
An approach to the development of
a core set of germplasm using a mixture
of qualitative and quantitative data

Rupam Kumar Sarkar1, Prabina Kumar Meher1, S. D. Wahi1, T. Mohapatra2

and A. R. Rao1*
1Indian Agricultural Statistics Research Institute, New Delhi 110012, India and
2Central Rice Research Institute, Cuttack, Odisha 753006, India

Received 13 February 2014; Accepted 31 May 2014 – First published online 26 June 2014

Abstract
Development of a representative and well-diversified core with minimum duplicate accessions

and maximum diversity from a larger population of germplasm is highly essential for breeders

involved in crop improvement programmes. Most of the existing methodologies for the

identification of a core set are either based on qualitative or quantitative data. In this study,

an approach to the identification of a core set of germplasm based on the response from a

mixture of qualitative (single nucleotide polymorphism genotyping) and quantitative data

was proposed. For this purpose, six different combined distance measures, three for quantitat-

ive data and two for qualitative data, were proposed and evaluated. The combined distance

matrices were used as inputs to seven different clustering procedures for classifying the popu-

lation of germplasm into homogeneous groups. Subsequently, an optimum number of clusters

based on all clustering methodologies using different combined distance measures were ident-

ified on a consensus basis. Average cluster robustness values across all the identified optimum

number of clusters under each clustering methodology were calculated. Overall, three different

allocation methods were applied to sample the accessions that were selected from the clusters

identified under each clustering methodology, with the highest average cluster robustness

value being used to formulate a core set. Furthermore, an index was proposed for the

evaluation of diversity in the core set. The results reveal that the combined distance measure

A1B2 – the distance based on the average of the range-standardized absolute difference

for quantitative data with the rescaled distance based on the average absolute difference

for qualitative data – from which three clusters that were identified by using the k-means

clustering algorithm along with the proportional allocation method was suitable for the

identification of a core set from a collection of rice germplasm.

Keywords: consensus clustering; core set; germplasm; mixture data; robustness;

single nucleotide polymorphisms

Introduction

A vast collection of crop-related global germplasm

includes traditional landraces, modern cultivars and

wild cultivars. However, only a fraction of these germ-

plasm collections could be protected and maintained in

gene banks. Frankel and Brown (1984) introduced the

concept of a core collection as a subset of a larger germ-

plasm collection that represents genetic and phenotypic

diversity. Existing methodologies for the development

of a core set are either based on qualitative or quanti-

tative data. Occasionally, transformations are applied

on quantitative data to make them qualitative or vice
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versa to avoid the difficulty of handling mixture data

(Kim et al., 2007).

Various clustering methodologies are applied to obtain

homogeneous strata either based on qualitative or

quantitative data. However, the results have been shown

to be highly dependent on clustering methodologies, and

mostly heuristic methods (Kim et al., 2007) have been

followed to determine homogeneous strata in a germplasm

collection. Various factors that need to be addressed for the

development of a core set include the size of the core set, the

formation of homogeneous strata and the sampling strategy

(van Hintum and Th, 1999).

In the past, many studies have described the develop-

ment of core sets from a large collection of germplasm,

namely the development of a core set from the United

States Department of Agriculture (USDA) rice germplasm

(Yan et al., 2007) and a rice mini-core from the

USDA core collection (Agrama et al., 2009) using Power-

Core software (RDA-Genebank Information Center;

http://www.genebank.go.kr/eng/PowerCore/PowerCore_

Software.zip) (Kim et al., 2007). Gangopadhyay et al.

(2010) used the principal component score strategy to

develop a core set of brinjal germplasm. Sharma et al.

(2010) evaluated a sorghum mini-core from a core collec-

tion of landrace accessions to identify the sources of grain

mold and downy mildew resistance. Yu et al. (2012) devel-

oped a core set of cotton germplasm with a genome-wide

coverage of marker data. Wen et al. (2012) investigated

how the tropical maize race Tuxpeno could be exploited

in future maize improvement using genome-wide single

nucleotide polymorphisms (SNPs). Gibert and Cortes

(1997) presented the properties and details of distance

matrices obtained by weighting qualitative and quantitat-

ive variables for cluster analysis. However, weighting of

distance matrices from different sources is problematic

because the objective choices of weighting parameters

are often difficult. Crossa and Franco (2004) reviewed

genomic classification techniques as well as statistical

models based on mixed distribution models. Doring et al.

(2004) proposed a fuzzy clustering procedure for mixture

data. Sarkar et al. (2011) compared the performance of

different clustering procedures based on mixture data.

However, the identification of the optimum number of

clusters with full utilization of mixture data for the devel-

opment of a core set remains a challenge.

To our knowledge, most of the existing methodologies

for the development of a core set are either based on

qualitative or quantitative traits. Moreover, identification

of a suitable distance measure, clustering methodology,

number of clusters, allocation strategy and evaluation

criteria for the development of a core set based on the

mixture data of germplasm is yet to be fully explored.

Therefore, in the present study, a systematic approach

was proposed for the development of a core set of

germplasm using mixture data. The approach thus

developed is illustrated on rice germplasm having both

quantitative and qualitative SNP genotyping data.

Materials and methods

The identification of a core collection is a two-step

procedure in which the accessions are initially classified

into homogeneous strata and then a fraction of acces-

sions from each stratum are selected for core collection

by using an appropriate sampling or allocation strategy.

To enable clustering techniques to handle a mixture of

qualitative and quantitative data, first, distances are calcu-

lated separately for qualitative and quantitative data using

relevant measures. Then, these distance matrices are

directly combined and used as inputs for cluster analysis.

In this study, a dataset comprising 219 salt-tolerant

rice germplasm accessions having 14 agronomic/pheno-

typic characteristics and 2915 genome-wide SNPs (coded

as 0 and 2 for dominant and recessive homozygotes,

respectively, and 1 for a heterozygote for each individual)

was considered.

Distance measures

The following three distance measures were considered

to determine the distances between the accessions

based on quantitative data:

(1) Distancebasedontheaverageof therange-standardized

absolute difference:

A1 ¼
1

p

Xp

k¼1

jxik 2 xjkj

rk
;

where xik and xjk are the ith and jth accessions of the

kth quantitative variable; rk is the range of the kth vari-

able; and p is the total number of quantitative variables

(Gower, 1971).

(2) Distance based on Pearson’s correlation:

A2 ¼ ð1 2 r2
ijÞ;

where rij is the product moment correlation

(similarity) between ith and jth accessions, thus

dissimilarity ¼ 1 2 similarity.

(3) Rescaled distance based on the standardized score:

A3 ¼
Xp

k¼1

xik2xjk

sk

h i2
max ðd *

ijÞ
;

where sk is the standard deviation of the kth variable

and max ðd
*

ijÞ is the maximum of the distances

between two accessions in the entire dataset.

Methodologies for developing core set 97

https://doi.org/10.1017/S1479262114000732 Published online by Cambridge University Press

https://doi.org/10.1017/S1479262114000732


The following two different distance measures were

considered to determine the distance between the acces-

sions based on qualitative data:

(1) Distance based on the average mismatch:

B1 ¼
1

m

Xm
k¼1

dk;

where dk ¼ 0, if yik ¼ yjk, else dk ¼ 1 (Gower, 1971).

(2) Rescaled distance based on the average absolute

difference:

B2 ¼
3

2
£

1
m

Pm
k¼1 jyik 2 yjkj

1þ 1
m

Pm
k¼1 jyik 2 yjkj

;

where yik and yjk are the ith and jth accessions of the

kth qualitative variable and m is the total number of

qualitative variables. The distance B2 is a modified

measure of Munneke et al. (2005). The modification

is done so that the value of B2 lies in the range [0, 1].

The range of elements in the three quantitative

distance matrices (A1–A3) and two qualitative distance

matrices (B1 and B2) lies between 0 and 1. Thus, the

various combined distance matrices for mixture data are

computed by summing up the distance matrices corre-

sponding to the qualitative and quantitative data, which

are defined as follow:

A1B1 ¼ ðða1ijÞ þ ðb1ijÞÞ;

A2B1 ¼ ðða2ijÞ þ ðb1ijÞÞ;

A3B1 ¼ ðða3ijÞ þ ðb1ijÞÞ;

A1B2 ¼ ðða1ijÞ þ ðb2ijÞÞ;

A2B2 ¼ ðða2ijÞ þ ðb2ijÞÞ;

A3B2 ¼ ðða3ijÞ þ ðb2ijÞÞ;

where (a1ij), (a2ij), (a3ij), (b1ij), (b2ij) and (b3ij) represents

the ijth elements of matrices A1, A2, A3, B1, B2 and B3,

respectively. These qualitative, quantitative and com-

bined distance matrices are used as inputs for clustering

analysis. In this study, seven (five hierarchical and

two partitioned) different clustering procedures, namely

single linkage, complete linkage, unweighted pair-

group method with arithmetic mean, weighted average,

Ward’s method, k-means and partitioning around the

medoids, were considered to find the optimum number

of homogeneous clusters. Here, the approach of Monti

et al. (2003) was followed for assessing the stability of

clusters by bootstrapping, and 1000 bootstrap samples

were drawn from the distance matrices for each set of

the cluster number k ¼ f2; . . .; 10g. A consensus clustering

result was obtained by taking the ratio of the number of

times any two observations are found together in the

same cluster to the total number of times that are selected

together in the bootstrap samples. As each clustering

procedure exhibits different cluster memberships of indi-

viduals, the consensus clustering results obtained from

different clustering procedures are merged together to

obtain a merged-consensus clustering result (Simpson

et al., 2010). The merged-consensus clustering result is

obtained by taking the average of the consensus cluster-

ing results for a particular cluster number k. Due to the

absence of any a priori information on the clustering

pattern, equal weights are given to each consensus

clustering result, i.e. equal importance is given to each

of the clustering procedure.

Optimum number of clusters

Mostly, a priori information is used for the determination

of the number of clusters to classify the accessions, but

in the absence of such information, it is beneficial to

identify the optimum number of clusters. Moreover, iden-

tifying the optimal number of clusters is one of the most

challenging issues and essential for effective and efficient

clustering (Everitt, 1979). The optimal number of clusters

(k) is estimated as the value of k at which the change in

the area under cumulative density function (CDF) (DK)

calculated across a range of possible values of k is largest.

Let us suppose that M indicates a merged-consensus

clustering result of order N £ N. Then, an empirical CDF,

defined over the range [0, 1], is given by:

CDFðcÞ ¼
i,j

P
1fMði; jÞ # cg

N ðN 2 1Þ

2

;

where 1f. . .g denotes an indicator function, M(i, j), with

(i, j) being the entry of the merged-consensus matrix M.

The area under the CDF corresponding to M is computed

using the formula:

AUC ¼
Xm
i¼2

½xi 2 xi21�CDFðxiÞ;

where {x1; x2; . . .; xm} is the ordered set of entries of

the merged-consensus matrix M, with m ¼ N ðN 2 1Þ=2

(Monti et al., 2003).

Cluster robustness

After determining the optimal number of clusters, the

best-fitted clustering pattern of germplasm is determined
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based on cluster robustness. The robustness of clusters

under any clustering procedure is calculated by taking

the average of the merged-consensus result of those

individuals falling in the same group using the formula

(Simpson et al., 2010):

mðkÞ ¼
1

N kðN k21Þ
2 i,jð[I kÞ

X
Mði; jÞ:

The average cluster robustness value is calculated

across the k clusters using the clustering algorithm to

choose the one that is best fitted to the data.

Allocation methods

The second and final stage for the development of a core

set is to select the accessions from homogeneous groups

based on a suitable sampling or allocation strategy.

van Hintum et al. (2000) and Hu et al. (2000) used

different sampling strategies, namely proportional allo-

cation (P strategy), log frequency allocation (L strategy),

constant allocation (C strategy) and simple random

sampling (R strategy) for the identification of a core set.

During this stage, the accessions from the identified

robust clusters are sampled by using the following

three different allocation methods:

(1) Proportional allocation

ni ¼ n £
N iPg
i¼1 N i

� �

(2) Log-proportional allocation

ni ¼ n £
logðN iÞPg
i¼1 logðN iÞ

� �
;

where ni is the number of accessions selected for

the core set from the ith cluster; Ni is the number

of accessions in the ith cluster; n is the size of the

core set; g is the total number of clusters and the par-

entheses ‘[ ]’ represent the nearest integer function.

(3) Random allocation of single entry (RASE). Here, no

optimal number of clusters is determined and the

accessions are grouped into the number of clusters

equals to the size of the core set. A single entry is

then selected from each of the cluster to construct

the core set.

Evaluation of a core set

For quantitative data, the efficiency of methodologies

for the identification of a core set is evaluated by

using different indices, namely mean difference (MD),

variance difference (VD), variable rate (VR) and coinci-

dence rate (CR) (Hu et al., 2000). For qualitative data,

the aforementioned methodologies are evaluated using

the index average polymorphic information content

difference (APICD), which is given by:

APCID ð%Þ ¼
Pe 2 Pc

�� ��
Pc

£ 100;

where Pc and Pe are the average polymorphic informa-

tion content of the core set and the entire set, respectively.

A combined evaluation index (CEI) was proposed

by combining the above-mentioned five indices to evalu-

ate the diversity of the core set based on mixture data.

The CEI is given by:

CEI ¼ ðw1M1 þ w2M2Þ=ðw1 þ w2Þ;

where M1 ¼ ½ð100 2 MDÞ þ ð100 2 VDÞ þ ð100 2 VRtÞþ

CR�=4, with VRt ¼ j100 2 VRj, M2 ¼ ð100 2 APICDÞ; and

w1 ¼ ðN quant=N TÞ and w2 ¼ ðN qual=N TÞ Nquant, Nqual and

NT are the number of quantitative, qualitative and total

number of variables, respectively, with w1 þ w2 ¼ 1 and

NT ¼ Nquant þ Nqual. The CEI represents the percentage of
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Fig. 1. Graphical representation of DK against the cluster numbers (k) for qualitative and quantitative data separately using
the corresponding distance measures.
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resemblance between the core set and the entire set. The

value of the CEI ranges between 0 and 100. Moreover, the

value of 100 corresponds to the best representativeness of

the entire population. The difference between the CEI

under the proportional allocation, log-proportional

allocation and RASE methods for all the distance measures

is tested by using a large sample z-test.

All the required coding is done in R software. For the

consensus and merged-consensus clustering results, the

‘clusterCons’ package was used (Simpson, 2010), and to

sample the accessions for the core set, the ‘ccChooser’

package (Studnicki and Debski, 2012) in R software

was used.

Results

The consensus clustering methodology was applied

on the qualitative and quantitative data separately

using the three distance measures for quantitative data

(A1–A3) and two distance measures for qualitative

data (B1 and B2). In Fig. 1, the values of DK were

plotted against the cluster number (k). As shown in

Fig. 1, the data consisted of three and four groups

based on the quantitative and qualitative distance

measures, respectively. Thus, the use of qualitative or

quantitative data alone may result in widely different

core sets. Moreover, dropping or transforming (quali-

tative to quantitative and vice versa) any kind of the

variables from the analysis may result in a potential

loss of information.

The plot of DK values against the number of clusters

formed by the combined qualitative and quantitative

data is shown in Fig. 2. It can be observed that for all

the combined distance measures, the peak value of DK

for the number of clusters was found to be equal to 3.

So, the problem of choosing the number of clusters

while using qualitative or quantitative data alone, in the

case of disagreement, can be resolved by considering

the combined distance measures based on mixture data.

The average cluster robustness values for the different

clustering methodologies and combined distance

measures are given in Table 1. For a given combined

distance measure, the clustering methodology with the

highest average cluster robustness value was then

chosen for adopting the sampling strategy for the deve-

lopment of a core set. It was found that the k-means

clustering algorithm was suitable for grouping germ-

plasm based on the combined distance measures A1B1,

A3B1 and A1B2, whereas the complete linkage clustering

algorithm was suitable for grouping germplasm based

on the combined distance measures A2B1, A2B2 and A3B3.

1.0

0.8

0.6

0.4

0.2

ΔK

0.0
0 1 2 3 4 5

A1B1

A2B1

A3B1

A1B2

A2B2

A3B2

6 7 8 9 10

Cluster number–0.2

Fig. 2. Graphical representation of DK against the cluster numbers (k) for mixture data using combined distance measures.

Table 1. Average cluster robustness values of different clustering methodologies using different combined
distance measures

Clustering algorithm

Distance measures Single Complete Average Weighted Ward’s method k-means PAM

A1B1 0.220 0.742 0.505 0.479 0.742 0.744 0.732
A2B1 0.258 0.860 0.850 0.848 0.824 0.845 0.844
A3B1 0.223 0.765 0.743 0.762 0.760 0.773 0.765
A1B2 0.474 0.708 0.453 0.698 0.712 0.727 0.715
A2B2 0.256 0.864 0.838 0.854 0.838 0.850 0.823
A3B2 0.244 0.848 0.244 0.820 0.823 0.828 0.792

PAM, partitioning around the medoids.
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To sample the accessions, three different allocation

methods, namely proportional allocation, log-proportional

allocation and RASE, were adopted. For the first two

allocation methods, accessions were selected from the

three clusters identified under each combined distance

measure to develop a core set with 20% of germplasm

from the entire collection. In contrast, the random

sampling of a single entry from each of the 44 clusters

(approximately 20% of the total number of germplasm)

was done to develop a core set by ignoring the optimal

number of clusters using the RASE method. To evaluate

the efficiency of the procedures to identify the core set,

500 independent core collections were simulated under

each sampling strategy.

The mean values of the CEI, over 500 independent

simulation runs, under the proportional, log-proportional

allocation and RASE methods are presented in Table 2.

The absolute differences in CEI values between the pro-

portional, log-proportional allocation and RASE methods

were statistically tested and are given in Table 2. From

Table 2, it is evident that the differences in CEI values

between the proportional and log-proportional methods

and between the proportional and RASE methods were sig-

nificantly higher and hence the proportional allocation

method was best among the three allocation methods for

the identification of a diverse core set irrespective of the

distance measures used. In addition, the differences in CEI

values between the combined distance measures and the

qualitative/quantitative distance measures under the

proportional, log-proportional and RASE methods are

given in Table 3. For the proportional allocation method,

the value of the CEI was highest for A1B2 among the

combined distance measures. However, the CEI values of

the distance measure A1B2 were significantly different

from those of A1 to A3, and at the same time they were not

significantly different from the CEI values of B1 and B2

(Table 3). In contrast, for the log-proportional allocation

method, the CEI value of A1B2 was highest among the CEI

valuesofall thedistancemeasures (Table2) and significantly

different from the rest (Table 3). Moreover, a core set was

constructed through heuristic methods using PowerCore

(RDA-Genebank Information Center; http://www.

genebank.go.kr/eng/PowerCore/PowerCore_Software.zip).

The CEI value of the core set constructed by PowerCore was

found to be 89.19, which was the lowest among all the

combined distance measures under the proportional and

log-proportional allocation methods.

Discussion

The use of qualitative and quantitative data separately

to classify germplasm collections may result in different

numbers of groups and, hence, different grouping patternsT
ab
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under each clustering methodology. Therefore, it is difficult

to generalize the clustering patterns obtained from the

analysis of qualitative and quantitative data separately.

Moreover, dropping or transforming of any type of data

that is generated by spending time and money may lead to

loss of information. So, combining qualitative and quantitat-

ive information by distance indices is a beneficial way to

handle such data. In the present study, six different com-

bined distance measures were proposed and evaluated.

While developing combined measures, care has been

taken to combine the distance matrices corresponding to

both qualitative and quantitative data. Prior to combining

the qualitative and quantitative distance matrices, the

elements of each of these matrices are set in a uniform

scale, i.e. ranging between 0 and 1. Occasionally, the core

set is identified based on the degree of correspondence

between the clustering patterns obtained from the analysis

of qualitative and quantitative data separately. In addition,

the classification depends on the clustering methodology

used in grouping the data. Therefore, it is also important to

combine qualitative and quantitative data in the early stage

of the analysis to draw valid inferences. Moreover, many

clustering algorithms are used over time to generate a core

set by applying a suitable allocation strategy. Odong et al.

(2011) advocated the use of traditional clustering

approaches over model-based clustering approaches to

develop a core set, particularly for simple sequence repeat

marker data. However, developing a core set based on phe-

notypic and SNP genotyping data, together by adopting a

suitable procedure involving an appropriate combined dis-

tance measure, clustering methodologies, number of clus-

ters, allocation method and evaluation strategy, is rarely

known. Hence, the present study was undertaken to find

an end-to-end solution for the identification of a core set.

In the present study, the consensus and merged-

consensus clustering results were used to identify the

optimum number of groups. Although there was a

disagreement between the optimum number of clusters

based on the quantitative and qualitative data (i.e. three

and four), the number of clusters for mixture data was

found to be 3. With regard to the selection of the

best-fitted clustering algorithm, the k-means clustering

algorithm gave the highest average cluster robustness

values for the combined distance measures A1B1, A3B1

and A1B2. In contrast, the complete linkage clustering

algorithm gave the highest average cluster robustness

value for the combined distance measures A2B1, A2B2

and A3B2 (Table 1).

Odong et al. (2013) reviewed different criteria, under

different circumstances, for the evaluation of a core set.

Frequently, it may be difficult to comment on the diver-

sity of a core collection based on the individual index.

To avoid such confusion, a combined measure may

help in drawing valid conclusions. Thus, a CEI involving

MD, VD, VR, CR and APICD is used to evaluate the diver-

sity in a core set. A comparison among the CEI values

under all the combined distance measures indicates the

superiority of the proportional allocation method over

the log-proportional and RASE methods. Classifying

germplasm to the lowest level, i.e. by taking the

number of clusters equal to the size of the core set, and

followed by the application of the RASE method for

selecting accessions does not provide any gain over the

proportional allocation and log-proportional allocation

methods for all the combined distance measures, barring

few exceptions (Table 2). Moreover, clustering germ-

plasm with the number of clusters equal to the size of

the core set leads to a violation of natural grouping in

the clustering methodology. In addition, this will lead

to bias in the selection of germplasm, as the probability

of a germplasm being chosen from a smaller cluster is

higher than that from a larger cluster. Hence, the identifi-

cation of the optimum number of clusters based on

sound statistical techniques followed by the selection of

accessions based on the proportional allocation method

is advisable for developing a diverse core set. Further-

more, Table 3 reveals that even though, in a majority of

the cases, the combined distance measures performed

better over the individual measures, under the pro-

portional allocation method, there were few cases such

as A1B2 versus B2, A2B2 versus A2 and A3B2 versus B2

where the combined distance measures did not perform

over the individual distance measures. Similarly, under

the log-proportional allocation method, the combined

Table 3. Differences in combined evaluation index (CEI) values between the qualitative/quantitative distance measures and
the combined distance measures under the proportional and log-proportional allocation methods

Proportional allocation Log-proportional allocation

A1B1 A2B1 A3B1 A1B2 A2B2 A3B2 A1B1 A2B1 A3B1 A1B2 A2B2 A3B2

A1 3.36* 3.06* 3.48* 4.34* 2.27* 3.58* 2.70 0.74 0.60 2.03* 0.43 1.23
A2 1.99* 1.69* 2.11* 2.97* 0.90* 2.21* 2.57 0.61 0.47 2.16* 0.30 1.10
A3 3.00* 2.70* 3.12* 3.98* 1.91* 3.22* 3.37 1.41 1.27 1.36* 1.10 1.90
B1 1.56* 1.86* 1.44 0.58 2.65* 1.34* 1.46* 3.42* 3.56* 6.19* 3.73* 2.93*
B2 1.12* 1.42* 1.00* 0.14 2.21* 0.90* 2.45* 4.41* 4.55* 7.18* 4.72* 3.92*

* P , 0.05.
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distance measures A2B1 and A2B2 did not outperform the

individual measure A2. Hence, it cannot be concluded

that combined distance measures will always perform

better than individual distance measures. However, in

the present study, the combined distance measure A1B2

performed best among the rest of the combined measures.

Furthermore, the efficiency of the approach is established

by a comparison with PowerCore (RDA-Genebank

Information Center; http://www.genebank.go.kr/eng/

PowerCore/PowerCore_Software.zip). This indicates the

advantage of using the proposed approach for

mixed data. Hence, the combined measure A1B2 using

the k-means clustering algorithm along with the

proportional allocation method to sample accessions can

be preferred for the identification of a core set from

a collection of rice germplasm.

Acknowledgements

The authors wish to express their gratitude to referees

and editor for important comments and suggestions,

which improved the paper substantially. Mr Sarkar

acknowledge the receipt of fellowship from PG School,

IARI, New Delhi during his Ph.D. study. Also, the authors

wish to acknowledge World Bank Funded – National

Agricultural Innovation Project (NAIP), ICAR Grants

NAIP/Comp-4/C4/C-30033/2008-09.

References

Agrama HA, Yan WG, Lee F, Fjellstrom R, Chen M-H, Jia M
and McClung A (2009) Genetic assessment of a mini-
core subset developed from the USDA rice genebank.
Crop Science 49: 1336–1346.

Crossa J and Franco J (2004) Statistical methods for classifying
genotypes. Euphytica 137: 19–37.

Doring C, Borgelt C and Kruse R (2004) Fuzzy clustering of
quantitative and qualitative data. In Proceedings of the
2004 NAFIPS. Banff, Alberta, Canada, pp. 84–89.

Everitt BS (1979) Unresolved problems in cluster analysis.
Biometrics 35: 169–181.

Frankel OH and Brown AHD (1984) Plant genetic resources
today: a critical appraisal. In: Holden JHW and Williams JT
(eds) Crop Genetic Resources: Conservation and Evalu-
ation. London: George Allen & Unwin Ltd, pp. 249–257.

Gangopadhyay KK, Mahajan RK, Kumar G, Yadav SK, Meena BL,
Pandey C, Bisht IS, Mishra SK, Sivaraj N, Gambhir R,
Sharma SK and Dhillon BS (2010) Development of a core
set in brinjal (Solanum melongena L.). Crop Science 50:
755–762.

Gibert K and Cortes U (1997) Weighting quantitative and
qualitative variables in clustering methods. Mathware &
Soft Computing 4: 251–266.

Gower JC (1971) A general coefficient of similarity and some
of its properties. Biometrics 27: 857–874.

Hu J, Zhu J and Xu HM (2000) Methods of constructing core
collections by stepwise clustering with three sampling

strategies based on the genotypic values of crops. Theoreti-
cal and Applied Genetics 101: 264–268.

Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG,
Kim TS, Cho EG and Park YJ (2007) PowerCore: a program
applying the advanced M strategy with a heuristic search
for establishing core sets. Bioinformatics 23: 515–526.

Monti S, Tamayo P, Mesirov J and Golub T (2003) Consensus
clustering: a resampling-based method for class discovery
and visualization of gene expression microarray data.
Machine Learning 52: 91–118.

Munneke B, Schlauch KA, Simonsen KL, Beavis WD and
Doerge RW (2005) Adding confidence to gene expression
clustering. Genetics 170: 2003–2011.

Odong TL, van Heerwaarden J, Jansen J, van Hintum TJL and
van Eeuwijk FA (2011) Determination of genetic structure
of germplasm collections: are traditional hierarchical
clustering methods appropriate for molecular marker
data? Theoretical and Applied Genetics 123: 195–205.

Odong TL, Jansen J, van Eeuwijk FA and van Hintum TJL
(2013) Quality of core collections for effective utilisation
of genetic resources review, discussion and interpretation.
Theoretical and Applied Genetics 126: 289–305.

Sarkar RK, Rao AR, Wahi SD and Bhat KV (2011) A comparative
performance of clustering procedures for mixture of quali-
tative and quantitative data – an application to black gram.
Plant Genetic Resources: Characterisation and Utilization
9: 523–527.

Sharma R, Rao VP, Upadhyaya HD, Reddy VG and Thakur RP
(2010) Resistance to grain mold and downy mildew in a
mini-core collection of sorghum germplasm. Plant Disease
94: 439–444.

Simpson TI (2010) clusterCons: Calculate the consensus clustering
result from re-sampled clustering experiments with
the option of using multiple algorithms and parameter,
R package version 3.0.2. http://cran.r-project.org/src/
contrib/Archive/clusterCons/

Simpson TI, Armstrong JD and Jarman AP (2010) Merged con-
sensus clustering to assess and improve class discovery
with microarray data. BMC Bioinformatics 11: 590.

Studnicki M and Debski K (2012) ccChooser: Developing a core
collections, R package version 3.0.2. http://cran.r-project.
org/package=ccChooser

van Hintum T and Th JL (1999) The Core Selector, a system
to generate representative selections of germplasm acces-
sions. Plant Genetic Resources Newsletter 118: 64–67.

van Hintum T, Brown AHD, Spillane C and Hodgkin T (2000)
Core collections of plant genetic resources. IPGRI Tech-
nical Bulletin No. 3. International Plant Genetic Resources
Institute, Rome, Italy.

Wen W, Franco J, Chavez-Tovar VH, Yan J and Taba S (2012)
Genetic characterization of a core set of a tropical maize
race Tuxpeño for further use in maize improvement.
PLoS ONE 7: e32626.

Yan W, Rutger JN, Bryant RJ, Bockelman HE, Fjellstrom RG,
Thomas MC, Tai H and McClung AM (2007) Development
and evaluation of a core subset of the USDA rice germ-
plasm collection. Crop Science 47: 869–876.

Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M,
Hoffman SM, Pepper AE, Stelly DM, Jenkins JN, Saha S,
Kumpatla SP, Shah MR, Hugie WV and Percy RG (2012)
A high-density simple sequence repeat and single nucleo-
tide polymorphism genetic map of the tetraploid cotton
genome. Genes Genomes Genetics 2: 43–58.

Methodologies for developing core set 103

https://doi.org/10.1017/S1479262114000732 Published online by Cambridge University Press

https://doi.org/10.1017/S1479262114000732

