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A monochromatic, small amplitude, normally incident standing wave on a sloping
beach is unstable to perturbation by subharmonic (half the frequency) edge waves.
At equilibrium, edge wave shoreline amplitudes can exceed incident wave amplitudes.
Here, the effect of incident wave randomness on subharmonic edge wave excitation
is explored following a weakly nonlinear stability analysis under the assumption
of narrow-band incident random waves. Edge waves respond to variations in both
incident wave phase and amplitude, and the edge wave amplitudes and incident wave
groups vary on similar time scales. When bottom friction is included, intermittent
subharmonic edge wave excitation is predicted due to the combination of bottom
friction and wave phase. Edge wave amplitude can be near zero for long times,
but for short periods reaches relatively large values, similar to amplitudes with
monochromatic incident waves and no friction.
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1. Introduction

Edge waves are surface gravity waves trapped by refraction at the shoreline of a
sloping beach. Edge waves vary sinusoidally in the alongshore direction and their
amplitude decreases in the offshore direction. Despite extensive study and speculation,
edge wave dynamics and its role in nearshore processes remains poorly understood.
Mechanisms proposed to excite edge waves include wind blowing along the coast,
pressure variations induced by storms travelling parallel to the coast (Greenspan 1956;
Munk & Carrier 1956), storm surges, tsunamis (Bricker et al. 2007) and groups of
wind waves (Gallagher 1971).

† Email address for correspondence: vittori@dicat.unige.it
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Moreover, edge waves can form because of the instability of nearly monochromatic
waves which normally approach a reflective beach. The phenomenon can be modelled
by means of the shallow water continuity and momentum equations which describe
an irrotational standing wave on a plane beach and can be solved exactly with a
hodographic transformation (Carrier & Greenspan 1958). However, as shown by Guza
& Davis (1974), a standing wave on a plane longshore uniform beach is unstable
to perturbation by subharmonic edge waves. Galvin (1965) and Harris (1967) first
observed the instability in a laboratory wave basin. Later laboratory experiments (Guza
& Inman 1975; Yeh 1986; Buchan & Pritchard 1995), using monochromatic wave
forcing, confirmed the original theory (Guza & Davis 1974). More recent laboratory
experiments investigated the effect of spectral forcing (Ding et al. 2018) and wave
breaking (Abcha et al. 2017) on the formation of edge waves. The monochromatic
theory was later extended to allow different cross-shore bottom profiles and to include
nonlinear effects that limit edge wave growth (e.g. Guza & Bowen 1976; Minzoni &
Whitham 1977; Rockliff 1978; Mei 1989; Johnson 2005; Li 2007).

Natural ocean waves are random and can be described as the superposition of
different harmonic components. Vittori & Blondeaux (1997) considered edge waves
generated through nonlinear instability by random incident waves characterized by
a narrow-band spectrum. They found that the effect of the random incident wave
is that of widening the unstable regions in the parameter space and decreasing the
equilibrium amplitude of the edge waves, as the width of the spectrum is increased.
Here, we explore theoretically the combined effect of incident wave randomness
and dissipative effects on subharmonic edge wave excitation, building on Vittori
& Blondeaux (1997). Incoming surface waves are assumed to have a narrow-band
spectrum, and the solution is determined numerically.

The next sections provide the formulation of the problem and the main steps to
derive the equation describing the time development of the edge wave amplitude.
We then present and discuss the results, while the last section is devoted to the
conclusions.

2. Incident wave and edge wave definition

2.1. Incident waves
In a weakly nonlinear expansion of a standing wave on a plane, longshore uniform
beach, the non-dimensional shoreline amplitude a is defined as

a=
a∗ω∗20

g∗s2
� 1, (2.1)

where a∗ is the dimensional amplitude of the wave at the shoreline, ω∗0 is its angular
frequency, g∗ is gravity, s is the beach slope and ∗ indicates dimensional variables.
Following Vittori & Blondeaux (1997), we non-dimensionalize using (ω∗0)

−1 for time,
(g∗s/ω∗20 ) and (g∗s2/ω∗20 ) for the horizontal and vertical coordinates, respectively,
and (g∗s/ω∗0) for the velocity. With monochromatic incident waves, the cross-shore
structure of the incident wave is described by J0, the zero-order Bessel function of
the first kind. Here, the dimensionless velocity potential φi of the incoming wave is
assumed to be the superposition of a large number (N) of harmonic components of
frequency fn:

φi =−a
i
2

N∑
n=1

(
An

ωn
J0(2ωn

√
x)e−iωnt

)
+ c.c.+O(a2), (2.2)

868 R4-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.214


Subharmonic edge wave excitation by narrow-band, random incident waves

where ωn = 2πfn, t is time, An is the complex amplitude (see Mei 1989 and Vittori
& Blondeaux 1997 for more details) and c.c. denotes complex conjugate.

The spectrum is, by definition, narrow and energy is contained within an O(a) band
centred around ω∗0 . Therefore, the velocity potential of the wave field can be written
as

φi =−a
i
2
A(τ )J0(2

√
x)e−it

+ c.c.+O(a2), (2.3)

where

A(τ )=
N∑

n=1

Ane−iΩnτ =

N∑
n=1

√
2S( fn)1f e−i(Ωnτ−ψn) (2.4)

and

Ωn =ωn − 1= 0(a). (2.5)

The phases ψn are randomly and uniformly distributed between 0 and 2π. The
incoming, narrow-band random wave has the cross-shore x structure of the centre
frequency ω∗0 , with complex amplitude A modulated at the slow time scale τ = at.

2.2. Subharmonic edge waves
The most unstable edge wave mode is described by the velocity potential φe (e.g. Mei
1989):

φe = εφ0 =−ε
iB(τ )
σ

e−kx cos(ky)e−iσ t
+ c.c. with σ 2

= k, (2.6)

where the small parameter ε denotes the order of magnitude of the edge wave
amplitude, y is the alongshore coordinate, k is the wavenumber, and B(τ ) describes
the slow time growth of the standing edge wave amplitude.

3. Incident and edge wave interaction

3.1. Monochromatic incident waves
Energy transfer from incoming to subharmonic edge waves occurs at order εa, if the
term proportional to ei[±(1±σ)t] is equal or close to e±iσ (i.e. when σ ∼±1/2). Further
terms proportional to e±iσ are generated at order ε3 by the nonlinear self-interaction
of the edge waves (radiation to the far field) and by the detuning. These further terms
limit edge wave growth. Hence, a finite amplitude edge wave is found if ε= a1/2 and
the velocity potential φ is expanded in the form

φ = a1/2φ0(x, y, τ )e−iσ t
+ aφ1(x, y, τ )e−2iσ t

+ a3/2φ2(x, y, τ )e−iσ t
+ c.c.+ · · · , (3.1)

where

σ = 1
2(1+ aµ) (3.2)

and µ is a dimensionless detuning parameter such that the term a(µ/2) facilitates
consideration of an edge wave with period of almost twice that of the incoming wave.
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At order a1/2, φ0 is provided by (2.6). The solution of the problem at order a can
be written as the sum of two terms:

φ1 = φ1h + φ1p, (3.3)

where φ1h is the solution of the homogeneous equation

φ1h =−
i
2
A(τ )J0(2

√
x) (3.4)

that describes the incoming wave, and φ1p is a particular solution

φ1p = i2πσB2(τ )G(kx) (3.5)

that describes nonlinear effects on the edge wave time development. The function G
satisfies

kx
d2G(kx)
d(kx)2

+
dG(kx)
d(kx)

+ 4G(kx)=
e−2kx

π
(3.6)

and is given by

G(kx)=−E2(kx)J0(4
√

kx)+ E1(kx)Y0(4
√

kx)+ [E2(∞)− iE1(∞)]J0(4
√

kx), (3.7)

with

E1(kx)=
∫ kx

0
e−2χJ0(4

√
χ) dχ, E2(kx)=

∫ kx

0
e−2χY0(4

√
χ) dχ. (3.8a,b)

At order a3/2 terms proportional to cos(ky)e±iσ t arise from the nonlinear interactions
between the edge wave and incoming wave, and from the nonlinear self-interaction of
the edge wave. Hence φ2 (see (3.1)) has the form:

φ2 =H(x, τ ) cos(ky). (3.9)

The equation for H is

σ 2H +
[

d
dx

(
x

dH
dx

)
− k2xH

]
=−3i

k4

σ 3
B2Be−3kx

+

[
−2
∂B
∂τ
+ i

B
4σ

(
2k

dJ0

dx
+

d2J0

dx2

)
− i

2πk
σ

BB2

(
2k

dG
dx
+

d2G
dx2

)]
e−kx
= P(x).

(3.10)

The homogeneous problem for H has the non-trivial solution e−kx and the solvability
condition (Fredholm alternative) yields∫

∞

0
e−kxP(x) dx= 0. (3.11)

A significant amount of algebra provides the evolution equation for B:

dB
dτ
=

iAB̃k2

4σ
e−iµτα −

(
i2πk3

σ
β +

i3k4

4σ 3

)
B̃B2, (3.12)
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where α = 0.541, β = −0.0894 − 0.0366i, and B̃ is the complex conjugate of B
(Li 2007). Equation (3.12) is reduced to the amplitude equation by Li (2007), if
monochromatic forcing (A(τ )= 1) and only perfect resonance are considered (µ= 0).

With a monochromatic wave (A(τ )= 1), perfect resonance (µ= 0), and assuming
that B is small during the initial edge wave growth, the cubic terms are negligible
and (3.12) yields

B(τ )=B0 exp
[
±

2k2

σ
E1(∞)τ

]
with E1(∞)=

α

8
. (3.13)

As the amplitude of the edge wave B grows, cubic terms become significant and
limit edge wave growth to an equilibrium amplitude (B∞) that follows from (3.12) by
considering dB∞/dτ = 0:

|B∞| =
√

8E1(∞)∣∣16πEG −
5
4

∣∣ ' 1.35 with EG =

∫
∞

0
e−2ξG(ξ) dξ = 0.02862− 0.004578i.

(3.14)

Detuning from perfect resonance (i.e. σ 6= 1/2), C = Bei(µ/2)τ transforms equation
(3.12) to a constant coefficient equation

∂C
∂τ
= iα

k2

4σ
AC̃ + i

µ

2
C −

ik3

σ

(
2πβ +

3
4

)
C̃C2. (3.15)

The first right-hand-side term of (3.15) relates edge wave amplitude changes (∂C/∂τ )
to energy transfer from/to the incoming wave. The second term is detuning (deviations
from perfect resonance). The third term describes nonlinear effects that limit edge
wave growth: radiation of edge wave energy towards offshore, and detuning. Figure 1
shows the time development of |B| for different values of the detuning parameter µ.
The largest values of B∞ are off-resonance for σ larger than 0.5, one aspect of the
complicated hysteresis and bifurcations that can occur with idealized, monochromatic
waves (e.g. Li & Mei 2007).

To include damping effects due to the bottom boundary layer, Guza & Davis (1974)
estimated the time-averaged energy dissipation rate per unit area as D∗= τ ∗x U∗ + τ ∗y V∗,
where an overbar indicates time average and τ ∗x and τ ∗y are the horizontal components
of the bottom shear stress (U∗ and V∗ being the corresponding velocity components).
Assuming a laminar boundary layer

D∗ =
ρ∗ν∗

2δ∗2
(|U∗|2 + |V∗|2). (3.16)

In (3.16), ρ∗ denotes the density of the water, ν∗ is the kinematic viscosity and δ∗=√
2ν∗/ω∗0 is the bottom boundary layer thickness. For mode n = 0, the integration

of (3.16) both cross-shore and alongshore, leads to a viscous edge wave damping
described by

dB
dt
=−

ν∗ω∗0

8g∗s2δ∗
B. (3.17)

Equation (3.17) can also be written as

dB
dτ
=−

δ∗

16a∗
B=−RLB, (3.18)
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FIGURE 1. Dimensionless edge wave amplitude (|B|) versus the slow time scale (τ )
for monochromatic incident waves (A = 1), small initial amplitude of the edge wave
(B(0) = 0.01), and: (1) red, no detuning (σ = 0.5); (2) other colours, non-zero detuning
(see legend).

where RL is the damping coefficient referring to an ‘idealized’ laminar boundary
layer over a smooth bottom. In the field the bottom boundary layer is turbulent and
the effect of the roughness cannot be neglected. The dissipation rate is expected to
increase and the wave damping due to dissipative effects is computed by means of
(3.18) with a damping coefficient R larger than RL. A rough estimate of the order of
magnitude of R can be obtained by considering the ratio between the thickness of the
turbulent boundary layer and a∗. With the turbulent bottom boundary layer thickness
of a few centimetres and wave amplitude of metres, O(R)= 10−3.

Hence, the C evolution equation (3.15) is modified by adding the damping term
−RC:

∂C
∂τ
= iα

k2

4σ
AC̃ +

(
i
µ

2
− R

)
C −

ik3

σ

(
2πβ +

3
4

)
C̃C2. (3.19)

3.2. Random incident waves
With random incident waves A, equation (3.19) is solved numerically for C with a
second-order Runge–Kutta scheme. For simplicity, assume a Gaussian incident energy
spectrum S, characterized by standard deviation aσe:

S=
√

π

2
√

2

a
σe

e−((ω−1)/
√

2aσe)
2
=

√
π

2
√

2

a
σe

e−(Ω/
√

2σe)
2
, (3.20)

with

A(τ )=
N∑

n=1

√
1

2
√

2π

1
σe

e−(Ωn/
√

2σe)
2

1Ωeiψne−iΩnτ . (3.21)
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FIGURE 2. Edge wave amplitude (|B|) versus the slow time scale τ for monochromatic
(thick red curve), and four random realizations (|Bi|, thin black lines). The ensemble-
averaged edge wave amplitude with M=1000 is also plotted (thick green line). Parameters:
a= 0.2, σ = 0.5 (µ= 0), R= 0, σe = 0.02,N = 30 000 and |B(0)| = 0.05.

For each realization, ψn are a set of random phases. The value of B is ensemble
averaged over many (M) realizations:

〈|B|〉 = lim
M→∞

1
M

M∑
i=1

|Bi|. (3.22)

4. Results

Randomness of the incident wave significantly reduced the ensemble-averaged
subharmonic edge wave amplitude 〈B〉 from the monochromatic wave |B|∞ = 1.35
(figure 2). The quantitative value of the reduction depends on the values of the
parameters a, σ and σe. Results for different incoming wave spectral widths σe and
detuning µ show that 〈|B|∞〉 is maximum for the narrowest spectrum (smallest σe).
Moreover, the maximum of 〈|B|∞〉 is found for small positive values of µ thus
indicating that a small positive detuning increases the equilibrium amplitude attained
by the edge waves (figure 3). As σe increases, the frequency range of excitable
edge waves increases but the ensemble amplitude 〈|B|〉 decreases (figure 3). The
unstable equilibrium points of the amplitude equations and hysteresis phenomenon
of the monochromatic case (e.g. Blondeaux & Vittori 1995 and references therein)
are suppressed with random waves. Finally, increasing viscous effects decreases
both |B|, and the range of σ where edge waves form (figure 4). Indeed, for large
R, viscous damping suppresses edge wave growth, as with monochromatic incident
waves (figure 5).

5. Discussion and conclusions

A monochromatic surface gravity wave, normally incident on and strongly reflected
at a sloping beach, is unstable to perturbation by subharmonic edge waves. The edge
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ße = 0.02
ße = 0.04

FIGURE 3. Equilibrium ensemble-averaged edge wave amplitude (〈|B|∞〉) versus deviation
from exact resonance for different values of σe (see legend). Parameters: |B(0)| = 0.05,
a= 0.2, R= 0, N = 30 000, M= 200. For a monochromatic incident wave (σe= 0)|B|∞ is
equal to 1.35 (see red curve in figure 2).

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1.0

1.2
R = 0
R = 1.0 ÷ 10-3

R = 2.0 ÷ 10-3

¯|b
∞

|˘

(ß - 0.5)/a = µ/2

FIGURE 4. Equilibrium ensemble-averaged edge wave amplitude (|B|∞) versus deviation
from exact resonance for a random incoming wave and different R (see legend).
Parameters: |B(0)| = 0.05, a= 0.2, σe = 0.02, N = 30 000, M = 200.

wave amplitudes grow relatively large (larger than the incident waves at the shoreline)
until limited by nonlinear processes. The randomness of the incoming wave weakens
the resonance, and can prevent the subharmonic edge wave amplitude from reaching
the values attained with monochromatic incoming waves (figure 2). Phase differences
between edge and incident waves, driven by randomness in incident waves, can reverse
the usual energy flux (from incident waves to edge waves).

To illustrate the phenomenon, let us consider perfect resonance (i.e. σ = 1/2, µ= 0)
and neglect dissipative effects and the nonlinear terms. Then, equation (3.19) yields
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1 2 3 40

0.5

1.0

1.5

2.0

2.5

†

|b|

R = 0
R = 3.7 ÷ 10-3

(÷ 104)

R = 6.9 ÷ 10-3

FIGURE 5. Dimensionless edge wave amplitude (|B|) versus the slow time scale τ for
one realization of the random incoming wave (a = 0.2, σ = 0.5, σe = 0.02, B(0) = 0.05,
N = 30 000) and different R values. For a monochromatic incident waves and R= 0, |B|∞
is equal to 1.35 (red curve in figure 2).

schematically

∂C
∂T
= iAC̃, (5.1)

where T is a modified temporal scale (T = αk2/4σ ).
By substituting C = |C|eiθ and A= |A|eiϕ , one obtains

d|C|
dT
= |A||C| sin(2θ − ϕ),

dθ
dT
= |A| cos(2θ − ϕ), (5.2a,b)

thus showing that the edge wave growth/decay depends on the difference between
the edge and incident wave phases 2θ and ϕ. Edge wave perturbations such that
2θ − ϕ is equal to π/2 have the most rapid (exponential) growth. Eventually, growth
is limited by the nonlinear terms which are neglected in (5.1). However, with random
incident waves, (2θ − ϕ) varies between 0 and 2π over group time scales. When
(2θ − ϕ) = 3/2π, the energy flux from quadratic interactions between incident and
edge waves is reversed. Of course, edge wave amplitude evolution is also influenced
by cubic nonlinear terms and friction terms (see figure 2 and (3.19)). The effects of
the bottom friction reduce the amplitude of the edge waves that form. The combined
action of the phase difference and of large friction effects causes the prediction of
an intermittent subharmonic edge wave excitation, depending on the values of the
parameters. With R = 3.7 × 10−3 (blue line in figure 5), edge wave amplitudes vary
between near zero and near B=1.35, the value observed with monochromatic incident
waves. With R = 6.9 × 10−3, edge waves occur only for a relatively short time (red
curve in figure 5).

The requirement of a� 1 has implications for the applicability to oceanic waves.
Assuming a= 0.2 (as in the figures), a range of combinations is possible (e.g. beach
slope 0.1, wave period and amplitude 12 s and 0.16 m, respectively) but if the beach
slope is not steep (e.g. 0.05), the wave conditions necessary to satisfy a = 0.2 are
rarely encountered (e.g. for a wave period of 12 s, the corresponding wave height
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is 0.02 m). Indeed, while in the laboratory transient subharmonic edge waves were
observed (Ding et al. 2018), they could be difficult to detect in the field, given the
background level of waves at all frequencies.

To conclude, the analysis previously described shows that the edge wave amplitude
varies on time scales similar to incident wave groups, and responds to variations in
both incident wave phase and amplitude. With bottom friction included, intermittent
subharmonic edge wave excitation is predicted. Edge wave amplitudes can vary
between near zero and the relatively large amplitudes observed with monochromatic
incident waves.
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