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SUMMARY

A general method for the computation of the canonical
form of three-systems of infinitesimal screws is
presented. The method is particularly simple when the
three-system has a basis that is simultaneously
perpendicular and reciprocal. However, it can also
handle the special or degenerate cases. The method and
the concurrent results are important from the theoretical
point of view because of the obvious connection with the
classification of screw-systems. Moreover, the results are
also important for applied kinematics after recent
applications of the canonical form of screw-systems to
the analysis and synthesis of manipulators and
manipulator substructures.

KEYWORDS: Three-systems; Canonical forms; Orthogonal
spaces; Lie algebras.

1. INTRODUCTION

Since its origins, more than a century ago, screw theory
has been an important tool in applied mathematics and
kinematics. Infinitesimal screws provide a simple and
insightful representation of the velocity state of rigid
bodies subjected to one- and multi-dimensional motions.
Furthermore, once it was shown that screw algebra is
isomorphic to the Lie algebra, e(3), of the Euclidean
group, E(3), a wealth of powerful and newly obtained
results from modern differential geometry and Lie group
theory met a host of results obtained after several
decades of dedicated work of many well respected
geometers.

In this present work, the point of view and
nomenclature of the Lie algebra, e(3), of the Euclidean
group, E(3), will be adopted. The main reason behind
this decision is that a previous work by the authors,'
written using that point of view, provides most of the
necessary groundwork for the present contribution.

The computation of the canonical form of screw
systems is a long standing problem. In his treatise,” Ball
completed an exhaustive examination of the two-system
via the cylindroid. Further, this analysis led to the
canonical form of two-systems.

The canonical form of three-systems was studied by
Hunt,®> who, in his treatise originally published in 1978,
described a method for the computation of the centre of
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a general three-system. Nayak® and Nayak and Roth’
described a method for the computation of the canonical
form of a general three-system. The method is based in
the computation of the centre of the three-system, and
then, the determination of the perpendicular directions.
Nayak and Roth’s method was employed by Stanisi¢ and
Pennock® in their analysis of manipulator substructures.

It is important to note that all these methods for the
computation of the canonical form of three-systems dealt
only with the general case, and they cannot be
extrapolated to special or degenerate cases.

The computation of the canonical form of screw-
systems is, at the same time, an application of a
theoretical problem in mathematics, namely the simul-
tancous diagonalization of a pair of symmetric bilinear
forms. Wonenburger’ obtained necessary and sufficient
conditions for a pair of symmetric bilinear forms to have
a doubly orthogonal basis.* More recently, Becker®
extended Wonenburger’s results to complex orthogonal
spaces.

In this paper, a general method for the computation of
the canonical form of three-systems is developed. The
method is applicable not only to the general case, but it
can be applied to all the degenerate or special cases. The
method is based on the very same properties of the
matrices that represent the Killing and Klein forms with
respect to a given basis.

It should be evident that the results obtained here
have an obvious connection with the classification of
screw systems."”'? In fact, the results obtained in this
paper show that the classification of three-systems
developed by the authors'® is truly exhaustive.
Furthermore, the techniques developed by Stani$i¢ and
Pennock opened an interesting application of the
computation of the canonical form of screw-systems to
the analysis and synthesis of manipulators.®'*'*

2. NOMENCLATURE AND PRELIMINARY
RESULTS

In this section, the nomenclature and a handful of
notions about orthogonal spaces and screw systems will
be presented, none of this material is original. However,
it is presented here to provide a proper foundation for
the original results developed later.

Definition 1 (Lie algebra ¢(3)). Let ¢(3) be the set of
elements, called screws, of the form § = (w; v,), where w

*The term “basis”, in the linear algebra context, means a
linearly independent set of vectors that generates the space.
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is the angular velocity of a rigid body, and v, the velocity
of the point, fixed in the rigid body, that is
instantaneously coincident with an arbitrarily point O,
fixed in the reference frame; together with the following
operations

V$1 = (Wi; Yo1), $2 =(wyvp)ee(3), and VYaeR
(i) Addition
$1 + $2 = (W V) F (W Vo) = (W +was vy Hvg),  (1a)
(i1) Scalar Multiplication
)\$1 = MWy V) = (Awg; Avy), (1b)
(iii) Lie Product
[$1 $21=[(wis vor)(w2; voo)]

= (W) X Wyl Wy X Vi — Wy X ¥y), (1c)

where + and X and the juxtaposition stand for the usual
vector addition, vector product (or cross product), and
scalar multiplication of three-dimensional vector algebra,
respectively. Then, the set together with the operations
form a Lie algebra.

Further, the Lie algebra e(3) is endowed with a pair of
symmetrical bilinear forms or inner products, that
provides ¢(3) with a twofold orthogonal space structure.

Definition 2 (Killing and Klein forms). Let ¢(3) be the
Lie algebra as indicated by definition 1. Then, there are
two symmetrical bilinear forms in e(3), the Killing form

Ki: e(3) X e(3)— R Ki ($,,$,)

=Ki ((Wl; Vm), (W2§ V()z)) =W Wy, (2)
and the Klein form

Kl:e(3) X e(3)—> R KI(S,,$.)
=Kl ((wy; Vol), (w2 Voz)) =Wt Vo Wyt vy, (3)

where - stands for the usual three-dimensional symmet-
rical bilinear form or dot product. Hence, ¢(3) forms a
finite-dimensional, dime(3) =6, orthogonal space with
respect to both, the Killing and Klein forms.

The Killing form is degenerate and positive semidefin-
ite, and the Klein form is nondegenerate and indefinite.
A more in depth discussion about orthogonal spaces is
provided by Porteous,'”> and their significance in
infinitesimal kinematics is discussed by Rico and Duffy.'
Both forms are independent of the point O chosen to
obtain the velocity v, and of the coordinate system
employed to represent the vectors w and v,,. This pair of
symmetric bilinear forms endows the Lie algebra ¢(3)
with a twofold orthogonal space structure. It is precisely
the interaction of this twofold orthogonal space structure
the subject of the present contribution.

It is necessary to recall a few notions about orthogonal
spaces:

Definition 3 (Orthogonal and Orthonormal Bases).
Let V be a orthogonal space, and B = {$1, $2, e, $,,} be
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a basis of V; then B is said to be an orthogonal basis of V
if

($,8)=0, Vi j=1,2,...,n withi#]. (4)

Further, an orthogonal basis is said to be orthonormal if,
in addition,

S, $)el{-1,01}, Vi=1,2,...,n, (5)

where ( , ) represents the symmetric bilinear form
associated with the orthogonal space.

A basis of ¢(3) orthogonal with respect to the Killing
form is called, for historical reasons, perpendicular, while
a basis of e¢(3) orthogonal with respect to the Klein form
is called reciprocal. Further, it has been customary, in
kinematics, to define ““normalized” bases whose elements
satisfy the conditions

Ki ($i; $,) =Ki ((Wi; V()i); (Wi§ V()i))

=w,-w,;=1, ifw;#0, (6a)

and

Yoi Vo = ], if W, = 0. (6b)

It should be noted that these ‘“normalized” bases, are, in
general, neither orthonormal with respect to the Killing,
nor with respect to the Klein form. Further, condition
(6b) involves an arbitrary choice of the unit of length,
that it cannot be intrinsically defined. The following
result is well known:

Proposition 4. Every finite-dimensional orthogonal
space V has an orthonormal basis with respect to the
symmetric bilinear form defined in the space.

Proof. A proof is given in Porteous (page 158)."°
The following definition shows that a screw system is
simply a subspace of the Lie algebra e(3).

Definition 5 (Screw System). Let W be a subspace of
e(3), denoted W <e(3), such that dim W =n, with
1=n=6; then W is called an n-system, or n screw
system.'

Further, since ¢(3) has a twofold orthogonal space
structure, then any screw system W <e¢(3) has the
twofold orthogonal space structure induced by the
restriction of the Killing and Klein forms upon W.'?
Therefore, any screw system W will have a basis that is
orthogonal with respect to the Klein form; i.e. reciprocal,
and another basis that is orthogonal with respect to the
Killing form; ie. perpendicualr. Immediately, the
following questions arise:

(1) Under what conditions does W have a basis that is
orthogonal with respect to both the Killing and Klein
form? i.e. under what conditions does W have a basis
that is both reciprocal and perpendicular?

(ii) If W satisfies these conditions, how is it possible to
obtain the elements of this perpendicular and reciprocal
basis?
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(iii) If W does not satisfy these conditions, what is the
“simplest” basis of W; i.e. what is the canonical form of
w?

3. THE METHOD AND THE RESULTS

In this section, the answers to the questions posed in
Section 2 will be provided. As far as the authors are
aware, the results are original. The analyses are
restricted to three-systems; nevertheless, the rationale
can be applied to subspaces of any other dimension.

Definition 6 (Screw Matrix and its Direction and
Moment Matrices). Let B = {$1, $2, $3} be any basis of a
three-system W then, the components of the screws in B
can be arranged in a matrix § which can be written in
block form as

$1 W Yol
S= $2 =|D | M)=| w, Yoz |5 (7)
3

W3 Yoz

where the vectors w,, w,, Wi, Vo1, Vi, Vg3 are written in
row form. Then, S is called the screw matrix of B, the
3 X 3 submatrix D is called the direction matrix of B, and
the 3 X 3 submatrix M is called the moment matrix of B.

Definition 7 (Killing and Klein matrices of a
basis). Let B = {$,, $2, $3} be any basis of a three-system
W, the Killing and Klein matrices of B arc defined
respectively, by

[ Ki ($1, $1) Ki ($|, $2) Ki ($la $3)—

Ki($,9) Ki($»$) Ki($»$) [ (8
| Ki$:,$) Ki(5:,$) Ki(5:,$s) _

Ki (B) =

and

KISL8) KIS$L$) KIS, $)
KIS, 8) Ki$n$) KIGH$) [ O
[KI($5,8) KI($s$) KIS $)
Further, since the Killing and Klein forms are
symmetrical, the Killing and Klein matrices are also
symmetrical.

KI(B) =

Proposition 8. Let B :{$,,$2, $3} be any basis of a
three system W, ad D and M their direction and moment
matrices, then

Ki(BY=DD", (10)
and
KI(B)=MD"+DM". (11)

Proof. By simple computation.

From proposition 4, in Section 2, it is known that any
three-system W has a basis orthogonal with respect to the
associated symmetric bilinear form. This statement has
an equivalent statement, in numerical linear algebra, that
indicates that any symmetric matrix can be diagonalized,
via an orthogonal matrix, and its eigenvalues are real.
The following proposition provides a straightforward
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method to obtain an orthonormal basis, with respect to
the Killing form, of any three-system W.

Proposition 9. Let B ={$1,$2, $3} be any basis of a
three-system W. Then the basis B’:{$i,$§, $§} is an
orthonormal basis with respect to the Killing form,
provided that

$i/ = (/\i1$1 + )\i2$2 + 7\i3$)
/[Ki ()\il$1 + )\i2$2 + Aiada, /\f1$| + /\i2$2 + /\i3$3)l 12
(12a)

when Ki (/\i1$| + )\i2$2 + X389, )\i1$| + )\12$2 + )\i3$3) #(,

and
$i/ = /\i1$1 + /\i2$2 + )\i3$37 (12b)

when Ki ()\f|$| + )\i2$2 + A;385, /\il$l + )\i2$2 +A:59:) =0,
where

A= (A, Ay Al fori=1,2,3, (13)

are the eigenvectors of Ki(B).

Proof. The clements of the new basis B’ are written as
$i = )\|1$| + )\12$2 + )\|3$3
$§ = /\21$1 + /\22$2 + )‘23$3
$; = /\31$| + )\32$2 + /\33$3
or, in matrix form,
$i
s =8 [=[p'|M]=[LD,LM]

$
$|

=L[D|M=L|S, |=LS, (14)
3
where
)\ll )\12 AB Al
L=y An An|=| A | (15)
)\23 A32 )\W )\”S

Then, the Killing matrix [or the new basis B’ is given by
Ki(B')=D'D’"" = (LD)(LD)"
=LDD'L"=LKi(B)L". (16)

However, it is well known that the eigenvectors of a
3 X3 symmetric matrix constitute an orthogonal basis,
with respect to the symmetric bilincar form, or dot
product, of the usual three-dimensional space. Further,
the cigenvectors can be normalized to obtain an
orthonormal basis. therefore, it can be always assumed
that L is an orthogonal matrix and the columns of
L'=L"", are the normalized eigenvectors of Ki(B).
Therefore, the Killing matrix of the new basis B’ can be
written as

Ki(B")= LKi(B)L "

Then, Ki(B') is a diagonal matrix and its diagonal
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elements are Ki ($,-’, $,~’).”’ Further, since the Killing form
is a positive semi-definite symmetrical bilinear form, then
Ki (§/, $,-’) =0, V$/ e ¢(3), and the final normalization
can be accomplished. Therefore, the matrix Ki (B’) has
the form

g 0 0
KiB)=| 0 on 0 |, (17)
() 0 033

where o; € {0, 1}, for i =1,2, 3.

Corollary 10. The number of diagonal elements,
o; #0 in Ki (B') is equal to the dimension of the space
generated by the vectors {s,, s,, 83} of the direction part of

the screws {$, , $2, $3}-

Proof: Assumc that the dimension of the space
generated by {s,,s,,8;} is n, where 0=pn=3. Then,
define the following “pseudo Killing” form on R*

HKi: R*x R*— R

(18)

HKi(s, 8) =Ki((s;0), (s;0) =s, s,
Then, R is a positive definite orthogonal space under
this “pseudo Killing” form. In fact, this is the usual three
dimensional space with the usual scalar, or dot product.
Hence, if dim [s,, s,, s3] =, there exists an orthonormal
basis consisting of n elements s/ for i=1,2,...,n, such
that

s/ s/ =Ki ((Si’; 0)’ (sf/; 0)) =L

It should be noted that the possibility of

s/ -8/ =0,
is excluded because then s; =0, and it cannot be part of a
basis. Moreover, it is important to notec that the
dimension of the space generated by {s,, s,, 83}, has been
recognized as an invariant of any screw system.'’
The following propositions analyze each of the four
possible cases:

Proposition 11. Consider a three-system {$,,$2, $3};
i.e. a three-dimensional vector subspace of ¢(3), where
{$1,$2, $3} is one of its bases. Assume that the
dimension of the space generated by the dircction
vectors  {s,,s,,8;} of {$1,$2, $3} is 3. Then the
three-system always has a basis that is simultancously
perpendicular and reciprocal; i.e. orthogonal with respect
to the Killing and Klein form. Further, the canonical
form of the three-system is given by

S = (1,0,0;A,, 0, 0). (19a)
S.>=(0,1,0:0, hy, 0), (19b)
Ses = (0,0,1:0,0,h.). (19¢)

Proof. If the dimension of the spacc generated by the
direction vectors {si,s,, 5} or {$,,$2, $3} is 3, then the
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three-system has a basis B'= {$i, $§, $§} that is
orthonormal with respect to the Killing form. Therefore

Si=(si;sf) withs|-sj=1,
$§ =(83;802) Withsy-s5=1,

$5=(sh;805) with s}-sj=1.

Further
Ki ($),$,) =si-s:=0,
Ki ($,,85) =555 =0,
Ki (S2, $3) = 85 - 85 = 0.

Hence, Ki (B') = .
Consider now a new basis B"= {$’1’, s $§ , whose
clements are given by

$’1’ = ')’11$i + 7|2$§ + 713$§, (20a)
$g = 721$i + 722$§ + 723$§’ (ZOb)
$’3’ = 731$i + 732$§ + 7%2$% (20c)
Or in matrix form
1
S/r: $g :[D”’M”]:[GDI|GM’]
5
$i
=G[D'|M'|=G| $ [=Gs, (21)
$;
where
Yo Yiz Y13
G=1 71 Y2 7v» | (22)
Y31 VY32 Va3

Then, the Killing and Klein matrix of the basis B” are
given by
Kl (B//) — DND//'I’ — (GDr)(GD/)[ — G(DIDrT)GT
= GK{(B"G"'=GLG", (23a)
and
Kl (B//) — Mr/Du'I' + D”M”T
=(GM"YGD"" + (GD"YGM")"
=GM'D"'G"+ GD'M"'G"
=GM'D'"+ D'M'"HG"
=G KI(B")G". (23b)
Hence B” will be perpendicular and reciprocal if, and
only if,
Ki(B") = L=GLG"=GG". (24)
and, KI (B”) must be a diagonal matrix, where
KI(B")=GKI(B")G". (25)
The condition (24) is satisfied if G is an orthogonal
matrix; L.c.
G'=G. (26)
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Hence, condition (25) is reduced to
KI(B"Y=GKI(B)G " 27)
Therefore, following the same arguments as for
proposition 9, G is given by
Y1
G= Y2 |, (28)
Y3

where v, v, and y; are the normalized eigenvectors of
K1(B").
Then, the elements of the basis B” can be written as

[ =(st;sh), withKi(§1,80) =s{-s{=1, (29a)
1= (shsh), withKi(§, 89 =si-s5=1, (29b)
1= (k) withKi (§,89) =6 -s5=1. (2%)

Further
Ki (§1,$5) = Ki ($1, $) = Ki ($5,$9) =0, (30a,b,c)
and
KIS, $5) = KI($7,85) = K1 (85,85 =0.  (30d, e, )
Finally, defining the X, Y, and Z axes of the new
coordinate system along the directions s, 85, and s3, and
choosing as the origin O, of the new coordinate system,
the common intersection point of the three screws. Then,
the canonical form given by equations (19a,b,c) is
obtained.
It should be noted that this case produces all the
three-systems that belong to the family 1 according with

Rico and Duffy’s classification.'” The screw systems that
belong to this case are usually called “general”.

Definition 12. Let {$1,$2, $3} be a three-system such
that the dimension of the space generated by the
direction vectors {s,, s,, 85}, of {8, $2, } is 3. Then, the
centre of {$1, 5, 83} is the unique point where the three
lines associated with the three screws meet.

Corollary 13. Let {$1,$2, $3} be a three-system such
that the dimension of the space generated by the
direction vectors {s,,s,,s;} of {$1,$2, $';} is 3. Further,
assume that the elements of the perpendicular,
normalized and reciprocal basis B” = {$’1’ , $§, $g’} are given
by equations (29a—c). Then, the coordinates of the centre
of the three-system r=(x,y,z) appcar as the off-
diagonal elements of the skewsymmetric matrix, S, given
by

0 —z vy
S=] z 0 —x|=[M"-iKI(B)D"'D". (31)
-y x 0

Where D" and M" are the direction and moment
matrices of the basis, B”, which is both perpendicular
and reciprocal.

Proof. Firstly, since {$,,$2, $3} has a perpendicular
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and reciprocal basis the existence of the centre is
assured. Further, the moment of the lines associated to
the screws, with respect to a predetermined origin, is
given by

Sv[sla S2> S3] = Ss[D"]T’ (32)

where the moment vectors are written here in column
form. However, the same moments can be obtained by
subtracting the product of the pitches of the screws by
the direction matrix, D”, from the moment matrix, M",
of the basis B”, and then by transposing the resulting
matrix; i.e.

(M~ IKYB")D'T". (33)

However D" is an orthogonal matrix, thus [D"]' =
[D"]"", hence, equating (32) and (33), and postmultiply-
ing both sides of the equation by D", the desired result is
obtained.

Proposition 14. Consider a three-system {$1,$2, $3};
i.e. a three-dimensional vector subspace of e(3), where
B:{$1,$2, $3} is one of its bases. Assume that the
dimension of the subspace genrated by the direction
vectors {s;,S,, 85} of {$1,$2, $3} is 2, and let B'=
{${, 7,841 be a perpendicular and normalized basis
of the three-system. Then, the three-system has a basis
that is simultaneously perpendicular and reciprocal (i.e.
orthogonal with respect to the Killing and Klein form) if,
and only if,

KIL(§7,$) = KI($5.$5) = 0.

Further, the canonical form of the basis for this
three-system is

(34a,b)

$cl = (1; 0; O; hu) O) O)J (35&)
S.2 = (0, 1,0:0, Ay, 0), (35b)
S.5=(0,0,00,0,1). (35¢)

Moreover, if conditions (34a,b) are not satisfied, the
canonical form of this three-system is

S. =(1,0,0;h,,0,0), (36a)
S..=(1,0,0; —h,, p, 0), (36b)
Ses = (0, pit, p& 0, p¥, pT), (36¢)

with p# p& = 0.

Proof. If the dimension of the space generated by the
direction vectors {s,, s,, s;} of the screw system {§,, $2, $3}
is 2, it is possible to prove that the elements of the
perpendicular basis B’ = {$§, $§, $§} have the form

S;=(s;s)) withs]-sj=1, (37a)
$=(sishn) withsp-sp=1, (37b)
8= (0; s0y), (37¢)
where
Ki ($7,85) =si -85 =0. (38)
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Assume, initially that s;# 0. Since {s], s}, 84} is obtained
from {s;, s,, 85} via a non-singular matrix, then
dlm [Si, Sé, S';] = d]m [S], $2, S3] = 27
Hence
§5 = As| + A,85, for some A, A, € R.

However, since B is a perpendicular basis

0= Ki (s, s3) = Ki (87, A8 + A83) = Ay,
and

0 =Ki (s5,s3) = Ki (83, 18] + A,83) = A,
Therefore, s; = 0. Further,

K1 (85, 8;) =0.

In order to prove that (34a,b) arc sufficient and
necessary conditions, it is necessary to note that any
other perpendicular basis such as $’,’, $§ and $§’ (i.e.
orthogonal with respect to the Killing form) is obtained
by expressing $’{, $’2’ and $§’ as linear combinations of ${,
%, 8% of the form

$/1’:)\11$i +/\12$§+)‘13 3 (39a)
$§ = /\21$i + )\22$é + )\23$§, (39b)
{= + A, (39¢)
where
A A A
Aat Ay A | = (/\11/\22 - )\21/\12)/\33 # 0. (40)

0 0 Ay

Condition  (40) ensures  that  dim[$], 85, $4] =
dim [${, $§, $§J = 3. Further, the submatrix

[)\n /\12]
/\21 AZZ
must be orthogonal, this requisite
Ki ($’,’, $§) =(0. Finally, the new
{$’l’, 4 $g’} is reciprocal also if, and only if,
0=KI($. %
=KI ()\11$i + )\12$£ + /\13$§’ )\21$; + )\22$é + )\33$§)
= Ay Kl ($i7 $i) + A2 Kl ($§, $§)
+ (Midos + A da) K1, $9)
+ (iAo + Aishar) KI(S, $5)
+ ()\12)\23 + )\13)‘22) Kl ($é, $é)5
0=KI($,$%)
=Kl ()\11${ + )\|2$§ + )\13$§7 )\ﬂ$%)
= Azs[Ay Kl ($i, $%) + A2 Kl ($é, $%)]7
0=KI($.$%)
=Kl (/\21$f + )\22$é + /\23$;7 /\n$é)
= A1 K1 (7, $3) + 200 K1 ($5, $9)1. (410)

Since A3 #0, equations (41b—c) yield a homogeneous
linear system, in the unknowns Kl ($], $§) and Kl ($§, $§),

of the form
b IREEGL e

ensures that
basis B" =

https://doi.org/10.1017/50263574798000137 Published online by Cambridge University Press

Infinitesimal screws

However, the coefficient matrix is orthogonal; therefore,
the unique solution of the system is

KI($1,85) = KI ($5,85) = 0.

Hence, the equation (41a), that ensures the reciprocity of
! and $§, is reduced to

A Ao KLGST 8D + A oAs KIS, $5)
+ ()\11)\22 + )\lz)‘zl) Kl ($i, $§) = (044)

It should be noted that the reciprocity of $’,’ and $g
depends only on the scalars A, A5, Ay, and Ay, that
form the orthogonal submatrix. Then, it is possible to
employ the argument given by Rico and Duffy'' (scc
pp. 464-466). This argument ensures the existence of
linear combination of §;, and 85 that are perpendicular
and reciprocal.

Now, assume that the necessary conditions are
satisfied. Then selecting the X and Y axes of a ncw
coordinate system along the directions s;, and s,
respectively, and selecting the origin of thc new
coordinate system O’ as the intersection point of $’{ and

$2, the clements of the perpendicular basis B"=
{$’.’, $’2’, $§’ , are transformed into

$i=(1,0,0;h,, 0,0), (45a)
$5 = (0,1,0;0, y, 0), (45b)
$5=(0,0,0;0,0, pt). (45¢)

It should be noted that the X and Y components of s,
are zero; i.e. p% = p¥ = 0. Otherwise, since

KI(S81, 8% = p,
and (46a,b)
KI($%, 99 = p,
the reciprocity of the basis B” would be contradicted.
Finally, $§’ can be transformed into the form indicated by
cquation (35¢).

It should be noted that this canonical form includes all
the three-systems of the family 31 according to Rico and
Duffy’s classification.'”

Assume, now, that conditions (34a, b) are not satisfied;
i.e. without loss of generality assume that Kl ($§, $§) # (),
Then, the perpendicular basis B' =1{8, $5, $}, has the
form

Si = (si;sh) withsj-sj=1, (47a)
g = (Sé, S(,)z) with Sé . Sé = l, (47b)
$L5 = (0;803), (47¢)

Further
Ki($i, $5) =s; - s,=0,

and (48a,b)
KI (S, 85) =i * s #0.

Then consider

KIS, Sy, ., o
g:$;~ﬁ$3 if KIS, $))#0, (49a)
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with $’,’ = ${, and $g = $§, or consider
1=8i+8; and $5=8, -85 if KIS, $)=0,

(49b)
with 85 = §;.
Then, the new basis has the form
{=(stish)  withs}si=1, (50a)
5 = (81 802), (50b)
$1= (s5sha), with s} sp; =1, (50c)

Further
Ki (8, $%) = Ki (%, $) =0,
and (51a,b,¢)
KI (1,85 =0.
Choosing a new origin along the line defined by the
screw $’{, choosing the X axis along the direction s/, and

choosing the Y axis so that the Z-component of sj, be
zero, the basis B” is given by

Si=(1,0,0;h,,0,0), (52a)
5=(1,0,0; ~h,, p5, 0), (52b)
8= (0, pi. plispf P P). (52¢)
However, since
1—85=(0,0,0;2h,, —pi, 0), (53)

"

$§ can be replaced by a new screw $3 of the form

§7=(0, pib pis: 0, plh, 7). (54)

Furthermore, choosing the new origin at the point,

along the X axis, where $’; meets the X axis, then $'§ is
reduced to

$i= (0, pih, pi:0,0,0). (55)

It should be noted that K1($}, §4) = 0. Nevertheless, $5
and $§’ form a perpendicular two-system that it is not
reciprocal, because

KI($5, $5) = p%i pih

However, it is possible to employ the argument used to
obtain equations (47a-c), to produce a perpendicular
and reciprocal basis for this two system. Further, since §/
is parallel to $§, and the Killing and Klein forms are
invariant, after a proper relabeling of the axes, the
canonical form given by (36a-c) is obtained.

It should be noted that this canonical form includes all
the three systems of the family 411 of Rico and Duffy’s
classification.'?

Proposition 15. Consider a three system {$1,$2, $3};
i.e. a three-dimensional vector subspace of e(3), where
B:{$1,$2, $3} is one of its bases. Assume that the
dimension of the subspace generated by the direction
vectors {s,,s,,s;} of {$l,$2, $3} is 1, and let B’ =
{${,$§, 4t be a perpendicular and normalized basis
of the three-system. Then, the three-system has a basis
that is simultaneously perpendicular and reciprocal (i.e.
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orthogonal with respect to the Killing and Klein form) if,
and only if,

KI (81, $5) = K1 ($1, $1) = 0. (S6a, b)

Further, the canonical form of the basis for this
three-system is

$Cl = (1) 0’ 07 h(u O) 0)) (573)
S..=(0,0,0;0,1,0), (57b)
$:=(0,0,0;0,0,1). (57¢)

Moreover, if condition (56a,b) are not satisfied, the
canonical form of this three-system is

$Cl = (1) 0) O$ ha; 0; 0)) (583)
$c2 = (1) O; O’ _hay P;kl; O), (58b)
$5=(0,0,0;0, p%i, pih). (58¢)

Proof. If the dimension of the space generated by the
direction vectors {s;,s,,s;} of the screw system
{$1, $2, $3} is 1, it is possible to prove that the
elements of the perpendicular basis B’ = {${, $§, $§} have
the form

$i=(siiser), withs]-sj=1, (59a)
81 = (0 57,), (59b)
$; = (0; sia). (59¢)

Assume, initially and without loss of generality, that
s, # 0. Since {si, s}, s} is obtained from {s,s,,s;} via a
non-singular matrix, then

dim [s1, 85, s3] = dim [s;, 55, s3] = 1.
Hence

s; = Asj, for some A € R.

However, since B’ is a perpendicular basis,
0= Ki (s3, s7) = Ki (As{; s})
= AKi(s],s])=A.

Therefore, s, =0. A similar reasoning applies to s3.
Further, it is easy to note that

KI($5, $1) = K1 ($5, $5) = K1 ($5, $5) = 0. (60a, b, ¢)

In order to prove that (56a,b) are sufficient and
necessary conditions for the three-system to have a
reciprocal and perpendicular basis, it is necessary to note
that any other perpendicular basis (i.e. orthogonal with
respect to the Killing form) is obtained by expressing

" "

I $2 and $g' as linear combinations of ${, $§ and $§,

$’1’ = )‘11$i + )\12$§ + )\13$§, (61a)
= /\22$§ + )\23$§) (61b)
5= )\32$£ + /\33$§, (61c)
where
A A Ags
0 An An| =An(AmAss — Apyn) #0;  (62)

0 Axn Ass

gongition (62) ensures that dim[8], S5, $§ = dim [$1,
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Finally, the new basis B” = {$’,’, 2, $§’} is reciprocal also
if, and only if,

KI($],85) = Ay A KI(ST, $2)

+ XA KIS, 85 =0, (63a)
and
Kl ($’1’, $’§) = A1 Kl ($i’ $é)
+ A As K1(S, 85 = 0. (63b)

Since by condition (62), A;,#0, the system can be

reduced to
S o B

However, the same condition (62), indicates that the
coefficient matrix is non-singular. therefore, the only
possibility is that

KI($1, $) = KI($i,$:)=0. (56a, b Rep.)

Now, assume that the necessary conditions are
satisfied. Then, choosing the X-axis of a new coordinate
system along the direction sf, and the origin of the new
coordinate system as an arbitrary point along the axis of
the screw $},'" the elements of the perpendicular basis

B" are transformed into

,1/ = (1) ()’ ()’ hu) O) 0); (65'&)
g = (01 O’ 0’ O; pikl; psz); (65b)
85=(0,0,0:0,p%, pTa). (65¢)

It should be noted that p3 =p% =0. This is because
Kl ($'|', $'ﬁ) =pi¥, and Kl ($’,’, $§) =p¥, and, otherwise,
the reciprocity conditions for the basis B” would be
contradicted.

Finally, the screws $§ and $§’ can be substituted by the
following linear combinations

S..=(0,0,0,0,1,0), (66a)

and

S.=(0,0,0;0,0,1). (66b)

Hence, the canonical form given by equations (58a—c) is
obtained. It should be noted that the canonical form
given by (58a—c) includes all the three-systems of the
family 5 in Rico and Duffy’s classification.'”

Assume, now, that conditions (56a, b) are not satisfied,
then the perpendicular basis B’ = {$§, %é, $§} is given by
equations (59a—c). However, assume that

KIS}, $5) = 0. (67)
Then consider
"o /_K]($;’$é) ’ by i ’
= $1 m$1 if Kl ($1, $]) #0,

with $’{ = $i and $§’ = $§, or consider
1=$1+% and $.=8/-8,
if KI($), §}) =0, with §;=8:.

(69a, b)
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Then, the new basis has the form

Si=(s};s) withs]-s{=1, (70a)
5= (87; 802), (70b)
85 = (0; s5), (70¢)

and the basis satisfies the condition
Ki (87, $5) = 0. (71)
Choosing a new origin along the line defined by the
screw $’,’ , choosing the X axis along the direction s{, and

choosing the Y axis so that the Z-component of sg, be
zero, the basis B” is

§1=(1,0,0:h,,0,0), (722)
2= (1,0, 0; —hy, p§i, 0), (72b)
$:=(0,0,0; p%, pf. pt). (72¢)

However $§’ can be substituted by
v =85 pHh(ST - $0/(2h.).
and the canonical form given by equations (58a—c) is
obtained.
It should be noted that this canonical form includes all

the three systems of the family 41 of Rico and Duffy’s
classification.'?

Proposition 16. Consider a three system {$1,$2, $3};
i.e. a three-dimensional vector subspace of e(3), where
B={$,,$2, $3} is one of its bases. Assume that the
dimension of the subspace generated by the direction
vectors {8, s,, 85} of {$1, $2, $3} is 0. Then, the canonical
form of this three-system is

S. =(0,0,0;1,0,0), (73a)
S.;=(0,0,0,0,1,0), (73b)
Ses = (0,0,0,0,0,1). (73¢)

Further, this basis is simultaneously orthonormal with
respect to the Killing and orthogonal with respect to the
Klein form.

Proof. If the dimension of the subspace generated by
the direction vector {s,, s, 85} of {$1, $2, $3} is 0, then
$i=8,=8;,=0. (74a,b, ¢)

Hence, the elements of the basis B are of the form

$i =(0,0, 0; p23, P31, P12), (75a)
$2 = (Oy ()) 0’ p;ﬁ% p;»kly pTKZ)) (75b)
$.=(0,0,0;p%, p¥i, pi). (75¢)

Furthermore, since the dimension of the subspace is 3,
the rank of the moment submatrix is 3 and the submatrix
is non-singular. Therefore, the submatrix can be
transformed into the identity matrix by using elementary
row operations; i.e. it is possible to find the basis given
by (73a-c).

It should be noted that this case corresponds to the
unique three-system of the family 6 in Rico and Duffy’s
classification.'?
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4, FINAL REMARKS

The computation of the canonical form of screw systems
in general, and three-systems in particular, are of
importance in robotics because, as shown by Stanisi¢ and
Pennock®'*'*, it might produce more efficient computa-
tional schemes for the velocity and acceleration analyses
of manipulators or subassemblies. More specifically,
Stanigié¢ and Pennock showed that finding the normal
form of the three-system formed by the arm-subassembly
of a wrist-partitioned six-degree of freedom manipulator
leads to a highly efficient computational approach for the
inverse velocity and acceleration analysis of the
manipulator. Further, any comprehensive classification,
analysis and synthesis of the different topologies of
manipulators must have as a fundamental prerequisite
efficient computational schemes for determining the
canonical form of the screw systems formed by the
kinematic pairs of the manipulator. Only after the
determination of the canonical form of a pair of screw
systems, it is possible to decide if the manipulator
topologies are equivalent and to weight the advantages
or disadvantages of the different topologies.

5. CONCLUSION

A general method for the computation of the canonical
form of three-systems has been presented. The method
deals not only with the general case, but the method also
handles the special and degenerate cases. Furthermore,
the method shows conclusively that the classification of
three-systems previously published by the authors is truly
exhaustive. A MapleV listing and an example are
available, upon request, from the first author.
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