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The flow structures and the acoustic feedback loops of underexpanded round jets are
investigated by numerical simulations. The jets have a Mach number of 1 at the nozzle
exit and a diameter-based Reynolds number of 2.5 x 10°. Three nozzle pressure ratios
(NPRs) of 2.2, 2.4 and 2.6 are considered. The wavelengths of the screech tones are in
good agreement with the experimental measurements on high-Reynolds-number jets in
the literature. The screech tones are respectively at the A1 and B modes for the jets at
NPRs of 2.2 and 2.6. Two screech tones at the A2 and B modes are identified in the
jet at the NPR of 2.4 and the wavelet analyses conducted on the pressure fluctuations
confirm that these two modes are contemporaneous. The amplitude and phase fields of
fluctuating pressure at the screech frequencies are presented in the nozzle exit plane and
azimuthal planes. The effective source locations of the screech tones are determined based
on the distributions of the phase. The number of periods contained in the screech feedback
loop is equal to the number of cells in the standing wave between the nozzle exit and
the effective source. The screech frequencies estimated by the classical feedback model
agree well with the numerical results at different modes. A modified model, in which the
classical feedback model and the upstream-propagating acoustic wave mode of the jet are
combined, shows that the screech feedback loops at the A1 and A2 modes are associated
with the same acoustic wave mode. The modified model fails to estimate the screech
frequencies at the B mode. Different feedback mechanisms lead to the coexistence of the
A2 and B modes. The coherent structures corresponding to different screech modes are
extracted by dynamic mode decomposition.
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1. Introduction

A supersonic jet operating at imperfectly expanded conditions is characterized by
quasi-periodic shock structures in the jet plume. In this case, the noise of the jet comprises
three basic components: the turbulent mixing noise, the broadband shock-associated
noise and the screech tone (Tam 1995). The screech tone first observed by Powell
(1953) has a high-amplitude discrete frequency. The development of the understanding
of the screech tone is summarized in some detailed reviews, such as Raman (1999)
and Edgington-Mitchell (2019). Based on the schlieren flow visualization, Powell (1953)
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suggested that the generation of the screech tone is due to an acoustic feedback cycle near
the nozzle exit. The detailed structures of the screech feedback loop are described in Tam
(1995).

For an axisymmetric underexpanded jet, the frequency of the screech tone decreases
continuously with the increase of the nozzle pressure ratio (NPR). However, at some
particular conditions, the screech frequency jumps, which means the change of the screech
mode. Powell (1953) identified four screech modes for round jets, and named these
modes A, B, C and D. The switches between these modes are usually accompanied
with the changes of the azimuthal characteristics of the sound fields and flow structures.
Furthermore, the experimental studies of Merle (1956), Davies & Oldfield (1962), Powell,
Umeda & Ishii (1992) and Ponton & Seiner (1995) showed that the A1 and A2 modes are
toroidal modes, the C mode corresponds to a helical mode, and the B and D modes are
flapping or sinuous modes.

The unsteady motions of shocks are observed simultaneously with the generation of the
screech tone. Panda (1998) demonstrated that the features of the shock oscillations are the
same as the screech modes. At an axisymmetric mode, there are more motions in the core
of the jet and the ‘shock splitting’ phenomenon is noted. Both the upstream-propagating
acoustic disturbances and the downstream-propagating instability waves can influence
the shock motions. In the cases of non-axisymmetric screech modes, the manners of
the shock oscillations are more complex. In the helical C mode, the upper and lower
half of the third shock cone appear and disappear in turn (Panda 1998). The shock
oscillations at the antisymmetric B mode were discussed by Andre, Castelain & Bailly
(2011) based on the schlieren photography. The shock motion is also in an antisymmetric
pattern and the magnitude of the shock oscillation is clearly related to the screech
amplitude.

The issues of the generation and the effective source location of the screech tone are
crucial to understand the screech mechanism. The interaction between vortices and a
shock was solved by the direct numerical simulation (DNS) in Suzuki & Lele (2003).
They observed that the shock wave tends to leak near a saddle point between the vortices
in the shear layer, and the shock-leakage process explains the generation of the screech
tone. Berland, Bogey & Bailly (2007) performed a large-eddy simulation (LES) on an
underexpanded planar jet. The flow visualizations of the third shock cell showed that the
shock-leakage process occurs and produces the upstream-propagating sound waves. Panda
(1999) investigated the generation process of the screech tone based on the phase-matched
combined views of the schlieren photographs and pressure fluctuations. The time evolution
of the near-field pressure fluctuations showed that the screech waves appear between the
third and the fourth shock cell at the A2 mode. The generation mechanism of the screech
tone at the C mode was studied by Umeda & Ishii (2001) through a series of instantaneous
schlieren photographs. They found the dominant source is just downstream of the rear edge
of the third shock cell. Gao & Li (2010) analysed the screech feedback loop based on their
numerical simulation database (Li & Gao 2005, 2008). They found that the dominant
sound sources are between the second and the fourth shock cell for the Al, A2, B and
C modes. Edgington-Mitchell ef al. (2014) conducted particle image velocimetry (PIV)
measurements on an axisymmetric underexpanded jet at the C mode and suggested that
the dominant acoustic source for the screech tone is between the second and the fourth
shock. Based on the near-field acoustic measurements and the time-resolved schlieren
visualizations, Mercier, Castelain & Bailly (2017) studied the acoustic feedback loops of
the jets at different modes. They suggested that the single source of the screech tone is at
the fourth shock tip for the A1 and A2 modes, and at either the third or the fourth shock
tip for the B mode.
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In some situations, multiple screech tones are presented in the noise spectra of
rectangular and axisymmetric underexpanded jets (Raman 1999). The interactions
between these tones and the issue on whether these tones are switching mutually or
coexisting steadily need to be researched. Raman (1997) used the ‘instantaneous spectra’
to study the mode switches of the rectangular jets. The ‘instantaneous spectra’ were
obtained by performing short-time fast Fourier transforms on smaller segments of a long
data sequence. In different cases, the screech modes are either contemporaneous or in a
mutually exclusive fashion. Walker, Gordeyev & Thomas (1997) experimentally studied
the multiple acoustic modes and shear layer instability waves in an underexpanded jet
via the Morlet wavelet transform. The wavelet analysis provided a very useful tool for
understanding the intermittent or modulated behaviours in unsteady flows. The results
showed that the multiple screech tones coexist at an operating condition.

Some numerical results (Shen & Tam 2002; Li & Gao 2008) also indicated that there are
several screech tones at a given jet Mach number. Shen & Tam (2002) suggested that the
two tones are coexisting whenever two screech tones are measured in the noise spectrum
and the feedback acoustic disturbances can complete the screech feedback loop in two
ways. The feedback process is closed by the upstream-propagating free-stream acoustic
waves for the A1 and B modes and by the upstream-propagating neutral acoustic wave
modes of the jets for the A2 and C modes. Different feedback mechanisms explain the
coexistence of the screech tones. Recently, Gojon, Bogey & Mihaescu (2018) found that,
for the C mode, there are upstream-propagating acoustic waves in the underexpanded jet
that belong to the neutral acoustic modes of the equivalent ideally expanded jet. However,
in contrast to the conclusions of Shen & Tam (2002), Edgington-Mitchell et al. (2018)
demonstrated that the upstream-travelling wave that closes the A1 and A2 modes of the jet
screech is the same upstream-propagating neutral acoustic mode. Mancinelli et al. (2019)
experimentally observed that the Al and A2 modes are mutually exclusive during the
mode staging process.

The main purposes of this paper are to investigate the characteristics of the screech
feedback loops at different modes and to explore the mode staging process between the
A2 and B modes. In the present study, numerical simulations are conducted on three
underexpanded round jets at different NPRs. These jets originate from a converging
nozzle and have a Reynolds number of 2.5 x 10°. The results of numerical solutions
are compared with experimental data for validation. Detailed analyses on the screech
feedback loops are conducted based on the numerical results. The paper is organized as
follows. The governing equations and numerical methods for the present simulations and
a mesh independence study are shown in § 2. The results of the numerical simulations
such as the screech frequencies, effective source locations and the convection velocities
of the instability waves in the shear layer are presented in §3. In §4, two acoustic
feedback models with different upstream-propagating components are analysed to study
the coexistence mechanism of the A2 and B modes. In §5, the coherent structures
related to different screech modes are discussed by dynamic mode decomposition (DMD)
analyses. Concluding remarks are given in § 6.

2. Simulation details
2.1. Governing equations and numerical methods

The unsteady compressible Navier—Stokes equations for a perfect gas in a cylindrical
coordinate system are considered in the present simulations. The ambient physical
parameters, including the density p.,, sound velocity a..,, temperature 7,,, molecular


https://doi.org/10.1017/jfm.2020.436

https://doi.org/10.1017/jfm.2020.436 Published online by Cambridge University Press

902 A17-4 X.-R. Li, X.-W. Zhang, P.-F. Hao and F. He

Viscosity 4 and the nozzle exit diameter D are used to non-dimensionalize the equations.
The non-dimensional equations are as follows:
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Here x, 6, r denote the axial, azimuthal and radial directions; u,, uy, u, are
the non-dimensional velocities in the x, 6, r directions, respectively; and p and p
are non-dimensional density and pressure. The non-dimensionalization results in the
dimensionless parameter Re = pooCooD/[oo. The total energy is defined as E =T/[y
(y — D]+ 1/2u;u;, with the specific heat capacity ratio y = 1.4. The non-dimensional
temperature 7 is obtained through the non-dimensional equation of state for an ideal gas:

pT
p=—. (2.3)
v
The viscous stress term t;; is given by the Newtonian linear stress—strain relation
n 2
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and the heat-flux-vector components are

B —u oT
© = pr(y — DRe ox
— oT
S 25
9= pr(y — Re rod 2.5)
_ —u aT
= pr(y —DRe or

where the Prandtl number is taken as Pr = (.72 and the molecular viscosity is computed
by Sutherland’s law (Schlichting & Gersten 2016).

At underexpanded conditions, periodic shock cells appear in the jet flow. To capture the
discontinuities caused by the shocks, the flux-vector splitting (Steger & Warming 1981)
and a seventh-order weighted essentially non-oscillatory (WENO) scheme are employed
on the inviscid fluxes. The original finite-difference WENO scheme introduced by Balsara
& Shu (2000) is optimized by means of limiters (Wu & Martin 2007) to reduce the
numerical dissipation. A relative limiter on the total variation is employed during the
simulation. The specific form of the limiter and the associated threshold values are given
by equation (17) in Wu & Martin (2007). The viscous fluxes are discretized by using
a standard sixth-order central difference scheme. The temporal integration is performed
by the four-stage third-order strong stability-preserving Runge—Kutta technique (Ruuth &
Spiteri 2004).

2.2. Jet parameters and simulation set-up

Three numerical simulations of underexpanded round jets with different NPRs are
conducted. The NPR is defined as the ratio between the stagnation pressure p, upstream of
the nozzle and the ambient pressure p,,. The ambient temperature 7', and density p., are
288 K and 1.225 kg m~>. The stagnation temperature T for the cold jets considered here
is equal to the ambient temperature. Three NPRs of 2.2, 2.4 and 2.6 are considered. These
three jets have an identical Reynolds number of Re = 2.5 x 10°. The nozzle possesses
an exit diameter of D and the width of the nozzle lip is D/3. The jet originates from
the converging circular nozzle with an exit Mach number M, = 1. At the nozzle exit, the
centreline flow variables are given by the ideal gas isentropic relations. The pressure is
uniform at the exit. A polynomial approximation of the Blasius profile (Bogey & Bailly
2010) with the boundary layer thickness § = 0.05D is imposed for the axial velocity.
The temperature is determined by the Crocco-Busemann relation (Schlichting & Gersten
2016). The radial and azimuthal velocities are set to zero.

The computational domain is taken from —2D to 35D in the x direction and from O to
10D in the r direction. The nozzle exit is located at x = 0. At the outflow and lateral
boundaries of the computational domain, the time-dependent non-reflecting boundary
conditions (Thompson 1987, 1990) are implemented. The single-valued reconstruction
(Morinishi, Vasilyev & Ogi 2004) is employed to satisfy the single-valued property at
the axis. The no-slip adiabatic boundary condition is applied on the nozzle walls. Initially,
the flow of the entire computational domain is set as the quiescent flow conditions. In each
numerical case, a total of 250000 iterations are computed after the transient period. The
non-dimensional time step is set as 2 x 107, permitting a non-dimensional simulation
time of 50. A total of 1000 instantaneous full three-dimensional flow fields are stored with
a time interval of 0.05. The resolvable non-dimensional frequency is up to 10.
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Case Ny X ng X ny Number of grids n;“di’” nf Ar(r=20.5) Ax(x = 0)
MESH1 720 x 64 x 240 11 million 60 7 D/177 D/50
MESH2 720 x 96 x 240 16.6 million 60 7 D/177 D/50
MESH3 864 x 96 x 280 23.2 million 70 9 D/200 D/70

TABLE 1. Grid characteristics of the numerical simulations at NPR =2.2. Numbers of grid
points (ny, ng, n,) in (x, 6, r) directions, the total number of grid points, the number of points
within the nozzle radius n/%¢S | the number of points within the boundary layer at the nozzle exit
nf and the mesh spacings Ar and Ax at the nozzle lip.

2.3. Mesh independence

In this section, the dependence of the numerical results on the grid resolution is
investigated by a series of numerical simulations performed on the jet at the NPR of
2.2. The grid points are clustered near the nozzle exit and the shear layer by algebraic
transformations. Table 1 gives the grid characteristics at different resolution levels. All of
these cases are identical except for the mesh parameters listed in table 1. The case MESH2
has the same axial and radial grid resolutions as the case MESH1 but more grid points in
the azimuthal direction. The case MESH3 has the same azimuthal grid points as the case
MESH?2 but higher grid resolutions in the axial and radial directions. Thus, the effects of
the grid resolutions in different directions can be investigated by comparing the results of
these three cases.

Figure 1(a) shows the distributions of the mean axial velocity on the centreline for
these three cases. All of these curves show a good agreement, indicating that the mean
velocity and the sizes of the shock cells are insensitive to the grid resolution. The noise
spectra in the nozzle exit plane are represented in figure 1(b). The fundamental screech
tone is evident at S7; = 0.5804 and a smaller peak associated with the second harmonic
is visible at St; = 1.18. The Strouhal number is defined as St; = fD,/U;, where f is the
non-dimensional frequency, U; is the non-dimensional ideally expanded velocity and D; is
the non-dimensional ideally expanded equivalent jet diameter. Good agreement is achieved
at the frequencies and amplitudes of the screech tone and the second harmonic. These
comparisons indicate that the grid in the case MESH3 has sufficient resolution. Thus, this
grid is used for the simulations at the NPRs of 2.4 and 2.6. In the following sections, more
evidence is displayed to demonstrate the numerical accuracy of the present simulations.

3. Numerical results
3.1. Flow snapshots

The vortical structures in the shear layer and the acoustic fields of the jets at NPRs
of 2.2, 2.4 and 2.6 are provided in figure 2 and in supplementary movies (available at
https://doi.org/10.1017/fm.2020.436). For the convenience of display, a coordinate
transformation has been performed from cylindrical coordinates to Cartesian coordinates
by

X/D=x, Y/D=rcosf, Z/D=rsinf. (3.1a,b,c)

The jets originate from the nozzle with laminar conditions. As shown in figure 2(a)
and supplementary movie 1, several axisymmetric vortex rings appear in the shear layer
of the jet at the NPR of 2.2. The vortex rings gradually lose their symmetry characteristic
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FIGURE 1. Comparisons of (a) the mean axial velocity distributions along the jet centreline
and (b) the noise spectra at (x, 8, r) = (0, w/2,2) of numerical solutions with varying grid
resolutions.

3

FIGURE 2. The instantaneous snapshots of the isosurfaces of the non-dimensional
Q-criterion = 0.1, coloured by the local Mach number, and the pressure fluctuations in the planes
x =0,60 = n/2 and 31/2 for the jets at (a) NPR=2.2, (b) NPR =2.4 and (¢) NPR=2.6. The
nozzle exit is located at X/D = 0.
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FIGURE 3. Axial mean velocity fields for the jets at (¢) NPR=2.2, (b)) NPR=2.4 and
(c) NPR =2.6. The black dashed lines indicate the axial positions of the shock reflection points
at the jet shear layer.

when they move downstream. The acoustic waves propagating upstream or downstream are
displayed by the fluctuating pressure fields in the planes 6 = 7/2 and 37 /2. The acoustic
waves of the screech tone mainly propagate upstream and are symmetrical with respect to
the jet axis. In the plane X/D = 0, the screech waves are shown as circles corresponding
to the axisymmetric vortex rings in the shear layer.

Significant differences of vortical structures can be observed between the jets at NPRs
of 2.2 and 2.4. As shown in figure 2(b) and supplementary movie 2, for the jet at the NPR
of 2.4, the vortices are stronger around 8 = /2 and 37t/2. More complex vortices appear
at downstream locations (X/D > 5) and the jet seems to transit into turbulence earlier
than the jet at the NPR of 2.2. In the planes & = 7/2 and 37t/2, the upstream-propagating
acoustic waves at the upper and lower sides of the jet have opposite phases. For the jet
at the NPR of 2.6, vortices are also generated alternately on both sides of the jet, as
shown in figure 2(c) and supplementary movie 3. The vortices in the shear layer as well
as the acoustics field in the plane X/D = 0 have a more significant helical characteristic.
For these three jets, the characteristics of the vortex structures and the screech waves are
closely related. The modes of the screech tones will be discussed further in the following
sections.

3.2. Mean fields and shock cell spacing

The spacing of the shock cell is an important length scale in locating the effective source
of the screech tone. Mercier et al. (2017) found the effective sound source is at the third
or fourth shock tip over a wide range of operating conditions. The axial mean velocity
fields for different jets are shown in figure 3 and the first four shock reflection points at the
shear layer are marked to obtain the shock cell spacings. The axial sizes of the shock cells
increase with increasing NPR. An approximate solution for the spacing of the first shock
cell was given by Pack (1950) based on a theoretical analysis:

A = 2.695\/ (NPR*?! — 1.205). (3.2)
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NPR A1 (numerical simulation) A1 (equation (3.2))

22 0.62 0.6198
2.4 0.79 0.7864
2.6 0.93 0.9161

TaBLE 2. Comparison of non-dimensional spacings of the first shock cell obtained from the
numerical simulations and from equation (3.2).

P
Lo — Numerical results
o Experimental results
0-8 L L L T T
0 1 2 3 4 5 6

FIGURE 4. Comparison of non-dimensional averaged density along the jet centreline obtained
from the numerical simulation and the experiment of Panda & Seasholtz (1999) at the NPR
of 2.4.

Here the spacing of the first shock cell A; is non-dimensionalized by the nozzle exit
diameter D. In table 2, the spacing of the first shock cell obtained from the present
numerical simulations and (3.2) are compared. Good agreement is found between the
numerical and theoretical results. Moreover, the distribution of the averaged density along
the centreline of the jet at the NPR of 2.4 is compared with the experimental results of
Panda & Seasholtz (1999) in figure 4. The numerical results and the experimental results
also show a good agreement. These results indicate that accurate spacings of shock cells
can be obtained from the present simulations.

3.3. Pressure spectra and tone frequencies

Fast Fourier transforms are applied on the pressure fluctuations at every point along the
circular line of (x, r) = (0, 2) to obtain the frequencies and the azimuthal characteristics
of the screech tones. As shown in figure 5(a), the amplitude of the screech tone at
St; = 0.5804 (the magenta arrow) distributes uniformly along the circular line (x, r) =
(0,2). In figure 5(b), at different azimuthal angles, the phases of the screech tone are
almost the same. These results indicate that the screech tone is at an axisymmetric mode
for the jet at the NPR of 2.2. In figure 5(c), at the NPR of 2.4, the screech tone at
St; = 0.4237 (the magenta arrow) has higher amplitudes around the azimuthal angles
of & = w/2 and 37/2, and becomes weak near 6 = 0 and 7. As shown in figure 5(d),
the phase of this screech tone abruptly changes around 6 = 0 and m resulting in a phase
difference of 1. Thus, this screech tone is at a flapping mode. In figure 5(c), there is another
tone at St; = 0.5778 (the blue arrow) which has almost equivalent amplitudes from 6 = 0
to 2. As shown in figure 5(d), the phase of this tone continuously fluctuates along the
circular line and the phase differences between different azimuthal angles are obviously
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FIGURE 5. Noise spectra (a,c,e) and phase distributions (b,d,f) of screech tones along the
circular line (x, r) = (0, 2) for the jet at NPR =2.2 (a,b), NPR =2.4 (c,d) and NPR =2.6 (e, f).
The colours of the arrows in (a,c,e) correspond to the colours of the curves in (b.d, f).

less than . The extreme value points on the phase curve are near & = 0 and = where the
phase of the screech tone at St; = 0.4237 jumps. It can be inferred that the screech tone
at St; = 0.5778 is at an axisymmetric mode, but becomes a little tilted under the influence
of the flapping mode. For the jet at the NPR of 2.6, in figure 5(e), there is a screech tone
at St; = 0.3743 (the magenta arrow) that has variable amplitudes along the circular line of
(x,r) = (0, 2). And as shown in figure 5(f), the phase of this tone also abruptly changes
leading to a phase difference of m. Thus, this screech tone is also at a flapping mode.

The acoustic wavelengths of the screech tones are calculated based on the screech
frequencies and the ambient sound velocity. Figure 6 shows the comparisons of
the acoustic wavelengths obtained from the present numerical simulations and the
experiments of Ponton & Seiner (1992). The acoustic wavelengths shown in figure 6 are
non-dimensionalized by the nozzle exit diameter D. The steady increase of the acoustic
wavelength with the increasing ideally expanded Mach number M; is segmented into
several stages corresponding to the different instability modes of the jets. As shown in
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FIGURE 6. The comparisons of screech tone acoustic wavelengths between the experiments of
Ponton & Seiner (1992) (red, ¥ = Al, o=A2 and A =B modes for the nozzle with the lip of
0.2D; blue, ¥ = Al, o = A2 and A = B modes for the nozzle with the lip of 0.4D); and the present
numerical simulations (black, ¥ =Al, o=A2 and A =B modes). M; is the ideally expanded
Mach number.

NPR/M; Screech mode St

2.2/1.1240 Al 0.5804
2.4/1.1921 A2 0.5778
2.4/1.1921 B 0.4237
2.6/1.2528 B 0.3743

TABLE 3. The modes and Strouhal numbers of the screech tones; M; is the ideally expanded
Mach number.

figure 6, at the NPR of 2.2 (M; = 1.1240), the acoustic wavelength of the screech tone
falls on the extension of the curve for the Al mode. For the jet at the NPR of 2.4
(M; = 1.1921), the acoustic wavelengths of screech tones are located at the curves for
the A2 and B mode, respectively. And at the NPR of 2.6 (M; = 1.2528), the acoustic
wavelength also has a good agreement with the experimental results at the B mode. Powell
et al. (1992) demonstrated that the A1 and A2 modes are two toroidal modes and the B
mode is a flapping mode. The characteristics of these modes agree well with the features
of the screech tones that are shown in figure 5. Hu & McLaughlin (1990) suggested
that the fine-scale turbulence is extraneous to the basic screech phenomenon. In their
experiments, the screech frequencies of low-Reynolds-number jets agree well with their
high-Reynolds-number counterparts. The present numerical simulations are conducted on
jets with a low Reynolds number and the numerical results are also in good agreement
with the experimental data. On the other hand, the good agreement between numerical
and experimental results also demonstrates the accuracy of the present simulations. The
modes and frequencies of the screech tones in the present simulations are summarized in
table 3.

At the NPR of 2.4, two screech tones are presented in figure 5(c). However, Fourier
analysis cannot reveal whether these two modes are coexisting or switching in a mutually
exclusive fashion. Here we investigate the dynamic characteristics of screech tones via the
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FIGURE 7. Time—frequency scalograms: (a) for the NPR=2.2 jet, at (x,0,r) = (0, /2, 2),
the blue dashed line corresponds to St; = 0.5804; (b) for the NPR=2.6 jet, at (x,0,r) =
(0, /2, 2), the blue dashed line corresponds to S#; = 0.3743 and the purple dashed line
corresponds to Sz; = 0.749.

continuous wavelet transform (CWT) (Mancinelli e al. 2017, 2019). The wavelet transform
is performed on the fluctuating pressure signal. The detailed process of the CWT is given
by Mancinelli et al. (2017). The bump wavelet kernel is used here. The present CWT
analyses are carried out by using the Matlab® software.

The fluctuating pressure is obtained at 1000 instants from the numerical simulations.
Because of the edge effect of the CWT, the results from the 200th to the 800th stored
instants are shown. Firstly, the CWT analyses are conducted on the pressure fluctuations
at a point in the nozzle exit plane for the jets at the NPRs of 2.2 and 2.6. The results are
shown in figure 7(a,b), respectively. The screech frequencies and amplitudes for these two
jets can remain stable in the time range of the numerical simulations. This demonstrates
that the numerical simulations conducted on these two jets have reached stable states. Each
screech tone corresponds to a high-amplitude band in figure 7. However, the current results
are able to display the time evolutions of the screech frequencies and amplitudes.

Figure 8 shows the CWT results for the jet at the NPR of 2.4. At the point (x, 8, r) =
(0, i, 2), only the screech tone at the A2 mode (the purple dashed line) is detected in
figure 8(a). However, at the point (x, 0, r) = (0, 3w /2, 2), the screech tone at the A2 mode
(the purple dashed line) and the B mode (the blue dashed line) can coexist steadily in
figure 8(b). Furthermore, the CWT is applied on the fluctuating pressure in the jet shear
layer. As shown in figure 9, at the azimuthal angle of 31/2, the instability waves at the B
mode have a higher amplitude. The frequencies and amplitudes of the instability waves at
the A2 and B modes are stable. Based on the above analyses, it can be concluded that the
A2 and B modes can coexist in the jet at the NPR of 2.4. The screech tone at the B mode
possessing a higher amplitude is dominant.

3.4. Fourier decomposition of the pressure field

The amplitude and phase fields of pressure fluctuations at the screech frequencies are
obtained by Fourier transforms. As shown in figure 10(a—d), the amplitude fields in
the (x, r) planes exhibit several cell structures along the jet boundary. These structures
are standing waves, which have been observed previously in supersonic screeching
jets experimentally by Panda (1999) and numerically by Gojon & Bogey (2017).
Panda (1999) suggested that this standing wave pattern is formed by the interference
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FIGURE 8. Time—frequency scalograms for the NPR =2.4 jet: (a) at (x,0,r) = (0, =, 2) and
(b) at (x, 0, r) = (0,3m/2, 2). The purple dashed line corresponds to St; = 0.5778, and the blue
dashed line corresponds to St; = 0.4237.
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FIGURE 9. Time—frequency scalogram for the NPR =2.4 jet at (x, 0, r) = (0.8,37w/2,0.5).
The purple dashed line corresponds to S#; = 0.5778, and the blue dashed line corresponds to
St; = 0.4237.

between the downstream-propagating instability waves and the upstream-propagating
acoustic fluctuations. The wavenumber of the standing wave k;,, can be calculated as

kg = ky + ki, (3.3)

where k, and k, are, respectively, the wavenumbers of the upstream-propagating acoustic
waves and the downstream-propagating instability waves (Panda 1999).

Detailed information about the spatial organizations of the pressure fields at the screech
frequencies is revealed by the phase fields in the (x, r) planes and the nozzle exit plane. For
the jet at the NPR of 2.2, the phase field at the screech frequency is symmetrical to the jet
axis in figure 10(e), and is shown as an axisymmetric annular distribution in figure 11(e).
Moreover, as shown in figure 11(a), the amplitudes at different azimuthal angles are nearly
equivalent near the nozzle. These results further confirm that the screech tone of the jet
at the NPR of 2.2 is at the axisymmetric A1 mode. Similar results are also found in
figures 10(f), 11(b) and 11(f) for the screech tone at the NPR of 2.4 and St; = 0.5778,
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FIGURE 10. Amplitude (a—d) and phase (e—h) fields obtained in the (x,r) planes for the
pressure fluctuations at screech frequencies: (a,e) NPR =2.2 and St; = 0.5804; (b,f) NPR=2.4
and St; = 0.5778; (c,g) NPR=2.4 and St; = 0.4237; (d,h) NPR =2.6 and St; = 0.3743. The
dashed black lines mark the axial ranges of the effective sources. The black solid lines indicate
the axial positions of the shock reflection points at the jet shear layer.

and confirm that this tone is at the axisymmetric A2 mode. As for the screech tone at
the NPR of 2.4 and St; = 0.4237, the phase field appears antisymmetric with respect to
the jet axis in figure 10(g) and to the line & = 0 and = in figure 11(g), respectively. The
azimuthal directivity of this screech tone is shown in figure 11(c). The radiation pattern
resembling that of an acoustic dipole is characteristic of a flapping screech mode (Shen
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FIGURE 11. Amplitude (a—d) and phase (e—h) fields obtained in the nozzle exit plane for the
pressure fluctuations at screech frequencies: (a,e) NPR =2.2 and St; = 0.5804; (b,f) NPR=2.4
and St; = 0.5778; (c,g) NPR =2.4 and St; = 0.4237; (d,h) NPR = 2.6 and St; = 0.3743.
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FIGURE 12. The distributions of the phase along the line r= 1.5 in figure 10(e—h):
(a) corresponds to figure 10(e), (b) corresponds to figure 10(f), (c¢) corresponds to figure 10(g),
and (d) corresponds to figure 10(h).

& Tam 2002). At the NPR of 2.6, as shown in figures 10(%), 11(d) and 11(h), the phase
and amplitude fields of the screech tone at St; = 0.3743 also display the characteristics
of a flapping screech mode. For the two screech tones at the B mode, different azimuthal
directivity angles can be observed in figure 11(c,d). The azimuthal directivity angle for a
screech tone at the B mode is in a random fashion.

To determine the effective source locations for different screech tones, the distributions
of the phase along the line » = 1.5 in figure 10(e—h) are shown in figure 12. Except for
some discontinuity points, the sign of the slope of the phase changes around a range
of axial positions in different cases. The slope of the phase is inversely proportional to
the phase velocity of the wave projected onto the line. The inversion of the sign of the
slope implies the inversion of the propagation direction of the wave (Mercier et al. 2017).
In the present study, at upstream regions, the sign of the slope is positive and the wave
propagates upstream. At downstream locations, the sign of the slope is negative and the
wave propagates downstream. Therefore, the effective sources of the screech tones can
be determined by figure 12. The effective source locations are at X/D = 2.5 ~ 3 for the
A1l mode at the NPR of 2.2, at X/D = 3.2 ~ 3.6 for the A2 mode at the NPR of 2.4,
at X/D = 2.4 ~ 3 for the B mode at the NPR of 2.4 and at X/D = 2.7 ~ 3.6 for the B
mode at the NPR of 2.6. The ranges of the effective sources are marked in figure 10. The
effective sources of the screech tones are located downstream of the fourth shock cell at
the A1 and A2 modes and downstream of the third shock cell at the B mode.

For supersonic impinging jets, the acoustic feedback loop is established between the
nozzle exit and the impinging plate. By considering the two semi-cells near the nozzle
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NPR Screech mode N, Nshock
2.2 Al 4 4
24 A2 5 4
2.4 B 3 3
2.6 B 3 3

TABLE 4. The characteristics of the screech feedback loops: N, is the number of periods
contained in the feedback loop; Nk is the number of shock cells between the nozzle and
the effective source.

and the plate as one cell, the structures of hydrodynamic—acoustic standing waves contain
a whole number of cells N;,, (Bogey & Gojon 2017). Gojon, Bogey & Marsden (2016)
demonstrated that N, is also the number of periods N, contained in the feedback loop.
Here, for supersonic free jets, we consider that there are two semi-cells near the nozzle
and the effective source location. The number of standing wave cells, namely the number
of periods contained in the screech feedback loop, can be determined from figure 10(a—d).
For the A1 mode, four periods are contained in the feedback loop, the A2 mode contains
five periods and there are three periods in the feedback loop at the B mode. These
results are in good agreement with the experimental results of Mercier et al. (2017). The
characteristics of the screech feedback loops are summarized in table 4.

3.5. Velocity spectra

Figure 13 shows the power spectral densities (PSD) of the axial velocity fluctuations on
the lip line (r = 0.5) at three axial positions. These spectra are azimuthally averaged.
The first location of X/D = 3 is near or in the regions of the effective sources of the
screech tones, and several peaks corresponding to the screech tones and their second
harmonics can be observed. As shown in figure 13(a), for the jet at the NPR of 2.2, the
peaks at St; = 0.5804 (the magenta arrow) and 1.18 (the green arrow) are associated with
the screech tone at the A1 mode and its second harmonic, respectively. And a plateau
centred around St; = 0.29 (the blue arrow), which is related to the subharmonic of the
screech tone, also appears. For the jet at the NPR of 2.4, the peaks at St; = 0.4237
(the magenta arrow) and 0.5778 (the blue arrow), which are respectively associated with
the screech tones at the B and A2 modes and the peak at St; = 0.86 (the green arrow)
corresponding to the second harmonic at the B mode, are observed in figure 13(b).
Because of the coexistence of these two screech modes, two humps around Sz; = 0.15
(the frequency difference between the screech tones at the A2 and B modes, the cyan
arrow) and St; = 0.28 (the frequency difference between the screech tone at the A2 mode
and the second harmonic at the B mode, the red arrow) also appear in figure 13(b).
And at the NPR of 2.6, the peaks corresponding to the screech tone (St; = 0.3743, the
magenta arrow) and the second harmonic (St; = 0.749, the blue arrow) can be observed in
figure 13(c).

At the second axial position of X/D = 7, the velocity spectra are shown as broadband
curves. The plateau around St = 0.29 is still visible for the jet at the NPR of 2.2 in
figure 13(a). As shown in figure 13(b,c), because of the laminar-to-turbulent transition,
a range of the spectra follows the —5/3 slope for the jets at the NPRs of 2.4 and 2.6.
These results correspond to the more complex vortical structures at this axial position in
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FIGURE 13. The power spectral densities (PSD) of non-dimensional axial velocity fluctuations
', at X/D =3, 7 and 12 as a function of Stj: (@) NPR=2.2, (b) NPR=2.4 and (c) NPR =2.6.

figure 2(b,c). The screech tone is produced by the growth of the natural jet instability, and
the jet mixing can be enhanced by the feedback loop (Raman 1998). The enhancement
of mixing depends on the mode and amplitude of the screech tone (Glass 1968; Raman
1998). In the present numerical simulations, for the jets at the NPRs of 2.4 and 2.6, the
dominated screech tones are at the B mode and with higher amplitudes than the tones at
the Al and A2 modes. Therefore, the jets at the NPRs of 2.4 and 2.6 transit into turbulence
earlier than the jet at the NPR of 2.2.

At a further downstream location of X/D = 12, we can observe that a range follows
the —5/3 slope and a range follows the —7 slope in the spectra for all of the jets. This
result agrees with the theoretical analyses of Batchelor (1953) and Heisenberg (1985), and
demonstrates that, at this location, the flow has already transited into turbulence and, in
the present numerical simulations, the inertial subregion and the viscous subrange of the
turbulence have been resolved.

3.6. Convection velocity

The convection velocity of the instability waves in the shear layer is an important
parameter of the screech feedback loop. The screech frequencies at different modes have
already been obtained. The averaged convection velocity is determined as

JR— Wy

=% (3.4)
where w; is the angular frequency of the screech tone. In § 3.4, Fourier transforms
have been conducted on pressure fluctuations and the Fourier coefficients at the screech
frequencies are obtained. The wavenumbers k;, are determined by one-dimensional
spatial Fourier transforms that are performed on the Fourier coefficients at the screech
frequencies. The spatial Fourier transforms are conducted along the axial line of r = 0.6
and in the region of 0 < x < 4 that covers the effective sources. The results are shown
in figure 14. The maximum peaks are marked by the blue dashed lines in figure 14
and the corresponding wavenumbers are collected in table 5 as k,D;. The averaged
convective velocity is calculated by (3.4). The convective Mach numbers M, = Uc/aoo
are shown in table 5 and range from 0.55 to 0.65. The wavenumbers corresponding to the
upstream-propagating acoustic waves k- = —w;/a., are represented by red dashed lines
in figure 14. In each wavenumber spectrum, the central wavenumber of the highest bump
in the negative wavenumber range has a good agreement with k™. It indicates that this
bump is related to the upstream-propagating acoustic wave.
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FIGURE 14. Normalized wavenumber spectra at screech frequencies: (@) NPR=2.2 and St; =
0.5804, (b) NPR =2.4 and St; = 0.5778, (c¢) NPR=2.4 and St; = 0.4237, and (d) NPR=2.6
and St; = 0.3743. The wavenumbers of k= = —w;/a are indicated by the vertical red dashed
lines. The peaks in positive wavenumber range are indicated by the vertical blue dashed lines.

NPR Screech mode kpD; M.

2.2 Al 6.51 0.563
2.4 A2 5.91 0.646
2.4 B 5.01 0.559
2.6 B 4.56 0.564

TABLE 5. The wavenumber and convective Mach number of the instability waves.

4. Aeroacoustic feedback model
4.1. Classical feedback model

The screech tone of underexpanded free jets is due to an acoustic feedback loop, which was
described in Powell (1953) and Tam (1995). This feedback mechanism establishes between
the nozzle lip and the effective source. The instability waves in the jet shear layer interact
with shocks around the effective source and the upstream-propagating feedback acoustic
waves are produced. The feedback acoustic waves propagate to the nozzle exit outside the
jet, excite the shear layer and close the feedback loop. Based on this classical feedback
model, the non-dimensional screech frequency f; can be predicted as (Powell 1953)

M.

= 4.1
/lsh(l +Mc)’ ( )

I
where Ay, is the spacing of the shock cell non-dimensionalized by the nozzle exit diameter
D. To account for the staging behaviour of the screech tone, Gao & Li (2010) characterized
each mode by the parameters N, and Ny, and proposed a modification of (4.1):

N,M,

- ‘ 4.2
f Nshock/lsh(l + Mc) ( )

Screech frequencies are estimated by (4.2) based on the parameters given in tables 4
and 5. The spacing of the first shock cell A; determined numerically in table 2 is
used to approximate the spacing of the shock cell in (4.2). In table 6, these estimated
screech frequencies are compared with the screech frequencies that are obtained from
the numerical simulations. The screech frequencies estimated by the classical feedback
model are in good agreement with the numerical results. However, the coexistence of the
screech tones at the A2 and B modes cannot be explained by the feedback model reported
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NPR  Screechmode St (givenintable 2)  St; (calculated by (4.2))  Relative error (%)

22 Al 0.5804 0.5820 0.3
2.4 A2 0.5778 0.5986 3.6
24 B 0.4237 0.4375 33
2.6 B 0.3743 0.3632 3.0

TABLE 6. Comparison of screech frequencies obtained from the numerical simulations and
estimated by equation (4.2).

above. For that reason, an alternative feedback model, which is associated with the
upstream-propagating acoustic wave mode of the jet (Tam & Ahuja 1990), is considered
in the following section.

4.2. Combination of the feedback model and the upstream-propagating acoustic modes
of the jets

The upstream-propagating neutral acoustic wave modes of high-speed jets were first
identified by Tam & Hu (1989). In the feedback models proposed by Tam & Ahuja
(1990) and Tam & Norum (1992), the feedback loops in subsonic round impinging jets
and supersonic rectangular impinging jets are closed by the waves belonging to the
upstream-propagating acoustic modes of the jets. Recently, these acoustic modes have
been detected in the potential core of subsonic free jets by Towne et al. (2017) and
in supersonic impinging jets by Gojon et al. (2016) and Bogey & Gojon (2017). Some
evidence also demonstrates that the screech feedback loops in supersonic free jets are
closed by the neutral acoustic wave modes (Edgington-Mitchell ef al. 2018; Gojon et al.
2018; Mancinelli ef al. 2019).

The dispersion relation of the upstream-propagating neutral acoustic wave mode in a
round jet was derived by Tam & Ahuja (1990). For the neutral acoustic wave modes
considered here, both the axial wavenumber k and angular frequency  are real numbers.
The dispersion relation can be written as

K. +K,
AFA(R) 1(|‘$§-s-10(‘|)(|S a|;—1(|§+05|)
n\S+

_CEL (el = Jr (D] =0 3)
(aOOC/aj _ ]‘4])2 n n ’

where a., and g; are the sound speeds in the ambient and at the ideally expanded condition
of the jet, C = w/(kas), J, is the nth-order Bessel function of the first kind, &, =
|C? — 1'% & = |(axC/a; — Mj)* — 1'%, @ = kD;/2 and K, is the nth-order modified
Bessel function. For the underexpanded jets in the present numerical simulations, the
equivalent ideally expanded Mach number M; and nozzle diameter D; at different NPRs
are given by

1., 51 v+D/4y—1) 12
M/' — \/(NPR(VI)/V _ 1)L Dj — [M} (%) ,

y—1" D |1+iy-Dm M;

(4.4a,b)

where y = 1.4 and the exit Mach number M, = 1 for the convergent nozzle.
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FIGURE 15. Representation of the dispersion relations of the axisymmetric neutral acoustic
wave modes for an ideally expanded jet at M; = 1.1240. The red dot indicates the lower limits of
the modes; the magenta dotted lines show the relation (4.5) for the A1 mode at the NPR of 2.2;
and the diamond marks the screech frequency at the A1 mode.

In order to combine the classical feedback model and the upstream-propagating acoustic
wave mode of the jet, the wavenumber k, of the upstream-propagating acoustic wave in
the classical feedback loop is assumed to be equal to the opposite of the wavenumber
k of the upstream-propagating acoustic wave mode (Gojon et al. 2016; Bogey & Gojon
2017). By considering that ky, = 21N,/ (NsockAsn)s Now = N, kyy = 21f /M, and k, =
—k, equation (3.3) yields

N,M. kM.
Nshuck/lsh 27 '

The solutions of this equation are dependent on the location of the effective source and
the averaged convection Mach number.

For each o and azimuthal wavenumber n, the dispersion relation (4.3) has many
eigenvalues that can be ordered according to their radial wavenumber m (Tam & Hu 1989).
In what follows, the acoustic mode that corresponds to the azimuthal wavenumber n and
the radial wavenumber m will be denoted by (n, m) for convenience.

In figure 15, the dispersion relations of the axisymmetric acoustic wave modes for the
ideally expanded jet at M; = 1.1240 and the solutions of the feedback model (4.5) for
the A1 mode at the NPR of 2.2 are shown as functions of the Strouhal number and the
axial wavenumber. The screech tone at St; = 0.5804 is also indicated on the line k =
—w/ax. As shown in figure 15, the screech tone is located at the intersection of the line
k = —w/a and the line of equation (4.5) at N, =4, and just below the curve of the
(0, 2) mode. The small discrepancy may be due to the presence of shocks in the simulated
jet (Gojon et al. 2018) and the hypothesis of an inviscid infinitely thin shear layer in the
vortex sheet model (Tam & Ahuja 1990). In the same way, the results of the axisymmetric
acoustic wave modes for the ideally expanded jet at M; = 1.1921 and the feedback model
(4.5) for the A2 mode at the NPR of 2.4 are shown in figure 16. The screech tone at
St; = 0.5778 is very close to the intersection of the curve of the (0, 2) mode and the line
of the feedback model (4.5) with N, = 5. The above results are in agreement with the
properties of the screech feedback loop summarized in table 4 and indicate that the screech
tones at the Al and A2 modes are generated by the feedback loops that are closed by the
upstream-propagating (0, 2) mode of the equivalent ideally expanded jets. This conclusion
agrees with the results of Edgington-Mitchell et al. (2018).

= 4.5)
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FIGURE 16. Representation of the dispersion relations of the axisymmetric neutral acoustic
wave modes for an ideally expanded jet at M; = 1.1921. The red dot indicates the lower limits of
the modes; the magenta dotted lines show the relation (4.5) for the A2 mode at the NPR of 2.4;
and the diamond marks the screech frequency at the A2 mode.

The screech frequencies at the A1 and A2 modes are located just above or below the
lower limit of the (0, 2) mode. As shown by the dispersion curves in figures 15 and 16,
the group velocities and phase velocities of the waves near the lower limit of the (0, 2)
mode are very close to —a... It indicates that the upstream-propagating waves that close
the feedback loop should propagate at a speed that is nearly equal to —a... This is also one
requirement of the classical feedback model (4.2).

The flapping B mode can be modelled by two oppositely rotating helical modes that have
the same amplitude (Powell et al. 1992; Ponton & Seiner 1995). Thus, the relation between
the screech frequencies at the B mode and the helical (n = 1) upstream-propagating
acoustic wave modes are examined here. The results of the model combination for the
jet at the NPR of 2.4 and the screech tone at the B mode are shown in figure 17. The
screech tone at St; = 0.4237 is located at the intersection of the line k = —w/a,, and the
line of equation (4.5) at N, = 3, and below the curve of the (1, 1) mode. A similar result
is shown in figure 18 for the jet at the NPR of 2.6 with a larger difference between the
screech frequency and the lower limit of the (1, 1) mode. Thus, the modified feedback
model combined with the helical acoustic mode fails to estimate the screech frequency at
the B mode. The screech feedback loop is closed by the upstream-propagating free-stream
acoustic waves at the B mode.

Based on the wavelet analysis in § 3.3, for the jet at the NPR of 2.4, the screech
tones at the A2 and B modes can coexist. In the research of Mancinelli er al. (2019),
the screech tones at the Al and A2 modes for the underexpanded jet at M; = 1.125 are
mutually exclusive. The dispersion relations of the axisymmetric acoustic wave modes
of the ideally expanded jet at M; = 1.125 are shown in figure 19. The screech tones at
St; = 0.63 (A1 mode) and St; = 0.7 (A2 mode) are obtained from Mancinelli et al. (2019)
and labelled on the line k = —w/ay. Both of the screech tones are located at the curve of
the acoustic wave mode (0, 2). For the screech tones at the A1 and A2 modes, the (0, 2)
mode is the upstream-propagating component of the feedback cycle. For the B mode,
the feedback process is closed by the upstream-propagating free-stream acoustic waves.
Different upstream-propagating components of the feedback loops result in the coexistence
of the A2 and B modes. And the same upstream-propagating component of the feedback
loop leads to the mutual exclusion between the screech tones at the Al and A2 modes.
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FIGURE 17. Representation of the dispersion relations of the helical neutral acoustic wave
modes for an ideally expanded jet at M; = 1.1921. The red dot indicates the lower limits of the

modes; the magenta dotted lines show the relation (4.5) for the B mode at the NPR of 2.4; and
the square marks the screech frequency at the B mode.
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FIGURE 18. Representation of the dispersion relations of the helical neutral acoustic wave
modes for an ideally expanded jet at M; = 1.2528. The red dot indicates the lower limits of
the modes; the magenta dotted lines show the relation (4.5) for the B mode at the NPR of 2.6;
and the square marks the screech frequency at the B mode.

5. Dynamic mode decomposition
5.1. The DMD algorithm

Unsteady flows always exhibit complex flow structures, with a wide range of temporal
and spatial features. Some modal analysis techniques, such as proper orthogonal
decomposition (POD; Lumley 1967; Sirovich 1987) and dynamic mode decomposition
(DMD; Schmid 2010), are used to extract the physically important coherent structures.
The temporal coefficient of a spatial POD mode generally contains a mix of frequencies
(Taira et al. 2017). DMD provides a method to decompose the time-resolved data that are
obtained from numerical simulations or experiments into modes, with each mode having
a single temporal frequency and growth/decay rate (Taira et al. 2017). Thus, the coherent
flow structures associated with the screech tones are extracted by DMD in the present
paper. The key steps of DMD (Schmid 2010) are outlined briefly in what follows.
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FIGURE 19. Representation of the dispersion relations of the axisymmetric neutral acoustic
wave modes for an ideally expanded jet at M; = 1.125. The red dot indicates the lower limits
of the acoustic wave modes; the screech frequencies at the Al mode (blue diamond) and A2
mode (red diamond) are obtained from Mancinelli e al. (2019).

The instantaneous data are represented in the form of a snapshot sequence, and two data
matrices are given as

Vi ={vo,v1,va,....0n_1}, Vo={v),02, 03 ...,0p}, (5.1a,b)

where v; is the data sample at the ith temporal instant. We assume that a linear mapping A
connects these two matrices, that is

Vv, = AV,. (5.2)
A singular value decomposition on the data matrix V; is performed,
vV, =Uxw, (5.3)

where the superscript ‘H’ denotes conjugate transpose. By combining the result of the
singular value decomposition and (5.2), we obtain that

fau=Uv,wx'=s. (5.4)
The DMD eigenvalues p; are obtained by solving the following eigenvalue problem:
Sy, = Wiy (5.5
And the DMD modes @®; are obtained by
®, = Uy,. (5.6)

5.2. DMD results

In the present DMD, the instantaneous flow variables of the non-dimensional velocity
components u,, uy, u, and pressure p are analysed simultaneously. The data from
two-dimensional sections of the flow field constitute the data sample at each instant. The
total number of snapshots is 501 and the non-dimensional time interval is 0.05.
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NPR Screech mode St; (given in table 2) St; (from DMD) Planes

2.2 Al 0.5804 0.5882 f=0and
2.4 A2 0.5778 0.5789 0 =0and 7
2.4 B 0.4237 0.4317 6 = w/2and 37t/2
2.6 B 0.3743 0.3806 f=0and 7t

TABLE 7. Strouhal numbers of the chosen DMD modes.
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FIGURE 20. The real part of the DMD mode at St; = 0.5882 for the NPR = 2.2 jet in the planes
6 = 0 and m: (a) the pressure component @, (b) the axial velocity component @, , (c) the
azimuthal velocity component @, and (d) the radial velocity component @, .

At different NPRs, the screech frequencies are obtained by the Fourier transforms
conducted on the fluctuating pressure in § 3.3. Thus, the DMD modes whose frequencies
are nearest to the screech frequencies are chosen and analysed in detail. For different
screech tones, the data in different azimuthal planes are processed by the DMD algorithm.
The subdomain considered in the current DMD analyses extends from x = =2 to x = 5,
which covers the effective source location at each screech mode. The frequencies of the
chosen DMD modes are compared with the screech frequencies in table 7.

The DMD mode at St; = 0.5882 for the jet at the NPR of 2.2 is shown in figure 20. The
contour levels of the pressure component are adjusted to show the acoustic waves in the
ambient of the jet. In figure 20(a), the upstream-propagating acoustic waves around the jet
are observed and these waves are symmetric with respect to the jet axis. The symmetrical
distributions of the axial and radial velocity components correspond to the axisymmetric
vortices that are shown in figure 2(a). Moreover, there is nearly nothing shown in the
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FIGURE 21. The real part of the DMD mode at St; = 0.4317 for the NPR = 2.4 jet in the planes
0 = m/2 and 37/2: (a) the pressure component @, (b) the axial velocity component @, ,
(¢) the azimuthal velocity component @, and (d) the radial velocity component @, .
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FIGURE 22. The real part of the DMD mode at St; = 0.5789 for the NPR = 2.4 jet in the planes
0 = 0 and m: (a) the pressure component @, (b) the axial velocity component @, , (¢) the
azimuthal velocity component @, and (d) the radial velocity component @,,, .
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FIGURE 23. The real part of the DMD mode at St; = 0.3806 for the NPR = 2.6 jet in the planes
0 = 0 and m: (a) the pressure component @, (b) the axial velocity component @, , (¢) the
azimuthal velocity component @, and (d) the radial velocity component @,,, .

azimuthal velocity component. These results indicate that the flow structures associated
with the A1 mode are axisymmetric and have no observable azimuthal motions.

For the jet at the NPR of 2.4, the dominant screech tone is at the B mode. The DMD
mode at St; = 0.4317 is shown in figure 21. In figure 21(a), the upstream-propagating
acoustic waves are out of phase relative to the jet axis. The antisymmetric patterns of the
axial and radial velocity components in the jet shear layer correspond to the antisymmetric
vortices that are shown in figure 2(b). And the flapping motions of the jet in the planes
0 = m/2 and 37w/2 are also represented by the antisymmetric distribution of the radial
velocity around the jet axis. As shown in figure 21(c), upstream of the effective source,
there is nearly nothing displayed by the azimuthal velocity component. Because of the
enhancement of the jet mixing, scattered distributions of the azimuthal velocity can be
observed downstream of the effective source.

At the NPR of 2.4, the A2 and B modes are coexisting. The DMD mode at St; = 0.5789
in the planes 6§ =0 and m is shown in figure 22. The symmetrical distributions of
the pressure, axial velocity and radial velocity are observed in figure 22(a,b,d). These
results represent the axisymmetric characteristics of the A2 mode. However, as shown
in figure 22(c), the distribution of azimuthal velocity is nearly antisymmetric. The
antisymmetric distribution of the azimuthal velocity is a representation of the motion that
is vertical to the plane. By considering that the coherent structures associated with the
B mode show a flapping motion in the planes & = w/2 and 37/2, which are vertical to
the planes in figure 22, it can be concluded that the flow structures associated with the
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A2 mode display a slight oscillation that is vertical to the planes # = 0 and 7 under the
influence of the flow structures associated with the B mode.

As for the B mode of the jet at the NPR of 2.6, the DMD mode at St; = 0.3806 in the
planes & = 0 and 7 is shown in figure 23. As shown in figure 23(a,b,d), the distributions
of the pressure, axial velocity and radial velocity are antisymmetric corresponding to the
characteristics of the flapping B mode. As shown in figure 23(d), the in-plane flapping
motions of the jet and the shock that is located at x = 1.5 ~ 2 are displayed by the
antisymmetric distribution of the radial velocity near the jet axis. Furthermore, the
symmetric distribution of the azimuthal velocity is observed in figure 23(c) and this is
a representation of the rotational movement in the azimuthal direction.

6. Conclusion

In this paper, numerical simulations are conducted on the underexpanded free jets at the
NPRs of 2.2, 2.4 and 2.6 and a Reynolds number of 2.5 x 10°. The acoustic feedback loop
responsible for the production of the screech tone and the staging process between the A2
and B modes are investigated.

At first, the main characteristics of the flow fields, such as the instantaneous flow
structures and the shock cell spacings, are represented. The screech frequencies are
obtained via the Fourier transforms conducted on the fluctuating pressure in the nozzle exit
plane. The screech tone is at the A1 mode for the jet at the NPR of 2.2 and at the B mode
for the jet at the NPR of 2.6. Two screech tones that are respectively at the A2 mode and
the B mode are identified in the jet at the NPR of 2.4. The results of the wavelet analyses
demonstrate that the screech tones at the A2 and B modes can coexist. The detailed spatial
organization of the acoustic feedback loops is explored through the phase and amplitude
fields at the screech frequencies. The numbers of shock cells between the nozzle exit and
the effective sources are four for the A1 and A2 modes and three for the B mode. The
number of periods contained in the feedback loop is equal to the number of cells in the
standing wave pattern between the nozzle and the effective source. There are four periods
for the A1 mode, five periods for the A2 mode and three periods for the B mode. The
velocity spectra at different axial positions and the convection velocities of the instability
waves are also obtained.

Secondly, based on the present numerical results, the classical feedback model
which is closed by the acoustic waves travelling upstream outside the jet accurately
estimates the screech frequencies at different modes. A modified model that combines
the classical feedback model and the upstream-propagating acoustic wave mode of the
equivalent ideally expanded jet is introduced. The (0, 2) acoustic mode constitutes the
upstream-propagating component of the feedback loop at the A1 and A2 modes. However,
the modified model cannot estimate the screech frequency at the B mode. Thus, the screech
feedback loop at the B mode is closed by the upstream-propagating free-stream acoustic
waves. Different upstream-propagating components of the feedback loops are the reason
why the screech tones at the A2 and B modes can coexist.

Finally, the coherent structures associated with the screech tones are extracted by DMD.
The coherent structures have the same characteristics as the corresponding screech modes.
The flow structures associated with the A2 mode exhibit a slight flapping motion under
the influence of the B mode.
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