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We investigate some new properties of mean inactivity time (MIT) order and
increasing MIT (IMIT) class of life distributions. The preservation property of
MIT order under increasing and concave transformations, reversed preservation
properties of MIT order, and IMIT class of life distributions under the taking of
maximum are developed. Based on the residual life at a random time and the excess
lifetime in a renewal process, stochastic comparisons of both IMIT and decreasing
mean residual life distributions are conducted as well.

1. INTRODUCTION

Assume X and Y are two random variables with distribution functions F and G,
respectively, and denote by F =1 — F and G = 1 — G their respective reliability
functions. Let X, = X — ¢|X > ¢ be the residual life of X at time ¢ = 0 and X =
t — X|X = t be the inactivity time (IT) at time z > 0; their corresponding reliability
functions can be represented as

F(x+1)
PX,>x)=PX—t>x|X>t)= ——, x,t=0,
F(t)
and
F(t—x)
P(X,>x)=Pt—X>x|X=t)= ———, 0=x<rt
F(t)
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The mean inactivity time (MIT) is thus

ftF(x)dx

my (1) = EX, :E(Z—X|XS1‘) = OFT

s t>0.
X or its distribution F is said to be of increasing mean inactivity time (IMIT) if
my(t) is nondecreasing in r > 0.

Having played important roles in survival analysis, reliability theory, mainte-
nance polices, and many other areas of applied probability, both IT and IMIT life
distribution received much attention during this decade (see, e.g., Ruiz and Navarro
[19], Block, Savits, and Singh [4], Li and Lu [14], Li and Zuo [15], and Ahmad,
Kayid, and Pellerey [1]).

In the theory of reliability, X is often regarded as the total life of a component;
it is of interest to study X, = X — Y| X > Y, the residual life of X with a random age
Y (RLRT) (Stoyan [22]), and X(y) = ¥ — X|X = Y, the inactivity time of X at a
random time Y (ITRT). The distribution function of Xy is

P(Xy=x)=P(X—Y=x|X>7Y)

[ 1+ - gy
=2 for any x = 0. (@))]

f G(y)dF(y)

The RLRT represents the actual working time of the standby unit if X is regarded
as the total random life of a warm standby unit with its age Y, and the idle time of
the server in a GI/G/1 queuing system can also be expressed as a RLRT (see Mar-
shall [16]). For more research conclusions about stochastic comparisons of RLRT
and ITRT, refer to Yue and Cao [23] and Li and Zuo [15].

In the current investigation, we further focus on MIT order and IMIT class of
life distributions. Section 2 builds some new properties of MIT order and IMIT
class of life distributions. Section 3 investigates the preservation property of MIT
order under increasing and concave transformations, reversed preservation proper-
ties of MIT order, and IMIT class of life distributions under the taking of maxi-
mum. Section 4 develops stochastic comparison of a residual life at a random time
with certain aging properties. Finally, based on the excess lifetime in a renewal
process, the stochastic comparison of IMIT life distribution is conducted in Sec-
tion 5 as well.

Throughout this article, the term increasing is used instead of monotone non-
decreasing and the term decreasing is used instead of monotone nonincreasing.
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We assume that the random variables under consideration have zero as the common
left end point of their supports, and the expectation is assumed to be finite when
used.

2. DEFINITIONS AND BASIC PROPERTIES

In this section, we first recall some definitions that will be used in the sequel; then
we discuss some basic properties about IMIT class and MIT order.

DEFINITION 2.1:

(a) X is said to be smaller than Y in the hazard rate order (denoted by X =, Y)
if G(x)/F(x) is increasing in x for which the ratio is well defined.

(b) X is said to be smaller than Y in the mean residual life order (denoted by
X =.a Y)ifEX, = EY, for all t = 0 for which the expectations exist.

(c) X is said to be smaller than Y in the mean inactivity time order (denoted by
X =wir V) if EX(;) = EY,,) for all t > 0 for which the expectations exist.

(d) X is said to be smaller than Y in the increasing convex order (denoted by
X =i« Y) if ER(X) =< Eh(Y) for all increasing and convex h.

For a more comprehensive discussion of the properties as well as other details
of those stochastic orderings, readers is referred to Shaked and Shanthikumar [20],
Miiller and Stoyan [17], Ahmad et al. [1], and Kayid and Ahmad [9].

The following aging properties are closely related to our main theme. For fur-
ther details on them, refer to Barlow and Proschan [2], Miiller and Stoyan [17], and
Nanda, Singh, Misra, and Paul [18].

DEFINITION 2.2:

(a) X is of increasing failure rate (IFR) if X, is stochastically decreasing in

t=0.

(b) X is of decreasing mean residual life (DMRL) if EX, is decreasing in
t=0.

(¢) X is of increasing mean inactivity time (IMIT) if mx(t) is increasing in
t>0.

Now let us turn to the following basic properties.

ProrosiTiON 2.3: X is IMIT if and only if X =y\yr X + Y for any Y independent
of X.

PROOF: Necessity: If my(t) increases in 7 > 0, then, by Fubini’s theorem, we have,
for any t > 0,
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fothxF(x—u)dG(u)dx

J F(t—u)dG(u)

f(:J:F(x— u) dx dG(u)

f F(t—u)dG(u)

My, y(t) =

1 t —u

F(x)dxdG(u)

ftF(t— u) dG(u)

_ ! J F = wym(t — 1) dG ()

fF(r— w) dG(u) ~°

1 t
f F(t — u)ymy (1) dG(u)

0

I

le(t— u) dG(u)
0

= my(1).

Thus, X =yyr X + 1.
Sufficiency: In view of the fact that

My, (1) = my(t—s) foranyt>s=0,
the desired result follows immediately by putting ¥ = s = 0. u

According to Theorem 1.D.8 of Shaked and Shanthikumar [20], X is of decreas-
ing mean residual life (DMRL) if and only if X, <, X for any r = 0. One may
wonder whether IMIT property of X is also equivalent to X, =yqr X for any # = 0.
Proposition 2.4 shows that X; =\ X for any r = 0 implies that X is of IMIT; How-
ever, Example 2.5 states that the inverse is not valid.

PROPOSITION 2.4: If X, =\t X for any t = 0, then X is of IMIT.

PrOOF: Forany r=0and s> x=0,

P(X, <s—x) B F(s+t—x)—F(t)

P((Xt)(s)>x)= P(X, <s) F(s+1t)—F(r)
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For any r = 0 and s > 0, X, =\ X is equivalent to

s F(t+x) — F(1t) s F(x)
fo Fits) - Fo &7 f Fls) @

Then for any r = 0 and s > 0,

fo Futode p ) S0 F0)
f F(x)dx F(s) fs F(x)dx F(s)
0 0

Also,

fOF(t-l—x)dx F(+5)

J‘SF(x) dx F(s)

Equivalently, for any 1 = 0 and s > 0,

JOIHF(x) dx fOSF(t—F x) dx fOSF(x) dx

F(t+s) = F(t+s) = F(s)

’

which asserts that my(s) is increasing in s > 0; that is, X is of IMIT. |

Example 2.5: For a random life X with distribution function

X2 0=x=1
F(x) =
{1, x>1,

s 2S
fF(x)dx ? 0=s=1
0

my(s) = ————— =

F(s) 1

Thus, X is of IMIT.
Put s = t = ; it can be easily found that

fo(x)dx
my(s) = ———— =

F(s)

’

W | =
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5

J;[F(H—x)—F(t)]dx_ 8 543
F(t+s)—F(t)  62—-12)

th(s) =

The inequality 3 > (8 — 5V2)/(6(2 — V2)) tells that X, =<uur X is not true.

3. PRESERVATION PROPERTIES

This section will develop some preservation properties as well as reversed preser-
vation properties of MIT order and IMIT class under both monotonic transforma-
tions and the taking of maximum, respectively.

THEOREM 3.1: Assume that ¢ is strictly increasing and concave; ¢(0) = 0. If
X =mrr Y, then ¢(X) =mrr ¢(Y).

ProoFr: Without loss of generality, assume that ¢ is differentiable. X =yyr Y implies
that for any 7 > 0,

f¢‘<z>[ F(x) B G(x) ]d -
0 Fi¢ (1) G 'en |~

Since ¢'(¢) is nonnegative and decreasing, by Lemma 7.1(b) of Barlow and Proschan
[2] it holds that

J‘dﬂ(t)dj,( )[ F(x) G(x) ]d o i =0
— = or an .
. LR ) Gy ] Y

Equivalently,

¢~ (1) ¢~
fo F(x)¢'(x)dx fo G(x)¢'(x)dx
Fo ) Gy

that is, for any > 0,

fo ¢~ () d f G(o~1(x)) dx
Fé ') G ')

Note that

P(p(X)=x)=F($ '(x)), x=0;
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we have for any ¢ > 0 that

f P(p(X) = x)dx f P(p(Y)=x)dx
0 - 0
P(p(X)=t) P(p(Y)=1)

which tells that ¢ (X) <yt ¢(Y). [ ]

’

THEOREM 3.2: Let Xy,...,X, and Y,,...,Y, be independent and identically
distributed (i.i.d.) copies of X and Y, respectively. If max{X,,...,X,} <wmr
maX{Yl, ey Yn}’ then X SMIT Y.

ProOF: max{X,...,X,} <y max{Y,,...,Y,} implies that
"F"(x) "G"(x)
dx = dx foranyt > 0;
o F"(1) o G"(1)
that is,

ft [G"(1)F"(x) — F"(1)G"(x)] dx = 0.

Since, for any ¢ > 0,

h(x) = [2 [G”f(r)F”f(x)][Ff‘(r)G“(x)]}

is nonnegative and decreasing in x = 0, by Lemma 7.1(b) of Barlow and Proschan
[2] we have

fo [G()F(x) = F(1)G(x)]dx = fo [G"()F"(x) — F"(1)G"(x)]h(x) dx = 0,

which states that X =yt Y. [ |

Remark: Theorem 3.2 in fact also holds for general variables. Since X =y Y if
and only if —X =, — Y of Ahmad et al. [1] and

max{—X,,...,—X,} = —min{X,,...,X,},
by Theorem 3.2, we immediately reach the following corollary.

CorOLLARY 3.3: Let Xy,..., X, and Yy,...,Y, be i.i.d. copies of X and Y, respec-
tively. If min{X,...,X,} =, min{Y,,...,Y,}, then X =, Y.

Based on Corollary 3.3 and Lemma 3.4, Theorem 3.5 presents the reversed pres-
ervation property of IMIT under the taking of maximum.
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Lemma 3.4: X is of IMIT if and only if X () <0 X for all 0 < s =1t.
Proor: It can be easily established; hence, the proof is omitted. n

THEOREM 3.5: Let X, X,,...,X, be i.i.d. random variables. If max{X,,...,X,} is
of IMIT, then X is also of IMIT.

Proor: Forany s > x =0,
F"(s —x)

P((max{X,,..., X} >x) = F—(s)

= P(mln{(xl)(s)5 e (Xn)(\)} > -x)’
that is, for all s = 0,

(max{X,,..., X, D = min{(X,)),- > (X))}
max{X,,...,X,} is of IMIT and by Lemma 3.4, it holds that

(max{X,,..., X, D =mg (max{X,..., X, D, VO<s=t

Thus,

min{(xl)(s)’ ce (Xn)(s)} Smrl min{(Xl)(z)a LR (Xn)(t)}’ VO<s=t

Now it follows from Corollary 3.3 that

X(‘) Smrl X(t) for any 0<s=rt
By Lemma 3.4 again, X is of IMIT. n

4. MEAN RESIDUAL LIFE AT A RANDOM TIME

Stochastic comparison under certain conditions on the concerned total life and ran-
dom time as well as preservation properties of decreasing reversed hazard rate
(DRHR) and IMIT have been conducted by Yue and Cao [23] and Li and Zuo [15].
This section reports some results from further comparisons of RLRT.

Yue and Cao [24, Thm. 3(a)] proved that X is NBU; (new better than used in
Laplace transform order) if and only if Xy is smaller than X in Laplace transform
order for all Y independent of X. Recently, Li [11, Thm. 4.1(i)] showed that X is
NBUy, (new better than used in moment generating function order) if and only if
Xy is smaller than X in the moment generating function order for all Y independent
of X. The following theorem gives a parallel result about the MIT order.

THEOREM 4.1: Xy =yt X for any Y that is independent of X if and only if
X, =wvir X forallt = 0.

https://doi.org/10.1017/50269964806060293 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964806060293

MIT ORDER AND IMIT CLASS OF DISTRIBUTIONS 489

PROOF: Sufficiency: Since X, =yt X for all 7 = 0, it follows from (2) that

foofs [F(t+x) — F(t)]dxdG(t)

foo [F(t+s) — F(1)]dG(t)

| F(t+s)—F(t) (*
fo [TLF(x)dx]dG(t)

fw[F(t +5)— F(1)]dG(r)

f(:F(x) dx

=——— f > 0.
) or any s§

In view of (1), this shows Xy <\t X.
Necessity: Suppose Xy =yur X holds for any nonnegative random variable Y.
Then X, =\t X for all # = 0 follows by taking Y as a degenerate variable. n

Recall that for two subsets O and I of the real line, a nonnegative function A
defined on ® X T is said to be totally positive of order 2 (TP2) on ® X T if

h(x, y)h(x',y") = h(x,y" )h(x,y)
whenever x = x" and y = y’, and x,x’ € ©® and y, y’ € I'. The following lemma,
which is due to Joag-Dev, Kochar, and Proschan [8], will be utilized to derive

Theorem 4.3.

LEmMMA 4.2: Let ¢ (x, y) be any TP2 function (not necessarily a reliability function)
inx € ® and y € T and F;(x) be a distribution function for each i. Denote

) = [ v dro.

IfFi(x)is TP2 in i € {1,2} and x € O and if y(x, y) is increasing in x for every y,
then H(y)is TP2 iny € T and i € {1,2}.

Proof of the next result is based on the idea of Theorem 4.2 of Gao, Belzunce,
Hu, and Pellerey [7].

THEOREM 4.3: Assume that Z is independent of X and Y. If X =, Y and Z is of
IMIT: then XZ Smr] Yz.
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Proor: Denote by Fy, F>, and G distribution functions of X, Y, and Z, respectively.
Since Z is of IMIT, we have, for all y =0 and A > 0,

f:ﬂ G(u) du Joy G(u) du

Gly+a) GOy
and
y+A ’ y+A
G(u) du G f G(u) du
fo (u) iy GO 6w
= — =0:
y y y 2 ’
f G(u)du f G(u)du (f G(u) du)
0 0 0
that is,
y+A
f G(u) du
0
y
f G(u) du
0
is decreasing in y = 0. Then
Yo lp Y2l
f G(u) du f G(u) du
0 0
=
Y1~ yi—h
f G(u) du f G(u) du
0 0
forall0 <1, =1, <y =y,.
Denote
y—t
f G(u)du, y=t
p(y,t) =19 Jo
0, y <t
The last inequality states that
lrl/(ylatl)l!/(y27t2)Zw(y17t2)lr//(y2’tl) (3)

holds for all (t1, 15, y1,¥2) € S ={(t1, 12, y1,¥2):0 < 1, = 1, < y; = yo}.
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It can be easily verified that (3) is also valid for those (7,1, yi,y,) €
{(t;, 12, ¥1,2):0 < t, = 1,, 0 < y; = y,} — S. Thus, ¢(y,t) is TP2 in (y,t) €
(0,00) X (0,00).

Fori =1,2, let

o)

by, 1) dF;(y)

H(t) = : - .
f G(y)dF;(y)

0
X =,, Yimplies that F;(x) is TP2 in (i, x) € {1,2} X (0,00) and ¢ (y, t) is increasing

in y for each fixed ¢. From Lemma 4.2 it follows that H,(z) is TP2 in (i, 1) € {1,2} X
(0,00); that is,

wo ) VoD | etare
H(t)

jo W(y,1) dF,(3) f G(y) dF>(3)

f, i f "Gy~ ) dudFy(y) f "Gy dy(y)
X

ftoofryG(y — u) dudF,(y) fooo G(y) dF,(y)

f, "B, () du
ftoo P_‘Xz(u) du

is increasing in # = 0, which is equivalent to

f, " B ) du f or

) R0

for any r = 0.

Hence, X, =,n Y2. n

Remark: Assume X, Y, and Z are three independent nonnegative random variables.
Li and Zuo [15, Thm. 5] showed that if X <., Y and Z is of IMIT, then Zx) =i«
Zyy. In view of the fact that X; = Zy), it is also valid, under the condition of
Theorem 4.3, that Zx) <., Z(y). According to Theorem 3.A.13 of Shaked and Shan-
thikumar [20], X =,,; Y implies X =<;., Y and we in fact develop a stronger conclu-
sion here.

https://doi.org/10.1017/50269964806060293 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964806060293

492 X Liand M. Xu

As a direct application of Theorem 4.3, we can get a simple and brief proof of
Theorem 6 about DMRL in Li and Zuo [15].

COROLLARY 4.4: Assume X and Z are independent. If X is of IFR and Z is of IMIT,
then X, is of DMRL.

ProOOF: According to Theorem 1.B.19 of Shaked and Shanthikumar [20], X is
of IFR if and only if X, =,, X for all = 0. By Theorem 4.3, (X,), <..n X, for all
= 0. Note that (X,), = (X,), for all # = 0; it holds that (X,), <,.; X, for all t = 0.
Now, from Theorem 1.D.8 of Shaked and Shanthikumar [20], it follows immedi-
ately that X is of DMRL. u

5. STOCHASTIC COMPARISON OF RENEWAL EXCESS LIFETIME

Consider a renewal process with i.i.d. interarrival times X; with common distribu-
tion F. For k=1,2,...,let S, = Zf;l X; be the time of the kth arrival and Sy = 0.
The renewal counting process N(z) = sup{n:S, =t} gives the number of arrivals
until time # = 0, and the excess lifetime 7y (1) = Sy(;)+; — f at time # = 0 is the time
elapsed from the time 7 to the first arrival after time z. Of course, it is obvious that
v(0) 2 X,. M(t) = EN(¢) is called as renewal function, which satisfies the well-
known fundamental renewal equation

t

M(t)=F(t)+f F(t—y)dM(y), t=0. @)

Brown [5]is among the first to survey the stochastic monotonicity of the excess
lifetime; afterward, Shaked and Zhu [21] had some further discussions on this line
of research. Subsequently, many authors devoted themselves to investigate the behav-
ior of the renewal excess lifetime of a renewal process with interarrivals having
certain aging properties, such as NBU, NBUC, NBU(2), NBUE, NBU; , and NBUy;,
and so forth. Their results in fact assert that various NBU interarrivals can reduce to
the corresponding NBU properties of the excess lifetime. For more details, readers
are referred to Li [11], Li and Kochar [12], Belzunce, Ortega, and Ruiz [3], Li, Li,
and Jing [13], Chen [6], and Barlow and Proschan [2]. In this section, we will
investigate the behavior of the excess lifetime of a renewal process with IMIT
interarrivals.

THEOREM 5.1: If y(t) is decreasing in the MIT order in t = 0, then X is of IMIT.

PrOOF: According to Karlin and Taylor [10, p. 193], for any t = 0 and x = 0,

t

P(y(t) >x) = F(t+ x) +f P(y(t—y) > x)dF(y).
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Then

t

P(y(t) =x) = F(t +x) — F(t) +f P(y(t —y) =x)dF(y), €

forany t = 0 and x = 0.
Since y(#) is decreasing in 7 in the sense of MIT order, we have, for all s > 0
and r = 0,

fyp(y(z) = x)dx
= fs[F(t-l—x) — F(r) +J-ZP(y(t—y) Sx)dF(y)] dx

- f [F(t + x) — F(1)] dx +f fo(y(t — ) = x) dxdF(y)

t

= [ 16+ 0~ Flds+ [ my oy PO = ) dF ()

t

= fo"[F(t +x) — F(r)] dx +f My, (s)P(y(1 = y) = 5) dF (y)

= J(; [F(t+x) — F(t)ldx + m,,(s)[P(y(t) =s) — F(t + 5) + F(1)],

where the last equality is due to (5).
Note that

m, i (s)P(y(t) = s) =f P(y(t) = x) dx;
it holds that
m., i ($)[F(t+s)— F(1)] = fo [F(t+ x) — F(t)] dx.

On the other hand,

y(t) Syur y(0) = X forall 1 = 0;
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it holds that for all t = 0 and s > 0,

F(t+s)—F(t)

F(s) fOsF(x)defOJ[F(t—Fx)—F(t)]dx,

which is equivalent to (2); that is, X, <ygr X for all # = 0. From Proposition 2.4, the
desired result follows immediately. u

THEOREM 5.2: If X, =yt X for all t = 0, then y(t) <yt vy (0) for all r = 0.

ProoF: According to Barlow and Proschan [2], it holds that
t

P(y(t)>x)=F(t+x)+f F(t+x—u)dM(u) forallt=0andx=0.
0

Thus,

t

P(y(t) =x)=F(t+x) +f F(t+x—u)dM(u) —M(t) forallt=0andx=0.

X, =wir X, by (2), for any 1 = 0 and s > 0,

s

f F(x)dx

fOS[F(tJrX)—F(t)]dxz[F(t+s)—F(t)]OFT

Now based on (4) and inequality (6), we have, for any t = 0 and s > 0,

fOsP(y(t) =x)dx
ZJS[F(t-i-x) +ftF(t+x—u)dM(u)—F(t) —ftF(t—u)dM(u)]dx
=fS[F(t-f—x)—F(t)]dx+fsft[F(t—u+x)—F(t—u)]dM(u)dx
=J;)[F(t-i—x)—F(t)]dx-i—J;J(;[F(t—u+x)—F(t—u)]dde(u)

=~ f R+ x) — F(1)] dx

+J’[F(t—u+s)—F(t—u)

) fO F(x) dx] dM (u)
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s

f F(x)dx

=fS[F(t+x)—F(t)]dx+ =

7s) J(:[F(t—u-i-s)—F(t—u)]dM(u)

fSF(x) dx

= f ) [F(t+x) — F(t)]dx + ————[P(y(t) <5) — F(t + s) + F(1)]
0 F(S)

f R d

=[F(t+s) — F(1)] OFT

f&F(x)dx

+[P(y(1)=s) = F(t+s) + F(1)] OFT

s

f F(x)dx
= W P(y(t) =s).

Hence, it holds that for all = 0 and s > 0,

fOSP('y(t) =x)dx fOSF(x) dx

Py(N=s5)  Fls)

That is, y () =<uur y(0), for all £ = 0. u
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