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Abstract. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2. We estimate the
local directional dimensions of closed positive currents S with respect to ergodic dilating
measures ν. We infer several applications. The first one is an upper bound for the lower
pointwise dimension of the equilibrium measure, towards a Binder–DeMarco’s formula
for this dimension. The second one shows that every current S containing a measure
of entropy hν > log d has a directional dimension >2, which answers a question of de
Thélin–Vigny in a directional way. The last one estimates the dimensions of the Green
current of Dujardin’s semi-extremal endomorphisms.
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1. Introduction
We study the dimension of ergodic measures for holomorphic endomorphisms of P2 and
the dimension of currents containing such measures.

Let us recall dynamical properties of these mappings (see [18] for a detailed exposition).
The topological entropy of an endomorphism of P2 of degree d ≥ 2 is equal to 2 log d. Its
Green current is defined by T := limn (1/dn) f n∗ω, where ω is the Fubini–Study (1, 1)-
form of P2. The support of T is the subset of points x ∈ P2 such that { f n, n ≥ 1} is not
equicontinuous in any neighbourhood of x . The equilibrium measure of f is µ := T ∧ T .
This is a mixing invariant measure, it equidistributes the repulsive cycles of f and its
Lyapunov exponents are ≥ 1

2 log d . This is also the unique measure of maximal entropy
hµ = 2 log d.

The ergodic measures ν satisfying log d < hν ≤ 2 log d are called measures of large
entropy. Their support is contained in the support of µ [10, 16] and their exponents are
larger than or equal to 1

2 (hν − log d) [11, 21]. Examples are constructed in [21] by using
coding techniques. The ergodic measures ν with positive exponents are called dilating.
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1.1. Dimension of dilating measures. An open problem is to find a formula for the
dimension of dilating measures (see [23, Question 2.17] for µ). Difficulties are due to the
facts that f is not invertible and not conformal. The dimension of a probability measure ν
is defined by (see [26, 29])

dimH (ν) := inf{dimH (A), A Borel set of P2, ν(A)= 1}.

The lower and upper pointwise dimensions of ν at x are

dν(x) := lim inf
r→0

log(ν(Bx (r)))
log r

, dν(x) := lim sup
r→0

log(ν(Bx (r)))
log r

.

These functions are ν-almost everywhere constant when ν is ergodic. If a ≤ dν ≤ dν ≤ b,
then a ≤ dimH (ν)≤ b. If ν is dilating and λ1 ≥ λ2 denote its exponents, then

hν
λ1
≤ dν ≤ dν ≤

hν
λ2
. (1.1)

Binder–DeMarco [5] conjectured the formula for the measure µ,

dimH (µ)=
log d
λ1
+

log d
λ2

, (1.2)

which generalizes the one-dimensional Mañé’s formula [25]. Let us note that, by (1.1),
this formula is true when λ1 = λ2. In view of that conjecture, the following upper bound
was proved in [5] for polynomial mappings.

dimH (µ)≤ 4−
2(λ1 + λ2)− log d2

λ1
. (1.3)

This was extended in [17] to meromorphic mappings. Moreover, for every dilating measure
ν, in [20], it was established that

dν ≥
log d
λ1
+

hν − log d
λ2

, (1.4)

which yields half of the conjecture

dimH (µ)≥ dµ ≥
log d
λ1
+

log d
λ2

. (1.5)

At this stage, by combining (1.3) and (1.4), the conjecture is true for every endomorphism
of P2 satisfying 1

2 log d = λ2 ≤ λ1, for which

dimH (µ)=
log d
λ1
+ 2. (1.6)

In this article, we prove lower and upper estimates for the directional dimensions of
currents containing dilating measures. Our techniques allow to show the following upper
bound for the lower dimension of such measures, towards a Binder–DeMarco’s formula
for dµ. The exponents do not resonate if λ1 6= kλ2 for every k ≥ 2.

THEOREM 1.1. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be a dilating
measure of exponents λ1 ≥ λ2 whose support is contained in the support of µ. Then

dν ≤
log d
λ1
+

log d
λ2
+ 2

(
1−

λ2

λ1

)
.

Moreover, if the exponents do not resonate, then

dν ≤
log d
λ1
+

log d
λ2
+ 2 min

(
1−

λ2

λ1
;
λ1

λ2
− 1

)
.
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The next sections deal with the dimension of currents. In §1.2, we recall properties of
the trace measure. The directional dimensions are more precise than the dimension of the
trace measure. We present our estimates in §§1.3, 1.4 and 1.5.

1.2. Currents and the dimension of their trace measure. A positive closed current S of
bidegree (1, 1) on a complex manifold is locally equal (in the sense of distributions) to
i∂∂u, where u is a plurisubharmonic function (see [14, Ch. 3]). In particular, S is locally
equal to

S1,1
i
2

dz ∧ dz + S1,2
i
2

dz ∧ dw + S2,1
i
2

dw ∧ dz + S2,2
i
2

dw ∧ dw,

where S1,1, S2,2 are positive measures and S1,2 = S2,1 is a complex measure dominated
by S1,1 + S2,2. The trace measure of S on P2 is the positive measure S ∧ ω, where ω is
the Fubini–Study form on P2. This is a probability measure (up to a multiplicative positive
constant) equivalent to S1,1 + S2,2 in every local coordinate as before. It is known that
S ∧ ω(Bx (r))≤ c(x)r2 for every x ∈ P2, and hence the pointwise dimension of S ∧ ω
satisfies

for all x ∈ P2, dS(x) := lim inf
r→0

log S ∧ ω(Bx (r))
log r

≥ 2.

This bound can be improved for the Green current of endomorphisms f of P2. Indeed, if
we set

d∞ := lim
n
‖D f n

‖
1/n
∞ and γ0 :=min{1, log d/log d∞},

then T has local γ -Hölder potentials u for every γ < γ0 (see [18, Proposition 1.18]).
This implies that T ∧ ω(Bx (r))≤ cγ (x)r2+γ for every x ∈ P2 and every γ < γ0 (see [27,
Théorème 1.7.3]). Hence

for all x ∈ P2, dT (x)≥ 2+ γ0. (1.7)

The geometric structure of the Green current is not well understood. A way to get
information is to study its dimension with respect to ergodic measures. For positive
closed currents, there are dimensional constraints to contain measures of large entropy. For
instance, any current of integration on an algebraic subset of P2 cannot contain any such
measure: this comes from Gromov’s iterated graph argument and the relative variational
principle (see [8] and [18, §1.7]). Further, de Thélin–Vigny [13] proved that if a current
S contains a measure of large entropy (or even dilating) with exponents λ1 ≥ λ2, then, for
every ε > 0, there exists x in the support of ν such that

dS(x)≥ 2
λ2

λ1
+

hν − log d
λ2

− ε. (1.8)

This inequality quantifies in an ergodic way (with exponents and entropy) the thickness of
currents containing large entropy measures. Our results will, in particular, improve (1.7)
and (1.8) in a directional way, when the exponents do not resonate.

1.3. Directional dimensions of currents. Let (Z , W ) be holomorphic coordinates near
x in P2. The lower pointwise directional dimension of S with respect to Z is defined by

dS,Z (x) := lim inf
r→0

log[S ∧ ((i/2) d Z ∧ d Z)(Bx (r))]
log r

.
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We use a similar definition for the upper pointwise dimension by taking a lim sup.
Geometrically, the positive measure S ∧ ((i/2) d Z ∧ d Z) is the average of the slices of
the current S transversally to the coordinate Z (see §A.2). Moreover,

dS(x)=min{dS,Z (x), dS,W (x)}. (1.9)

In this article, we shall work with coordinates (Z , W ) coming from a normal form
theorem for the inverse branches f −n

x̂ along generic orbits x̂ . We shall call them Oseledec–
Poincaré coordinates. When the exponents λ1 ≥ λ2 do not resonate, this theorem provides
coordinates (Z εx̂ , W ε

x̂ ) near x such that

Z ε
f̂ −n(x̂)

◦ f −n
x̂ ' e−nλ1±nε

× Z εx̂ , W ε

f̂ −n(x̂)
◦ f −n

x̂ ' e−nλ2±nε
×W ε

x̂ .

In the next statements, the functions O(ε) are of the form εM(ε), where M is a positive
function which depends on the exponents and the entropy of ν, and on the degree of f .
Concerning Theorem 1.2 and Corollaries 1.4 and 1.5, the functions dT,Z , dT,W , dT,Z , dT,W

are ν-almost everywhere constant.

1.4. Estimates for directional dimensions of currents. We begin with lower estimates
for the directional dimensions of the Green current T with respect to dilating measures ν
contained in µ (examples are measures of large entropy).

THEOREM 1.2. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be a dilating
measure whose exponents λ1 > λ2 do not resonate and whose support is contained in the
support of µ. Then, for every ε > 0 and for ν-almost every x, there exist holomorphic
coordinates (Z , W ) near x such that

dT,Z (x)≤ 2
λ1

λ2
+

log d
λ2
+ O(ε),

dT,W (x)≤ 2+
log d
λ2
+ O(ε).

The proof relies on pluripotential theory (µ is the Monge–Ampère mass T ∧ T ) and
on a study of the Jacobians of T ∧ (i/2) d Z εx̂ ∧ d Z εx̂ and T ∧ (i/2) dW ε

x̂ ∧ dW ε
x̂ with

respect to f . This study is given by Proposition 3.3, which will be also crucial for proving
Theorem 1.1.

The next result concerns upper estimates for currents S containing dilating measures.

THEOREM 1.3. Let f be an endomorphism of P2 of degree d ≥ 2. Let S be a (1, 1)-closed
positive current on P2. We assume that the support of S contains a measure of large entropy
ν whose exponents satisfy λ1 > λ2 and do not resonate. Then, for every ε > 0, there exist
x ∈ Supp ν and holomorphic coordinates (Z , W ) near x such that

dS,Z (x)≥ 2+
hν − log d

λ2
− O(ε),

dS,W (x)≥ 2
λ2

λ1
+

hν − log d
λ2

− O(ε).

In particular, S has a local directional dimension >2 at some x ∈ Supp ν.
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Theorem 1.3 specifies in a directional way de Thélin–Vigny [13, Theorem 2]. Indeed,
the estimate concerning the Z -coordinate improves (1.8) by replacing λ2/λ1 by one, which
answers a question of [13] in a directional way. Our proof follows the strategy of [13]
by taking into account the normal form theorem. We obtain more precise lower bounds
depending on dν and we deduce Theorem 1.3 from the lower estimate (1.4) on dν . We
shall begin with a proof for the Green current T (Theorem 4.6). In this case, the exposition
is simpler because the directional dimensions of T are constant ν-almost everywhere.
The case of general currents S needs a localization at some point in the support of S
(Theorem 4.7).

Theorems 1.2 and 1.3 immediately imply the following result. Let us set

γ1 :=
hµ − log d

λ2
=

log d
λ2

.

COROLLARY 1.4. Assume that the exponents of µ satisfy λ1 > λ2 and do not resonate.
Then, for every ε > 0 and for µ-almost every x, there exist holomorphic coordinates
(Z , W ) near x such that

2+ γ1 − O(ε)≤ dT,Z (x), dT,W (x)≤ 2+ γ1 + O(ε).

This shows that, modulo O(ε), either the directional dimensions dT,Z (x) and dT,W (x)
are distinct and separated by 2+ γ1 or they are equal to 2+ γ1. Let us observe that the
first estimate improves (1.7), since λ1 ≤ log d∞ and λ1 > λ2 imply that γ1 > γ0.

We note that a bound >2 for the dimension of the trace measure of the Green currents
T± is proved in [12] for invertible and meromorphic mappings of Kähler surfaces. The
proof relies on the laminar properties of T± and coding techniques.

1.5. Semi-extremal endomorphisms. An endomorphism f is extremal if the exponents
of µ satisfy λ1 = λ2 =

1
2 log d . Articles [1, 4, 17] characterize these endomorphisms

by several equivalent properties: dimH (µ)= 4; µ� LebP2 ; T is a positive smooth
form on some open subset of P2; and f is a Lattès map. Articles [3, 15] show other
characterizations.

An endomorphism f is semi-extremal if the exponents of µ satisfy λ1 > λ2 =
1
2 log d .

Formula (1.6) of §1.1 implies that these endomorphisms satisfy Conjecture (1.2), i.e.,

dimH (µ)=
log d
λ1
+ 2.

Dujardin [19] proved that if µ� T ∧ ω, then f is semi-extremal. Examples satisfying
this condition are suspensions of one-dimensional Lattès maps, and, more generally, the
endomorphisms with an invariant pencil of lines on which f induces a one-dimensional
Lattès map [22]. One may ask if there exist other examples. In view of a possible
characterization, the next result provides necessary conditions about the dimension of
those endomorphisms. It follows from Theorem 1.3 and (1.6).

COROLLARY 1.5. Assume that µ� T ∧ ω, that dµ = dµ and that the exponents λ1 >

λ2 of µ do not resonate. For every ε > 0 and for µ-almost every x ∈ P2, there exist
holomorphic coordinates (Z , W ) near x such that

4− O(ε)≤ dT,Z (x) and 2+
log d
λ1
− O(ε)≤ dT,W (x)≤ 2+

log d
λ1

.
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The first estimate provides a maximal dimension for T , which could be explained
by the presence of a one-dimensional Lattès map inside the dynamics of f . However,
it seems difficult to produce such a Lattès map as well as an invariant pencil of lines.
Note that Corollary 1.5 provides a situation in which the dimensions dT,Z (x) and dT,W (x)
are not equal. To outline the proof of Corollary 1.5, we shall see that (1.6) implies that
min{dT,Z (x), dT,W (x)} ≤ 2+ (log d)/λ1 and then we use Theorem 1.3 to verify that the
minimum concerns the W -coordinate.

1.6. Organization of the article. Section 2 is devoted to normal forms and to the
geometry of inverse branches. Theorem 1.2 is proved in §3. We show Theorem 1.3 and
Corollary 1.5 in §4, and we show Theorem 1.1 in §5. Technical results are put together in
the Appendix.

2. Normal forms and Oseledec–Poincaré coordinates
2.1. Natural extension and normal forms. Let f be an endomorphism of P2 of degree
d ≥ 2. Let C f be its critical set, which is an algebraic subset of P2. If ν is a dilating
measure, then x 7→ log|Jac f (x)| ∈ L1(ν), which implies that ν(C f )= 0. Let X be the
f -invariant Borel set Supp(ν)\

⋃
n∈Z f n(C f ) and let

X̂ := {x̂ = (xn)n∈Z ∈ XZ, xn+1 = f (xn)}.

Let f̂ be the left shift on X̂ and π0(x̂) := x0. There exists a unique f̂ -invariant measure
ν̂ on X̂ such that (π0)∗ν̂ = ν. We set x̂n := f̂ n(x̂) for every n ∈ Z. A function α : X̂→
]0,+∞] is ε-tempered if α( f̂ ±1(x̂))≥ e−εα(x̂). For every x̂ ∈ X , we denote by f −n

x̂ the
inverse branch of f n defined in a neighbourhood of x0 with values in a neighbourhood of
x−n . Articles [2, 24] provide normal forms for these mappings. Let d(·, ·) be the Fubini–
Study distance on P2.

THEOREM 2.1. [2, Proposition 4.3] Let ν be a dilating measure with exponents λ1 > λ2

and let ε > 0. There exists an f̂ -invariant Borel set F̂ ⊂ X̂ such that ν̂(F̂)= 1 and that
satisfies the following properties. There exist ε-tempered functions ηε, ρε : F̂→]0, 1] and
βε, Lε, Mε : F̂→ [1,+∞[ and, for every x̂ ∈ F̂ , there exists a holomorphic mapping

ξ εx̂ : Bx0(ηε(x̂))→ D2(ρε(x̂))

such that the following diagram commutes for every n ≥ nε(x̂)

Bx−n (ηε(x̂−n))

ξ εx̂−n
��

Bx0(ηε(x̂))
f −n
x̂oo

ξ εx̂
��

D2(ρε(x̂−n)) D2(ρε(x̂))Rn,x̂

oo

and such that:
(1) for all (p, q) ∈ Bx0(ηε(x̂)),

1
2 d(p, q)≤ |ξ εx̂ (p)− ξ

ε
x̂ (q)| ≤ βε(x̂)d(p, q);

(2) Lip( f −n
x̂ )≤ Lε(x̂)e−nλ2+nε on Bx0(ηε(x̂));

(3) if λ1 6∈ {kλ2, k ≥ 2}, Rn,x̂ (z, w)= (αn,x̂ z, βn,x̂w),
if λ1 = kλ2, where k ≥ 2, Rn,x̂ (z, w)= (αn,x̂ z, βn,x̂w)+ (γn,x̂w

k, 0), with:
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(a) e−nλ1−nε
≤ |αn,x̂ | ≤ e−nλ1+nε and |γn,x̂ | ≤ Mε(x̂)e−nλ1+nε; and

(b) e−nλ2−nε
≤ |βn,x̂ | ≤ e−nλ2+nε .

Remark 2.2. The diagram commutes for every n ∈ J1, . . . , nε(x̂)K for the germs of
the mappings (see [2]). The integer nε(x̂) is actually the smallest integer such that
Lε(x̂)e−nλ2+nε

≤ e−nε , so that Lε(x̂)e−nλ2+nεηε(x̂)≤ e−nεηε(x̂)≤ ηε(x̂−n). Item 2 thus
ensures that f −n

x̂ (Bx0(ηε(x̂)))⊂ Bx−n (ηε(x̂−n)), as indicated in the diagram.

We shall need the following lemma. Let n1(L) be the smallest integer n satisfying
L/4≤ enε . The first item uses the upper bound for Lip( f −n

x̂ ) provided by Theorem 2.1.
The second item comes from [17, Proposition 3.1].

LEMMA 2.3. Let x̂ ∈ F̂ such that ηε(x̂)≥ η and Lε(x̂)≤ L. If n ≥ n1(L) and r ≤ η:
(1) f −n

x̂n
(Bxn (r/4))⊂ Bx0(re−nλ2+3nε) and f −n

x̂ (Bx0(r/4))⊂ Bx−n (re−nλ2+3nε); and
(2) Bx0(re−nλ1−4nε)⊂ f −n

x̂n
(Bxn ((r/4)e

−2nε)).

2.2. Oseledec–Poincaré coordinates. Let ν be a dilating measure with exponents λ1 >

λ2. Let ε > 0 and let us apply Theorem 2.1. For every x̂ ∈ F̂ , we denote by (Z εx̂ , W ε
x̂ ) the

coordinates of ξ εx̂ . If the exponents do not resonate, then the commutative diagram given
by Theorem 2.1 implies that

Z εx̂−n
◦ f −n

x̂ = αn,x̂ × Z εx̂ , W ε
x̂−n
◦ f −n

x̂ = βn,x̂ ×W ε
x̂ . (2.1)

Hence, f −n
x̂ multiplies the first coordinate by e−nλ1±nε and the second coordinate by

e−nλ2±nε . The second property in (2.1) also holds in the resonant case λ1 ∈ {kλ2, k ≥ 2}.
We shall name the collection of local holomorphic coordinates

(Z , W )ε := (Z εx̂ , W ε
x̂ )x̂∈F̂

Oseledec–Poincaré coordinates for ( f, ν). If S is a (1, 1) positive closed current, we define

dS,Z (x̂) := lim inf
r→0

log[S ∧ ((i/2) d Z εx̂ ∧ d Z εx̂ )(Bx (r))]

log r
,

with similar definitions for dS,W (x̂), dS,Z (x̂), dS,W (x̂). Using (2.1) and the fact that the
Green current T is f -invariant, we obtain the following proposition.

PROPOSITION 2.4. Let ν be a dilating measure of exponents λ1 > λ2. Let (Z , W )ε be
Oseledec–Poincaré coordinates for ( f, ν). Then there exists an f̂ -invariant Borel set
3̂T ⊂ F̂ of ν̂-measure one such that:
(1) x̂ 7→ dT,W (x̂) and x̂ 7→ dT,W (x̂) are f̂ -invariant on 3̂T ; and

(2) x̂ 7→ dT,Z (x̂) and x̂ 7→ dT,Z (x̂) are f̂ -invariant on 3̂T if λ1 6∈ {kλ2, k ≥ 2}.
In particular, if the exponents do not resonate, these functions are constant ν̂-almost
everywhere. We shall denote them by

dT,Z (ν), dT,Z (ν), dT,W (ν), dT,W (ν).
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Proof. We prove the invariance of dT,W (x̂); the same arguments hold for the other
functions. For every z ∈ P2

\C f , we denote

a(z) := 1
2‖(Dz f )−1

‖
−1, γ (z) :=min{a(z)‖ f ‖−1

C2,P2 , 1}.

Then [7, Lemme 2] asserts that f is injective on Bz(γ (z)) and

for all r ∈ [0, γ (z)], B f (z)(a(z)r)⊂ f (Bz(r)).

Let x̂ ∈ F̂ . Since xn 6∈ C f for every n ∈ Z, we obtain, for every r ≤ γ (x0),

T ∧
(

i
2

dW ε

f̂ (x̂)
∧ dW ε

f̂ (x̂)

)
[B f (x0)(a(x0)r)] ≤ T ∧

(
i
2

dW ε

f̂ (x̂)
∧ dW ε

f̂ (x̂)

)
[ f (Bx0(r))].

(2.2)
Since f is injective on Bx0(r), we can change the variables to get

T ∧
(

i
2

dW ε

f̂ (x̂)
∧ dW ε

f̂ (x̂)

)
[ f (Bx0(r))] =

∫
Bx0 (r)

f ∗T ∧ f ∗
(

i
2

dW ε

f̂ (x̂)
∧ dW ε

f̂ (x̂)

)
.

(2.3)
Now let us recall that

f ∗T = dT and f ∗
(

i
2

dW ε

f̂ (x̂)
∧ dW ε

f̂ (x̂)

)
= |c(x̂)|2

i
2

dW ε
x̂ ∧ dW ε

x̂ , (2.4)

where the second equality comes from (2.1) by setting c(x̂)−1
:= β1, f̂ (x̂); it is valid near

x0 according to Remark 2.2. By combining (2.2), (2.3) and (2.4) we deduce that

T ∧
(

i
2

dW ε

f̂ (x̂)
∧ dW ε

f̂ (x̂)

)
[B f (x0)(a(x0)r)] ≤ d|c(x̂)|2T ∧

(
i
2

dW ε
x̂ ∧ dW ε

x̂

)
[Bx0(r)]

for every r small enough. Taking the logarithm and dividing by log(a(x0)r) < 0, we
get dT,W ( f̂ (x̂))≥ dT,W (x̂) by taking limits. Since ν̂ is ergodic, the function dT,W (x̂) is
constant on a Borel set 3̂T of ν̂-measure one (see [28, Ch. 1.5]). One can replace it by⋂

n∈Z f̂ n(3̂T ) to obtain an invariant set. �

Similar arguments yield the following Proposition for the trace measure.

PROPOSITION 2.5. If ν is an ergodic measure, the functions x 7→ dT (x) and x 7→ dT (x)
are invariant, and hence ν-almost everywhere constant. We denote them by dT (ν) and
dT (ν).

Proof. The arguments follow the proof of Proposition 2.4. In this case, we study the
measure T ∧ ω, and we replace the second equality in (2.4) by f ∗ω ≤ ρ(x0)ω on
Bx0(γ (x0)), where ρ(x0) > 0 is a large enough positive constant. �

2.3. Pullback of the Fubini–Study form ω. Let ν be a dilating measure of exponents
λ1 > λ2. Let (Z , W )ε be Oseledec–Poincaré coordinates for ( f, ν). Let n2(β) be the
smallest integer n such that e−nε

≤ β−1.

PROPOSITION 2.6. Let x̂ ∈ F̂ such that ηε(x̂)≥ η and βε(x̂)≤ β. If n ≥
max{n2(β), nε(x̂n)} and if r ≤ η, then, on f −n

x̂n
(Bxn (re−nε)):

(1) ( f n)∗ω ≥ e−6nε+2nλ1((i/2) d Z εx̂ ∧ d Z εx̂ ) if the exponents do not resonate; and
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(2) ( f n)∗ω ≥ e−6nε+2nλ2((i/2) dW ε
x̂ ∧ dW ε

x̂ ).

The proof follows from the next two lemmas. First, observe that Theorem 2.1 gives

( f n)∗ω = (ξ εx̂ )
∗((Rn,x̂n )

−1)∗((ξx̂n )
−1)∗ω

on f −n
x̂n
(Bxn (re−nε)). Let ω0 := (i/2) dz ∧ dz + (i/2) dw ∧ dw be the standard (1, 1)-

form on D2.

LEMMA 2.7. Let x̂ ∈ F̂ such that ηε(x̂)≥ η and βε(x̂)≤ β. For every n ≥ n2(β) and r ≤
η, we have, on ξ εx̂n

(Bxn (re−nε)),

e−4nεω0 ≤ ((ξ
ε
x̂n
)−1)∗ω ≤ 4ω0.

Proof. For every p = (z, w) and p′ = (z′, w′) in ξ εx̂n
(Bxn (re−nε)),

e−nεβ−1
|p − p′| ≤ d((ξ εx̂n

)−1(p), (ξ εx̂n
)−1(p′))≤ 2|p − p′|.

This implies that, for every n ≥ n2(β) and (z, w) ∈ ξ εx̂n
(Bxn (re−nε)),

for all u ∈ C2, e−2nε
|u| ≤ |D(z,w)(ξ εx̂n

)−1(u)| ≤ 2|u|.

This provides the desired estimates. �

LEMMA 2.8. Let x̂ ∈ F̂ . If n ≥ nε(x̂n), then:
(1) ((Rn,x̂n )

−1)∗ω0 ≥ e2(nλ1−nε)(i/2) dz ∧ dz if the exponents do not resonate; and
(2) ((Rn,x̂n )

−1)∗ω0 ≥ e2(nλ2−nε)(i/2) dw ∧ dw.

Proof. We use the fact that the linear part of Rn,x̂n is diagonal with coefficients e−nε−nλ1 ≤

|αn,x̂n | ≤ enε−nλ1 and e−nε−nλ2 ≤ |βn,x̂n | ≤ enε−nλ2 (see Theorem 2.1) and the fact that the
(1, 1)-forms (i/2) dz ∧ dz and (i/2) dw ∧ dw are positive. �

To end the proof of Proposition 2.6, we observe that, for every x̂ ∈ F̂ ,

(ξ εx̂ )
∗

(
i
2

dz ∧ dz
)
=

i
2

d Z εx̂ ∧ d Z εx̂ , (ξ εx̂ )
∗

(
i
2

dw ∧ dw
)
=

i
2

dW ε
x̂ ∧ dW ε

x̂ ,

which follows from the definitions of Z εx̂ and W ε
x̂ .

3. Upper bounds for the directional dimensions of T
Let ν be a dilating measure such that Supp(ν)⊂ Supp(µ) and whose exponents λ1 > λ2

do not resonate. Let ε > 0 and let (Z , W )ε be Oseledec–Poincaré coordinates for ( f, ν).
In this section, we establish Theorem 1.2 stated in the introduction: that is,

dT,Z (ν)≤ 2
λ1

λ2
+

log d
λ2
+ O(ε) and dT,W (ν)≤ 2+

log d
λ2
+ O(ε).

The proof relies on the Monge–Ampère equation µ= T ∧ T and on a study of the
Jacobians of T ∧ (i/2) d Z εx̂ ∧ d Z εx̂ and T ∧ (i/2) dW ε

x̂ ∧ dW ε
x̂ with respect to f .
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3.1. Dimensions of the Green current on the equilibrium measure. The following
Proposition is proved in §3.3.

PROPOSITION 3.1. Let f be an endomorphism of P2 of degree d ≥ 2 and let T be its
Green current. Let x ∈ Supp µ and let Z be a local holomorphic coordinate (submersion)
in a neighbourhood V of x. Then T ∧ ((i/2) d Z ∧ d Z) is not the zero measure on V .

This implies the following proposition.

PROPOSITION 3.2. Let ν be a dilating measure with exponents λ1 > λ2 whose support
is contained in the support of µ. Let ε > 0 and let (Z , W )ε be Oseledec–Poincaré
coordinates for ( f, ν). Then, for every 0< r < ηε(x̂),[

T ∧
i
2

d Z εx̂ ∧ d Z εx̂

]
(Bx (r)) > 0 and

[
T ∧

i
2

dW ε
x̂ ∧ dW ε

x̂

]
(Bx (r)) > 0.

In particular, for every δ > 0, there exist m0 ≥ 1, L0 ≥ 1 and q0 ≥ 1 such that

�̂ε :=

ηε(x̂)≥
1

4m0
, L(x̂)≤ L0,

[
T ∧

i
2

d Z εx̂ ∧ d Z εx̂

](
Bx

(
1

4m0

))
≥

1
q0[

T ∧
i
2

dW ε
x̂ ∧ dW ε

x̂

](
Bx

(
1

4m0

))
≥

1
q0


satisfies ν̂(�̂ε)≥ 1− δ.

Proof. The first part immediately follows from Proposition 3.1. To prove the second part,
let m0 ≥ 1 and L0 ≥ 1 be such that ν̂{ηε ≥ (1/4m0)} ∩ {L ≤ L0} ≥ 1− δ/2. Then we
choose q0 large enough so that ν̂(�̂ε)≥ 1− δ. �

For every n ≥ 1, we define

�̂n
ε := �̂ε ∩ f̂ −n(�̂ε).

Since ν̂ is invariant,
ν̂(�̂n

ε )≥ 1− 2δ. (3.1)

The following proposition is crucial for proving Theorems 1.1 and 1.2. L0 is defined in
Proposition 3.2 and n1(L0)≥ 1 is defined before Lemma 2.3.

PROPOSITION 3.3. Let ν be a dilating measure with exponents λ1 > λ2 and such that
Supp(ν)⊂ Supp(µ). For every n ≥ n1(L0) and x̂ ∈ �̂n

ε ,[
T ∧

i
2

d Z εx̂ ∧ d Z εx̂

](
Bx

(
1

m0
e−nλ2+3nε

))
≥

1
dn e−2nλ1−2nε 1

q0
if λ1 6∈ {kλ2, k ≥ 2},[

T ∧
i
2

dW ε
x̂ ∧ dW ε

x̂

](
Bx

(
1

m0
e−nλ2+3nε

))
≥

1
dn e−2nλ2−2nε 1

q0
.

Proof. Let x̂ ∈ �̂n
ε and let

En := f −n
x̂n

(
Bxn

(
1

4m0

))
.
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The inverse branch f −n
x̂n

is well defined on Bxn (1/4m0) since x̂n ∈ �̂ε . Let gn be the
restriction of f n on En . By using f −n

x̂n
◦ gn = IdEn and T = (1/dn)g∗n T on En , we obtain

T ∧
i
2

d Z εx̂ ∧ d Z εx̂ =
1

dn g∗n T ∧ g∗n( f −n
x̂n
)∗
(

i
2

d Z εx̂ ∧ d Z εx̂

)
=

1
dn g∗n

[
T ∧

i
2
(d Z εx̂ ◦ ( f −n

x̂n
)) ∧ d(Z εx̂ ◦ ( f −n

x̂n
))

]
on the open subset En . Now we use (2.1) to write Z εx̂ ◦ ( f −n

x̂n
)= αn,x̂n Z x̂n . Since |αn,x̂n |

2
≥

e−2nλ1−2nε , we get, on En ,

T ∧
i
2

d Z εx̂ ∧ d Z εx̂ ≥
1

dn e−2nλ1−2nεg∗n

[
T ∧

i
2

d Z εx̂n
∧ d Z εx̂n

]
. (3.2)

Now we bound from above the left-hand side and we bound from below the right-hand
side (applied to En). Using Lemma 2.3 with r = 1/m0 and n ≥ n1(L0), we obtain En ⊂

Bx ((1/m0)e−nλ2+3nε), and hence

T ∧
i
2

d Z εx̂ ∧ d Z εx̂

(
Bx

(
1

m0
e−nλ2+3nε

))
≥ T ∧

i
2

d Z εx̂ ∧ d Z εx̂ (En). (3.3)

For the right-hand side, since gn is injective on En and gn(En)= Bxn (1/4m0), we get

g∗n

[
T ∧

i
2
(d Z εx̂n

∧ d Z εx̂n
)

]
(En)=

[
T ∧

i
2
(d Z εx̂n

∧ (d Z εx̂n
))

](
Bxn

(
1

4m0

))
≥

1
q0
,

(3.4)
where the inequality comes from x̂n ∈ �̂ε . By combining (3.2), (3.3) and (3.4), we obtain[

T ∧
i
2

d Z εx̂ ∧ d Z εx̂

](
Bx

(
1

m0
e−nλ2+3nε

))
≥

1
dn e−2nλ1−2nε 1

q0
.

We use W ε
x̂ ◦ ( f −n

x̂n
)= βn,x̂ Wx̂n and |βn,x̂ |

2
≥ e−2nλ2−2nε to prove the other estimate. �

3.2. Proof of Theorem 1.2. We take the notation of §3.1. Let

2̂ε := lim sup
n∈N

�̂ε ∩ f̂ −n(�̂ε)= lim sup
n∈N

�̂n
ε .

We have ν̂(2̂ε)≥ 1− 2δ according to (3.1). Let x̂ ∈ 2̂ε . There exists an increasing
sequence of integers (lp)p such that

x̂ ∈ �̂ε ∩ f̂ −l p (�̂ε)= �̂
lp
ε .

Proposition 3.3 then asserts that, for p large enough,[
T ∧

i
2

d Z εx̂ ∧ d Z εx̂

](
Bx

(
1

m0
e−lpλ2+3lpε

))
≥

1
dlp

e−2l pλ1−2l pε
1
q0
.

If p is also large enough so that elpε ≥ 1/m0 and 1/q0 ≥ e−l pε , we obtain, with rp :=

e−lp(λ2−4ε),[
T ∧

i
2

d Z εx̂ ∧ d Z εx̂

]
(Bx (rp))≥ e−lp(log d+2λ1+3ε)

= r (log d+2λ1+3ε)/(λ2−4ε)
p .

https://doi.org/10.1017/etds.2018.137 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.137


2142 C. Dupont and A. Rogue

Since (rp)p tends to zero and ν̂(2̂ε) > 0, we get

dT,Z (ν)≤
log d + 2λ1 + 3ε

λ2 − 4ε
=: 2

λ1

λ2
+

log d
λ2
+ O(ε).

We prove that

dT,W (ν)≤
log d + 2λ2 + 3ε

λ2 − 4ε
=: 2+

log d
λ2
+ O(ε)

in a similar way.

3.3. Monge–Ampère mass. We prove Proposition 3.1. Let x ∈ Supp µ. Let V be a
neighbourhood of x and let Z : V → C be a holomorphic coordinate (submersion) on V .
We want to prove that the positive measure T ∧ (i/2) d Z ∧ d Z is not the zero measure
on V . With no loss of generality, we can assume that x = (0, 0), V = D(2)× D(2) and
Z(z, w)= z. Let also T = 2i∂∂G on V , where G is a continuous plurisubharmonic
function (see §1.2). We denote σz(u) := (z, u).

LEMMA 3.4. If (T ∧ (i/2) d Z ∧ d Z)(D(2)× D(2))= 0, then G ◦ σz is harmonic on D
for every z ∈ D.

Proof. Let z0 ∈ D and let ϕ ∈ C∞0 (D) be a non-negative test function. Let ψ ∈ C∞0 (D
2)

non-negative be such that ψ ◦ σz0 = ϕ on D. According to Proposition A.4,(
T ∧

i
2

d Z ∧ d Z
)
(ψ)

=

∫
z∈D

(∫
w∈D

(G ◦ σz)(w)×1(ψ ◦ σz)(w) d Leb(w)
)

d Leb(z),

which is equal to zero by our assumption. Since G is plurisubharmonic, the measurable
function

z 7→
∫
w∈D

(G ◦ σz)(w)×1(ψ ◦ σz)(w) d Leb(w)

is non-negative, and hence there exists A ⊂ D such that Leb(A)= Leb(D) and

for all z ∈ A,
∫
w∈D

(G ◦ σz)(w)×1(ψ ◦ σz)(w) d Leb(w)= 0. (3.5)

Let us extend this property to every z ∈ D. Since A is a dense subset of D, there exists a
sequence (zn)n≥1 of points in A that converges to z. Using (3.5), we get

for all n ≥ 1,
∫
w∈D

(G ◦ σzn )(w)×1(ψ ◦ σzn )(w) d Leb(w)= 0. (3.6)

Since G is continuous on D2 and ψ is smooth on D2, G and 2i∂∂ψ are uniformly
continuous on D2. This implies that G ◦ σzn uniformly converges to G ◦ σz on D and that
1(ψ ◦ σzn ) uniformly converges to 1(ψ ◦ σz) on D. Taking the limits in (3.6), we get

for all z ∈ D,
∫
w∈D

(G ◦ σz)(w)×1(ψ ◦ σz)(w) d Leb(w)= 0.

In particular, using ψ ◦ σz0 = ϕ, we obtain∫
w∈D

(G ◦ σz0)(w)×1ϕ(w) d Leb(w)= 0.

This holds for every non-negative ϕ ∈ C∞0 (D), and hence G ◦ σz0 is harmonic on D. �
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Now we use the following result (see [6, Lemme IV.1.1] and [27, §A.10]).

THEOREM 3.5. (Briend) Let G be a continuous plurisubharmonic function on D(2)×
D(2). Let E be the set of points p ∈ D( 1

4 )× D( 1
4 ) such that there exists a holomorphic

disc σp : D→ D(2)× D(2) satisfying:
(1) the boundary of σp is outside D( 1

2 )× D( 1
2 ); and

(2) G ◦ σp is harmonic D.
Then (2i∂∂G ∧ 2i∂∂G)(E)= 0.

In our situation, we have D( 1
4 )× D( 1

4 )= E by taking for σp the discs σz : D→
D× D, u 7→ (z, u). Indeed, the boundary of σz is contained in {z} × ∂D and G ◦ σz is
harmonic on D according to Lemma 3.4. Theorem 3.5 then gives

(2i∂∂G ∧ 2i∂∂G)(D( 1
4 )× D( 1

4 ))= 0,

which contradicts x = 0 ∈ Supp µ= Supp(2i∂∂G ∧ 2i∂∂G).

4. Lower bounds for the directional dimensions of T and S
We prove Theorem 1.3 and Corollary 1.5. Let ν be a dilating measure with exponents λ1 >

λ2, and let (Z , W )ε be Oseledec–Poincaré coordinates for ( f, ν). Theorems 4.6 and 4.7
provide lower bounds for directional dimensions depending on dν , Theorem 1.3 follows
from the lower bound (1.4) on dν . We shall use arguments of [13]. Precisely, we shall
replace for the lower bound ( f n)∗ω ≥ e2nλ2e−nεω obtained in [13] by slicing arguments
by the two lower bounds

( f n)∗ω ≥ e2nλ1e−6nε i
2

d Z ∧ d Z and ( f n)∗ω ≥ e2nλ2e−6nε i
2

dW ∧ dW

coming from Proposition 2.6. In §§4.1 and 4.2 we construct a set 3̂ε ⊂ X̂ of
uniformizations satisfying ν̂(3̂ε)≥ 1− δ/2. Section 4.3 deals with separated sets.

4.1. Dynamical balls. The dynamical distance is defined by dn(x, y) :=max0≤k≤n

d( f k(x), f k(y)). We denote by Bn(x, r) the ball centred at x and of radius r for the
distance dn .

LEMMA 4.1. Let δ > 0 and R > 0. There exist η1 < R, n3 ≥ 1 and C ⊂ P2 such that
ν(C)≥ 1− δ/8 and which satisfy the following properties. For every x ∈ C and n ≥ n3,

ν(Bn(x, η1/8))≥ e−nhν−εn,

for all r ≤ η1, ν(Bn(x, 5r))≤ ν(Bn(x, 5η1))≤ e−nhν+εn .

Proof. The Brin–Katok theorem [9] ensures that there exists C1 ⊂ P2 of full ν-measure
such that, for every x ∈ C1,

lim
r→0

(
lim inf
n→+∞

−1
n

log ν(Bn(x, r))
)
= lim

r→0

(
lim sup
n→+∞

−1
n

log ν(Bn(x, r))
)
= hν .

Hence, for every x ∈ C1, there exists η1(x)≤ R such that r ≤ η1(x) implies that

lim inf
n→+∞

−1
n

log(ν(Bn(x, 5r)))≥ hν − ε/2 and

lim sup
n→+∞

−1
n

log(ν(Bn(x, r/8)))≤ hν + ε/2.
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Let η1 > 0 small enough such that C2 := {x ∈ C1 , η1 ≤ η1(x)≤ R} satisfies ν(C2)≥ 1−
δ/16. For every x ∈ C2, there exists n3(x) such that n ≥ n3(x) implies that

ν(Bn(x, η1/8))≥ e−nhν−εn,

for all r ≤ η1, ν(Bn(x, 5r))≤ ν(Bn(x, 5η1))≤ e−nhν+εn .

Let n3 ≥ 1 such that C := C2 ∩ {x ∈ C1, n3(x)≤ n3} satisfies ν(C)≥ 1− δ/8. �

For every L > 0, let mL be the smallest integer m such that Le−m(λ2+ε) ≤ 1 and let
n4(L) be the smallest integer n larger than mL such that e−nε

≤ M−mL , where M :=
max{‖D f ‖∞,P2 , 1}. The set F̂ is defined in Theorem 2.1.

LEMMA 4.2. Let x̂ ∈ F̂ such that ηε(x̂)≥ η and Lε(x̂)≤ L. For every n ≥ n4(L) and
every r ≤ η,

f −n
x̂n
(Bxn (re−2nε))⊂ Bn(x0, r).

Proof. Let us observe that, for every 0≤ k ≤ n, f k is injective on f −n
x̂n
(Bxn (re−2nε)) and

that f k f −n
x̂n
= f −n+k

x̂n
. By setting p = n − k, it suffices to show that

for all p ∈ J0, nK f −p
x̂n
(Bxn (re−2nε))⊂ Bxn−p (r). (4.1)

To simplify, let us set m := mL and n4 := n4(L). We immediately have n4 ≥ m and also

for all n ≥ n4, for all p ∈ J0, nK, f −p
x̂n
(Bxn (re−2nε))⊂ f −p

x̂n

(
Bxn

(
r

Mm e−nε
))
.

(4.2)
To verify (4.1), we shall consider separately the cases p ≤ m and p > m. We know that,
for every p, Lip f −p

x̂n
≤ L(x̂n)e−pλ2+pε

≤ Lenεe−pλ2+pε on Bxn (ηε(x̂n)), which contains
Bxn (ηe−nε). Hence, for every n ≥ n4 ≥ m, p ∈ Jm, nK and r ≤ η,

f −p
x̂n
(Bxn (re−nε))⊂ Bxn−p (re−nεLenεe−pλ2+pε)= Bxn−p (r Le−pλ2+pε)⊂ Bxn−p (r).

Since Mm
≥ 1, this implies that, for every n ≥ n4 ≥ m, p ∈ Jm, nK and r ≤ η,

f −p
x̂n

(
Bxn

(
r

Mm e−nε
))
⊂ Bxn−p

(
r

Mm

)
. (4.3)

Thus, by using (4.2) and Mm
≥ 1,

for all p ∈ Jm, nK, f −p
x̂n
(Bxn (re−2nε))⊂ Bxn−p (r). (4.4)

We have proved (4.1) for p ∈ Jm, nK. Let us show this inclusion for p ∈ J0, mK. For every
p ∈ J0, mK, let us set p = m − p′, where p′ ∈ J0, mK. Then

f −p
x̂n

(
Bxn

(
r

Mm e−nε
))
= f p′

(
f −m
x̂n

(
Bxn

(
r

Mm e−nε
)))

⊂ f p′
(

Bxn−m

(
r

Mm

))
,

where the inclusion comes from (4.3) with p = m. Using e−nε
≤ 1/Mm for the left-hand

side and ‖D f p′
‖∞,P2 ≤ M p′ for the right-hand side, we get

for all p ∈ J0, mK, f −p
x̂n
(Bxn (re−2nε))⊂ Bxn−m+p′

(
r

Mm M p′
)
⊂ Bxn−p (r). (4.5)

We finally obtain (4.1) by combining (4.4) and (4.5). �
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4.2. Uniformizations. In this section, we introduce uniformizations for the functions of
Theorem 2.1 and for the radii of balls in relation to their ν-measure or their directional
measures. This will allow us to consider those quantities as constant on Borel sets of ν̂-
measure close to one.

1. Control of the functions nε, ρε, Lε, ηε, βε of Theorem 2.1
We recall that F̂ provided by Theorem 2.1 satisfies ν̂(F̂)= 1. Let n0 ≥ 1, ρ0 > 0, L0 ≥

1, η0 > 0, β0 ≥ 1 such that

3(1) := {x̂ ∈ F̂, nε(x̂)≤ n0, ρε(x̂)≥ ρ0, Lε(x̂)≤ L0, ηε(x̂)≥ η0, βε(x̂)≤ β0}

satisfies ν̂(3(1))≥ 1− δ/8.

2. Uniformization of the directional dimensions
Let S be a positive closed current on P2 whose support contains the support of ν. Let

r1 > 0 such that

3(2) :=x̂ ∈ F̂, ∀r ≤ r1,

rdS,Z (x̂)+ε ≤

(
S ∧

(
i
2

d Z εx̂ ∧ d Z εx̂

))
(Bx0(r))≤ rdS,Z (x̂)−ε(

S ∧
(

i
2

dW ε
x̂ ∧ dW ε

x̂

))
(Bx0(r))≤ rdS,W (x̂)−ε


satisfies ν̂(3(2))≥ 1− δ/8.

3. Uniformization of the dimension of the measure
Let r2 > 0 such that

D := {x ∈ P2, ∀r ≤ r2, ν(Bx (r))≤ rdν−ε}

satisfies ν(D)≥ 1− δ/8. We set 3(3) := π−1
0 (D) ∩ F̂ .

4. Measure of dynamical balls, definition of η1

We apply Lemma 4.1 with R :=min{η0, r1, r2}. There exist η1 ≤ R, n3 ≥ 1 and C ⊂ P2

such that ν(C)≥ 1− δ/8 and, for every x ∈ C and n ≥ n3,

ν(Bn(x, η1/8))≥ e−nhν−εn,

for all r ≤ η1, ν(Bn(x, 5r))≤ ν(Bn(x, 5η1))≤ e−nhν+εn .

We denote 3(4) := π−1
0 (C) ∩ F̂ .

5. Definitions of 3̂ε and Nε
We set

3̂ε :=3
(1)
∩3(2) ∩3(3) ∩3(4).

We have ν̂(3̂ε)≥ 1− δ/2. We recall that n1(L), n2(β) and n4(L) are defined before
Lemma 2.3, Proposition 2.6 and Lemma 4.2. Let n5 be the smallest integer n such that
e−nε
≤ 1/2 and 2e−n(λ1+ε) < 1. We set

Nε :=max{n0, n1(L0), n2(β0), n3, n4(L0), n5}.
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6. Definition of 1̂n
ε

For all n ≥ Nε , we define

1̂n
ε := F̂ ∩ f̂ −n

{nε(x̂)≤ n} = {x̂ ∈ F̂, nε(x̂n)≤ n}.

Since ν̂ is f̂ -invariant and 3(1) ⊂ {nε(x̂)≤ n} for every n ≥ Nε , we have ν̂(1̂n
ε )≥

ν̂(3(1))≥ 1− δ/8. Hence

for all n ≥ Nε, ν̂(3̂ε ∩ 1̂
n
ε )≥ 1− δ.

4.3. Separated sets. A subset {x1, . . . , xN } ⊂ P2 is r -separated if d(xi , x j )≥ r for
every i 6= j . For A ⊂ P2, a subset {x1, . . . , xN } ⊂ A is maximal r -separated with respect
to A if it is r -separated and if, for every y ∈ A, there exists i ∈ {1, . . . , N } such that
d(y, xi ) < r . We use similar definitions for the distance dn , in which case the subsets are
called (n, r) separated.

LEMMA 4.3. Let A ⊂ π0(3̂ε) such that ν(A) > 0 and let c ∈]0, 1]. Let n ≥ Nε and let
{x1, . . . , xNn } ⊂ A be a maximal (n, cη1)-separated with respect to A. Then:
(1) A ⊂

⋃Nn
i=1 Bn(xi , cη1) and Bn(xi , cη1/2) ∩ Bn(x j , cη1/2)= ∅ for every i 6= j ;

(2) ν(Bn(xi , cη1))≤ e−nhν+nε and e−nhν−nε
≤ ν(Bn(xi , cη1)) if c ≥ 1/8; and

(3) Nn ≥ ν(A)enhν−nε .

Proof. Item 1 comes from the definitions, and item 2 comes from §4 of §4.2. They imply
that ν(A)≤

∑Nn
i=1 ν(Bn(xi , cη1))≤ Nne−nhν+nε , which gives item 3. �

The next lemmas give an amout of concentrated separation. We take the arguments
of de Thélin–Vigny [13, §7]. By applying Lemma 4.3 with c = 1/4, we obtain
ν(Bn(xi , η1/4))≥ e−nhν−nε for every xi in a maximal (n, η1/4)-separated subset of A.
Lemma 4.4 allows us to select a large number of xi such that ν(Bn(xi , η1/4) ∩ A)≥
e−nhν−2nε and which are (n, η1)-separated, and then Lemma 4.5 deals with these xi . Let
nδ be the smallest n such that e−nε

≤ δ/2.

LEMMA 4.4. Let A ⊂ π0(3̂ε) such that ν(A)≥ δ. For every n ≥max{Nε, nδ}, there exist
a (n, η1/4)-separated subset {x1, . . . , xNn,2} of A and Nn,3 ∈ J1, Nn,2K such that:
(1) for i 6= j in J1, Nn,2K, Bn(xi , η1/8) ∩ Bn(x j , η1/8)= ∅;
(2) for i ∈ J1, Nn,2K, ν(Bn(xi , η1/4) ∩ A)≥ e−nhν−2εn , where Nn,2 ≥ ν(A)enhν−2nε;
(3) for i ∈ J1, Nn,2K and c ≥ 1/8, e−nhν−nε

≤ ν(Bn(xi , cη1)); and
(4) for i 6= j in J1, Nn,3K, Bn(xi , η1/2) ∩ Bn(x j , η1/2)= ∅, where Nn,3 ≥

ν(A)enhν−4nε .

Proof. Let us apply Lemma 4.3 with c = 1/4 and n ≥max{Nε, nδ}. There exists a
maximal (n, η1/4)-separated subset {x1, . . . , xNn,1} of A satisfying:

• A ⊂
⋃Nn,1

i=1 Bn(xi , η1/4) and Bn(xi , η1/8) ∩ Bn(x j , η1/8)= ∅ for every i 6= j ;
• e−nhν−nε

≤ ν(Bn(xi , η1/8)); and
• Nn,1 ≥ ν(A)enhν−nε .
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Let us set I := {1≤ i ≤ Nn,1, ν(Bn(xi , η1/4) ∩ A)≥ e−nhν−2εn
}. Let Nn,2 be the

cardinality of I , and assume that I consists of the first Nn,2 elements of J1, Nn,1K. We
want to bound Nn,2 from below. We know that A ⊂

⋃Nn,1
i=1 Bn(xi , η1/4), and hence

ν(A)≤
Nn,2∑
i=1

ν(Bn(xi , η1/4) ∩ A)+
Nn,1∑

i=Nn,2+1

ν(Bn(xi , η1/4) ∩ A).

If i 6∈ J1, Nn,2K, we have ν(Bn(xi , η1/4) ∩ A) < e−nhν−2εn by the definition of I .
Otherwise, ν(Bn(xi , η1/4))≤ e−nhν+εn since xi ∈ C . This implies that

ν(A)≤ Nn,2e−nhν+εn
+ (Nn,1 − Nn,2)e−nhν−2εn . (4.6)

Let us give an upper bound for Nn,1. Since the balls Bn(xi , η1/8) are pairwise disjoint and
since ν(Bn(xi , η1/8))≥ e−nhν−εn , we get enhν+εn

≥ Nn,1 ≥ Nn,1 − Nn,2. Combining this
and (4.6), we obtain

ν(A)≤ Nn,2e−nhν+εn
+ e−εn .

Since n ≥ nδ , we have e−nε
≤ δ/2≤ ν(A)/2, and hence Nn,2 ≥ ν(A)enhν−εn/2. We

deduce that Nn,2 ≥ ν(A)enhν−2εn because n ≥ Nε ≥ n5. Let us verify the last item. Let
En be a maximal (n, η1)-separated subset of {x1, . . . , xNn,2}. By reordering, we can
assume that En = {x1, . . . , xNn,3}. For every i ∈ J1, Nn,3K, let mi be the cardinality
of { j ∈ J1, Nn,2K, x j ∈ Bn(xi , η1)}, and let mi0 :=max mi , which is simply denoted
by m in the subsequent work. We have Nn,2 ≤ m Nn,3. Let us verify that m ≤ e2nε ,
which implies that Nn,3 ≥ Nn,2e−2nε , as desired. For that purpose, let {x ′1, . . . , x ′m} :=
Bn(xi0 , η1) ∩ {x1, . . . , xNn,2}. We obviously have

⋃m
i=1 Bn(x ′i , η1/8)⊂ Bn(xi0 , 2η1).

Since the dynamical balls Bn(x ′i , η1/8) are pairwise disjoint, we finally get me−nhν−nε
≤

e−nhν+nε by considering the ν-measures and using x ′i , xi0 ∈ C (see §4 of §4.2). �

Now, for 1≤ i ≤ Nn,3, we put in Bn(xi , η1/2) a lot of balls centred in Bn(xi , η1/4)∩ A.

LEMMA 4.5. Let A ⊂ π0(3̂ε) such that ν(A) > 0. Let x ∈ A and let n ≥ Nε such that

ν(Bn(x, η1/4) ∩ A)≥ e−nhν−2nε .

Let {y1, . . . , yMn } be a maximal 2η1e−nλ1−4nε-separated subset in Bn(x, η1/4) ∩ A.
(1) For every i 6= j , B(yi , η1e−nλ1−4nε) ∩ B(y j , η1e−nλ1−4nε)= ∅.
(2) Bn(x, η1/4) ∩ A ⊂

⋃Mn
i=1 B(yi , 2η1e−nλ1−4nε).

(3) B(yi , η1e−nλ1−4nε)⊂ Bn(x, η1/2).
(4) Mn ≥ e−nhν−2nε((1/2η1)enλ1+4nε)dν−ε .

Proof. Items 1 and 2 come from the definitions. Lemmas 2.3 and 4.2 successively give

B(yi , η1e−nλ1−4nε)⊂ f −n
ŷi,n
(Byi,n (η1e−2nε/4)⊂ Bn(yi , η1/4)).

Since yi ∈ Bn(x, η1/4), we get Bn(yi , η1/4)⊂ Bn(x, η1/2), and item 3 follows. Item 2
implies that

ν(Bn(x, η1/4) ∩ A)≤
Mn∑
i=1

ν(B(yi , 2η1e−nλ1−4nε)). (4.7)
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By our assumption, the left-hand side of (4.7) is larger than e−nhν−2nε . For the right-
hand side, since n ≥ Nε ≥ n5, we have 2η1e−nλ1−4nε < η1 ≤ r2 by the definition of n5 and
η1 (given in §§5 and 4 of §4.2). Then, by using yi ∈ A ⊂ π0(3̂ε)⊂ D, we get, by the
definition of D (given in §3 of §4.2),

ν(B(yi , 2η1e−nλ1−4nε))≤ (2η1e−nλ1−4nε)dν−ε .

We finally deduce from (4.7) that e−nhν−2nε
≤ Mn(2η1e−nλ1−4nε)dν−ε , as desired. �

4.4. Lower bounds for the upper dimensions dT,Z and dT,W .

THEOREM 4.6. Let ν be a dilating measure whose exponents λ1 > λ2 do not resonate. Let
ε > 0 and let (Z , W )ε be Oseledec–Poincaré coordinates for ( f, ν). Then

dT,Z (ν)≥ 2+ dν −
log d
λ1
− O(ε),

dT,W (ν)≥ 2
λ2

λ1
+ dν −

log d
λ1
− O(ε).

Proof. We recall that dT,Z (ν) := dT,Z (x̂) and dT,W (ν) := dT,W (x̂) for ν̂-almost every x̂
(see Proposition 2.4). Let us set dT,Z := dT,Z (ν). We are going to show that

(λ1 + 4ε)(dT,Z − dν + 2ε)+ 12ε ≥ 2λ1 − log d. (4.8)

This yields, as desired,

dT,Z − dν ≥
2λ1

λ1 + 4ε
−

log d + 12ε
λ1 + 4ε

− 2ε = 2−
log d
λ1
− O(ε). (4.9)

Let δ > 0. Let 3̂ε , Nε and 1̂n
ε be given by §4.2. For every n ≥ Nε , we set An :=

π0(3̂ε ∩ 1̂
n
ε ), which satisfies ν(An)≥ 1− δ. Lemma 4.4 provides {x1, . . . , xNn,3} ⊂ An

satisfying Nn,3 ≥ ν(An)enhν−4nε , ν(Bn(xi , η1/4) ∩ An)≥ e−nhν−2εn and Bn(xi , η1/2) ∩
Bn(x j , η1/2)= ∅ for i 6= j . Then, for every xi , we set a maximal 2η1e−nλ1−4nε-separated
subset {yi

1, . . . , yi
Mn
} in Bn(xi , η1/4) ∩ An given by Lemma 4.5. Let us note that

B(yi
j , η1e−nλ1−4nε)⊂ Bn(xi , η1/2). Finally, for every i , we choose x̂i ∈ 3̂ε ∩ 1̂

n
ε such

that π0(x̂i )= xi and, for every j , we choose ŷi
j ∈ 3̂ε ∩ 1̂

n
ε such that π0(ŷi

j )= yi
j .

Now we use dn
=
∫
P2( f n)∗T ∧ ω provided by Proposition A.3 to get

dn
≥

Nn,3∑
i=1

Mn∑
j=1

∫
P2
( f n)∗(1B(yi

j ,η1e−nλ1−4nε)T ) ∧ ω =
Nn,3∑
i=1

Mn∑
j=1

∫
B(yi

j ,η1e−nλ1−4nε)

T ∧ ( f n)∗ω.

Lemma 2.3 with ŷi
j ∈ 3̂ε implies that

B(yi
j , η1e−nλ1−4nε)⊂ f −n

ŷi
j,n

(
B
(

yi
j,n,

η1

4
e−2nε

))
. (4.10)

Since ŷi
j ∈ 1̂

n
ε , we can apply Proposition 2.6 to bound ( f n)∗ω from below: i.e.,

dn
≥

Nn,3∑
i=1

Mn∑
j=1

e2nλ1−6nε
(

T ∧
i
2

d Z ε
ŷi

j
∧ d Z ε

ŷi
j

)
(Byi

j
(η1e−nλ1−4nε)). (4.11)
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Now ŷi
j ∈ 3̂ε ⊂3

(2) and n ≥ Nε , and hence

dn
≥

Nn,3∑
i=1

Mn∑
j=1

e2nλ1−6nε(η1e−nλ1−4nε)dT,Z+ε .

Finally, we use the lower bounds for Nn,3 (Lemma 4.4) and Mn (Lemma 4.5), and ν(An)≥

1− δ. We obtain, for every n ≥max{Nε, n1−δ},

dn
≥ (1− δ)enhν−4nε

· e−nhν−2nε
(

1
2η1

enλ1+4nε
)dν−ε

· e2nλ1−6nε(η1e−nλ1−4nε)dT,Z+ε .

Let us note that the entropy hν disappears for the benefit of dν , and we get

dn
≥ c e−12nε(enλ1+4nε)dν−dT,Z−2εe2nλ1 , (4.12)

where c := (1− δ)ηdT,Z+ε

1 /(2η1)
dν−ε . We obtain (4.8) by looking at the exponential

growth rates. Similarly, we can prove that

(λ1 + 4ε)(dT,W − dν + 2ε)+ 12ε ≥ 2λ2 − log d

by using Proposition 2.6 again to bound ( f n)∗ω from below. �

4.5. Lower bounds for the upper dimensions dS,Z and dS,W . Let S be a (1, 1) closed
positive current of P2. If S does not satisfy f ∗S = d S, the directional dimensions may be
not ν̂-almost everywhere constant (see Proposition 2.4). In this case, in the manner of de
Thélin–Vigny [13], we take on an adapted definition and obtain the following result. It
implies Theorem 1.3 by using the lower bound (1.4).

THEOREM 4.7. Let S be a (1, 1) closed positive current of P2. Let ν be a dilating measure
whose exponents λ1 > λ2 do not resonate. We assume that Supp(ν)⊂ Supp S. Let ε > 0
and let (Z , W )ε be Oseledec–Poincaré coordinates for ( f, ν). For every 3̂⊂ F̂ such that
ν̂(3̂) > 0, we set

dS,Z (3̂) := sup
x̂∈3̂

dS,Z (x̂), dS,W (3̂) := sup
x̂∈3̂

dS,W (x̂).

Then

dS,Z (3̂)≥ 2+ dν −
log d
λ1
− O(ε),

dS,W (3̂)≥ 2
λ2

λ1
+ dν −

log d
λ1
− O(ε).

Proof. Let 2δ := ν̂(3̂). We construct 3̂ε , Nε and 1̂n
ε for the current S as in §4.2.

We have ν̂(3̂ε ∩ 1̂
n
ε )≥ 1− δ for every n ≥ Nε , and thus ν̂(3̂ ∩ 3̂ε ∩ 1̂n

ε )≥ δ > 0.
We follow the arguments of Theorem 4.6. Let n ≥max{Nε, nδ} and An := π0(3̂ ∩

3̂ε ∩ 1̂
n
ε ). Lemma 4.4 provides {x1, . . . , xNn,3} ⊂ An satisfying Nn,3 ≥ ν(An)enhν−4nε ,

ν(Bn(xi , η1/4) ∩ An)≥ e−nhν−2εn and Bn(xi , η1/2) ∩ Bn(x j , η1/2)= ∅ for i 6= j . Then,
for every xi , let {yi

1, . . . , yi
Mn
} be a maximal 2η1e−nλ1−4nε-separated subset in
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Bn(xi , η1/4) ∩ An given by Lemma 4.5. We have the inclusions B(yi
j , η1e−nλ1−4nε)⊂

Bn(xi , η1/2). Finally, for every i, j let x̂i ∈ 3̂ε ∩ 1̂
n
ε such that π0(x̂i )= xi , and let

ŷi
j ∈ 3̂ε ∩ 1̂

n
ε such that π0(ŷi

j )= yi
j .

Using dn
=
∫
P2( f n)∗S ∧ ω, we deduce, as in (4.11), that

dn
≥

Nn,3∑
i=1

Mn∑
j=1

e2nλ1−6nε
(

S ∧
i
2

d Z ε
ŷi

j
∧ d Z ε

ŷi
j

)
(Byi

j
(η1e−nλ1−4nε)).

Since ŷi
j ∈ 3̂ε and n ≥ Nε ,

dn
≥

Nn,3∑
i=1

Mn∑
j=1

e2nλ1−6nε(η1e−nλ1−4nε)
dS,Z (ŷi

j )+ε .

Then we use the inequality dS,Z (ŷi
j )≤ dS,Z (3̂) and conclude as in the proof of

Theorem 4.6. The lower bound concerning W is proved in a similar way. �

4.6. Proof of Corollary 1.5. We recall that dT (x) is µ-almost everywhere constant and
denoted by dT (µ) (see Proposition 2.5). According to Proposition A.1, µ� T ∧ ω implies
that

dT (µ)≤ dµ. (4.13)

Let us analyze these quantities. On the one hand, Proposition A.2 yields dT (µ)=

min{dT,Z (x), dT,W (x)} for µ-almost every x ∈ P2 and for all holomorphic coordinates
(Z , W ) near x . On the other hand, since dµ = dµ, we have dµ = dµ = dimH (µ). Observe

also that λ2 =
1
2 log d, since µ� T ∧ ω (see [19]). Hence dimH (µ)= 2+ (log d)/λ1 by

(1.6). Then one deduces from (4.13) that

min{dT,Z (x), dT,W (x)} ≤ 2+
log d
λ1

. (4.14)

Now we use Theorem 4.6. If (Z , W )ε are Oseledec–Poincaré coordinates for ( f, µ),

dT,Z (µ)≥ 2+ dµ −
log d
λ1
− O(ε),

dT,W (µ)≥ 2
λ2

λ1
+ dµ −

log d
λ1
− O(ε).

Let us note that λ2 =
1
2 log d implies that dµ − (log d)/λ1 ≥ 2 by (1.4). We deduce that

dT,Z (µ)≥ 4− O(ε) and that dT,W (µ)≥ 2+ (log d)/λ1 − O(ε). It remains to show that
dT,W (µ)≤ 2+ (log d)/λ1. Let ε be small enough such that 4− O(ε) > 2+ (log d)/λ1.
This implies that dT,Z (µ) > 2+ (log d)/λ1, and thus the minimum in (4.14) is attained
for W .

5. Proof of Theorem 1.1
Let ν be a dilating measure with exponents λ1 ≥ λ2 whose support is contained in the
support of µ. If λ1 = λ2, then dν = dν = 2(log d)/λ1 by (1.1), and Theorem 1.1 is true.
So we can assume that λ1 > λ2. The proof of Theorem 1.1 will rely on the estimates of
Proposition 3.3, on the arguments of Theorem 4.6 and on a rescaling of the time n with
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respect to the exponents. A crucial point is that Proposition 3.3 provides estimates for the
directional measures of T in terms of λ1, λ2, d; we shall use them in (5.6). The dimension
dν will appear in (5.3).

Let ε > 0. The set �̂n
ε has been defined in §3.1; it satisfies ν̂(�̂n

ε )≥ 1− 2δ for every
n ≥ 1. Let 3̂ε , 1̂n

ε be the sets defined in §4.2. We have ν̂(3̂ε ∩ 1̂n
ε ∩ �̂

n
ε )≥ 1− 3δ

for every n ≥ Nε . Now let Kn be the unique integer in ]αn, αn + 1], where αn :=

(1/(λ2 − 3ε))(−log(η1m0)+ n(λ1 + 4ε)). It satisfies

η1e−nλ1−4nεe−λ2+3ε
≤

1
m0

e−Knλ2+3Knε < η1e−nλ1−4nε . (5.1)

These inequalities will be useful for (5.5). Let us have in mind that Kn ' nλ1/λ2 ≥ n ≥
Nε . Let {x1, . . . , xNn,3} be a (n, η1/4)-separated subset of An := π0(3̂ε ∩ 1̂

n
ε ∩ �̂

Kn
ε )

provided by Lemma 4.4. For every n ≥max{Nε, n1−3δ},

Nn,3 ≥ ν(An)enhν−4nε
≥ (1− 3δ)enhν−4nε . (5.2)

Then, for every xi , let {yi
1, . . . , yi

Mn
} be a maximal 2η1e−nλ1−4nε-separated subset of

Bn(xi , η1/4) ∩ An provided by Lemma 4.5. The cardinality of this set satisfies

Mn ≥ e−nhν−2nε
(

1
2η1

enλ1+4nε
)dν−ε

. (5.3)

For every j ∈ {1, . . . , Mn}, we set ŷi
j ∈ 3̂ε ∩ 1̂

n
ε ∩ �̂

Kn
ε such that yi

j = π0(ŷi
j ). By

following the proof of Theorem 4.6 until (4.11), we get

dn
≥

Nn,3∑
i=1

Mn∑
j=1

e2nλ1−6nε
[

T ∧
(

i
2

d Z ε
ŷi

j
∧ d Z ε

ŷi
j

)]
(Byi

j
(η1e−nλ1−4nε)). (5.4)

Now, according to (5.1),

Byi
j
(η1e−nλ1−4nε)⊃ Byi

j

(
1

m0
e−Knλ2+3Knε

)
. (5.5)

Since ŷi
j ∈ �̂

Kn
ε , Proposition 3.3 implies that, for every n satisfying n ≥ Nε and Kn ≥ Nε ,[

T ∧
(

i
2

d Z εŷi, j
∧ d Z εŷi, j

)]
(Byi

j
(η1e−nλ1−4nε))≥

1
d Kn

e−2Knλ1−2Knε
1
q0
. (5.6)

We infer from (5.4) that, for every n satisfying n ≥ Nε and Kn ≥ Nε ,

dn
≥ Nn,3 · Mn · e2nλ1−6nε 1

d Kn
e−2Knλ1−2Knε

1
q0
. (5.7)

By using the upper bounds for Nn,3 and Mn given by (5.2) and (5.3),

dn+Kn ≥ (1− 3δ)enhν−4nε
· e−nhν−2nε

(
1

2η1
enλ1+4nε

)dν−ε

· e2nλ1−6nεe−2Knλ1−2Knε
1
q0
.

If C1(ε) := (1− 3δ)/q0(2η1)
dν−ε , we get

log d +
Kn

n
log d ≥

1
n

log C1(ε)− 12ε + (λ1 + 4ε)(dν − ε)+ 2λ1 − 2
Kn

n
(λ1 + ε).
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By using the lower and upper bounds defining Kn just before (5.1), we obtain

log d +
λ1 + 4ε
λ2 − 3ε

log d ≥
1
n

log C2(ε)− 12ε + (λ1 + 4ε)(dν − ε)

+ 2λ1 − 2
λ1 + 4ε
λ2 − 3ε

(λ1 + ε),

where C2(ε) is another constant. Letting n tend to +∞ and then ε to zero, we get

dν ≤
log d
λ1
+

log d
λ2
+ 2

(
λ1

λ2
− 1

)
.

To obtain the other upper bound, we use the analogue of (5.4) for W . Applying
Proposition 3.3 with respect to W , we obtain, instead of (5.7),

dn
≥ Nn,3 · Mn · e2nλ2−6nε 1

d Kn
e−2Knλ2−2Knε

1
q0
.

Then we get

dν ≤
log d
λ1
+

log d
λ2
+ 2

(
1−

λ2

λ1

)
,

which completes the proof of Theorem 1.1.
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A. Appendix.
A.1. Dimension of measures.

PROPOSITION A.1. Let ν1 and ν2 be two probability measures on P2 such that ν1� ν2.
Then, for ν1-almost every x ∈ P2,

dν1(x)≥ dν2(x) and dν1(x)≥ dν2(x).

Proof. Let ϕ ∈ L1(ν2) such that ν1(A)=
∫

A ϕ dν2 for every Borel set A of P2. Using the
dominated convergence theorem,

lim
M→+∞

∫
P2

1{ϕ≤M}ϕ dν2 =

∫
P2
ϕ dν2 = 1.

For every n ≥ 1, we let Mn satisfy
∫
P2 1{ϕ≤Mn}ϕ dν2 ≥ 1− 1/n. By the Lebesgue density

theorem, for ν1-almost every x in {ϕ ≤ Mn},

lim
r→0

ν1(Bx (r) ∩ {ϕ ≤ Mn})

ν1(Bx (r))
= 1.

Then, for every r small enough,

1
2
ν1(Bx (r))≤ ν1(Bx (r) ∩ {ϕ ≤ Mn})≤ Mn

∫
Bx (r)

dν2.
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Thus ν1(Bx (r))≤ 2Mnν2(Bx (r)). Taking limits when r tends to zero, we deduce that

dν1(x)≥ dν2(x) and dν1(x)≥ dν2(x)

for ν1-almost every x ∈ {ϕ ≤ Mn}. We end with ν1(
⋃

n∈N{ϕ ≤ Mn})= 1. �

PROPOSITION A.2. Let S be a (1, 1)-closed positive current on P2. Let x ∈ P2 and let
(Z , W ) be holomorphic coordinates near x. Then

dS(x)=min{dS,Z (x), dS,W (x)}, dS(x)=min{dS,Z (x), dT,W (x)}.

Proof. Let us set σS,Z = S ∧ ((i/2) d Z ∧ d Z) and σS,W = S ∧ (i/2 dW ∧ dW ). There
exists c > 0 such that (1/c)(σS,Z + σS,W )≤ σS ≤ c(σS,Z + σS,W ) on a neighbourhood of
x (see [14, Ch. III, §3]). We deduce that, for every r small enough,

1
c

max[σS,Z (Bx (r)), σS,W (Bx (r))] ≤ σS(Bx (r))≤ 2c max[σS,Z (Bx (r)), σS,W (Bx (r))].

We finish by observing that the local dimension of the maximum of two measures is equal
to the minimum of the local dimensions, since one divides by log r which is negative. �

A.2. Cohomology and slices. We refer to Dinh–Sibony’s book [18, §§1.2 and A.3].

PROPOSITION A.3. Let S be a (1, 1)-closed positive current of P2 of mass one. Let ω be
the Fubini–Study form on P2 and let f : P2

→ P2 be an endomorphism of degree d. Then∫
P2
( f n)∗S ∧ ω =

∫
P2

S ∧ ( f n)∗ω = dn .

Proof. The first equality comes from the definition of duality. We verify the second one. By
using f ∗ω = d · ω + 2i∂∂u, where u is a smooth function on P2, we obtain by induction
that

( f n)∗ω = dnω + 2i∂∂vn,

where vn := (dn−1u + · · · + du ◦ f n−2
+ u ◦ f n−1). Since S is a closed current of mass

one, we have
∫
P2 S ∧ 2i∂∂vn = 0 and

∫
P2 S ∧ dnω = dn . �

PROPOSITION A.4. Let G be a continuous plurisubharmonic function on D2 and let S =
2i∂∂G. Let (Z , W ) be the coordinates on D2

= D× D and let φ ∈ C∞0 (D
2). Then

S ∧
i
2

d Z ∧ d Z(φ)=
∫

z∈D

(∫
w∈D

Gz(w)×1φz(w) d Leb(w)
)

d Leb(z)

=

∫
z∈D

(σ ∗z S)(φz)d Leb(z),

where σz : u 7→ (z, u), Gz := G ◦ σz and φz := φ ◦ σz .

Proof. By definition,

S ∧
i
2

d Z ∧ d Z(φ)= 2i∂∂G
(
φ

i
2

d Z ∧ d Z
)
=

∫
D2

G · 2i∂∂
(
φ

i
2

d Z ∧ d Z
)
.
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The computation

2i∂∂
(
φ

i
2

d Z ∧ d Z
)
= 4

(
∂2φ

∂w∂w

)
i
2

dW ∧ dW ∧
i
2

d Z ∧ d Z

= 4
(
∂2φ

∂w∂w

)
d Leb(z, w)

allows to write

S ∧
i
2

d Z ∧ d Z(φ)=
∫
(z,w)∈D2

G(z, w)× 4
∂2φ

∂w∂w
(z, w) d Leb(z, w)

=

∫
z∈D

(∫
w∈D

Gz(w)×1φz(w) d Leb(w)
)

d Leb(z),

where the second equality comes from Fubini’s theorem. Finally, the quantity in brackets
is equal to (1Gz)(φz)= (σ

∗
z S)(φz). �
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PhD Thesis, Université Paul Sabatier de Toulouse, 1997.

[7] J.-Y. Briend and J. Duval. Exposants de Liapounoff et distribution des points périodiques d’un
endomorphisme de CPk . Acta Math. 182(2) (1999), 143–157.
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[13] H. de Thélin and G. Vigny. On the measures of large entropy on a positive closed current. Math. Z. 280(3–4)

(2015), 919–944.
[14] J.-P. Demailly. Complex Analytic and Differential Geometry, 2012, available at https://www-fourier.ujf-gr

enoble.fr/∼demailly/manuscripts/agbook.pdf.
[15] T.-C. Dinh. Sur les applications de Lattès de Pk. J. Math. Pures Appl. (9) 80(6) (2001), 577–592.
[16] T.-C. Dinh. Attracting current and equilibrium measure for attractors on Pk . J. Geom. Anal. 17(2) (2007),

227–244.
[17] T.-C. Dinh and C. Dupont. Dimension de la mesure d’équilibre d’applications méromorphes. J. Geom.
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