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We construct smooth, non-symmetric plasma equilibria which possess closed, nested
flux surfaces and solve the magnetohydrostatic (steady three-dimensional incompressible
Euler) equations with a small force. The solutions are also ‘nearly’ quasisymmetric. The
primary idea is, given a desired quasisymmetry direction ξ , to change the smooth structure
on space so that the vector field ξ is Killing for the new metric and construct ξ–symmetric
solutions of the magnetohydrostatic equations on that background by solving a generalized
Grad–Shafranov equation. If ξ is close to a symmetry of Euclidean space, then these are
solutions on flat space up to a small forcing.
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1. Introduction

Let T ⊂ R3 be a domain with smooth boundary. The three-dimensional magneto
hydrostatic (MHS) equations on T read

J × B = ∇P + f , in T, (1.1)

∇ · B = 0, in T, (1.2)

B · n̂ = 0, on ∂T, (1.3)

where J = ∇ × B is the current, f is an external force and P is the pressure. The solution
B to (1.1)–(1.3) can be interpreted as either a stationary fluid velocity field which solves
the time-independent Euler equation, or as a steady self-supporting magnetic field in a
continuous medium with trivial flow velocity. The latter interpretation is robust across a
variety of magnetohydrodynamic models (e.g. compressible, incompressible, non-ideal)
and makes the system (1.1)–(1.3) central to the study of plasma confinement fusion.

In view of this, there is a long-standing scientific program to identify and construct
MHS equilibria which are effective at confining ions during a nuclear fusion reaction.
The most basic requirement for confinement is the existence of a ‘flux function’ ψ , whose
level sets foliate the domain T and which satisfies B · ∇ψ = 0. To first approximation, ions
move along the integral curves of B and so this condition ensures that particle trajectories
are approximately constrained to the level sets of ψ . For this reason, it is desirable to seek
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equilibria with nested flux surfaces (isosurfaces of ψ) which foliate the plasma domain.
When T is the axisymmetric torus, it is natural to look for such solutions in the form of
axisymmetric magnetic fields. If (R, Φ,Z) denote the usual cylindrical coordinates on R3

and the centreline of the torus lies in the Z = 0 plane, axisymmetric solutions take the
form

B0 = 1
R2
(C0(ψ0)ReΦ + ReΦ × ∇ψ0) , (1.4)

with flux function ψ0. In order for B0 to satisfy (1.1) with P0 = P0(ψ0), taking f = 0
momentarily for simplicity and taking T to be the torus with inner radius R0 − 1 and outer
radius R0 + 1, say, the flux function needs to satisfy the axisymmetric Grad–Shafranov
equation (Shafranov 1966; Grad 1967)

∂2
Rψ0 + ∂2

Zψ0 − 1
R
∂Rψ0 + R2P′

0(ψ0)+ C0C′
0(ψ0) = 0, in D0, (1.5)

ψ0 = const. on ∂D0, (1.6)

where D0 denotes the cross-section of the torus (unit disk) in theΦ = 0 half-plane centred
at R = R0. Conversely, if ψ0 is any solution1 to (1.5) with eΦ · ∇ψ0 = 0 then the vector
field B0 defined in (1.4) is divergence-free and satisfies (1.1). If ψ0 is constant on ∂T , B0
satisfies (1.3).

Unfortunately, these tokamak equilibria come with a slew of problems from the point of
view of plasma confinement fusion (Landreman 2019). For example, to achieve improved
confinement it is desirable for the magnetic field to ‘twist’ as it wraps around the torus
and this can only be accomplished in axisymmetry with a large plasma current, J. Such
plasma configurations are hard to control in practice. One approach to finding equilibria
with better confinement properties is to consider equilibria in geometries which have the
desired twist built in. This is the basic design principle behind the stellarator (Garren &
Boozer 1991). It is still desirable for these configurations to possess a form of symmetry,
which is known as quasisymmetry.

DEFINITION 1.1 (Weak quasisymmetry, Rodriguez, Helander & Bhattacharjee (2020)).
Let ξ be a non-vanishing vector field tangent to ∂T. We say that ξ is a quasisymmetry and
the field B is quasisymmetric with respect to ξ if

divξ = 0, in T, (1.7)

B × ξ = −∇ψ, in T, (1.8)

ξ · ∇|B| = 0, in T, (1.9)

for some function ψ : T → R.

The significance of the condition (1.8) is that it implies B · ∇ψ = 0 and ξ · ∇ψ = 0 and
so quasisymmetric solutions possess flux functions which are symmetric with respect to
ξ . In Rodriguez et al. (2020), the authors argue that (1.7)–(1.9) form sufficient conditions
that ensure first-order (in gyroradius) particle confinement, hence the terminology of weak
quasisymmetry. In the confinement fusion literature (Landreman 2019; Burby, Kallinikos

1We remark that it could be that this equation admits ‘large’ solutions with non-trivial dependence on Φ, see the
work of Garabedian Garabedian (2006).
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& MacKay 2020), one encounters the following alternative definition which is actually
stronger than the above. It replaces (1.9) with

ξ × J = ∇(B · ξ) in T. (1.10)

We term this set of conditions strong quasisymmetry. When f = 0 it is this stronger form
of quasisymmetry which is equivalent to other definitions in the plasma fusion literature
involving Boozer angles, see § 8 of Landreman (2019). If divB = 0 then (1.9) requires only
that a single component of (1.10) vanish, B · (ξ × J − ∇(B · ξ)) = 0.2 In light of this, the
additional content of strong quasisymmetry (1.7), (1.8) and (1.10) is the assumption that
the other two components of ξ × J − ∇(B · ξ) vanish. It turns out that when there is no
force and the equilibria are toroidal, strong quasisymmetry is equivalent to Definition 1.1.3

From (1.8), if ξ · B is constant on surfaces of constant ψ , ξ · B = C(ψ) (by a result in
Burby et al. (2020), any solution of (1.1) with f = 0 which satisfies (1.7)–(1.9) satisfies
this condition), it follows that B is of the form

B = 1
|ξ |2 (C(ψ)ξ + ξ × ∇ψ) , (1.12)

and when f = 0, the requirement that (1.1) holds implies that ψ must satisfy the
quasisymmetric Grad–Shafranov equation (introduced in Burby et al. (2020)) which reads

�ψ − ξ × curlξ
|ξ |2 · ∇ψ + ξ · curlξ

|ξ |2 C(ψ)+ CC′(ψ)+ |ξ |2P′(ψ) = 0, in T, (1.13)

ψ = const. on ∂T. (1.14)

Equations (1.2), (1.7) and (1.9) can be thought of as constraints relating ψ to the
deformation tensor of ξ , the symmetric two-tensor Lξ δ defined by

(Lξ δ)(X,Y) = ∇Xξ · Y + ∇Yξ · X, (1.15)

where ∇ denotes covariant differentiation with respect to the Euclidean metric. Recall
that ξ generates an isometry of Euclidean space if and only if Lξ δ = 0, in which case ξ
is called a Killing field for the metric δ. Assuming that ξ · ∇ψ = 0 and divξ = 0, from
(1.12) we find

divB = C(ψ)(Lξ δ)(ξ, ξ)+ (Lξ δ)(ξ, ξ × ∇ψ), (1.16)

and expanding the condition (1.9) we find

1
2
Lξ |B|2 = (Lξ δ)(ξ, ξ)+ 2

C(ψ)
(Lξ δ)(ξ, ξ × ∇ψ)+ 1

C(ψ)2
(Lξ δ)(ξ × ∇ψ, ξ × ∇ψ),

(1.17)
see lemma C.6 of appendix C. Equation (1.17) is a complicated relationship between
ψ,C(ψ) and ξ but notice that it holds trivially (assuming only that ξ · ∇ψ = 0) whenever
when ξ is a Killing field. It is well known that in Euclidean space the only Killing fields

2To see this, using standard vector calculus identities, we write

ξ × curlB − ∇(B · ξ) = B · ∇ξ + ξ · ∇B + B × curlξ. (1.11)

Taking the inner product with B results in B · (ξ × curlB − ∇(B · ξ)) = 1
2 ξ · ∇|B|2 + B · ∇ξ · B. The argument is

completed by using the elementary identity LξB = curl(B × ξ)+ divBξ − divξB = curl(B × ξ). This yields B · (ξ ×
curlB − ∇(B · ξ)) = ξ · ∇|B|2.

3M. Landreman, private communication.
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are linear combinations of translations and rotations. Therefore, up to a multiplicative
constant, the only such field compatible with the geometry of the axisymmetric torus is
ξ = ReΦ and as mentioned above, such solutions have problematic confinement properties.
We have arrived at the following problem.

Problem. Given a toroidal domain T , construct a function ψ : T → R with nested flux
surfaces and a divergence-free vector field ξ which does not generate an isometry of R3 and
is tangent to ∂T , so that (1.13), (1.9), the nonlinear constraints (1.16), (1.17) and ξ · ∇ψ = 0
all hold.

It is not clear that there are any smooth solutions ψ, ξ to the above problem. In fact,
in 1967 (long before the above notion of quasisymmetry was introduced), Grad & Rubin
(1958) and Grad (1967, 1985) conjectured that the only smooth solutions to (1.1)–(1.3)
possessing a good flux function have a Euclidean symmetry,4 and this would in particular
rule out any solutions of the above type. Since Grad’s work, there have been some
constructions of non-symmetric equilibria an infinite cylindrical domains (Salat & Kaiser
1995; Kaiser & Salat 1997). As these are unbounded in extent, they have limited practical
appeal for the perspective of confinement. No such examples of smooth solutions have
been rigorously demonstrated on toroidal domains, although there has been some work
on suggestive formal near-axis expansions (Bernardin, Moses & Tataronis 1986; Weitzner
2014; Jorge, Sengupta & Landreman 2019) and non-symmetric weak solution equilibria
with pressure jumps have been rigorously constructed (Bruno & Laurence 1996) which
may have practical implications for the confinement fusion program (Hudson et al. 2011,
2012).5

We do not address Grad’s conjecture here and our goal is instead to present a
robust method for constructing solutions to (1.1) with small force and which are
approximately quasisymmetric with respect to a given vector field ξ (sufficiently close
to the axisymmetric vector field ξ0 = ReΦ), in the sense that (1.8) holds but that (1.9)
holds up to a small error.

In addition to the non-trivial constraint (1.9), there are two serious difficulties in
constructing solutions to (1.1)–(1.3) of the form (1.12) with given symmetry direction ξ .
The first is that by (1.16), unlike in the axisymmetric setting, vector fields of the form
(1.12) need not be divergence-free. The second difficulty is that for arbitrary ξ , it is not at
all clear that the equations (1.13) and (1.14) admit any solutions with ξ · ∇ψ = 0, since
the coefficients appearing in (1.13)–(1.14) need not be invariant under ξ . Both of these
difficulties can be traced to the fact that ξ need not be a Killing field with respect to the
Euclidean metric. To circumvent these issues, inspired by Lichtenfelz, Misiolek & Preston
(2019) and Burby, Kallinikos & MacKay (2020), we replace the metric structure of (R3, δ)
with (R3, g) for a metric g for which ξ is a Killing field. The resulting magnetic field will
not satisfy the usual MHS equations (1.1), but provided ξ is sufficiently close to Killing
for the Euclidean metric, the error will be small. We now explain the idea.

Let us suppose that given ξ , we can find a metric g on R3 for which Lξg = 0, that is, for
which ξ generates an isometry (we give an explicit construction of such metrics for a large
class of vector fields ξ after the upcoming statement of theorem 1.3). We then consider the

4Specifically, in Grad (1967) Grad conjectures that there no families of smooth solutions to (1.1)–(1.3), each
possessing a flux function with closed level sets that foliate the domain T , other than the axisymmetric solutions. This
leaves open the possibility of isolated non-axisymmetric steady states, far from symmetry.

5See Lortz (1970) for a construction of a non-axisymmetric toroidal equilibrium which nevertheless enjoys plane
reflection symmetry (forcing all magnetic field lines to be closed).
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following generalization of the ansatz (1.12), introduced in Burby et al. (2020):

Bg = 1
|ξ |2g

(
C(ψ)ξ +

√
|g|ξ ×g ∇gψ

)
. (1.18)

Here, |ξ |g,×g,∇g denote the analogues of the usual Euclidean quantities |ξ |,×∇ with
respect to the metric g (see appendix B). In lemma C.3 we use the fact that Lξg = 0 to
show that vector fields of this form are divergence free assuming only that ξ · ∇ψ = 0,

divBg = 0 (1.19)

and also that ψ is a flux function for Bg,

ξ × ∇ψ = Bg. (1.20)

We emphasize the somewhat surprising fact that even though the definition (1.18) involves
the metric g in a non-trivial way, it is designed that way so that the identities (1.19) and
(1.20) involve only Euclidean quantities. We remark that Bg will not be divergence-free
with respect to the g metric.

We then seek Bg of the form (1.18) which satisfy the MHS with respect to the metric g,

curlgBg ×g Bg = ∇gP. (1.21)

This ansatz leads to the generalized Grad–Shafranov equation for ψ ,

divg

(√
|g|∇gψ

|ξ |2g

)
− C(ψ)

ξ

|ξ |2g
·g curlg

(
ξ

|ξ |2g

)
+ C(ψ)C′(ψ)√|g||ξ |2g

+ P′(ψ)√|g| = 0, in T,

(1.22)

ψ = (const.), on ∂T, (1.23)

where |ξ |g, ·g, curlg denote the magnitude, dot product and curl with respect to the metric
g (see appendix B for the definitions and appendix C for the derivation of (1.22) from
(1.18) and (1.21)). Note that (1.22) and (1.23) reduces to (1.13) and (1.14) when g = δ, and
when g is the circle-averaged metric, it agrees with the equation derived in Burby et al.
(2020). As shown in Burby et al. (2020), all solutions of MHS (1.1)–(1.3) without force
and non-vanishing pressure gradient must have a flux function satisfying (1.22) where g
is the circle-averaged metric discussed below. In light of this, the study of the generalized
Grad–Shafranov equation (1.22) is of fundamental importance in the study of solutions to
MHS with a generalized symmetry.

As another consequence of the fact that Lξg = 0, the coefficients in (1.22) are invariant
under ξ and so (1.22), unlike (1.14), is consistent with the requirement ξ · ∇ψ = 0. The
downside is that the equation (1.21) does not agree with (1.1) unless g = δ and so Bg
will not satisfy the original MHS equations. However, if we can arrange for the metric
g to be sufficiently close to the Euclidean metric δ, then Bg will satisfy the usual MHS
equations curlBg × Bg − ∇P = 0 up to a small error. Our approach will be to solve the
generalized Grad–Shafranov equation (1.22) by deforming an appropriate solution ψ0 of
the axisymmetric Grad–Shafranov equation (1.5), using the methods from Constantin,
Drivas & Ginsberg (2020). In particular, we seek a diffeomorphism γ : D0 → D and
requiring thatψ = ψ0 ◦ γ −1. It turns out (see § 2) that this reduces to a system of nonlinear
elliptic equations for the components of γ which can be solved by a iteration.
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In what follows, T0 denotes the axisymmetric torus

T0 = {(R, Φ,Z) | (R − R0)
2 + Z2 ≤ a, 0 ≤ Φ ≤ 2π}, (1.24)

with thickness 0 < a � R0. Let ξ0 = ReΦ be the generator of rotations in the Z = 0 plane.
Let D be any domain in the half-plane {Φ = 0} sufficiently close to D0. Suppose that ξ is
a vector field which is sufficiently close to the rotation field ξ0 with the property that all
the orbits of ξ starting from D are periodic (with possibly different period τ( p)). In this
case we define the toroidal domain

T = {ϕs( p) | p ∈ D, s ∈ [0, τ ( p))}, (1.25)

where ϕs( p) denotes the time-s flow of ξ starting from p ∈ D,

d
ds
ϕs( p) = ξ(ϕs( p)), ϕ0( p) = p ∈ D. (1.26a,b)

In this setting we say that the toroidal domain T is swept out by ξ from D.
Our first result is that, given a toroidal domain T swept out by a vector field ξ as above,

sufficiently close to the axisymmetric torus T0, we can find a flux function satisfying
the generalized Grad–Shafranov equation (1.22). The proof is constructive and relies on
deforming a known axisymmetric steady state satisfying mild conditions (H1)–(H2) stated
in § 2.

THEOREM 1.2. Fix k ≥ 0, α > 0 and let ξ ∈ Ck+2,α(R3) be a divergence-free vector field,
sufficiently close in Ck+2,α to the rotation vector field ξ0 = ReΦ . Let D be a domain
sufficiently close to D0 in Ck+2,α in the sense that D = {(r, θ) | 0 ≤ r ≤ b(θ), θ ∈ S1}
for a function b : S1 → R sufficiently close to 1 in Ck+2,α(S1). Let ψ0 ∈ Ck+2,α(D0) be
a solution of (1.5)–(1.6) with pressure P0 ∈ Ck+1,α(R) and with C0 ∈ Ck+1,α(R) satisfying
(H1)–(H2).

Suppose, moreover, that ξ has closed integral curves that sweep out a toroidal domain
T from D. Suppose that there is a metric g ∈ Ck+2,α(R3) with the property Lξg = 0 which
is sufficiently close to the Euclidean metric. Then, for any given C ∈ Ck+1,α(R) sufficiently
close to C0, there is a flux function ψ ∈ Ck+2,α(T), and a pressure P = P(ψ) ∈ Ck+1,α(T)
so that ψ satisfies the generalized Grad–Shafranov equation (1.22) and the boundary
condition (1.23). Moreover, the level sets of ψ are diffeomorphic to the level sets of ψ0.

As a consequence of the above theorem, we are able to produce magnetic fields with
nested flux surfaces and a global symmetry that solve MHS up to a small force whose
magnitude is controlled by the deviation of the symmetry from being Euclidean. These
fields satisfy two of the three quasisymmetry conditions, the third holding approximately.
The resulting magnetic field possesses flux surfaces which have the same topology as the
axisymmetric base state.

THEOREM 1.3. Suppose the hypotheses of the previous theorem hold. For any given C ∈
Ck+1,α(R) sufficiently close to C0, there is a flux function ψ ∈ Ck+2,α(T), and a pressure
P = P(ψ) ∈ Ck+1,α(T) so that the magnetic field B defined by (1.18) satisfies B · ∇ψ = 0,
B × ξ = ∇ψ as well as MHS (1.1)–(1.3) with a force f obeying

‖f ‖Ck,α(T) ≤ c‖δ − g‖Ck+2,α(T), (1.27)

where c := c(‖ξ‖Ck+2,α(T), ‖ψ‖Ck+2,α(T), ‖P0‖Ck+1,α(R), ‖C0‖Ck+1,α(R)). Moreover, the flux
surfaces of B (isosurfaces of ψ) are diffeomorphic to the isosurfaces of ψ0, and ψ is a
solution of the generalized Grad–Shafranov equation (1.22).
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The point of the bound (1.27) is that if ξ is a Killing field for the Euclidean metric δ then
we can take g = δ in the above and by (1.27), the B is then an exact solution of the MHS
equations (1.1) with f = 0. In this sense, (1.27) shows that one can construct approximate
solutions to MHS with symmetry direction ξ with error proportional to how far ξ is from
being a symmetry of R3. We remark that the proof is quantitative in that all the small
parameters can be explicitly defined in terms of the inputs ψ0, C0, P0 and ξ . Let us also
remark that one is not free to choose P from the outset and it is instead determined in the
course of the proof to enforce a certain compatibility condition, see § 2.

The above theorem is perturbative, in the sense that the resulting magnetic field will
be approximately axisymmetric and have a flux function close to a given ψ0 satisfying
the axisymmetric Grad–Shafranov equation (1.5). As will be discussed in the upcoming
section, the result follows from a theorem in Constantin et al. (2020) by deforming the
given solution ψ0 of the axisymmetric Grad–Shafranov equation (1.5) into a solution of
the generalized Grad–Shafranov equation (1.22). The same theorem from Constantin et al.
(2020) in fact allows one to deform a given solution ψ1 to (1.22) for given ξ = ξ1 into a
solution ψ2 to (1.22) with nearby, but different, ξ = ξ2. Given a desired ξ , if one can
produce a sequence of vector fields ξ0, ξ1, . . . , ξN−1, ξN = ξ in such a way that the resulting
solutions ψ0, ψ1, . . . , ψN−1 all satisfy the conditions (H1)–(H2) this would produce a flux
function satisfying (1.22) far from axisymmetry. Note, however, that the resulting force in
(1.1) could be quite large.

If one is only interested in constructing approximate equilibria, this can be achieved
simply by pushing forward a given axisymmetric state by a volume-preserving
diffeomorphishm. The resulting flux function need not satisfy the generalized
Grad–Shafranov equation (1.22). On the other hand, the construction in theorem 1.2 does
ensure that the generalized Grad–Shafranov equation is exactly satisfied. In light of the
fact that Burby et al. (2020) show that all unforced solutions to (1.1) and (1.3) must satisfy
the equation (1.22), our theorem may provide a path towards obtaining non-axisymmetric
solutions without force.

We now describe how to produce a base state ψ0 and metric g which are suitable
inputs for theorem 1.2. In appendix A, we provide an example of a base state ψ0
satisfying (H1)–(H2) living on a large aspect ratio torus. This is obtained as a perturbation
of an explicit profile on an ‘infinite aspect ratio’ torus. It should be stressed that
the conditions (H1)–(H2) are not very stringent and should hold for a wide class of
axisymmetric solutions that possess simple nested flux surfaces (which could, for example,
be numerically obtained). Next, we describe two large classes of vector fields ξ and metrics
g satisfying the hypotheses of our theorem.

Remark (Designer metrics). We provide two possible ways of constructing a ‘near’
Euclidean metric given a ‘near’ isometry ξ .

(i) (Deformed metric) Suppose that the torus T is given by T = f (T0) where f is a
diffeomorphism defined in a neighbourhood of T0 and which is sufficiently close
to the identity. Then we can take ξ = df (ξ0) where df denotes the differential and
let g = f ∗δ denote the pullback of the Euclidean metric δ by f . Because the Lie
derivative is invariant under diffeomorphisms, we have ξ is a Killing field for g
since Lξg = f ∗(Lξ0δ) = 0.

(ii) (Circle-averaged metric) Suppose the orbits of ξ starting from D are all 2π-periodic.
In this case we say that ξ generates a circle action. Defining the circle-averaged
metric g,

g = 1
2π

∫ 2π

0
ϕ∗

s δ ds, (1.28)
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it follows by a simple computation that Lξg = 0. Moreover, when ξ is a Killing field
for Euclidean space, g = δ. This metric was introduced by Burby et al. (2020). As
motivation for the appearance of this particular metric, consider the MHS in terms
of one-forms LB(B) = dP (see Arnold & Khesin 1999). In this representation, it is
clear that the metric appears linearly (in the definition of ). Therefore, if B and P
are invariant under the flow of ξ , then one finds LB(B̄) = dP where ̄ denotes the
operation of lowering the index with respect to the circle-averaged metric. Raising
indices with g, we find that any such MHS solution on Euclidean space is also a
solution of the circle-averaged equation (MHS with respect to the metric g).

We conclude with some remarks about achieving exact quasisymmetry. By construction,
the magnetic field B from the previous theorem will satisfy (1.8) but will only
approximately satisfy the property (1.9) of quasisymmetry. Thus, our fields confine
particles to zeroth but not first order in the guiding centre approximation (Rodriguez et al.
2020). The error from being an exact weak quasisymmetry can be easily quantified; for a
vector field Bg of the form (1.18), assuming that g is such that Lξg = 0 the condition (1.9)
reads

ξ · ∇|Bg| = C2(ψ)

2|ξ |4g|Bg|
[
(Lξ δ)(ξ, ξ)+ 2C−1(ψ)(Lξ δ)(ξ,∇⊥

g ψ)

+ C−2(ψ)(Lξ δ)(∇⊥
g ψ,∇⊥

g ψ)
]
, (1.29)

see lemma C.6. Since (1.29) involves the Euclidean deformation tensor alone, it is
controlled by the deviation of ξ from being a Euclidean isometry and our solution will
have ξ · ∇|Bg| small. The error from being a strong quasisymmetry is also quantifiably
small.

It is worth remarking that there are additional freedoms in our construction that could,
in principle, be used to further constrain the constructed solution. Specifically, in our
theorem, we treat ξ as a fixed vector field sufficiently close to ξ0 and we made the
somewhat arbitrary choice that the map γ should be volume preserving. The results in
Constantin et al. (2020) actually allow one to construct the map γ so that det ∇γ := ρ
is any given function, sufficiently close to one; in fact by iterating that result, one can
additionally achieve that det ∇γ = X(φ, η, ∂φ, ∂η, ∂∂sφ, ∂∂sη) for a suitable nonlinearity
X sufficiently close to one when φ, η = 0. Using this freedom, it is possible to show that,
under some (possibly restrictive and undesirable) assumptions on the field ξ , the Jacobian
ρ can be used to achieve exact quasisymmetry on a slice of the torus (namely on the
cross-section D). Ensuring this property holds seems of little practical interest for ion
confinement in a stellarator, since particles starting on the slice will immediately leave. In
contrast, Garren and Boozer Garren & Boozer (1991) and Plunk & Helander (2018) show
that exact quasisymmetry is possible to achieve on one flux surface while maintaining
the MHS force balance, which is of greater relevance to confinement in a stellarator. It
is unknown whether or not quasisymmetry can be achieved in a volume. We leave open
the question of whether or not, using our approach, a carefully designed field ξ (perhaps
constructed dynamically alongside the solution) can be used to ensure quasisymmetry on
a flux surface or a volume.

2. Proof of theorem 1.3

We start by giving an outline of the arguments used to establish the main theorem. All
details can be found in Constantin et al. (2020).

Let D0,D, ψ0, ξ, g be as in the statement of theorem 1.3. We will start by constructing
a solution ψ to the generalized Grad–Shafranov equation (1.22) of the form ψ = ψ0 ◦
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γ −1 for a diffeormorphism γ : D0 → D which is to be determined. With the toroidal
coordinates (r, θ, ϕ) defined as in (A 1a–c), for functions η, φ independent of ϕ, write
∇η = ∂rηer + (1/r)∂θηeθ and ∇⊥φ = −∂rφeθ + (1/r)∂θ fer. We will look for γ (r, θ) =
(r, θ)+ ∇η(r, θ)+ ∇⊥φ(r, θ) and the functions η, φ are the unknowns. For simplicity,
using the assumption that Vol D = Vol D0, we will require that det ∇γ −1 = 1. After a
short calculation, this condition reads

�η = Nη[φ, η], (2.1)

where Nη[φ, η] = Nη(∂φ, ∂η, ∂
2φ, ∂2η) is a quadratic nonlinearity. We will pose

boundary conditions momentarily. We think of this equation as determining η at the linear
level from φ and it remains to determine φ in a such a way that ψ = ψ0 ◦ γ −1 is a solution
to (1.22). We now describe how this is done.

The Grad–Shafranov equation (1.5) is of the form

L0ψ0 = F0(ψ0)+ G0(r, θ, ψ0), in D0, (2.2)

with nonlinearities F0 = P′
0, G0 = (1/R2)C0C′

0(ψ0) and where the operator L0 is elliptic.
Similarly, we write the generalized Grad–Shafranov (1.22) in the form

Lψ = F(ψ)+ G(r, θ, ψ), in D. (2.3)

At this stage, the function F (which is related to the pressure of the solution in our
application) is actually undetermined and will be chosen momentarily, while G can be
chosen to be any function sufficiently close to G0.

A calculation (see appendix B of Constantin et al. (2020)) shows that provided
det ∇γ −1 = 1, we have

(∇ψ) ◦ γ −1 = ∇ψ0 + ∇∂sφ − ∇⊥∂sη + ∇⊥φ · ∇2ψ0 + ∇η · ∇2ψ0, (2.4)

where we have introduced the notation ∂s = ∇ψ0 · ∇⊥ for the ‘streamline derivative’.
Then ∂s is tangent to level sets of ψ0. After a computation, composing both sides of (2.3)
with γ −1 and using (2.4), (2.3) takes the form

Lψ0∂sφ = Nφ[φ, η] + F(ψ0)− F0(ψ0)+ G(r, θ, ψ0)− G0(r, θ, ψ0), (2.5)

where Lψ0 is the linearization of L0 around ψ0, for a function Nφ[φ, η] =
Nφ(∂φ, ∂η, ∂∂sφ, ∂∂sη) (whose explicit form can be found in appendix B of Constantin
et al. (2020)), which consists of terms which are linear in η and its derivatives, and
either nonlinear or weakly linear in derivatives of φ, meaning it involves terms which
can bounded by ε|∂φ|, for example. This latter point is a consequence of the assumption
that ξ − ξ0 is sufficiently small. Notice that at the linear level this is an equation for ∂sφ

and not φ itself. In order for this equation to be solvable for φ at the linear level (given
appropriate boundary conditions), there are two requirements. The first is that Lψ0 should
be invertible. The second is a somewhat subtle condition which is easiest to understand
in the simple model case. In order to solve the problem �∂θu = f , in the unit disk, say
(with arbitrary boundary conditions), it is clearly necessary that

∫ 2π

0 f dθ = 0. We will
now impose a condition on (2.5) which is analogous to this one and which will determine
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the function F at the linear level. Assume that the Dirichlet problem for Lψ0 ,

Lψ0 u = f , in D0,

u = 0, on ∂D0,

}
(2.6)

has a unique solution for f ∈ L2, say. Writing L −1
ψ0

f = u, if we apply L −1
ψ0

to both sides
of (2.5) and integrating with respect to ds over the streamline {ψ0 = c} (considered as a
subset of the two-dimensional set D0) we find

0 =
∮

{ψ0=c}
L −1
ψ0
(F(ψ0)− F0(ψ0)) ds +

∮
{ψ0=c}

L −1
ψ0
(G − G0 + N ) ds. (2.7)

This is an equation which must be solved for F. Writing T(c)q = ∮
{ψ0=c} L

−1
ψ0

q ds, given
R depending only on the streamline R = R(c), we would like to be able to find q = q(c)
with T(c)q = R. This is a complicated problem which would be hard to address directly,
however, in Constantin et al. (2020) we show that such q can be found, assuming that the
following hypotheses hold.

Hypothesis 1 (H1) The operator Lψ0 is positive definite.
Hypothesis 2 (H2) There exists a constant C > 0 such that we have

μ(c) =
∮

{ψ0=c}

d�
|∇ψ0| ≤ C for c ∈ rang(ψ0), (2.8)

where � is the arclength parameter.
Notice that the hypothesis (H1), in particular, ensures that the operator L −1

ψ0
is

well-defined. This is a condition on P0,C0. Hypothesis (H2) concerns the travel time μ(c)
for a particle governed by the Hamiltonian system ẋ = ∇⊥ψ0(x) and moving along the
streamline of {ψ0 = c}. It is easy to see that it holds provided ψ0 has at most one critical
point in D0 = T0 ∩ {ϕ = 0} and that it vanishes no faster than to first order there. We
remark that (H2) is trivially satisfied if |∇ψ0| is bounded below in the domain D0. This
could be accomplished if, for example, one worked on a ‘hollowed out’ toroidal domain.

We now discuss the boundary conditions. Assume that D is the interior of a Jordan
curve B,

∂D = {p ∈ R2 | b( p) = 0}. (2.9)

We also write ∂D0 = {p ∈ R2 | b0(r, θ) = 0} where b0 is chosen with |∇b0| = 1,∇ψ0 ·
∇b0 > 0. We write γ − id = ∇η + ∇⊥φ = αex + βey where (x, y) are rectangular
coordinates. Using that B0|∂D0 = 0, the requirement that γ : ∂D0 → ∂D can be written
as

0 = b ◦ γ |∂D0 = b0 ◦ γ |∂D0 + (δb) ◦ γ |∂D0

= α∂xb0|∂D0 + β∂yb0|∂D0 + b1(α, β)|∂D0, (2.10)

where δb = b − b0, and where the remainder b1 is

b1(α, β, x, y) = b0 ◦ γ − b0 − α∂1b0 − β∂2b0 + (δb) ◦ γ. (2.11)

Returning to φ, η, we have

α∂1b0 + β∂2b0 = ∇φ · ∇⊥b0 + ∇η · ∇b0. (2.12)

By the choice of b0, we have ∇η · ∇b0 = ∂nηwhere n is the outward-facing normal to ∂D0.
Additionally, using that ψ0 is constant on the boundary we have ∇⊥b0 = ∇⊥ψ0/|∇ψ0|,
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and using (2.12) and these observations, the formula (2.10) becomes

1
|∇ψ0|∂sφ + ∂nη = −b1(φ, η), on ∂D0. (2.13)

This is one boundary condition for the two functions φ, η. Again we need to ensure that
this equation is compatible with the requirement

∮
{ψ0=ψ0|∂D0 } ∂sφ ds = 0. We therefore take

∂nη constant on the boundary and impose the following nonlinear boundary conditions:

∂nη = −
∮
∂D0

b1(φ, η) d�

length(∂D0)
on ∂D0, (2.14)

∂sφ = |∇ψ0|
(

−b1(φ, η)+
∮
∂D0

b1(φ, η) d�

length(∂D0)

)
on ∂D0. (2.15)

We now summarize the result of the above calculation. The function ψ = ψ0 ◦ γ −1

is a solution of the equation (2.3) in D with constant boundary value provided the
diffeomorphism γ is of the form γ = id + ∇η + ∇⊥φ and the functions η, φ : D0 → R

satisfy the elliptic equations

�η = Nη[φ, η] in D0,

Lψ0∂sφ = Nφ[φ, η] + F(ψ0)− F0(ψ0)+ G(ψ0, r, θ)− G0(ψ0, r, θ), in D0,

}
(2.16)

where F is determined by solving∮
{ψ0=c}

L −1
ψ0

F ds =
∮

{ψ0=c}
L −1
ψ0
(G0 − G − Nφ + F0) ds, (2.17)

and where η, φ satisfy the boundary conditions (2.14) and (2.15).
This nonlinear system can be solved by the following iteration scheme. Given

ηN−1, φN−1, define FN = FN(c) by solving∮
{ψ0=c}

L −1
ψ0

FN ds =
∮

{ψ0=c}
L −1
ψ0
(G0 − G − Nφ[φN−1, ηN−1] + F0) ds. (2.18)

Then solve for ηN, ΦN satisfying

�ηN = Nη[φN−1, ηN−1] in D0,

Lψ0Φ
N = Nφ[φN−1, ηN−1] + FN − F0 + G − G0 in D0,

}
(2.19)

with boundary conditions

∂nη
N =

∫
D0

Nη[φN−1, ηN−1] dx,

ΦN = |∇ψ0|
(

−b1(φ
N−1, ηN−1)+

∮
∂D0

b1(φ
N−1, ηN−1) d�

length(∂D0)

)
on ∂D0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.20)

The boundary condition for ηN has been chosen so that the Neumann problem (2.19)
and (2.20) is solvable. Once ΦN has been found, as a consequence of the choice of FN it
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can be shown that
∮

{ψ0=c}Φ
N ds = 0 for all c, and so ΦN = ∂sφ

N for a function φN which
is determined up to a constant, which can be fixed throughout the iteration by requiring
that

∫
D0
φN = 0. In Constantin et al. (2020) we prove that this iteration converges in a

suitable topology. We remark that the boundary condition (2.20) is not the same as the
boundary condition in (2.14) but as a consequence of Vol D0 = Vol D, they agree after
taking N → ∞.

Proof of theorems 1.2 and 1.3. We first reduce the problem to solving a certain elliptic
problem on the domain D. Given a (local) coordinate system (x1, x2) defined on a
neighbourhood of D, we can extend it to a (local) coordinate system on a neighbourhood
of the torus T by pulling back along the flow of ξ . Explicitly, given p ∈ T , there is a unique
p0 ∈ D and a unique smallest x3 > 0 so thatΦx3( p0) = p where Φs( p0) denotes the time-s
flow of ξ starting from a point p0 ∈ D, because the integral curves of ξ are closed. Then
the map Ψ : T → D × R defined by Ψ ( p) = ( p0, x3) is a (local) diffeomorphism onto its
image. In these coordinates, ξ · ∇f = (∂/∂x3)f for any function f . We now express the
given metric g in this coordinates, g = ∑3

i,j=1 gij(x1, x2, x3) dxi dx j, where gij = g(∂xi, ∂xi).
By the definition of the Lie derivative of the metric we have

(Lξg)ij = (ξ · ∇)gij − g([ξ, ∂xi ], ∂x j)− g([ξ, ∂x j ], ∂xi) = ∂

∂x3
gij = 0, (2.21)

since by assumption Lξg = 0 and since [ξ, ∂x�] = [∂x3, ∂x�] = 0 by construction. In this
coordinate system, the Grad–Shafranov equation is the following three-dimensional
elliptic equation:

Lψ :=
3∑

i,j=1

aij
ξ,g∂xi∂x jψ +

3∑
i=1

bi
ξ,g∂xiψ + Gξ,g(x1, x2, x3,C, ψ)+ 1√|g|P′(ψ) = 0, in T,

(2.22)
for coefficients aij

ξ,g, b j
ξ,g and a function Gξ,g, depending on x1, x2, x3 which are all

computed explicitly in appendix D. The crucial point is that all of these quantities are
independent of x3, because they involve algebraic functions of components of the metric.

We can therefore look for a two-dimensional solution, ψ̄ = ψ̄(x1, x2), of the equation

2∑
i,j=1

aij
ξ,g(x1, x2)∂xi∂x jψ̄ +

2∑
i=1

bi
ξ,g(x1, x2)∂x jψ̄ + Gξ,g(x1, x2,C, ψ̄)+ 1√|g|P′(ψ̄) = 0,

(2.23)
in D with ψ̄ constant on ∂D. Given such ψ̄ , we can recover ψ satisfying (2.22) by setting
ψ(x1, x2, x3) = ψ̄(x1, x2), i.e. by extending ψ̄ to be constant along integral curves of ξ .
Since the integral curves of ξ are closed it follows that ψ is as smooth as ψ̄ , and by
construction we have Lξψ = 0. Also since ξ is tangent to ∂T it follows that the resulting
ψ is constant there.

Supposing that we have a solution ψ̄ as above, by lemma C.3, defining B as in (1.18)
provides a magnetic field satisfying divB = 0 and which satisfies the MHS equations with
respect to g, curlgB ×g Bg = ∇gP exactly, by lemma C.5. As a consequence, B satisfies the
usual MHS equations with forcing,

f = (curlg − curl)B × B + curlgB(×g − ×)B + (∇g − ∇)P. (2.24)

From the formulae for curlg,×g in appendix B, it is clear this satisfies a bound of the form
(1.27), completing the proof of theorem 1.3.
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We have therefore reduced the problem to solving the generalized Grad–Shafranov
equation for a function ψ̄ : D → R. In what follows we will abuse notation and just
write ψ = ψ̄ . Using, for example, variational methods (proposition 11.4 of Taylor (1996)),
in principle one can find a weak solution to this equation in H1

0 . Unfortunately, these
solutions need not be smooth and, more importantly, the structure of the level sets cannot
be specified. In particular, the flux function may possess ‘magnetic islands’. We provide
here an explicit construction of classical solutions which allows for control of flux surfaces,
based on the approach of Constantin et al. (2020). As explained above, the method there
is to deform a solution ψ0 to the axisymmetric Grad–Shafranov equations into a solution
to (2.23) and this has the benefit of ensuring that the level sets of the resulting ψ are tori,
as well as providing a simple algorithm to compute the solution.

Let ψ0 : D0 → R be a solution to the axisymmetric Grad–Shafranov equation (1.5) with
ψ0|∂D0 constant, satisfying the mild hypotheses (H1) and (H2) (see appendix A for an
example of such a flux function). We begin by writing the axisymmetric Grad–Shafranov
equation on the unit disk D0 in the same coordinate system (x1, x2) as above. Letting hij
denote the components of the Euclidean metric restricted to D0 in this coordinate system,
on D0 we have

L0ψ0 :=
2∑

i,j=1

ãij
ξ0,δ
(x1, x2)∂xi∂x jψ0 +

2∑
i=1

b̃i
ξ0,δ
(x1, x2)∂xiψ0 + G̃ξ0,δ(x1, x2,C0, ψ0)

+ 1√|h|P′
0(ψ0) = 0, (2.25)

where |h| denotes the determinant of the matrix hij, ξ0 = ReΦ is the generator of rotations
in the Z = 0 plane, and ãij

ξ0,δ
, b̃i

ξ0,δ
, G̃ξ0,δ can be computed explicitly by changing variables

in (1.5),

ãij
ξ0,δ

=
√|h|
|ξ0|2 hij, b̃i

ξ0,δ
=
∑
j=1,2

1√|h|∂xi

(√|h|
|ξ0|2 hij

)
,

G̃ξ0,δ = C(ψ)
|ξ0|2

(
C′(ψ)√|h| − ξ0 · curlξ0

)
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.26)

In order to appeal to the results of Constantin et al. (2020) we need that the coefficients of
L are close to those of L0, that Gξ0,δ is close to Gξ,g and that the domain D is close to D0.
For simplicity, we take the function C in (2.23) to just be C0, though this is not essential.
From the formulae in appendix D we have

2∑
i,j=1

‖aij
ξ,g − ãij

ξ0,δ
‖Ck,α +

2∑
i=1

‖bi
ξ,g − b̃i

ξ0,δ
‖Ck,α + ‖Gξ,g − G̃ξ0,δ‖Ck,α

≤ c‖g − δ‖Ck+1,α + c‖ξ − ξ0‖Ck+1,α , (2.27)

where c is a constant depending on k, α,
∑3

i,j=1 ‖g‖Ck+2,α and ‖C0‖Ck+3,α . Here, and in what
follows, we are writing Ck+2,α = Ck+2,α(U) where U is a domain containing both D and
D0. By theorem 3.1 from Constantin et al. (2020), there is ε > 0 depending on k, α, ψ0,D0
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(a) (b)

FIGURE 1. Tokamak and stellarator geometries.

so that if the following holds,

2∑
i,j=1

‖aij
ξ,g − ãij

ξ0,δ
‖Ck,α +

2∑
i=1

‖bi
ξ,g − b̃i

ξ0,δ
‖Ck,α + ‖Gξ,g − G̃ξ0,δ‖Ck,α + ‖b − b0‖Ck+2,α ≤ ε

(2.28)

and the hypotheses (H1) and (H2) hold, there is a function ψ ∈ Ck,α of the form
ψ = ψ0 ◦ γ −1 where γ : D0 → D is a diffeomorphism and ψ satisfies the generalized
Grad–Shafranov equation (1.22) for some pressure profile P which is close to P0. We now
take ‖g − δ‖Ck+1,α , ‖ξ − ξ0‖Ck+2,α and ‖b − b0‖Ck+2,α small enough that (2.28) holds and let
ψ be the flux function guaranteed by theorem 3.1 from Constantin et al. (2020). This
completes the proof of theorem 1.2. �
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Appendix A. Flux function satisfying our hypotheses

The purpose of this section is to give a simple example of a flux function satisfying the
hypotheses (H1)–(H2). We will work in toroidal coordinates (r, θ, ϕ) defined by

R = R0 + r cos θ, Z = r sin θ, Φ = ϕ, (A 1a–c)
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where (R,Z, Φ) are the usual cylindrical coordinates on R3. In these coordinates, (1.5)
becomes

∂2
rψ0 + 1

r
∂rψ0 + 1

r2
∂2
θ ψ0 − 1

R

(
cos θ∂rψ0 − sin θ

r
∂θψ0

)
+ R2p′

0(ψ0)+ C0C′
0(ψ0) = 0.

(A 2)
The flux function we exhibit is not an exact solution of (A2) but satisfies it when the aspect
ratio of the torus is taken to infinity. Using theorem 3.1 from Constantin et al. (2020),
one can show that there exist solutions on the true axisymmetric torus with large aspect
ratio nearby this example. Although they do not have a simple analytical form, they will
continue to satisfy (H1)–(H2) as these are open conditions.

We consider the torus where r ranges in [0, r0] with 0 < r0 < R0 for R0 > 1 and solve
the equation (A2) with the choices

ψ0(r) = ψ̄
(
1 − (r/r0)

2) , C0(ψ) = c̄
√
ψ̄ − ψ + ε, P0(ψ) = p̄(r0R0)

−2ψ,

(A 3a–c)
for ε � 1 (this is to regularize the square root) and for some constants ψ̄, c̄ and p̄.
The functions C0 and P0 are both infinitely differentiable functions of ψ . Note that the
pressure vanishes at the outer boundary where ψ0 is zero, and so this boundary may be
interpreted as vacuum. For special choices of constants,ψ0 solves the ‘infinite aspect ratio’
Grad–Shafranov equation ((A2) as R0 � 1)

∂2
rψ0 + 1

r2
∂2
θ ψ0 = −R2

0P′
0(ψ0)− C0C′

0(ψ0), (A 4)

since ∂2
rψ0 = −2ψ̄/r2

0, R2
0P′

0(ψ0) = p̄/r2
0 and C0C′

0(ψ0) = c̄2. Thus ψ0 is a solution if p̄ =
2ψ̄ − (c̄r0)

2.

Appendix B. Geometric identities

In this section we recall some basic definitions and facts from Riemannian geometry
which will be used in the upcoming sections. These are standard and we include the
details for the convenience of the reader. Throughout we fix a Riemannian metric g. In
our applications, we will take either g = δ, the Euclidean metric, or g will be a metric
with Lξg = 0 for a given vector field ξ . We let , � denote the usual operations of lowering
and raising indices with respect to g. If X = Xi∂xi is a vector field and β = βi dxi is a
one-form, where {xi}3

i=1 are arbitrary local coordinates, then

X = gijX j dxi, β� = gijβj∂i. (B 1a,b)

We write ∇gf for the gradient of f with respect to the metric g,

∇gf = (df )�, (∇gf )i = gij∂jf . (B 2a,b)

In an arbitrary coordinate system {xi}3
i=1, if X = Xi∂i is a vector field and β = βi dxi is a

one-form then ∇X,∇β have components

∇iX j = ∂

∂xi
X j + Γ

j
ikXk, ∇iβj = ∂

∂xi
βj − Γ k

ij βk, (B 3a,b)

where Γ i
jk are the Christoffel symbols in this coordinate system, defined by

Γ k
ij = 1

2
gk�
(
∂igj� + ∂jgi� − ∂�gij

)
. (B 4)
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Here we are writing gij for the components of the metric in this corodinate system and gij

for the components of the inverse metric. The Γ are symmetric in the lower indices,

Γ k
ij = Γ k

ji . (B 5)

We also note that covariant differentiation commutes with lowering and raising indices
since

∇igjk = ∇igjk = 0. (B 6)

Let us also recall that the divergence of a vector field can be written as

divgX = ∇iXi = 1√|g|∂i(
√

|g|Xi), (B 7)

where |g| = det g denotes the determinant of the matrix with components gij.
We let LX denote the Lie derivative in the direction X. If f is a function then LX f is

defined by

LXf = Xi∂i f = Xf . (B 8)

For a vector field Y , LXY is the commutator LXY = [X,Y]. In an arbitrary coordinate
system, LXY = (LXY)i∂i with

(LXY)i = X j∂jYi − Y j∂jXi. (B 9)

Many of our results will be stated in terms of the deformation tensor of X, denoted LXg,
which is the (0, 2) tensor defined by the formula

X (g(Y,Z)) = (LXg)(Y,Z)+ g(LXY,Z)+ g(Y,LXZ). (B 10)

In an arbitrary coordinate system, LXg = LXgij dxi dx j and a standard calculation shows
that

LXgij = ∇iXj + ∇jXi, Xk = gk�X�, (B 11a,b)

where ∇ denotes covariant differentiation (B 3a,b). We will often abuse notation and write
LXg(Y, ·) for the vector field with components

(LXg(Y, ·))i = gij(∇jXk + ∇kXj)Yk. (B 12)

Let ∗g denote the Hodge star with respect to the Riemannian volume form dμ =√|g| dx1 ∧ dx2 ∧ dx3. For the general definition, see Lee (2013). For our purposes we
will only need to compute ∗gω when ω is a two-form. With εijk denoting the Levi–Civita
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symbol, so that εijk denotes the sign of the permutation taking (1, 2, 3) to (i, j, k), we have

∗g (dxi ∧ dx j) =
√

|g|gikgj�εk�m dxm. (B 13)

If β = βij dxi ∧ dx j is a two-form then from the above formula,

∗g β =
√

|g|βk�εk�m dxm, βk� = gikgj�βij. (B 14a,b)

Let d denote exterior differentiation. If β is a one-form then dβ is defined by

dβ = ∂iβj dxi ∧ dx j. (B 15)

We will use the following identity relating ∗g, d and covariant differentiation ∇. If ω =
ωij dxi dx j is a (0, 2)-tensor then

∗g d ∗g ω = δgω, (δgω)i := gkj∇jωik. (B 16a,b)

Given vector fields X,Y , let X ×g Y be the vector field

X ×g Y = (∗gX ∧ Y)�. (B 17)

Explicitly, X ×g Y = (X ×g Y)�∂� with (X ×g Y)k = √|g|gk�εij�XiY j. The curl of a vector
field, curlgX, is then defined by

curlgX = (∗g dX)�, (B 18)

or, in components,

(curlgX)m =
√

|g|gmngikgj�εk�n∂iXj =
√

|g|gmngikεk�n∇iX�, (B 19)

where the second equality follows from a direct calculation involving the formula for the
Christoffel symbols (B4).

We now collect some basic vector calculus identities.

LEMMA B.1. Define ×g by (B17), curlg by (B18) and ∇g by (B 2a,b). Suppose that M is
a subset of R3. Let ×, · denote the usual cross and dot products in Euclidean space. Then
we have

(X ×g Y) ·g Z =
√

|g|X × Y · Z,

curlg( f X) = ∇gf ×g X + f curlgX,

curlg∇gf = 0,

⎫⎪⎬⎪⎭ (B 20)

(X ×g Y)×g Z = (X ·g Y)Z − (X ·g Z)Y. (B 21)

Proof. The first three identities are immediate. The last identity is proved by changing
coordinates as in the proof of the upcoming identity (B.3), and we omit the proof. �

We will also need the following slightly more complicated identities in the next section.
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LEMMA B.2. Let ∇g denote covariant differentiation. For any vector fields X,Y,

curlg(X ×g Y) = XdivgY − YdivgX + LYX, (B 22)

∇g|X|2g = 2∇XX − 2X ×g curlgX, (B 23)

LX(X) = (∇XX) + 1
2
∇g|X|2g, (B 24)

divg(X ×g Y) = Y ·g curlgX − X ·g curlgY, (B 25)

X ×g curlgX = ∇g|X|2 + (Lξg(X, ·))�, (B 26)

where ∇X := Xi∇i, and where LXg, defined in (B 11a,b) denotes the deformation tensor of
X, and we are using the notation (B12).

Proof. We begin by writing

(curlg(X ×g Y)) = ∗gd ∗g (X ∧ Y) = δg(X ∧ Y). (B 27)

Using (B 16a,b) and writing Xi = gijX j,Yk = gk�Y�,

δg(X ∧ Y)i = gkj∇j(XiYk − XkYi) = Xigkj∇jYk − Yigkj∇jXk + Ykgkj∇jXi − Xkgkj∇jYi.
(B 28)

The first two terms are XidivgY − YidivgX. If we raise the index on the last two terms
(using (B6)) and use (B5) then we see

Ykgkj∇jXi − Xkgkj∇jYi = Y j∇jXi − X j∇jYi = Y j∂jXi − X j∂jYi, (B 29)

which gives (B22). To prove (B23) we start by computing X ×g curlgX. Writing β = X, a
direct calculation using (B19) shows that

β ∧ (∗g dβ) =
√

|g|gikgj�εk�m∇iXjXn dxn ∧ dxm (B 30)

and that

∗g
(
β ∧ (∗gdβ)

) = |g|gikgj�gnrgmqεk�mεrqp∇iXjXn dxp = |g|gmqεk�mεrqp∇kX�Xr dxp.
(B 31)

The identity (B23) follows at any given point P after changing coordinates near P so that
expressed in these coordinates, the metric is given by diag(1, 1, 1).

To prove (B24), we write

(LXX)j = Xi∂iXj + Xi∂jXi = Xi∂iXj + 1
2
∂j
(
gi�X�Xi

)− 1
2

(
∂jgi�

)
X�Xi, (B 32)

and so it follows from the definition of the covariant derivative that

LXXj − ∇XXj − 1
2
∂j|X|2g = Γ k

ij XiXk − 1
2

(
∂jgi�

)
X�Xi (B 33)

and expanding the definition of the Christoffel symbols, the right-hand side is

Γ k
ij XiXk − 1

2

(
∂jgi�

)
X�Xi = 1

2
XiX�

(
∂ig�j + ∂jg�i − ∂�gij

)− 1
2

(
∂jgi�

)
X�Xi = 0. (B 34)
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To prove (B25), we use (B6) and write

divg(X ×g Y) = ∇i(
√

|g|gijεjk�XkY�) = Y�(
√

|g|gijεjk�∇iXk)+ Xk(
√

|g|gijεjk�∇iY�)

= Yk(curlgX)k − Xk(curlgY)k. (B 35)

The final identity (B26) follows from (B23). �

The following identity involving × and ×g is crucial for proving that the vector field
Bg defined in (1.18) possesses a flux function. This result follows directly from standard
vector calculus identities when g = δ.

LEMMA B.3. If ϕ is a function with LXϕ = 0, then with ∇ denoting the Euclidean
gradient,

X × (X ×g ∇gϕ) = − 1√|g| |X|2g∇ϕ. (B 36)

Proof. This follows from a straightforward but tedious argument; we include the details
for the convenience of the reader. With ω the quantity on the left-hand side of (B36), from
the definitions we have

ωi =
√

|g|δijg�mgpqεjk�εmnpXkXn∂qϕ. (B 37)

Fix any P ∈ M and choose coordinates (Z1,Z2,Z3) near P, so that at P we have

gij
∂xi

∂Zα
∂x j

∂Zβ
= δαβ. (B 38)

We note the following relation which will be useful in what follows: at P, we have

g�m = δαβ
∂x�

∂Zα
∂xm

∂Zβ
. (B 39)

Expressing ω in these coordinates, ω = ωa∂Za with ωa = (∂Za/∂xi)ωi, evaluating at P
and using (B39) to rewrite g�m and gpq, from (B37) we have

ωa =
√

|g|∂Za

∂xi
δijg�mgpqεjk�εmnpXkXn∂qϕ

=
√

|g|∂Za

∂xi

∂x�

∂Zb

∂xm

∂Zc

∂xp

∂Zd

∂xk

∂Zb′
∂xn

∂Zc′ δ
bcδdd′

εjk�εmnpXb′
Xc′
∂Zd′ϕ, (B 40)

writing, e.g. Xk = (∂xk/∂Zb′
)Xb′ . Now we note that

εmnp
∂xm

∂Zc

∂xn

∂Zc′
∂xp

∂Zd
= εcc′d det(∂Zx), εjk�

∂x j

∂Ze

∂xk

∂Zb′
∂x�

∂Zb
= εeb′b det(∂Zx). (B 41a,b)

Indeed, the quantity on the left-hand side of, for example, the first equality is
antisymmetric in all three indices, and so is a multiple of εcc′d and evaluating at c = 1, c′ =
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2, d = 3 gives the result. Therefore (B40) reads

ωa =
√

|g| det(∂Zx)2δij ∂Za

∂xi

∂Ze

∂x j
δdd′
δbcεcc′dεbeb′Xb′

Xc′
∂Zd′ϕ

=
√

|g| det(∂Zx)2δij ∂Za

∂xi

∂Ze

∂x j
δdd′

(δc′eδdb′ − δc′b′δde)Xb′
Xc′
∂Zd′ϕ, (B 42)

using a well known identity for the Levi–Civita symbol. Now we note that

δdd′
δdb′∂Zd′ϕXb′ = X · ∇ϕ = 0, (B 43)

by assumption, and so

ωa = −
√

|g|(det ∂Zx)2δij ∂Za

∂xi

∂Ze

∂x j
∂Zeϕδc′b′Xc′

Xb′ = −
√

|g|(det ∂Zx)2δij ∂Za

∂xi
∂x jϕ|X|2g.

(B 44)
From (B38), we have

√|g|(det ∂Zx)2 = 1/
√|g| and so at P we find

ωi = − 1√|g|δ
ij∂x jϕ|X|2g, (B 45)

and since P was arbitrary we get the result. �

We finally record some useful formulae involving Lie derivatives along g Killing fields.

LEMMA B.4. Let X,Y be vector fields and let ξ be a Killing vector field for the metric g.
Then

Lξ (X ×g Y) = LξX ×g Y + X ×g LξY, (B 46)

LξcurlgX = curlgLξX. (B 47)

Proof. To prove (B46), we start from the following fact, which can be found on p. 177
of Fecko (2006). If ξ0 is a Killing field for a metric g, Lξg = 0, then Lξ ∗g α = ∗gLξα.
Similarly, LξX = (LξX),where  denotes lowering indices with g. For any vector field ξ ,
if Φs denotes its flow, we have the following identity Φ∗

s ∗g α = ∗Φ∗
s gΦ

∗
s α. If ξ is a Killing

field for g then this becomes Φ∗
s ∗g = ∗gΦ

∗
s α. Differentiating this at s = 0 and using the

definition of the Lie derivative gives the result. Now, to get the formula for Lξ (X ×g Y) we
then recall that (X ×g Y) = ∗g(X ∧ Y). Using that Lξ commutes with �, , and ∗g,

Lξ (X ×g Y) = Lξ ∗g
(
X ∧ Y

)� = ∗g
(Lξ (X ∧ Y)

)� = ∗g
(
(LξX) ∧ Y + X ∧ (LξY)

)�
= LξX ×g Y + X ×g LξY. (B 48)

To prove (B47), recall that curlgX = (∗g dX)�, where  and � denote lowering and raising
the index with g. Recall that if Lξg = 0 then

Lξ∗g = ∗gLξ , LξX = (LξX), Lξα� = (Lξα)�. (B 49a–c)

After lowering the index on curlgX and using the fact that Lie derivatives commute
with exterior differentiation, Lξd = dLξ , we obtain Lξ ∗g (dX) = ∗gd(LξX). Raising the
index with g and using (B 49a–c) again we get the result. �
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Appendix C. Generalized quasisymmetric Grad–Shafranov equation

In this section we summarize the relationship between quasisymmetry and the MHS
equation (1.1). Recall that the deformation tensor Lξ δ is defined by

(Lξ δ)(X,Y) = X · (∇ξ + (∇ξ)T) · Y. (C 1)

We begin by showing that the ansatz (1.18) is automatically Euclidean divergence-free,
has flux surfaces and we write the condition for weak quasisymmetry explicitly for such
fields.

PROPOSITION C.1 (Characterization of quasisymmetric Bg MHS solutions). Let ξ be a
non-vanishing and divergence-free vector field tangent to ∂T and let g be any metric
with Lξg = 0. Let ψ : T → R satisfy Lξψ = 0 and |∇ψ | > 0. Then Bg given by (1.18)
is (Euclidean) divergence-free, satisfies (1.8) and is tangent to ∂T. Moreover, Bg is weakly
quasisymmetric if and only if

(Lξ δ)(ξ, ξ)+ 2C−1(ψ)(Lξ δ)(ξ,∇⊥
g ψ)+ C−2(ψ)(Lξ δ)(∇⊥

g ψ,∇⊥
g ψ) = 0. (C 2)

The field Bg additionally solves MHS with forcing f if and only if f ·g ∇⊥
g ψ = f ·g ξ = 0,

and ψ satisfies the generalized Grad–Shafranov equation

divg

(√
|g|∇gψ

|ξ |2g

)
− C(ψ)

ξ

|ξ |2g
·g curlg

(
ξ

|ξ |2g

)
+ C(ψ)C′(ψ)√|g||ξ |2g

+ P′(ψ)√|g| = f ·g ∇gψ√|g||∇gψ |2g
.

(C 3)

This section will build up to the proof of proposition C.1 by developing the following
lemmas C.4 and C.5. The proof is a straightforward combination of these results. First we
record some elementary vector identities.

LEMMA C.2. Fix a metric g. Let ξ be a vector field with |ξ | �= 0 and let ψ : T → R be a
function satisfying Lξψ = 0. Then we have

ξ ×g ∇gψ = ∇⊥
g ψ, ∇gψ ×g ∇⊥

g ψ = |∇gψ |2gξ, ∇⊥
g ψ ×g ξ = |ξ |2g∇gψ, (C 4a–c)

where we have introduced ∇⊥
g ψ = ξ ×g ∇gψ . Thus, the triple (∇gψ,∇⊥

g ψ, ξ) forms an
orthogonal basis of R3 at each x ∈ T where |∇gψ |g > 0.

Proof. Follows from the identity (B21). �

The following are the main results in this section and are proved at the end of the section.

LEMMA C.3 (Structural properties of Bg). Fix a metric g. Let ξ : T → R3 be a
(Euclidean) divergence-free vector field with |ξ |g �= 0 which is tangent to ∂T. Let ψ : T →
R be a function satisfying Lξψ = 0 which is constant on ∂T. Fix C : R → R. Then Bg
defined in (1.18) satisfies

ξ × Bg = −∇ψ, (C 5)

divBg = − 1
|ξ |2g

(Lξg)(ξ,Bg), (C 6)

LξBg = − 1
|ξ |2g

(Lξg)(ξ,Bg)ξ, (C 7)

Bg · n̂|∂T = 0. (C 8)

https://doi.org/10.1017/S0022377820001610 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001610


22 P. Constantin, T. D. Drivas and D. Ginsberg

For the proof, see § 2. The crucial point here is, despite the fact that Bg is defined in
terms of an arbitrary metric g, the identities (C5) and (C6) involve the Euclidean metric.

We now begin the derivation of the Grad–Shafranov equation (1.22) which involves
a somewhat lengthy calculation using the above identities. The most important and
complicated ingredient is the following formula, which is a direct consequence of lemma
C.7, below.

LEMMA C.4 (Curl of Bg). Fix a metric g. Let ξ be a vector field with |ξ | �= 0 and let
ψ : T → R be a function satisfying Lξψ = 0. Fix a function C : R → R. Then Bg defined
in (1.18) satisfies

curlgBg = F∇gψ + G∇⊥
g ψ + Hξ, (C 9)

where curlg is with respect to the metric g, defined in (B18), and with F,G,H defined by

F := −
√|g|

|ξ |4g|∇gψ |2g

[
C(ψ)√|g| (Lξg)(ξ,∇

⊥
g ψ)+ 2|ξ |2g|∇gψ |2g

Lξ
√|g|√|g|

−|ξ |2g(Lξg)(∇gψ,∇gψ)− |∇gψ |2g(Lξg)(ξ, ξ)
]
, (C 10)

G :=
√|g|
|ξ |2g

1
|∇gψ |2g

[
(Lξg)(Bg,∇gψ)− |∇gψ |2g

C′(ψ)√|g|
]
, (C 11)

H := divg

(√
|g|∇gψ

|ξ |2g

)
+ 1

|ξ |4g
C(ψ)ξ ·g curlgξ +

√|g|
|ξ |2g

(Lξg)(∇gψ, ξ). (C 12)

LEMMA C.5 (MHS for Bg). Fix a metric g. Let ξ be a vector field with |ξ | �= 0 and let
ψ : T → R be a function satisfying Lξψ = 0. Fix a function C : R → R. Then Bg defined
in (1.18) satisfies

curlgBg ×g Bg − ∇gP = (
C(ψ)G − H − P′)∇gψ − C(ψ)

|ξ |2g
F∇⊥

g ψ + |∇gψ |2g
|ξ |2g

Fξ, (C 13)

with F, G and H defined by (C10), (C11) and (C12). In particular, if Lξg = 0 then B
satisfies the MHS equation with force f

curlgBg ×g Bg = ∇gP + f , (C 14)

if and only if f ·g ∇⊥
g ψ = f ·g ξ = 0, and ψ satisfies the generalized Grad–Shafranov

equation

divg

(√
|g|∇gψ

|ξ |2g

)
− C(ψ)

ξ

|ξ |2g
·g curlg

(
ξ

|ξ |2g

)
+ C(ψ)C′(ψ)√|g||ξ |2g

+ P′(ψ)√|g| = f ·g ∇gψ√|g||∇gψ |2g
.

(C 15)

Proof. Follows from lemma C.4, (C.2), standard vector identities and Lξψ = 0. �

The generalized Grad–Shafranov equation (C15) for vector fields of the form (1.18) was
first derived in Burby et al. (2020) when g was taken to be the circle-averaged metric.
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LEMMA C.6 (Quasisymmetry of Bg). Fix a metric g with Lξg = 0. Let ξ be a vector field
with |ξ | �= 0 and let ψ : T → R be a function satisfying Lξψ = 0. Fix C : R → R. Then
Bg satisfies

Lξ |Bg|2 = C2(ψ)

|ξ |4g
[
(Lξ δ)(ξ, ξ)+2C−1(ψ)(Lξ δ)(ξ,∇⊥

g ψ)+C−2(ψ)(Lξ δ)(∇⊥
g ψ,∇⊥

g ψ)
]
.

(C 16)

C.1. Auxiliary lemmas
We collect some calculations which are useful for the proofs of the other lemmas in the
following statement.

LEMMA C.7. Fix a metric g. Let ξ be a vector field with |ξ | �= 0 and let ψ : T → R be a
function satisfying Lξψ = 0. Fix a function C : R → R. Then

divg

(
C(ψ)

ξ

|ξ |2g

)
= C(ψ)

|ξ |2g

(
divgξ − 1

|ξ |2g
(Lξg)(ξ, ξ)

)
, (C 17)

divg

(√
|g|∇

⊥
g ψ

|ξ |2g

)
= −

√|g|
|ξ |4g

(Lξg)(ξ,∇⊥
g ψ)+ 1

|ξ |2g
L∇⊥

g ψ

√
|g|, (C 18)

curlg

(
C(ψ)

ξ

|ξ |2g

)
= 1

|ξ |4g
C(ψ)(ξ ·g curlgξ)ξ

+ 1
|ξ |2g

(
C(ψ)

|ξ |2g|∇gψ |2g
(Lξg)(ξ,∇gψ)− C′(ψ)

)
∇⊥

g ψ

− C(ψ)
|ξ |4g|∇gψ |2g

(Lξg)(ξ,∇⊥
g ψ)∇gψ, (C 19)

curlg

(√
|g|∇

⊥
g ψ

|ξ |2g

)

=
(

divg

(√
|g|∇gψ

|ξ |2g

)
+

√|g|
|ξ |4g

(Lξg)(∇gψ, ξ)

)
ξ

+
√|g|
|ξ |4g

(
Lξg(ξ, ξ)− 2|ξ |2g

Lξ
√|g|√|g| + |ξ |2g

|∇gψ |2 (Lξg)(∇gψ,∇gψ)

)
∇gψ

+
√|g|

|ξ |4g|∇gψ |2 (Lξg)(∇gψ,∇⊥
g ψ)∇⊥

g ψ. (C 20)

Proof. We will repeatedly use the product rule (B10) as well as the commutator identity

Lξ∇gf = ∇gLξ f − (Lξg)(∇gf , ·). (C 21)
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Step 1: identity (C17). To prove (C17) we note

divg

(
C(ψ)

ξ

|ξ |2g

)
= C(ψ)

divgξ

|ξ |2g
− |ξ |−4

g C(ψ)Lξ |ξ |2g = C(ψ)
|ξ |2g

divgξ

− C(ψ)
|ξ |4g

(Lξg)(ξ, ξ), (C 22)

using the product rule (B20).
Step 2: identity (C18). First note that

divg

(√
|g|∇

⊥
g ψ

|ξ |2g

)
=
√

|g|divg

(∇⊥
g ψ

|ξ |2g

)
+ 1

|ξ |2g
L∇⊥

g ψ

√
|g|. (C 23)

Next we compute

divg

(∇⊥
g ψ

|ξ |2g

)
= 1

|ξ |2g
(

divg∇⊥
g ψ + |ξ |2gL∇⊥

g ψ
|ξ |−2

g

)
= 1

|ξ |2g
(
divg(ξ ×g ∇gψ)− |ξ |−2

g (ξ ×g ∇gψ) ·g ∇g|ξ |2g
)

= 1
|ξ |2g

(Lcurlgξψ − ξ ·g curlg∇gψ − |ξ |−2
g (∇g|ξ |2g ×g ξ) ·g ∇gψ

)
= 1

|ξ |2g
(Lcurlgξψ − |ξ |−2

g (∇g|ξ |2g ×g ξ) ·g ∇gψ
)
. (C 24)

We now simplify the second term in the above. First note the identity (which follows from
(B26))

ξ ×g curlgξ = 1
2
∇g|ξ |2g − (ξ ·g ∇g)ξ

= ∇g|ξ |2g − ((ξ ·g ∇g)ξ + ∇gξ ·g ξ)
= ∇g|ξ |2g − (Lξg) ·g ξ, (C 25)

so that

∇g|ξ |2g ×g ξ = (ξ ×g curlgξ)×g ξ + ((Lξg) ·g ξ)×g ξ

= |ξ |2gcurlgξ − (ξ ·g curlgξ)ξ + ((Lξg) ·g ξ)×g ξ, (C 26)

where we have used the elementary identity

(ξ ×g curlgξ)×g ξ = |ξ |2gcurlgξ − (ξ ·g curlgξ)ξ. (C 27)

Noting finally that

(((Lξg) ·g ξ)×g ξ) ·g ∇gψ = ((Lξg) ·g ξ) ·g (ξ ×g ∇gψ) = (Lξg)(ξ,∇⊥
g ψ), (C 28)

using that Lξψ = 0 we have

|ξ |−2
g (∇g|ξ |2g ×g ξ) ·g ∇gψ = Lcurlgξψ + |ξ |−2

g (Lξg)(ξ,∇⊥
g ψ). (C 29)

Putting this together with (C24), we obtain the identity (C18).
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Step 3: identity (C19). To prove (C19), we note

curlg(C(ψ)ξ) = C′(ψ)∇gψ ×g ξ + C(ψ)curlgξ = −C′(ψ)∇⊥
g ψ + C(ψ)curlgξ. (C 30)

Using this formula and (C25), we find that

curlg

(
C(ψ)

ξ

|ξ |2g

)
= 1

|ξ |2g
(−C′(ψ)∇⊥

g ψ + C(ψ)curlgξ
)− |ξ |−4

g C(ψ)∇|ξ |2g ×g ξ

= 1
|ξ |2g

(−C′(ψ)∇⊥
g ψ + C(ψ)curlgξ

)
− |ξ |−4

g C(ψ)
(|ξ |2gcurlgξ − (ξ ·g curlgξ)ξ + (Lξg) · ξ ×g ξ

)
= −C′(ψ)

|ξ |2g
∇⊥

g ψ + |ξ |−4
g C(ψ)

(
(ξ ·g curlgξ)ξ − (Lξg) · ξ ×g ξ

)
.

(C 31)

Note finally using lemma C.2 that

(Lξg) ·g ξ ×g ξ = ((Lξg) ·g ξ ×g ξ) ·g ∇̂gψ ∇̂gψ + ((Lξg) ·g ξ ×g ξ) ·g ∇̂⊥
g ψ ∇̂⊥

g ψ

= 1
|∇gψ |2g

(Lξg)(ξ,∇⊥
g ψ)∇gψ − 1

|∇gψ |2g
(Lξg)(ξ,∇gψ)∇⊥

g ψ, (C 32)

where we used the identity (C28) in passing to the second line together with

(((Lξg) ·g ξ)×g ξ) ·g ∇⊥
g ψ = ((Lξg) ·g ξ) ·g (ξ ×g ∇⊥

g ψ) = −|ξ |2g(Lξg)(ξ,∇ψ).
(C 33)

Combining this with (C31) gives

curlg

(
C(ψ)

ξ

|ξ |2g

)
= −C′(ψ)

|ξ |2g
∇⊥

g ψ + |ξ |−4
g C(ψ)(ξ ·g curlgξ)ξ

+ 1
|ξ |2g

(
C(ψ)

|ξ |2g|∇gψ |2g
(Lξg)(ξ,∇gψ)∇⊥

g ψ

− C(ψ)
|ξ |2g|∇gψ |2g

(Lξg)(ξ,∇⊥
g ψ)∇gψ

)
. (C 34)

Rearrangement establishes (C19).
Step 4: identity (C20). First note that

curlg

(√
|g|∇

⊥
g ψ

|ξ |2g

)
=
√

|g|curlg

(∇⊥
g ψ

|ξ |2g

)
+ 1

|ξ |2g
∇√|g| ×g ∇⊥

g ψ

=
√

|g|curlg

(∇⊥
g ψ

|ξ |2g

)
+ 1

|ξ |2g
(L∇gψ

√
|g|)ξ − 1

|ξ |2g
(Lξ

√
|g|)∇ψ.

(C 35)
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Now, by the identity (B22),

curlg∇⊥
g ψ = curlg(ξ ×g ∇gψ) = ξΔgψ − ∇gψdivgξ + L∇gψξ

= ξΔgψ − ∇gψdivgξ − Lξ∇gψ

= ξΔgψ − ∇gψdivgξ + (Lξg)(∇gψ, ·), (C 36)

where we used (C21) and (Lξg)(∇gψ, ·) is defined as in (B12). Therefore

√
|g|curlg

(∇⊥
g ψ

|ξ |2g

)
=

√|g|
|ξ |2g

(
ξΔgψ−divgξ ∇gψ+(Lξg)(∇gψ, ·)

)−
√|g|
|ξ |4g

∇g|ξ |2g×∇⊥
g ψ

=
√|g|
|ξ |2g

(
ξΔgψ − divgξ ∇gψ + (Lξg)(∇gψ, ·)

)
+

√|g|
|ξ |4g

(
(Lξ |ξ |2g)∇gψ − (∇gψ ·g ∇g|ξ |2g)ξ

)
=
√

|g|divg

(
∇gψ

|ξ |2g

)
ξ +

√|g|
|ξ |2g

(Lξg)(∇gψ, ·)

+
√|g|
|ξ |4g

(Lξg(ξ, ξ)− |ξ |2gdivgξ
)∇gψ

= divg

(√
|g|∇gψ

|ξ |2g

)
ξ − 1

|ξ |2g
(L∇gψ

√
|g|)ξ

+
√|g|
|ξ |2g

(Lξg)(∇gψ, ·)+ 1
|ξ |4g

(√
|g|Lξg(ξ, ξ)− |ξ |2gLξ

√
|g|
)

∇gψ,

(C 37)

where we used (C41) to say
√|g|divgξ = Lξ

√|g| as well as the identity

∇g|ξ |2g × ∇⊥
g ψ := ∇g|ξ |2g × (ξ ×g ∇gψ) = (∇g|ξ |2g ·g ∇gψ)ξ − (∇g|ξ |2g ·g ξ)∇gψ.

(C 38)
Finally, note that we can express

(Lξg)(∇gψ, ·) = 1
|ξ |2g

(Lξg)(∇gψ, ξ)ξ + 1
|ξ |2g|∇gψ |2g

(Lξg)(∇gψ,∇⊥
g ψ)∇⊥

g ψ

+ 1
|∇gψ |2g

(Lξg)(∇gψ,∇gψ)∇gψ. (C 39)

This completes the derivation. �

C.2. Proof of lemma C.3
The result follows from direct computation as follows.

Step 1: identity (C5). The property of having a flux function (C5) follows from lemma
B.3.
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Step 2: identity (C6). For the divergence (C6), lemma C.6 gives

divgBg = 1
|ξ |2g

(
C(ψ)divgξ − (Lξg)(ξ,Bg)

)+ 1
|ξ |2g

L∇⊥
g ψ

√
|g|. (C 40)

Next recall the relation between the divergence on flat and curved backgrounds

divX = divgX − 1√|g|LX

√
|g|. (C 41)

Applying this identity to convert (C40) to the divergence using the Euclidean metric, we
have

divBg = divgBg − 1√|g|LBg

√
|g| = 1

|ξ |2g
(
C(ψ)divgξ − (Lξg)(ξ,B)

)
− 1√|g|

C(ψ)
|ξ |2g

Lξ
√

|g|. (C 42)

Using divξ = 0 and (C41) again we find
√|g|divgξ = Lξ

√|g|, and get the claimed result.
Step 3: identity (C7). We have the identity

LξBg := ξ · ∇Bg − Bg · ∇ξ
= curl(Bg × ξ)+ (divBg)ξ − (divξ)Bg = − 1

|ξ |2g
(Lξg)(ξ,Bg)ξ, (C 43)

and the result follows from (C5), (C6) and the assumption divξ = 0.
Step 4: identity (C8). Let n̂ be the unit outward normal vector to ∂T . Then we have

Bg · n̂ = 1
|ξ |2g

√
|g| (ξ ×g ∇gψ) · n̂, (C 44)

since ξ · n̂ = 0 by assumption. Now, for any vector field X and scalar function f we have

X · ∇f = δijXiδjk∂kf = δk
i Xi∂kf = gimgkmXi∂kf = gimXi(∇gf )m = X ·g ∇gf . (C 45)

As a result, since ψ is assumed constant on the boundary, we can choose n̂ = ∇ψ/|∇ψ |
on the boundary and a standard vector identity shows that (ξ ×g ∇gψ) · n̂ = 0.

C.3. Proof of lemma C.6
Proof. Direct computation shows

|Bg|2 = 1
|ξ |4g

[
C(ψ)|ξ |2 + 2C(ψ)ξ · ∇⊥

g ψ + |∇⊥
g ψ |2] . (C 46)

Since Lξg = 0, from (C7) it follows that LξBg = 0. Thus we have

Lξ∇⊥
g ψ = Lξ

(|ξ |2gBg − C(ψ)ξ
) = 0. (C 47)

Using Lξ |ξ |2g = 0, Lξ ξ = 0, Lξψ = 0, Lξ∇⊥
g ψ = 0 and Lξ |ξ |2 = (Lξ δ)(ξ, ξ) completes

the proof. �
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Appendix D. Explicit expression for the generalized Grad–Shafranov equation

Fix a domain D in the {Φ = 0} half-plane and let ξ be a vector field whose orbits starting
from D are all periodic (with possibly different period). Fix an arbitrary local coordinate
system on D and extend it to a coordinate system (x1, x2, x3) on the torus T defined in (1.25)
by pulling back along the flow of ξ . In these coordinates we have ξ · ∇f = (∂/∂x3)f . In this
section we express the coefficients appearing in the generalized Grad–Shafranov equation
(1.22) in these coordinates. The most complicated part of the calculation is contained in
the following lemma.

LEMMA D.1. Let g be an arbitrary metric on T and let (x1, x2, x3) be a coordinate system
on T as above. Then

curlgξ ·g ξ = |g|1/2 ((∂1g23 − ∂2g13)(g11g22 − (g12)2)

+(∂3g13 − ∂1g33)(g21g23 − g22g13)+ (∂3g23 − ∂2g33)(g11g23 − g12g13)
)
.

(D 1)

Proof. We use the formula curlgξ ·g ξ = iξ (curlgξ) = iξ (∗g dα), where ∗g is the Hodge
star in terms of g and α = ξ denotes the one-form which is dual to ξ with respect to g.
Explicitly α = αi dxi = gijξ

j dxi = gi3 dxi. We now compute the terms on the right-hand
side of (D1) explicitly and the main step is computing ∗gdα. Acting on two-forms, ∗g is
defined by linearity and the rule

∗g (dxi ∧ dx j) = |g|1/2gikgj�εk�m dxm, (D 2)

where |g| = det g and εk�m is the Levi–Civita symbol.
Since in our coordinate system ξ = ∂3 we have iξ dxm = dxm(∂3) = δm3 and so

iξ ∗g (dxi ∧ dx j) = |g|1/2gikgj�εk�3. (D 3)

A straightforward calculation shows

iξ ∗g (dx1 ∧ dx2) = |g|1/2 (g11g22 − (g12)2
)
,

iξ ∗g (dx2 ∧ dx3) = |g|1/2 (g21g32 − g22g31) ,
iξ ∗g (dx1 ∧ dx3) = |g|1/2 (g11g32 − g12g31) .

⎫⎪⎪⎬⎪⎪⎭ (D 4)

Since dα = (∂1α2 − ∂2α1) dx1 ∧ dx2 + (∂1α3 − ∂3α1) dx1 ∧ dx3 + (∂2α3 − ∂3α2) dx2 ∧ dx3,
we have

curlgξ ·g ξ = (∂1α2−∂2α1)iξ ∗g (dx1 ∧ dx2)−∂1α3iξ ∗g (dx1 ∧ dx3)+∂2α3iξ ∗g (dx2 ∧ dx3)

= |g|1/2 ((∂1α2 − ∂2α1)(g11g22 − (g12)2)+ (∂3α1 − ∂1α3)(g21g23 − g22g13)

+ (∂3α2 − ∂2α3)(g11g23 − g12g13)
)

(D 5)

which gives (D1) since αi = gi3. �

The next lemma follows from the previous one and (C15) after noting that |ξ |2 =
g(ξ, ξ) = g33.
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LEMMA D.2. Fix a vector field ξ and a metric g with Lξg = 0. Let (x1, x2, x3) be any
coordinate system as in the statement of the previous lemma. Then (C15) with f = 0 takes
the form

3∑
i,j=1

aij
ξ,g∂i∂jψ +

3∑
i=1

bi
ξ,g∂iψ + Gξ,g(x1, x2, x3,C, ψ)+ P′(ψ)√|g| = 0, (D 6)

where

aij
ξ,g =

√|g|
g33

gij, bi
ξ,g =

∑
j=1,2

√|g|
g33

∂j

(√
|g|gij

)
+ gij∂j

(√|g|
g33

)
,

Gξ,g = C(ψ)
g33

(
C′(ψ)√|g| − ξ ·g curlgξ

)
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (D 7)

where ξ ·g curlgξ is given by (D1).
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