?2
when n — 2s > 1 have been obtained in [20] (see also [17] for the case n —2s = 1).

The paper has two aims. On the one hand we extend to the weighted Hardy—
Sobolev spaces some of the characterizations obtained in the unweighted case. On
the other hand, we give some results for weighted spaces HP(w) in other ranges
of s, p and ¢, which are new even when w = 1 and which correspond to some
situations when ¢ < 1. For our first aim, the methods use some of the ideas on the
unweighted case, although with more technicalities. Towards the second aim, when
q < 1, where the results are new even in the unweighted case, some new techniques
are needed.

Before we state our main results, we recall that a weight w defined on S™ satisfies
a doubling condition of order 7 for some 7 > 0 if there exists C' > 0 such that, for
any ( € S" and 0 <7 < R,

R

wBeR) = [ wldotn) < o2 wisic.n).

B(¢,R)

The class of such doubling weights will be denoted by D..
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A weight w is in the A4, class in S", 1 < p < 400, if there exists C' > 0 such that,
for any non-isotropic ball B C §”,

1 1 e g, )
@ wdo E w p do < C,
B B

where | B| denotes the Lebesgue measure of the ball B.

We also point out that if p > 1, any weight w in A, satisfies a doubling condition
of order 7, for some 7 < pn. This fact can be found, for instance, in [16], where it
is proved that if w € A,, there exists p; < p such that w € A, (see the corollary
on p. 202 therein) and that any weight in w € A,, satisfies a doubling condition of
order np; [16, (1.5), p. 196].

Observe that, as a consequence of Holder’s inequality and (1.2), for any doubling
weight in D, with 7—sp < 0 and p > 1, the space HP(w) consists of bounded func-
tions. On the other hand, if p < 1, it can be also shown, using different arguments
(see §2) that if 7—sp < 0, HP(w) consists also of bounded functions. Consequently,
the g-trace measures for HP(w) in this range of indices are just the finite ones.
Therefore, the following theorems are of interest when either 7 — sp > 0 if p < 1
or 7 —sp = 0if p > 1. We also observe that any g-trace measure for HP(w) must
be finite, which can be deduced by applying the definition to a constant function.
Consequently, we shall suppose from now on that any of the measures p considered
here are finite.

The next two theorems concern the case p < g and will be the main aim of §2.
Let us recall that if 1 < p < 400, 0 < s < n [1], the non-isotropic weighted Riesz
capacity of a set F C S™ is defined by

C(B) = nf{[| £, i £ >0, Kulf] > 1 on E}.

THEOREM 1.1. Letp < g < +o00,p<1,s>0, let w be a doubling weight and let
be a finite positive Borel measure on S™. The following statements are equivalent:

(i) w is a g-trace measure for HP(w);

(ii) there exist C' > 0 and § > 0 such that, for any ¢ € S™, 0 < r < 4,

w r q/p
u(B(n) < oM (L7)

THEOREM 1.2. Let 1 < p < g < 400, 0 < s < n, let w be an A,-weight and let p
be a finite positive Borel measure on S™.
(i) If there exists C > 0 such that, for any ( € S™, r > 0,
p(B(¢, 7)) < CCL(B(S, 7)), (1.8)

then p is a q-trace measure for HP (w).

(ii) If, in addition, w € D,, 0 < 7 — sp < 1, then p is a gq-trace measure for
H?(w) if and only if condition (1.8) holds.
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For ¢ < p, we have obtained some partial characterizations, which in some cases
when ¢ < 1 are new even for the case w = 1, that we summarize in the following
theorems, which are the main subject of § 3.

THEOREM 1.3. Let 0 < ¢ < p < 1, 0 < s, w be a weight satisfying a doubling
condition of order 7 and p be a finite positive Borel measure on S™. Assume that, in
addition, 0 < 7 —sp < p. We then have that the following assertions are equivalent:

(i) u is a g-trace measure for Hy(w);

(ii) for any fized 6 > 0, if rp denotes the radius of the non-isotropic ball B, then

p(B) a/(r—0)
sup W By xs(¢) € L (dp). (1.9)

In [5] a weighted Wolff-type potential of a positive measure v on S™, given by

w0 = [ (MEEOYT (LT LS am

is defined. Here K > 2 is a fixed constant.

THEOREM 14. Let0<qg<p, 1 <p, 7,8 >0, such that 0 < 7 —sp <1, let u be a
finite positive Borel measure on S™ and let w be a weight in Ay, w e D. If ¢ <1,
we assume in addition that one of the following conditions is satisfied:

(a) ifl<p<2,7<(p—1n+s;
(b) ifp>2, T<n+s(p-—1).
Then the following conditions are equivalent:
(i) there exists C' > 0 such that
1Mo lf]llaan) < CNF a2 )
(ii) there exists C > 0 such that

1 Ks[f M paany < ClSflloew);

(i) W] € Lae=D/G=) (1),

Finally, a remark on notation: we shall adopt the convention of using the same
letter for various absolute constants whose values may change in each occurrence,
and we shall write A < B if there exists an absolute constant M such that A < M B.
We shall say that two quantities A and B are equivalent if both A < B and B < A,
and in that case we shall write A ~ B.
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2. g-trace measures for H?(w), p < q

2.1. A necessary condition

The following proposition gives that, for any p, ¢ > 0, (1.7) is a necessary condition
for a measure to be a g-trace for H? (w).

PROPOSITION 2.1. Let 0 < p,q < +00, 0 < s < n. Let p be a positive finite Borel
measure on S™ and let w be a doubling weight on S™. Assume that there exists C > 0
such that

[Ma[f1llLacap) < ClFI a2 )
for any f € HP(w). Thus, there exist C > 0, § > 0, such that, for any ¢ € S",
0<r<yd,

r q/p
u<B<<,r>><c(w(M’”) . (2.1)

rSP

Proof. Observe that, since p is finite, the constant § in the proposition is not rele-
vant. It is sufficient to prove (2.1) for 6 < 1, since if 6 > 1, and 1 < r < §,

w q/p
u(B(C, 7)) < p(S™) = ((B6<<1>>>

) (w(B«,r»)q/’{

PSP

Let ¢ €S™ and 0 < r < 1 be fixed. If z € B", let
1
(1= (1 —=7r)zON’

with N > 0 to be chosen later. If n € B((,r) and z € D,(n), then [1—(1—7)z(| < r
and, consequently,

F(z) =

pBG) _

"N | Mo F(n)|* dpa(n).

B(¢.r)
On the other hand, since

1 1
i |

— =< —
(T=1=r)zON[ 7 |1 = (1 —r)z(|Nts’
we have that

1
p
17120 < € | e ) doto)

1
i /B“"‘) 1= (1= vyt 47
1

= w(n) do(n).
/B(<,2k+1r)\3(<,2kr) 1 — (1 —r)n¢|(N+slp )

+
k>1
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If k > 1 and n € B(¢, 2 1r) \ B(¢, 2%r), then |1 — (1 — r)n¢| ~ 2¥r. This estimate,
together with the fact that w is doubling, shows that the above is bounded by

w(B(C,2%17) | w(B((, 7)) c Y
Z (2ky)(N+s)p = N ,;‘:)(Q(N“)p)’

k>0

which gives the desired estimate, provided N is chosen to be sufficiently large. [

2.2. Proof of theorem 1.1

Proof. Assume p < ¢ < 400, p <1, s > 0. Let w be a doubling weight and let u be
a finite positive Borel measure on S™. By proposition 2.1, condition (i) implies (ii).

The proof that condition (ii) implies (i) follows the ideas in [3] closely, and we
include it for the sake of completeness. The definition of the space HP(w) yields
that if f € HP(w), the function F' = R°f satisfies that M, F € LP(w). Using the

integral formula
s—1

F(2) = Fzs) /0 1 (10g 1) Ptz dt,

it is then enough to show that

1/q
( Ma[G](C)quu(C)) < 1Fll o),
S’n,

where the function G is defined by

Glz) = /0 (1— 1)1 F(t2)] dt.

If E C S™, we recall that T'(E) is the tent over F defined by
7(5) ="\ (U 2a(©)).
(¢E

A tent atom with respect to a doubling weight w is a non-negative function a
defined on B" satisfying

(a) supa C T(B((, R)),
(b) a(z) < w(B((, R) .

In [4, lemma 2.1], a dyadic decomposition on homogeneous spaces is constructed.
In our setting of the unit sphere, if w is a doubling weight in S™, and g is a function
defined on B" satisfying that M,[g] € L'(w), this decomposition says that there
exists a sequence of tent atoms (a;);, supported in T(B({j,0;)), 6; < 2, and a
sequence of non-negative numbers (A;); such that

j J
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We apply the above decomposition to the function | F'|P, in order to obtain that there
exists a sequence of tent atoms (a;); supported in T'(B((;,d;)), and a sequence of
non-negative numbers (A;); such that

|F|p<2>\jaj and ZAJ' g/s My [FPwdo = ||F|[%,

Next, since p < 1, Minkowski’s 1nequahty yields

(/Oll—t (Z)\aJtC> dt) ZA (/ (1—t)" (tg)””dt)p.

Consequently,

([ wicrorano)”

</n </01 1—1t)° (Z)\ a;(t¢) )Vpdt)qdu(g))p/q
<(/[. (ZA ( / (1= ) Lay (1) /7 dt)p)m du(@“))p/q. (29)

Since ¢/p < 1, applying Minkowski’s inequality again yields that the above is

bounded by
S [ ([ a-otaeora) du«))p/q. (23)

The fact that each a; is a tent atom supported in T'(B((j,0;)) gives that any of
the integrals

N

1
[ a0 a0 a
0

in the previous sum are in fact bounded by

XB(ijéj)(C) ! s—1
W(B(G,0,)77 /1_0@.“ R

In consequence, the above estimate and the hypothesis on p gives that (2.3) is
bounded up to a constant by

Z)‘ << M)Q/pu(B(Cj’(Sj)))p/q
(i) (222"

= Cz/\j 2 E N me (w)

J

https://doi.org/10.1017/50308210510001654 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510001654

Trace inequalities for HP (w) in the non-diagonal case 337
2.3. Thecase 1 < p<gq

The methods in [1] can easily be adapted to obtain an estimate of the non-
isotropic weighted Riesz capacities of balls in S, namely, if p > 1, w € A,(S™),
¢ € S™, then for every r, 0 < r < 2,

K 1 pydt\P
0¥ (B(C, 1)) = </ t(sp*n)/(pfl)in/ - 1)> .
r " JBc,) t

We observe that, since s < n, in the above integral we could have integrated on the
interval (r, +00), obtaining an equivalent expression. If w = 1, and n — sp > 0, we
recover the well-known estimate Cy,(B(¢,r)) >~ r"" %", ( € S", r < 2.

For a general weight, C%) (B((, 7)) = w(B(¢,7))/r*?, and both quantities are not,
in general, equivalent, as the following example shows: we define, for n € S™ fixed,
the weight w(¢) = |1 — ¢7|*?~™. It may immediately be seen that w € A, provided
0 < s < n. On the other hand, for any 0 < r < 1, Ce,(B(n,r)) ~ (log1/r)! =7 and
w(B(n, 1)/r? =1,

The proof of theorem 1.2(i) is a consequence of a non-isotropic version of a result
in [1], which gives a characterization of the g-trace measures for weighted Riesz
potentials in R™. This non-isotropic version, which can be proved analogously to
its real counterpart, is as follows.

THEOREM 2.2 (Adams [1]). Let 1 < p < ¢ < 00, 0 < s < n, let w be a weight in
Ap and let p be a non-negative Borel measure on S™. The following assertions are
equivalent:

(a) there exists C > 0 such that, for any f >0,

| Kslf I aapy < ClfllLew);

(b) there exists C' > 0 such that, for any open set E C S™, u(E) < CC;‘Z’,(E)q/p.
If in addition p < q, then (a) holds if and only if condition (1.8) is satisfied.

Observe that (1.8) for p < ¢ is just condition (b), but only for balls.

2.4. Proof of theorem 1.2

The proof of assertion (i) is an immediate consequence of the inequality

| Mo [Cs[f]] = K[ £1]

and theorem 2.2.
To prove part (ii) of the theorem, we shall need the following theorem, proved
in [5].

THEOREM 2.3 (Cascante et al. [5, theorem 3.4]). Let v be a positive measure on
S™ and w be a weight in B". Let 0 < s < n and 1 < p < +o0o and assume that
w € D1, where 0 < 7 —sp < 1. Then there exists a holomorphic function U, [v] on
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B" such that

(i) for anyn e S™,
lim Rellg, [v](pn) = W [v](n),
p—1

(i) A g ) = E10)

Next we shall show the necessity of (1.8) in condition (ii) of theorem 1.2.
It is shown in [5, theorem 3.2] that, provided w is an A,-weight, and Wy, [v] is
the Wolff potential defined in (1.10), the following weighted Wolff-type estimate

holds:
v [ Wh©OwE)! (24)

In [1] Adams also proved a weighted extremal theorem for the weighted Riesz
capacities, which can be easily adapted to the non-isotropic case.

THEOREM 2.4. If G C S™ is open, there exists a positive capacitary measure vg on
S™ such that

(a) supprg C G,

(8) va(G) = C4(G) = €5 (va),

(7) Wi (v6)(¢) = C, for Cf-a.e. C € G,
(6) Wi (ve)(Q) < C, for any ¢ € suppre.

Observe that WS“;)(Vg) = 1 except on a set of C'g-capacity zero, and then also
a.e. with respect to the Lebesgue measure on S™ [5, theorem 3.5]. Also observe that
from (a), () and () we have

/ v)dve < CCY(G).

Next, if G is an open set in S™ and v is the capacitary measure of theorem 2.4,
let F(z) = U%(vg)(z) be the holomorphic function obtained in theorem 2.3. The
fact that vg is extremal gives that

li_>rri Re F(r¢) > OWg,(va)(¢) = C,

for a.e. z € G with respect to the Lebesgue measure on G. Hence, if P is the
Poisson—Szegd kernel, then

IF(2)| = ‘PDE F(r.)} (z)‘ > ‘P [Rc lim F(r-)} (z)‘ >C

for any z € T(G) and, consequently, |M,F(¢)] > C on G. Since p is a g-trace
measure for H?(w), we then have

uG) < /G Mo F(Q)1 () < CIF |, < CELva)"? < CCL(G)YP.
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In particular, for any ¢ € S™, and r > 0, we have that
n(B(,r)) < CCL(B(¢,m))"?,

as we wanted to prove.

REMARK 2.5. The arguments we have applied are valid for p = ¢ > 1. In conse-
quence, under the hypotheses of theorem 1.2, that is, w € A,ND,, 0 < 7—sp < 1,
we have that y is a p-trace measure for H?(w) if and only if u(G) = C¢(G), for
any open set G C S™.

3. g-trace measures for HP(w), g < p

3.1. Thecase g < p <1

Our first observation is that, for p < 1, unlike what happens when p < ¢, the
characterization in terms of balls, (1.7), is not sufficient in general if ¢ < p, even in
the unweighted case.

ProPOSITION 3.1. Let 0 < ¢ < p < 1, and s > 0 such that sp < n. Then there
exists a positive Borel measure on S™ such that u(B((,r)) < Cr"=sPU/P for any
¢ eS™ and r < 1, and that p is not a q-trace measure for H? (B™).

Proof. Let E C S™ be a compact set such that the non-isotropic Hausdorff mea-
sure H("=P)4/P(E) € (0,+00). Since ¢/p < 1, we then have that H"~*P(E) = 0.
Theorem 2 in [9] gives that there exists f € HP(B™) such that E coincides with
the exceptional set for the function f, that is, for any ( € E the admissible limit
My[f1(€) = +0o0. On the other hand, Frostman’s theorem gives that there exists
a non-trivial non-negative Borel measure on S™ supported on the set F, satisfying
n(B(¢, 7)) < Cr(n=sP)a/P (for a proof of Frostman’s theorem for compact sets see,
for example, [12, Theorem 8.17] and the references therein). Since

| Magttd = 4
STL

@ cannot be a g-trace measure for H?(B™), that is, the estimate

| Ml < € o
cannot hold for any f € HP(B™). But by construction it satisfies the growth condi-

tion on balls. O

In order to deal with this case ¢ < p, we shall use a non-isotropic dyadic decom-
position of the unit sphere, which plays a similar role to the dyadic decomposition
in R™. We recall [15,19], that if A > 1 is big enough, for any (large negative) integer
m, there exists a sequence of points Cjk and a family of sets D,, = {Ejk}, where
k=m,m+1,... and j =1,2,... such that

: k y\k k k yk+1
(1> B(jv)‘)CEjCB(Cj7>‘ )7
(i) for each k > m, the sets {EF}; are pairwise disjoint in j and S™ = U; EY,

(iii) if k <1, then either Ef N E} =0 or E} C EJ.
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The family D = |J,,, Dy, is called a dyadic decomposition of S, and we denote the
sets in D by cubes Q; if B(C}, \¥) # B(¢F, \Ft1), fe. if A < 2, we define g = AF.
Otherwise, rq = 2.

LEMMA 3.2. Let pu be a finite positive Borel measure on S™ and § > 0. If D =
U,,, Dm is a dyadic decomposition of S™, then the following conditions are equiva-
lent:

(i)

(i)
#Q) a/(p—a)
Qs;lg)m w(Q)rg” xQ € L (dp),

with an L9/ P=9 (du)-norm bounded independently of m.

Proof. First of all, observe that in (i) the fixed constant ¢ is not relevant. Indeed,
since y is finite, we have that, for § < rg < 01, p(B)/w(B)rz™ is bounded. We also
remark that (ii) can be replaced by an analogous condition, taking only rg < 4.
We begin by proving that (i) implies (ii). The properties of the dyadic family D,
and the fact that w satisfies a doubling condition, easily show that if we set
wQ)

fm = sup —X
m 0eD., w(Q)rQsp Q>

then the following estimates hold for each non-positive integer m:

1(B)
m X sup ————— =< su , 3.1
f Sup, w(B)r SXB kpfk (3.1)
and the left-hand side of the estimate gives (ii).

Next, assume that (ii) holds. Using again the properties of the dyadic decom-
position and the doubling condition satisfied by the weight, it can be shown that
there exists C' > 0, such that, for any k£ < m, f,, < Cfr. We deduce that if

q/(p—q)
[ (o DN
m Jsn \ QeDm w(Q)rQ

then the non-decreasing sequence of functions defined by hy = max(fk,..., fo),
k < 0, satisfies hy < C fi, and consequently, by the monotone convergence theorem,

B a/(p—q)
/ (sup _uB) ),S XB) duj/ (sup f3)? 4P dp
n \rp<s w(B)rg™ n ok
=lim [ AP qy
k Sn
< +o00.
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We next state a non-isotropic version of [18, theorem 3(c), (d)]. The proof relies
on the fact that the non-isotropic dyadic maximal function defined by

MIAQ = s o | f

is of strong type (p, p), with constants independent of m. The proof of this fact can
be shown by adapting the classical case to the non-isotropic situation.

THEOREM 3.3. Let pu be a non-negative Borel measure on S™, (tg)gep a sequence
of mon-negative real numbers, 0 < q < p < +oo. There exists a constant C' such
that the inequality

H > votoxa

QGD’V'VL

C(%: yg)l/p (3.2)

holds for any large negative m, and any sequence (YQ)qen,,
numbers, if and only if one of the following conditions holds:

La(dp)

of non-negative real

(o) if max(q,1) < p, there exists C > 0 such that, for any m,

q(p—1)/(p—q)
/ (Zt” QF'~ XQ> dp < C,

Q€D
where p' = p/(p — 1) is the conjugate of p;
(8) if 0 < g <p<1, there exists C > 0 such that, for any m,

q/(p—q)
) du < C.

[ (s n@txadn
" NQEDn

3.2. Proof of theorem 1.3
Assume first that (ii) of theorem 1.3 holds, that is,

B
sup B

e LY ®P=a)(q,).
rp<d w(B)rl;SpX (du)

Then Holder’s inequality with exponent p/q > 1 gives that
du C q/p
MR ) < ([ 1o Q]
sn sup,., «5(1(B)/w(B)rg™)x5(¢)
/(p—a) (p—a)/p
u(B) )q >
X sup ————— d
(/n (Tsfdw(B)rBstB 1(C)

) du(¢) o/
< ([, e supm<5<u<B>/w<B>r;P>xB<<>> |

du(Q)
sup (u(B)/w(B)rg")xs()’

If we define
dpa(¢) =
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then the measure uq satisfies, for any rp < 9,

ul(B)—/Bdm(cm/Bw(?;;spdu(c)—“é?

Hence, since p < 1, theorem 1.1 gives that there exists C' > 0 such that, for any
f e HE (w),

1/p
([ Malfi©ran©) < iz

This completes the proof of the sufficiency of condition (1.9).

Next assume that (i) of theorem 1.3 holds. By Lemma 3.2, in order to complete
the proof of the theorem, we must show that

sup (@) 42

e LY =9 (dy),
S w(Q)TéstQ (dp)

with the L4/ (P—a) (dp)-norm bounded independently of m. By the observation at the
beginning of the proof of lemma 3.2, we may assume that the radius r¢ is strictly
less than 1.

Let m be a large negative integer, and let Q € D,,,, (g € @, 79 <1l and 8 < 1
be as chosen later. Let (Ag)gep,, be a sequence of non-negative real numbers in
[P. We consider the holomorphic function on B™ defined by

Fz)= > AQ( LI

I (R (o 1k

Since 3 < 1, the real part of the above functions is non-negative, and consequently
we have that, for any ¢ € S™,

1
ReAIyUW(C)2<NL1[QE;§;Q<1AQ1Re(1__ZO__TQ)GQVJ(C)
1
~ QED§Q<1 )\QMa |:|1 — Z(]. — TQ)C_Q'B:| (C)

Y

> )‘Q%XQ(C)-

Q€Dmro<t  TQ

On the other hand,

HHf(w)

H I e T

QEDm,rqo<1
1
AN —
H Q€D§Q<l (1 — Z(l — TQ)CQ)B Lp(w)
(> ! ”
3 NoM, _ <n>) w(n) do<n>)
8" et o<t T =2 (1 = 1)o7

https://doi.org/10.1017/50308210510001654 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510001654

Trace inequalities for HP (w) in the non-diagonal case

But, since

1 1
sup < .
zeDa() |11 — (1 =71@)2Cq|PT — |1 —n(1 —rqg)qlP*s

and p < 1, we have that

H 2. e z(lim)@@’

QEDy,ro<1

(2

HE (w)

QED,, TQ<1
§ v (@ "
- Z Q .(B+s)p ’
QEDm,ro<1 Q

1
Ap/ n) do(n) /p
Q |]_ — 1 —rQ nCQ| (B+s)p

343

where the last estimate holds provided we choose 3 < 1 such that (64 s)p—7 >0
(which is possible since by hypothesis 7 — sp < p). Altogether, applying (1.1), we

have that
1/p
» w(Q)
H > /\Qrﬁ << > X (ﬁ+s)p> '
QED,m,ro<1 Q ''L(dp) QEDm,ro<1  TQ
Defining
w(@)'/?

VQ::/\QW’

we can rewrite the latter estimate as

,r.S
|2 e

QED,,rqo<1 QEDm,rq<1

which, by theorem 3.3, is equivalent to the condition

sup xq € LY@~ (y),
QeD'mvrQ<1 w(Q)rQ

with the L9/(=% (;)-norm bounded independently of .

3.3. Proof of theorem 1.4 for g > 1

1/p
(2 @)
La(dp)

The methods for the proof of theorem 1.4 when g > 1 will use duality, and
consequently cannot be used for ¢ < 1. Although the proof that we shall give for
q < 1 can also be applied to the case ¢ > 1, we include both proofs, since some

additional restrictions on 7, s and p have to be considered when ¢ < 1.

If v is a positive Borel measure on §", 1 < p < 400, we recall that the (s, p)-

energy of v with weight w is defined by

’

en) = [ LIQY w0 do(0).
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/

If we write (K,[v])?" = (K,[v])?' ' K,[v], Fubini’s theorem gives that

en)= | Klw Kl Q) av(c).

The first observation is a reformulation of assertion (ii) in theorem 1.4, which
will be useful in the remainder of the section.

LEMMA 3.4. Let 0 < s <n, 0 < p,q < +o0o, let w be a weight on S™ and p be a
positive Borel measure on S™. Then the following conditions are equivalent:

(a) there exists C > 0 such that, for any f,

1/q
([ RAQ @) <l

(b) there exists C > 0 such that, for any f,

1/q
( | Klfwm® ”](c)qdu(o) < Ol o -07-0)-
Proof. This is an immediate consequence of the fact that if we set |g| = | f|w=®' =1,
then |g[Pw = |f|Pw=®"~1, O

The following theorem, which is the non-weighted version of theorem 1.4 for
g > 1, was proved in [6].

THEOREM 3.5 (Cascante et al. [6, theorems 3.3 and 4.1]). Let 1 < ¢ < p, s > 0,
with 0 < n—sp < 1, and let p be a positive Borel measure on S™. Then the following
conditions are equivalent:

() there exists C > 0 such that, for any f € LP,

1/q
([ aledor auo) - < s

(8) there exists C > 0 such that, for any f € LP,
1/q
([ 1mimoman) < ciflw:

(7) Wiply] € Law=1/ (=0 ().

To prove theorem 1.4 for 1 < ¢, we shall follow the ideas of the previous theorem,
which deal with the technicalities arising from the fact that we are dealing with a
weight. We shall show that (i) < (ii) and (ii) < (iii). The proof that (ii) = (i) is a
consequence of the pointwise estimate | M, [Cs[f]]| 2 K[| f]]-

Next we shall show that (i) = (ii). Assume first that £ (du) < +oo and let f be a
bounded non-negative function on S™. We shall consider the holomorphic potential
Ug[f du] given in theorem 2.3, applied to the measure fdu. Using the weighted
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version of Wolff’s estimate, Holder‘s inequality and condition (i) of theorem 2.3, we
have

v (f dp) = / w (F dp)(O)£(0) du(C)

= [ Mo[Ug[f dull(€)f(C) du(C)

Sn
SN o gy 1Mo U [f dpllll Laapy -

The fact that we are assuming that (i) holds, together with property (ii) of theo-
rem 2.3, gives that the above is bounded by

1Nl o (o Eap(f dp)'/7;
thus,
Ex(F A 21t
Since, by definition, £%(f du) = K[w ' K,[f dp]]P’ ~1(¢), the latter estimate can

be rewritten using duality as

[ K00 4u(©) % Nl

which is (ii). The fact that any measure p that satisfies (i) also satisfies £, (dp) <
+00 can be argued as in [6].

Next we prove that (iii) = (ii). We shall follow closely the proofs of [6, theo-
rems 3.3 and 4.1]. By duality, since ¢ > 1, in order to prove (ii), we have to check
that, for any g > 0,

1K [g dpdll Lo (- =10y = 1191l Lo (apsy-

But the left-hand side of the estimate that we have to check is just the weighted
energy £ (g dp)'/?". By applying the weighted version of Wolff’s estimate, the
above estimate can be rewritten as

[ walodulgd < Il (3.4)

If M}™[g] denotes the centred non-isotropic Hardy-Littlewood maximal function
defined by

HL = Su 71
M, ~[g)(¢) = SUD B C) /Bm) g(n) dp(n),

we then have that the following pointwise estimate holds:

Winlg dul(€) = (Mg} ()P~ Wi ul ().
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Consequently, applying Holder’s inequality with exponent r = ¢'/(p’ — 1) > 1
o (3.4), we obtain

/ spl9 dulg dp
1/r’

< ([ o o) ([ wowsmor wo)

The fact that the centred non-isotropic Hardy—Littlewood maximal operator M EL
is bounded in L? (du), together with Holder’s inequality with exponent ¢/’ > 1
gives finally that the above estimate is bounded, up to a constant, by

/ L (p—a)/a(p—1)
190 ([ VB0 auc))

< 1917

that is, we have proved (3.4).

We next prove that (ii) = (iii). Assume that (ii) holds. By lemma 3.4, we have
that

1/q
([ 1o 1) < gy
for any f > 0. If (Ag)q is a sequence of non-negative real numbers, let
f= sup Aoxo-
QGD’”’L

Then
1/p
11l o1y < (ZAP @)
We also have that

Y Aory Mw P (Q)xg < Ki[fw @),

Combining these expressions, we obtain

N

C ( Z )\gw—(p’—l) (Q)>1/p,

La(dp) Q

H > org "w PV (Q)xg
Q

Equivalently,

1/p
H > vory "W PTH@) P xg C< > vé’g)
Q Q

La(du)

By () in theorem 3.3 we obtain that

p'=1_ _(p'—1)
Z <P‘H(QSZ)> MX@ € LIP=D/=0) (qy).
QED,, TQ rQ
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We observe that the left-hand side of the above estimate is a discrete version of
the Wolff potential W, [u]. The continuous version of the above conclusion can be
obtained with similar methods to those used in the proof of [6, theorem 3.3]. The
arguments are based on an estimate of the continuous version of the Wolff potential
in terms of an average of discrete Wolff potential associated to a collection of shifted
dyadic lattices Dy, an estimate that holds because, since ¢ > 1, we also have that
q(p—1)/(p—q) > 1. Hence, using Holder’s inequality allows us to finish the theorem.
We refer the reader to [6] for the details.

3.4. Proof of theorem 1.4 for ¢ <1

In the proof of theorem 1.4 when ¢ < 1, we shall use an alternative argument.
We shall see that (iii) = (ii) = (i) = (iii).

As in the previous case, the fact that (ii) = (i) in theorem 1.4 is a consequence
of the estimate M, [Cs[f]] =< K[| f]]-

Next we shall show that (iii) = (ii). We need some technical lemmas.

LEMMA 3.6. Letl <p < 400, 5,7 > 0, and let w € A, satisfy a doubling condition
of order 7. We then obtain that there exists a C > 0 such that, for any ( € S™,
r>0,k>1,

(! ' —n _ (!
W=D (B(C,%» < O =m0 [(0=1) 1y =1 (B (¢ 1),

Since w is in D,

Tinw(B(Q r) < 2K (r/;k)” v (B (C’ 27;“> ) '

The fact that w € A, allows the above estimate to be rewritten as

L 0~ (g R <2 (w00 (B¢, 2 -
(7‘”w ( (QT))> = <(r/2k)”w < (C,Zk)>> .

Equivalently,

(i — r T—n — —(p' -
- ”<B<C72k>) < C2E =M =D~ =D (B(C, 7)),

which gives

—(p'— r T—n - —(p'—
w— @' -1 <B(<72k>> < C2FT=n)/(p=1), == (B(¢, 1)).

As a consequence of the above lemma we have the following.

LEMMA 3.7. Let1 <p < 400, 5,7 > 0, and let w € A, satisfy a doubling condition
of order T. Assume that T —n < s(p — 1). We then have that

]. 1 r ]_ /
= - =U(B(n.t
7 2 Ty y e

with constants independent of n and r > 0.

=

dt 1
t

—g?
Tn S
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Observe that this last lemma implies that the pair (K,,w~® ~1) satisfies the
so-called logarithmic bounded oscillation property (LBO) [8, (3.1)], i.e.

1 / [ dt
sup ; —w (B(n,t))—
neB(e,r) WP (B(n,r)) Jo 7 ¢
at

1 | ,
= inf —(»-1) B t
_HEIBD(CJ’) w(p’l)(B(n’T))/o s (B(n,1)) 7

We also observe that the hypothesis in theorem 1.4 for the case where g < 1
implies that for any p we always have that 7 — n < s(p — 1), and consequently the
pair (K, w™® 1) satisfies the LBO condition.

Now we can follow with the proof of (iii) = (ii). We shall sketch some of the
ideas of the proof of [8, theorem 3.3], a version of this assertion is considered in R™.
In order to show the implication, we first observe that it is enough to prove that if
dpy = dp/ (Wi [u])P~1, then the following estimate holds:

| dina(€) 21T -y (35)

Indeed, if we assume for a moment that (3.5) holds, then Holder’s inequality with
exponent p/q and (iii) yield

, 1/q
([ mlra 0 auo)
< ( Ks[fw_(”,_l)]”(g“) dm(<)>1/p(W:;[H]q(p—l)/(p—q))(p—q)/qp
Sn

< ( | Klfem I dm(o)l/p

2 e -0y

So we are left to prove (3.5). Applying duality, (3.5) holds if and only if

5:;)[9(1/11] = HgHip'(dm)' (3.6)

The arguments in [8, theorem 3.3] can be reproduced in our situation to show
that the above continuous energy can be rewritten as a supremum over certain
‘translations’ of non-isotropic dyadic energies introduced in [6].

Consequently, in order to prove (3.6), it is enough to show that the discrete
version (3.7) holds, with constants independent of m, namely,

P’ ,
EXPm g du] :/Sn< Z ré"/@gdul){@) do < ||g||1£p,(dm). (3.7)

Again applying duality, in order to prove (3.7), it is enough to prove the following
lemma.
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LEMMA 3.8. If we define
P (fu 000 = 3 vy [ fum ¥ no(@),
QEDm Q

then we have that
K2 [fw™ P dpa(Q) 2 F1, - (3.8)

Proof. Since
dp
Wi [

in order to prove the lemma we shall show that the estimate

dup,, =dur =

b

KP[fw= =V (¢) dpp,, () 2 NFI2 iy
. LP(w )

holds.

Next, the pair (K5, w_(p/_l)) satisfies an LBO property, and in consequence, the
non-isotropic version of [8, lemma 2.2] gives that the above discrete version holds
if and only if, for any P € D,,,

> 5w, Q) w Q) 2w, (P).

QCP

Let us check this last estimate holds. If we define WP 1] by

WEPn () = S r5T e PV Q) (@) T xe Q)

Q€D
then, by Holder’s inequality,

’ ’ d/J/

P p —1 -
pp, (Q) < pp (Q) /Q WP [l

Consequently, for any P € D,,,

>, (QF W TI(Q)
Qcrp
<X G, (@Y I(Q)
QCP
8 / dp(n)
QYo réjf")p QN w=E =@y (n)

For the proof of (i) = (iii) of theorem 1.4 when ¢ < 1, we shall construct adequate
holomorphic test functions and use a pointwise equivalence between the weighted
Wolff potential Wg, [v] and the non-isotropic Riesz potential V;[v] defined below.
This pointwise estimate adapts to the weighted non-isotropic case the pointwise
inequality relating the nonlinear Riesz potential and the Wolff potential obtained

< pp,, (P).
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in R™ and for the unweighted case in [13, theorem 6.2]. We recall that if v is a non-
negative Borel measure on S", V) [v] is the non-isotropic weighted Riesz potential
defined by
w o —1 —1
VaplVI(Q) i= Ksfw™ Kow]P = (3.9)

We have that W [v] < CVg[v], and as we have already said, the weighted
version of the fundamental Wolff’s theorem establishes that in average the converse
is also true. The following result shows that in some particular cases both nonlinear
potentials are pointwise equivalent.

PROPOSITION 3.9. Let 1 < p < 400, 7 > 0, s > 0 and let w be a weight in A,
satisfying a doubling condition of order 7. Let v be a positive Borel measure on S™.
Assume that, in addition, one of the following conditions is satisfied:

(i) ifl<p<2,7<(p—1)n+s;
(ii) ifp>2, T<n+slp—1).
Then Vi[v] ~ W [v].

We first observe that if w = 1, then 7 = n and, in the case p < 2, condition (i)
can be rewritten as p > 2 — s/n. If p > 2, then (ii) is always satisfied. Since the
estimate Wy, [v] < CV[v] holds for any positive measure, we have only to prove
that, under the hypothesis of the proposition, the other pointwise estimate also
holds.

Proof. We have that
Ve lW1(€) = Vi(¢) + Va(Q),

where

> 1 _ dv(z) 1/(p=1) dr
VC:/ / (wln/ — ) do(n)—
1<) o "% Jh—cil<r ) —czlz20r [1—nz|"s )

and

> 1 _ dv(z) 1/ (p=1) dr
wo- [T (e 2 Y
2(¢) o T Jji—chl<r ) —cz|<20r |1 —nz["s ) r

We begin by estimating the function V;. Since |1 — (7] < r and |1 — (Z| > 2C'r,
we have that |1 —nZz| >~ |1 — (Z|. We consider separately the two conditions given in
the hypothesis. In case (i), Holder’s inequality with exponent 1/(p — 1) > 1 gives

dz/(z) 1/(p—1)
</|1—<z>2cr 11— CZ|”_3>
o 1 1/(p-1)
~ (/ — / du(z)dt>
2cr 7% Jj1—cz<t t

00 I/(B(C t))l/(pfl) 00 dt (2—p)/(p—1) dt
[N o)™
e, =D\ [, =Dy i

1 < y(B(¢, )Y =1 at
1

~

= /1)

o t—s=9/-1) ¢
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where € > 0 is small enough to satisfy

3 T—nN

S — > —
p—1" p—1

which is possible since we are assuming that 7 < (p — 1)n + s and since p < 2,
(p—1)n+s<n+s(p—1). Hence, Fubini’s theorem and lemma 3.6 give

/ /“20 /-1 L / -0 VB d
rn B(c, r) r t(n s—e)/(p—1) t

1(p—1
L [THBG [y
o st/ o '

In case (ii), 1/(p — 1) < 1. Then

dy(z) 1/(p—1)
</|1qz>zcr 1 - 772|"_S>

R

oo 1 dt 1/(p 1)
</ — du(z)>
20r V7% ¢z« t

~ 1 /-1 4
/2 WV(B(C,t)) 7

Crt

IA

and consequently, Fubini’s theorem gives

oS 1 0o 1 dt ’ dr
e < M/ e-1 9t / w- @ -
1(0,/ s /C =7V (BGD) b JBn "

t/zc 1 o _l)dry(B(C,t))l/p Y dt
B tn=9)/(-1) ¢

Since by hypothesis we are assuming that s > (7 —n)/(p— 1), lemma 3.6 gives that
the above is bounded, up to a constant, by

ts 7(p/ 1) ( (C t))l/(p Y de
; s Ty —

1 1
= C/ B(¢,1)) /- ) w—® —1)dt
(n— sp)/(p 1) ) t

:ng,[u](g).

We now estimate the function V5. Again we consider separately the two conditions
given in the hypothesis.
In case (i), let I; be the function defined by

_ . dV(Z))l/(pl) .
L) /|1—c17|<r (w ) /|1—nz|<2cr |1 —(z|n—s do(n)
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Since 1/(p — 1) > 1, Minkowski’s inequality yields

- | i )
1-¢zl<2cr |1 —nZ2[" Ll/“"l)(x\1_<m<rw‘(""1)(n) do(n))

=@ - () d p-1
j/ dy(z)(/ w " (77)/0(771))> .
[1-¢z|<2Cr l—cql<cr |1 —nz|(n=s)/ (=

Since |1 — ¢Z| < 2Cr and |1 — ¢7j| < Cr, we have that |1 — 27| < Cr. Hence,

/ w™® =1 () do(n) </ w=® =1 (n) do(n)
|1—¢q|<Cr |1 — nz|(n=9)/(p=1) = 1—nz|<Cr |1 — nz|(n—=9)/(p-1)
Cr
:/ tn—(n—s)/(p—l)i/ Y.
0 t B(z,t) t

rn—(n—s)/(p—l)i/ w04
rr B(z,r) r

where in the last estimate we have used lemma 3.6, since, by hypothesis

TL—$>T—TL
p—1" p—1’

p—1
= T_("_s)/ (/ w‘(l’/‘l)) dv(z),
|1-¢z|<2Cr B(¢,r)

and consequently,

n —

Thus,

o0 r
no = [ asnen

TTL—S

j/wr(sp—n)/(p—n (B, r)/ D L / -0 dr
0 B(z,r)

rh r

= W (Q).

In case (ii), Holder’s inequality with exponent p — 1 gives

, d 1/(p-1)
[ e ) aw
l1—¢al<r —cz<2cr |1 — 12|

, (r=2)/(p—1)
< (/ - —1>>
B(¢r)

o dvls 1/(p-1)
x (/ s ”(n)/ 1(Zl_sda(77)> . (3.10)
[1-¢q|<r [1-¢z|<2Cr 11 —nz]
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Next, B(¢,r) C B(z,Cr), and consequently the fact that we are assuming that
s> (t—n)/(p—1) gives, by lemma 3.6, that

—('-1) —(»'-1)
/ T oo n(i) do(n) < / = ()
[1—¢q|<r 11— nz| 11

s do(n)
—z7|<Cr ‘]— - 772|n78

/ ][ —0'=1) gt
B(z,t) t78 t
=< 7,8][ w- @ -1
B(z,t)

P / w1,
™ B
Finally, we obtain that (3.10) is bounded up to a constant by

1
Wﬂ( (¢, ))Up 1)/

B(¢r)

w1,
and, consequently,

> rs 1 / dr
Vi =< ' =Dy(B(¢, )V P
2(€) —/0 =)/ (—1) /(C T)w v(B(¢, 7))

"
1/(p—1)
_c/ ( ) 1 / w- @ -0 4"
raTee B(¢.t)

=W lV(0).

O
We can now prove that (i) = (iii). Assume that (i) holds, and let v be a non-

negative measure on S". If U, [v] are the holomorphic functions obtained in theo-
rem 2.3, we have that

1/q
( / qdu) < M [ oy < 2]

w 1
a@)r.
Theorem 3.9 gives that WY [v]

Viplv], and from the above estimate we deduce
that, for every non-negative measure v

</W(K5[[w1Ksy]p’1])qdu>1/q = ( . K] w= @D dg>1/p (3.11)

For a fixed large negative m, let D = J,, D, be the dyadic decomposition intro-
duced in §3.1.

Let v be the measure defined by dy = w=® =1 do, and let (Ag)q be a sequence
of non-negative real numbers satisfying

Z Ao7(Q) < +oo.

Q€D
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We consider the set
w—®-1)
{f €LP(dy); Y Agry” (Q)XT(Q)( ) < K [fdi)(2), 2 € IB%”}.
Q

QeD,,

We have that E is a convex set in LP(d~y), which is a uniformly convex Banach
space. Consequently (see, for example, [2, corollary 1.3.4]), there exists a unique
function fp € E with least LP(dy)-norm. Next we shall show that there exists a
constant C' > 0 depending only on the dimension n such that the function defined
by f = Csupgep,, AoXq is in E. We check that

w1
> A = (Q)XT@)(Z) < K [f dv](2)

QED,,

for any z € B™, that is, f € E. Indeed, for m fixed, and any j, there exists a unique
Q; € Dy, such that the point z/|z| € @;. The fact that the weight w~® 1) gatisfies
a doubling condition gives that

w— @' -1) w—@®'-1)
— = — s
i T, Qi\Qi-1 Tq;
and, consequently,
w—®'-1) w—@®'-1)
/\Qj/ — s f/ ( sup /\QXQ)T'
i TQ; Qi\Qj-1 ~Q€Dm TQ;

This estimate implies that supgep, AoXxq € E-
From the minimality of the norm of the extremal function fg, we deduce that

p
/ IfEI”dvi/ ‘ sup )‘QXQ‘ dy< Y M@
Sn S ' QEDm QED,,

We shall check that this extremal function can be written as fp = hp"l, where
h = K;[v] for some non-negative measure. Postponing the proof of this fact, we
finish the proof of the theorem as follows. The fact that for z € B™ the operator
f € LP(dy) = K[f dv](2) is continuous (just a consequence of Holder’s inequality)
gives that the function fr € F. And since we are assuming that fr > 0, the
monotone convergence theorem gives that, for any ¢ € S™,

w —-('-1
3 Q(@xmogmmwo.

Q€D

We apply (3.11) to this measure v to obtain

(s =( [ rre)”

Hence, we have that
1/p
(X @)
La(dp) Q€D

H > Aary M @Q)xe

Q€D
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Applying [18, theorem 3.c], we obtain that

3 (M(Q) )p/_lw_(pl_l)(C»XQ € LIP=D/=0)(qy).

n—sp rn
QED,, Q

"Q
We observe that the left-hand side of the above estimate is a discrete version of the
Wolff potential W¢, [11]. We have thus proved a discrete version of in theorem 1.4(iii).

The arguments used to deduce the continuous version that we have used for the
case ¢ > 1 cannot be applied in our new setting. The continuous version for g < 1
is a consequence of a more subtle argument that can be obtained using similar
methods to those in [8]. The idea of the proof is again based on an estimate of the
continuous version of the Wolff potential in terms of an average of discrete Wolff
potentials associated to a collection of shifted dyadic lattices D;. Since, in general,
q(p—1)/(p—q) is not bigger that 1, we cannot apply Holder’s inequality as in the case
q > 1. The proof of the estimate requires the use of inequalities in spaces of mixed
norm together with a dyadic vector-valued Fefferman—Stein maximal theorem. In
order to apply the results, we again use that either hypothesis (a) or hypothesis (b)
when ¢ < 1 implies that the pair (K, dv) satisfies the LBO condition. We refer the
reader to [8] to check the precise calculations.

It remains to prove that fz = h? ~!, where h = K,[v] for some non-negative
measure. We shall follow some of the ideas in [2, theorem 2.2.7].

Let ¢ € LP(dvy) such that K[¢ydy] > 0. We then have that, for any ¢ > 0,
fE +ty € E and, consequently,

o+ toP dy >/ el dy.
S"n, STL

Next, differentiating
|fe +tpP dy

S§n
at t = 0, we get that, for any ¢ € LP(dy) such that K4[ydy] > 0,

|felP 2 ferpdy > 0. (3.12)

Sn

We define h = |fg|P~2fg, a function that is in L?' (dv), since |h|P" = | f&|P. We now
check that there exists a positive measure vy such that h = K[vg]. Indeed, we

define a distribution on S”, vg, in the following way. Let w be a test function on
S™, and set w = K[ dy] for some 6 € LP(dy). If we define

<Van> = / ho d’%

we obtain
(ve, ) < Pl o @y 101 2 (ary)-

Observe that v is well defined, since if K[ dy] = K[ dv], then K[(0—0,) dv] =
0, and by (3.12) we have that

/n h( — 61)dy = 0.
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Since w=®' =1 is a weight in AP we deduce, using [5, lemma 2.1], that there
exists p; > p such that [|0]|zr(ay) = [|0]| 71 (de)- Consequently,

[(ve, @) 2 1Al Lo @y 191l L1 a0

and |(vg, w)| is bounded by the norm of the function w in the non-isotropic Sobolev
space K [LP'[do]]. Thus, vg is a distribution.

Next, if w1 = K[ d] is a non-negative test function, again using (3.12), we
obtain

(vE,w1) = / hf dvy > 0.

Thus, we conclude that the distribution vg is a non-negative measure, as we wanted
to prove. O
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