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FROM A1 TO D5: TOWARDS A FORCING-RELATED CLASSIFICATION
OF RELATIONAL STRUCTURES

MILOŠ S. KURILIĆ

Abstract. We investigate the partial orderings of the form 〈P(X),⊂〉, where X is a relational structure
and P(X) the set of the domains of its isomorphic substructures. A rough classification of countable binary
structures corresponding to the forcing-related properties of the posets of their copies is obtained.

§1. Introduction. The relational structure X = 〈�,<〉, where < is the natural
order on the set � of natural numbers is a structure having the following extremal
property: each �-sized subset A of � determines a substructure isomorphic to the
whole structure. If instead of 〈�,<〉we take the integer line Z = 〈Z,<〉, then we lose
the maximality of the set of isomorphic substructures (the set of positive integers is
not a copy of Z). Finally, the minimality of the set of copies is reached by the linear
graph GZ = 〈Z, �〉, where � = {〈m, n〉 : |m − n| = 1}, since each proper subset A
of Z determines a disconnected graph and, hence, fails to be a copy of the whole
graph.
We investigate the posets of the form 〈P(X),⊂〉, where X is a relational structure
and P(X) the set of the domains of its isomorphic substructures. Although some
of our statements are general, the main result of the paper is the diagram on
Figure 1, describing an interplay between the properties of a countable binary
structure X and the properties of the corresponding poset 〈P(X),⊂〉. So we obtain
a rough classification of countable binary structures concerning the forcing-related
properties of the posets of their copies: for the structures from columnA (resp. B; D)
the corresponding posets are forcing equivalent to the trivial poset (resp. the Cohen
forcing, 〈<�2,⊃〉; a �-closed atomless poset) and the wild animals are in cages
C3 and C4, where the posets of copies are forcing equivalent to the quotients of the
form P(�)/I, for some co-analytic tall ideal I.
Clearly, such classification depends on the model of set theory in which we
work. For example, under the CH all the structures from column D are in the
same class (having the posets of copies forcing equivalent to (P(�)/Fin)+),
but this is not true in the Mathias model. Also the classification is very rough.
Namely, it is easy to see that equimorphic structures have forcing equivalent posets
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Figure 1. Binary relations on countable sets.

of copies [4] and, hence, all countable nonscattered linear orders are equivalent
in this sense. Moreover, the class of structures satisfying P(X) = {X} contains
continuum many nonequimorphic structures [7].
A few words on notation. Let L = {Ri : i ∈ I } be a relational language, where
ar(Ri) = ni , i ∈ I . An L-structure X = 〈X, {�i : i ∈ I }〉 is called countable iff
|X | = �; binary iff L = {R} and ar(R) = 2. If A ⊂ X , then 〈A, {(�i )A : i ∈ I }〉
is a substructure of X, where (�i)A = �i ∩ Ani , i ∈ I . If Y = 〈Y, {�i : i ∈ I }〉 is an
L-structure too, a mapping f : X → Y is an embedding (we write X ↪→f Y) iff it is
an injection and

∀i ∈ I ∀〈x1, . . . , xni 〉 ∈ Xni (〈x1, . . . , xni 〉 ∈ �i ⇔ 〈f(x1), . . . , f(xni )〉 ∈ �i).
If X embeds in Y we write X ↪→ Y. Let Emb(X,Y) = {f : X ↪→f Y} and
Emb(X) = {f : X ↪→f X}. If, in addition, f is a surjection, it is an isomorphism
(we write X ∼=f Y) and the structures X and Y are isomorphic, in notation X ∼= Y.
So we investigate the posets of the form 〈P(X),⊂〉, where X = 〈X, {�i : i ∈ I }〉 is a
relational structure and

P(X) = {A ⊂ X : 〈A, {(�i)A : i ∈ I }〉 ∼= X} = {f[X ] : f ∈ Emb(X)}.
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More generally, if Y = 〈Y, {�i : i ∈ I }〉 is a structure of the same language, let
P(X,Y) = {B ⊂ Y : 〈B, {(�i)B : i ∈ I }〉 ∼= X} = {f[X ] : f ∈ Emb(X,Y)}.

§2. Homogeneity and atoms. If P = 〈P,≤〉 is a partial order, p, q ∈ P are com-
patible iff there is r ≤ p, q. Otherwise p and q are incompatible and we write p ⊥ q.
p ∈ P is an atom, in notation p ∈ At(P), iff each q, r ≤ p are compatible. P is
called: atomless iff At(P) = ∅; atomic iff At(P) is dense in P; homogeneous iff it has
a largest element and P ∼= p↓= (−∞, p]P, for each p ∈ P. Clearly we have
Fact 2.1. A homogeneous posetP=〈P,≤〉 is either atomless or downwards directed
and At(P) = P in the second case.
A family B is an uniform filter base on a set X iff (UFB1) ∅ �= B ⊂ [X ]|X |; (UFB2)
For each A,B ∈ B there is C ∈ B such that C ⊂ A ∩ B.
Theorem 2.2. Let X = 〈X, {�i : i ∈ I }〉 be a relational structure. Then
(a) 〈P(X),⊂〉 is a homogeneous poset;
(b) 〈P(X),⊂〉 is either atomless or atomic;
(c) 〈P(X),⊂〉 is atomless iff it contains two incompatible elements;
(d) If 〈P(X),⊂〉 is atomic, then At(P(X)) = P(X) and, moreover, P(X) is an
uniform filter base on X . Also

⋂
P(X) ∈ P(X) iff P(X) = {X}.

Proof. (a) Clearly, 1P(X) = X . Let C ∈ P(X) and f ∈ Emb(X), where C =
f[X ].We show that 〈P(X),⊂〉 ∼=F 〈(−∞, C ]P(X),⊂〉, where the functionF is defined
by F (A) = f[A], for each A ∈ P(X). For A ∈ P(X) we have F (A) ⊂ C and
there is g ∈ Emb(X) such that A = g[X ]. Clearly f ◦ g ∈ Emb(X) and, hence,
F (A) = f[g[X ]] ∈ P(X). Thus F : P(X)→ (−∞, C ]P(X).
Since f is an injection, f[A] = f[B] implies A = B, so F is an injection.
Let P(X) � B ⊂ C . Since B ⊂ f[X ] we have B = f[f−1[B]] and, clearly,

〈f−1[B], {(�i )f−1[B] : i ∈ I }〉 ∼=f|f−1[B] 〈B, {(�i )B : i ∈ I }〉 ∼= X. Thus f−1[B] ∈
P(X) and B = F (f−1[B]), so F is a surjection.
Since f is an injection, for A,B ∈ P(X) we have A ⊂ B ⇔ f[A] ⊂ f[B]. Thus
F is an order isomorphism.
(b) Follows from (a) and Fact 2.1.
(c) If P(X) contains two incompatible elements, then it is not downwards directed
and, by Fact 2.1, must be atomless.
(d) Let 〈P(X),⊂〉 be atomic. By Fact 2.1, At(P(X)) = P(X) and P(X) satisfies

(UFB2). Since X ∈ P(X) ⊂ [X ]|X |, (UFB1) holds as well. Suppose that A =⋂
P(X) ∈ P(X) and P(X) �= {X}. Then A � X and, since P(X) ∼= A ↓, there is
B ∈ P(X) such that B � A. A contradiction. �

§3. The complexity and size. For each relational structure X we have {X} ⊂
P(X) ⊂ [X ]|X | and P(X) is of size 1 or infinite, because if f ∈ Emb(X) and
f[X ] �= X , then fn[X ], n ∈ N, is a decreasing sequence of elements of P(X). Now
we show that |P(X)| ∈ {1,ℵ0, c}.
By 2� and �� we denote the Cantor cube and the Baire space respectively and
pk : 2� → 2 and �k : �� → �, k ∈ �, will be the corresponding projections. As
usual, the mapping � : P(�) → 2� , where �(A) = �A, for each A ⊂ �, identifies
the subsets of � with their characteristic functions and a set S ⊂ P(�) is called
closed (Borel, analytic ...) iff �[S] is a closed (Borel, analytic ...) set in 2� .
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For S ⊂ P(�) let S ↑= {A ⊂ � : ∃S ∈ S S ⊂ A} and, for A ⊂ 2�, let
A ↑= {x ∈ 2� : ∃a ∈ A a ≤ x}, where a ≤ x means that a(n) ≤ x(n), for all
n ∈ �. Instead of {a}↑ we will write a ↑.
Theorem 3.1. If X = 〈X, {�i : i ∈ I }〉 is a countable relational structure and

IX = {I ⊂ X : ¬∃A ∈ P(X) A ⊂ I }, then
(a) P(X) is an analytic set;
(b) P(X)↑ is an analytic set;
(c) IX is a co-analytic set, has the Baire property and contains the ideal FinX .
(d) The sets P(X) and P(X)↑ have the Baire property and size 1, ℵ0 or c.
Proof. Without loss of generality, we suppose X = �. Let ar(�i) = ni , i ∈ I .
(a) This statement is a folklore but, for completeness, we include its proof.

Claim 3.2. Emb(X) is a closed set in the Baire space, �� .

Proof of Claim 3.2. We show that the set �� \ Emb(X) is open. Let f ∈ �� \
Emb(X).
If f is not an injection and m, n ∈ �, where m �= n and f(m) = f(n) = k, then
�−1m [{k}] ∩ �−1n [{k}] is a neighborhood of f contained in �� \ Emb(X).
Otherwise there are i ∈ I and m1, . . . , mni ∈ � such that 〈m1, . . . , mni 〉 ∈ �i �⇔

〈f(m1), . . . , f(mni )〉 ∈ �i . Then B =
⋂
j≤ni �

−1
mj [{f(mj)}] is a neighborhood of f

contained in �� \ Emb(X). �
Claim 3.3. The mapping F : �� → 2� defined by F (f) = �f[�] is a Borel
mapping.

Proof of Claim 3.3. It is sufficient to show that F−1[p−1n [{j}]] is a Borel set, for
each n ∈ � and j ∈ 2. It is easy to see that F−1[p−1n [{1}]] =

⋃
k∈� �

−1
k [{n}] and

F−1[p−1n [{0}]] = �� \⋃k∈� �−1k [{n}]. �
Now, by Claims 3.2 and 3.3, F [Emb(X)] is an analytic set (see e.g., [1], p. 86) and
it is easy to check that �[P(X)] = F [Emb(X)].
(b) If we regard the set Emb(X) as a subspace of the Baire space �� , then

{�−1k [{n}] ∩ Emb(X) : k, n ∈ �} is a subbase for the corresponding topology on
Emb(X) and we have

Claim 3.4. B =
⋃
f∈Emb(X){f}×�f[�]↑ is a closed set in the productEmb(X)×2�.

Proof of Claim 3.4. Let 〈f, x〉 ∈ (Emb(X) × 2�) \ B. Then x �∈ �f[�] ↑ and,
hence, there is n0 ∈ � such that x(n0) < �f[�](n0). Thus, first, x(n0) = 0, which
implies x ∈ p−1n0 [{0}] and, second,�f[�](n0) = 1, that is n0 ∈ f[�] so there is k0 ∈ �
satisfying f(k0) = n0 and, hence, f ∈ �−1k0 [{n0}]. Now we have 〈f, x〉 ∈ O =
(�−1k0 [{n0}] ∩ Emb(X)) × p−1n0 [{0}] and we show that O ∩ B = ∅. Suppose that
〈g, y〉 ∈ O ∩ B. Then, since 〈g, y〉 ∈ O, we have g(k0) = n0 and y(n0) = 0; since
〈g, y〉 ∈ B we have y ≥ �g[�], which implies ∀n ∈ g[�] y(n) = 1. So y(n0) = 0
implies n0 �∈ g[�], which is not true because g(k0) = n0. ThusO is a neighborhood
of 〈f, x〉 contained in (Emb(X)× 2�) \ B and this set is open. �
Claim 3.5. �[P(X)↑] = �2� [B], where �2� : Emb(X)× 2� → 2� is the projection.
Proof of Claim 3.5. If x ∈ �[P(X)↑], then there are C ∈ P(X) and A such that
C ⊂ A ⊂ � and x = �A. Let f ∈ Emb(X), where C = f[�]. Then f[�] ⊂ A
implies x ≥ �f[�] and, hence, 〈f, x〉 ∈ B and x = �2� (〈f, x〉) ∈ �2� [B].
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If x ∈ �2� [B], then there is f ∈ Emb(X) such that x ≥ �f[�] and for
A = x−1[{1}] we have x = �A ≥ �f[�], which implies P(X) � f[�] ⊂ A, that
is A ∈ P(X)↑ and, hence, x = �(A) ∈ �[P(X)↑]. �
By Claim 3.2, Emb(X) is a Polish space so Emb(X)× 2� is a Polish space too. Since
the projection �2� is continuous, it is a Borel mapping and, by Claim 3.4, �2� [B] is
an analytic set (see [1], p. 86). By Claim 3.5, the set �[P(X)↑] is analytic.
(c) follows from (b) and the equality IX = P(X ) \ P(X)↑.
(d) By Theorem 2.2(d), P(X) = {X} or |P(X)| ≥ ℵ0. Now, the statement follows
from (a), (b) and known facts about analytic sets (see [1]). �

Concerning the complexity of the ideal IX we note that, for example, the ideal
IQ of scattered subsets of the rational line, Q, (see Section 9) is Π11-complete and,
hence, not Borel (apply the rank method and 34.18 of [1]).

§4. The separative quotient. A partial order P = 〈P,≤〉 is called separative iff
for each p, q ∈ P satisfying p �≤ q there is r ∈ P such that r ≤ p and r ⊥ q.
The separative modification of P is the separative preorder sm(P) = 〈P,≤∗〉, where
p ≤∗ q iff ∀r ≤ p ∃s ≤ r s ≤ q. The separative quotient of P is the separative
partial order sq(P) = 〈P/=∗,�〉, where p =∗ q ⇔ p ≤∗ q ∧ q ≤∗ p and
[p] � [q]⇔ p ≤∗ q.
If κ is a regular cardinal, a preorder P = 〈P,≤〉 is κ-closed iff for each 	 < κ
each sequence 〈pα : α < 	〉 in P, such that α < � ⇒ p� ≤ pα , has a lower bound.
�1-closed preorders are called �-closed and the following facts are well known.

Fact 4.1. Let P be a partial order. Then

(a) P, sm(P), and sq(P) are forcing equivalent forcing notions;
(b) P is atomless iff sm(P) is atomless iff sq(P) is atomless.

Fact 4.2. If κ<κ = κ, then all atomless separative κ-closed preorders of size κ,
are forcing equivalent (e.g., to the tree 〈<κκ,⊃〉).
Theorem 4.3. Let X = 〈X, {�i : i ∈ I }〉 be a relational structure. Then
(a) sm〈P(X),⊂〉 = 〈P(X),≤∗〉, where for A,B ∈ P(X)

A ≤∗ B ⇔ ∀C ∈ P(X) (C ⊂ A⇒ ∃D ∈ P(X) D ⊂ C ∩ B); (1)

(b) | sq〈P(X),⊂〉| = 1 iff 〈P(X),⊂〉 is atomic;
(c) | sq〈P(X),⊂〉| ≥ ℵ0 iff 〈P(X),⊂〉 is atomless;
(d) If | sq〈P(X),⊂〉| = ℵ0, then 〈P(X),⊂〉 is forcing equivalent to the reversed
binary tree 〈<�2,⊃〉 (a forcing notion adding one Cohen real );

(e) If CH holds and sq〈P(X),⊂〉 is �-closed, atomless and of size c, then 〈P(X),
⊂〉 is forcing equivalent to (P(�)/Fin)+.

Proof.

(a) This follows directly from the definition of the separative modification.
(b) If | sq〈P(X),⊂〉| = 1, then for each A,B ∈ P(X) we have A ≤∗ B so, by
(1), there is D ∈ P(X) such that D ⊂ A ∩ B. Thus 〈P(X),⊂〉 is downwards
directed and, hence, atomic.
If 〈P(X),⊂〉 is atomic and A,B ∈ P(X), then, by Theorem 2.2(d), for each
C ∈ P(X) satisfying C ⊂ A there is D ∈ P(X) such that D ⊂ C ∩ B. Thus,
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by (1),A ≤∗ B, for eachA,B ∈ P(X). Hence A =∗ B, for eachA,B ∈ P(X),
and, consequently, | sq〈P(X),⊂〉| = 1.

(c) The implication “⇒” follows from (b) and Theorem 2.2(b). If the poset
〈P(X),⊂〉 is atomless, then it contains an infinite antichain {An : n ∈ �}.
By (a), A ≤∗ B implies that A and B are compatible, thus Am �=∗ An, for
m �= n, which implies that the set sq〈P(X),⊂〉 is infinite.

(d) If | sq〈P(X),⊂〉| = ℵ0, then, by (c), the partial order 〈P(X),⊂〉 is atomless
and, by Fact 4.1(b), sq〈P(X),⊂〉 is atomless as well. By Facts 4.1(a) and 4.2
(for κ = �), 〈P(X),⊂〉 is forcing equivalent to the forcing 〈<��,⊃〉 or to
〈<�2,⊃〉.

(e) follows from Facts 4.1(a) and 4.2 (for κ = �1). �

Example 4.4. 〈P(X),⊂〉 is a separative poset isomorphic to 〈<�2,⊃〉. Let G<�2 be
the digraph 〈<�2, �〉, where � = {〈ϕ,ϕ�i〉 : ϕ ∈ <�2 ∧ i ∈ 2}. For ϕ ∈ <�2, let
Aϕ = {
 ∈ <�2 : ϕ ⊂ 
} and let us prove that

P(G<�2) = {Aϕ : ϕ ∈ <�2}. (2)

The inclusion “⊃” is evident. Conversely, if A ∈ P(G<�2) and f : G<�2 ↪→ G<�2,
where A = f[<�2], we show that A = Af(∅).
First, if f(ϕ) ∈ A and dom(ϕ) = n, then, since 〈ϕ � k, ϕ � (k + 1)〉 ∈ �,
for k < n, we have 〈f(ϕ � k), f(ϕ � (k + 1))〉 ∈ �, for k < n. But this is
an oriented path from f(ϕ � 0) = f(∅) to f(ϕ � n) = f(ϕ), which implies
f(∅) ⊂ f(ϕ), that isf(ϕ) ∈ Af(∅). Second, by inductionwe show thatf(∅)�� ∈ A,
for all � ∈ <�2. Let f(∅)�� ∈ A. Then f(∅)�� = f(
), for some 
 ∈ <�2.
Since 〈
,
�k〉 ∈ �, for k ∈ {0, 1}, we have 〈f(
), f(
�k)〉 ∈ � and, hence,
f(
�k) = f(
)�jk = f(∅)���jk , where jk ∈ {0, 1}. Since f is an injection we
have j0 �= j1 and, hence, f(∅)���0 andf(∅)���1 are elements ofA. SoA = Af(∅)
and the proof of (2) is finished.
Using (2) it is easy to see that 〈<�2,⊃〉 ∼=F 〈P(G<�2),⊂〉, where F (ϕ) = Aϕ .

§5. Indivisible structures. Forcing with quotients. A relational structure
X = 〈X, {�i : i ∈ I }〉 is called indivisible iff for each partition X = A ∪ B we
have X ↪→ A or X ↪→ B. The aim of this section is to locate indivisible structures in
our diagram.

Theorem 5.1. A relational structure X is indivisible iff IX is an ideal in P(X ).
Proof. Let X be a indivisible structure. Clearly, ∅ ∈ IX �� X and I ′ ⊂ I ∈ IX
implies I ′ ∈ IX. Suppose that I ∪ J �∈ IX, for some I, J ∈ IX. Then C ⊂ I ∪ J , for
some C ∈ P(X) and C = (C ∩ I ) ∪ (C ∩ (J \ I )). Since C ∼= X, C is indivisible
and, hence, there is A ∈ P(C ) ⊂ P(X) such that A ⊂ C ∩ I or A ⊂ C ∩ (J \ I ),
which is impossible because I, J ∈ IX. Thus IX is an ideal.
Let X be a divisible structure and let X = A ∪ B be a partition such that X �↪→ A
and X �↪→ B. Then A,B ∈ IX and, clearly, A ∪ B �∈ IX. Thus IX is not an ideal. �
Theorem 5.2. IfX = 〈X, {�i : i ∈ I }〉 is an indivisible relational structure, then
(a) sm〈P(X),⊂〉 = 〈P(X),⊂IX

〉, where A ⊂IX
B ⇔ A \ B ∈ IX;

(b) sq〈P(X),⊂〉 is isomorphic to a dense subset of 〈(P(X )/=IX
)+,≤IX

〉.
Hence the poset 〈P(X),⊂〉 is forcing equivalent to (P(X )/IX)+.
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Proof. (a) Let A \B ∈ IX. If C ∈ P(X) and C ⊂ A, then C \B ∈ IX and, since
IX is an ideal and C �∈ IX, we have C ∩ B �∈ IX and, hence, D ⊂ C ∩ B, for some
D ∈ P(X). By (1) (see Theorem 4.3) we have A ≤∗ B.
If A \ B �∈ IX, then C ⊂ A \ B, for some C ∈ P(X) and C ∩ B = ∅ so, by (1),
we have ¬A ≤∗ B.
(b) By (a) and the definition of the separative quotient, we have sq〈P(X),⊂〉 =

〈P(X)/=∗,�〉, where for A,B ∈ P(X),
A =∗ B ⇔ A� B ∈ IX and [A]=∗ � [B]=∗ ⇔ A \ B ∈ IX. (3)

We show that 〈P(X)/=∗,�〉 ↪→f 〈(P(X )/IX)+,≤IX
〉, wheref([A]=∗) = [A]=IX

. By
(3) and (a), [A]=∗ = [B]=∗ iffA =∗ B iffA�B ∈ IX iffA =IX

B iff [A]=IX
= [B]=IX

iff f([A]=∗) = f([B]=∗) and f is a well defined injection.
f is a strong homomorphism since [A]=∗ � [B]=∗ iff A \ B ∈ IX iff [A]=IX

≤IX

[B]=IX
iff f([A]=∗) ≤IX

f([B]=∗).
We prove that f[P(X)/=∗] is a dense subset of (P(X )/ =IX

)+. If [S]=IX
∈

(P(X )/=IX
)+, then S �∈ IX and there is A ∈ P(X) such that A ⊂ S. Hence

A ⊂IX
S and f([A]=∗) = [A]=IX

≤IX
[S]=IX

.
By Fact 4.1(a), these three posets are forcing equivalent. �
Confirming a conjecture of Fraı̈ssé, Pouzet proved that each countable indivisible
structure X contains two disjoint copies of itself [8]. Thus, by Theorem 2.2(c), the
poset 〈P(X),⊂〉 is atomless and, clearly, contains antichains of size ℵ0. Moreover,
we have
Theorem 5.3. If X = 〈�, {�i : i ∈ I }〉 is a countable indivisible structure, then
the posets 〈P(X),⊂〉 and sq〈P(X),⊂〉 are atomless and contain maximal antichains
of size c. Hence |P(X)| = | sq〈P(X),⊂〉| = c.
Proof. By Theorems 3.1(c) and 5.1, the set IX is an ideal having the Baire prop-
erty and, since the complementation mapping �A �→ ��\A is an homeomorphism
from 2� to 2�, the dual filter I∗

X has the Baire property as well. Thus, by the well-
known characterization of Talagrand [10], there is a partition of � into finite sets
Kn, n ∈ �, such that each element of I∗

X intersects all but finitely many sets Kn,
whichmeans that each I ∈ IX contains finitely many setsKn. So, for eachM ∈ [�]�
we have SM =

⋃
n∈M Kn �∈ IX. Let {Mα : α < c} ⊂ [�]� be an almost disjoint

family and, for α < c, let Aα ⊂ SMα , where Aα ∈ P(X). Then |Aα ∩ A� | < �, for
different α, � < c and, hence {Aα : α < c} is an antichain in the poset 〈P(X),⊂〉.
Suppose that α �= � and [A]=∗ � [Aα]=∗ , [A� ]=∗ , for some A ∈ P(X). Then,
by (3), A = (A ∩ Aα ∩ A�) ∪ (A \ Aα) ∪ (A \ A� ) ∈ IX, which is not true. Thus
{[Aα]=∗ : α < c} is an antichain in the poset sq〈P(X),⊂〉. �

§6. Embedding-maximal structures. A relational structure X will be called
embedding-maximal iff P(X) = [X ]|X |. In this section we characterize countable
embedding-maximal structures and obtain more information on the structures
which do not have this property. If P = 〈P,≤〉 is a partial order, a set S ⊂ P
is somewhere dense in P iff there is p ∈ P such that for each q ≤ p there is s ∈ S
satisfying s ≤ q. Otherwise, S is nowhere dense.
Theorem 6.1. For a countable binary relational structureX = 〈�, �〉, the following
conditions are equivalent:
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(a) P(X) = [�]� ;
(b) P(X) is a dense set in 〈[�]�,⊂〉;
(c) X = 〈�, �〉 is isomorphic to one of the following relational structures:
1 The empty relation, 〈�, ∅〉,
2 The complete graph, 〈�,�2 \ Δ�〉,
3 The natural strict linear order on �, 〈�,<〉,
4 The inverse of the natural strict linear order on �, 〈�,<−1〉,
5 The diagonal relation,〈�,Δ�〉,
6 The full relation, 〈�,�2〉,
7 The natural linear order on �, 〈�,≤〉,
8 The inverse of the natural linear order on �, 〈�,≤−1〉;

(d) P(X) is a somewhere dense set in 〈[�]�,⊂〉;
(e) IX = Fin.
Then the poset sq〈P(X),⊂〉 = (P(�)/Fin)+ is atomless and �-closed.
Proof. The implication (a)⇒ (b) is trivial and it is easy to check (c)⇒ (a).
(b)⇒ (c). Let P(X) be a dense set in 〈[�]�,⊂〉. �
Claim 6.2. The relation � is reflexive or irreflexive.

Proof of Claim 6.2. If R = {x ∈ � : x�x} ∈ [�]� , then there is C ⊂ R such
that 〈�, �〉 ∼= 〈C, �C 〉 and, since �C is reflexive, � is reflexive as well. Otherwise
we have I = {x ∈ � : ¬x�x} ∈ [�]� and, similarly, � must be irreflexive. �
Claim 6.3. If the relation � is irreflexive, then the structure 〈�, �〉 is isomorphic to
one of the structures 1–4 from (c).

Proof of Claim 6.3. Clearly, [�]2 = K0 ∪K1 ∪K2 ∪K3, where the sets
K0 = {{x, y} ∈ [�]2 : ¬x�y ∧ ¬y�x},
K1 = {{x, y} ∈ [�]2 : x�y ∧ y�x},
K2 = {{x, y} ∈ [�]2 : x�y ∧ ¬y�x ∧ x < y},
K3 = {{x, y} ∈ [�]2 : x�y ∧ ¬y�x ∧ x > y},

are disjoint. By Ramsey’s theorem, there areH ∈ [�]� and i ∈ {0, 1, 2, 3} such that
[H ]2 ⊂ Ki . Since P(X) is a dense set in 〈[�]�,⊂〉, there is C ⊂ H such that

〈�, �〉 ∼= 〈C, �C 〉. (4)

If [H ]2 ⊂ K0, then for different x, y ∈ C we have ¬x�y and, since � is irreflexive,
�C = ∅. By (4) we have � = ∅.
If [H ]2 ⊂ K1, then for different x, y ∈ C we have x�y and y�x. So, since �
is irreflexive, �C = C 2 \ ΔC , that is the structure 〈C, �C 〉 is a countable complete
graph. By (4) we have � = �2 \ Δ� .
If [H ]2 ⊂ K2, then for different x, y ∈ C we have

(x�y ∧ ¬y�x ∧ x < y) ∨ (y�x ∧ ¬x�y ∧ y < x). (5)

Let us prove that for each x, y ∈ C
x�y ⇔ x < y. (6)

If x = y, then, since � is irreflexive, we have ¬x�y and, since ¬x < y, (6) is true.
If x < y, by (5) we have x�y and (6) is true.
If x > y, by (5) we have ¬x�y and, since ¬x < y, (6) is true again.
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Since (6) holds for each x, y ∈ C we have �C =<C . Clearly 〈C,<C 〉 ∼= 〈�,<〉,
which, together with (4), implies 〈�, �〉 ∼= 〈�,<〉.
If [H ]2 ⊂ K3, then as in the previous case we show that 〈�, �〉 ∼= 〈�,<−1〉. �
Claim 6.4. If the relation � is reflexive and Y = 〈�, � \ Δ�〉, then
(i) P(Y) is a dense set in 〈[�]�,⊂〉;
(ii) The structure 〈�, �〉 is isomorphic to one of the structures 5–8 from (c).
Proof of Claim 6.4. (i) Let A ∈ [�]� , C ⊂ A and 〈�, �〉 ∼=f 〈C, �c〉. Then,
since f is an isomorphism, we have 〈x1, x2〉 ∈ � \ Δ� iff 〈x1, x2〉 ∈ � ∧ x1 �= x2 iff
〈f(x1), f(x2)〉 ∈ �C ∧ f(x1) �= f(x2) iff 〈f(x1), f(x2)〉 ∈ �C \ Δ� = (� \ Δ�)C .
Thus 〈�, � \ Δ�〉 ∼=f 〈C, (� \ Δ�)C 〉, which implies C ∈ P(Y).
(ii) Since � \ Δ� is an irreflexive relation, by (i) and Claim 6.3, the structure

〈�, � \Δ�〉 is isomorphic to one of the structures 1–4. Hence the structure 〈�, �〉 is
isomorphic to one of the structures 5–8.
(b)⇔ (e). Since IX = P(�) \ (P(X)↑) we have: P(X) is a dense set in 〈[�]�,⊂〉
iff P(X)↑= [�]� iff IX = Fin.
(b)⇒ (d) is trivial.
(d)⇒ (b) Let P(X) be dense below A ∈ [�]� . Then there are C ⊂ A and f such
that X ∼=f 〈C, �C 〉 and, by the assumption,

∀B ∈ [C ]� ∃D ∈ P(X) D ⊂ B. (7)

For S ∈ [�]� we have f[S] ∈ [C ]� and, by (7), there is D ⊂ f[S] such that
X ∼= 〈D, �D〉. Since f is an injection we have f−1[D] ⊂ S; D ⊂ f[S] implies
f[f−1[D]] = D and, since f is an isomorphism, 〈f−1[D], �f−1[D]〉 ∼=f|f−1[D]

〈D, �D〉 and, hence, f−1[D] ∈ P(X). Thus P(X) is a dense set in 〈[�]�,⊂〉. �
Corollary 6.5. If X = 〈�, �〉 is a countable binary relational structure, then
(a) P(X) = [�]� or P(X) is a nowhere dense set in 〈[�]�,⊂〉;
(b) If X is indivisible, then IX = Fin or IX is a tall ideal (that is, for each S ∈ [�]�
there is I ∈ IX ∩ [S]�).

Proof. (b) If IX �= Fin, then, by Theorem 6.1, P(X) is a nowhere dense subset
of [�]� , so for S ∈ [�]� there is I ∈ [S]� such that A ⊂ I , for no A ∈ P(X), which
means that I ∈ IX. �

§7. Embeddings of disconnected structures. If Xi = 〈Xi, �i 〉, i ∈ I , are binary
relational structures and Xi ∩ Xj = ∅, for different i, j ∈ I , then the structure⋃
i∈I Xi = 〈⋃i∈I Xi ,

⋃
i∈I �i〉 will be called the disjoint union of the structures Xi ,

i ∈ I .
If 〈X, �〉 is a binary structure, then the transitive closure �rst of the relation
�rs = ΔX ∪ � ∪ �−1 (given by x �rst y iff there are n ∈ N and z0 = x, z1, . . . , zn = y
such that zi �rs zi+1, for each i < n) is the minimal equivalence relation on X
containing �. In the sequel, the relation �rst will be denoted by ∼� or ∼. Then for
x ∈ X the corresponding element of the quotient X/∼ will be denoted by [x]∼�
or [x]∼ or only by [x], if the context admits, and called the component of 〈X, �〉
containing x. The structure 〈X, �〉 will be called connected iff |X/∼ | = 1. The
main result of this section is Theorem 7.5 describing embeddings of disconnected
structures and providing several constructions in the sequel.
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Lemma 7.1. Let 〈X, �〉 = 〈⋃i∈I Xi ,
⋃
i∈I �i〉 be a disjoint union of binary

structures. Then for each i ∈ I and each x ∈ Xi we have
(a) [x] ⊂ Xi ;
(b) [x] = Xi , if 〈Xi , �i〉 is a connected structure.
Proof. (a) Let y ∈ [x] and z0 = x, z1, . . . , zn = y ∈ X , where zk �rs zk+1, for
each k < n. Using induction we show that zk ∈ Xi , for each k ≤ n. Suppose that
zk ∈ Xi . Then zk �rs zk+1 and, if zk = zk+1, we are done. If 〈zk, zk+1〉 ∈ �, there is
j ∈ I such that 〈zk, zk+1〉 ∈ �j ⊂ Xj × Xj and, since zk ∈ Xi , we have j = i and,
hence, zk+1 ∈ Xi . If 〈zk, zk+1〉 ∈ �−1, then 〈zk+1, zk〉 ∈ � and, similarly, zk+1 ∈ Xi
again.
(b) Let 〈Xi , �i 〉 be a connected structure and y ∈ Xi . Then x ∼�i y and, hence,
there are z0 = x, z1, . . . , zn = y ∈ Xi , where for each k < n we have zk (�i )rs zk+1,
that is zk = zk+1 ∨ zk �i zk+1 ∨ zk (�i)−1 zk+1, which implies zk �rs zk+1. Thus
y ∼� x and, hence, y ∈ [x]. �
Proposition 7.2. If 〈X, �〉 is a binary structure, then 〈⋃x∈X [x],

⋃
x∈X �[x]〉 is the

unique representation of 〈X, �〉 as a disjoint union of connected relations.
Proof. ClearlyX =

⋃
x∈X [x] is a partition ofX and

⋃
x∈X �[x] ⊂ �. If 〈x, y〉 ∈ �,

then x ∼ y, which implies x, y ∈ [x]. Hence 〈x, y〉 ∈ � ∩ ([x]× [x]) = �[x] and we
have � =

⋃
x∈X �[x].

We show that the structures 〈[x], �[x]〉, x ∈ X , are connected. Let y ∈ [x] and
z0 = x, z1, . . . , zn = y ∈ X , where zk �rs zk+1, for each k < n. Using induction we
show that

∀k ≤ n zk ∈ [x]. (8)

Suppose that zk ∈ [x]. Then zk �rs zk+1 and, if zk = zk+1, we are done. If
〈zk, zk+1〉 ∈ �, then x ∼� zk ∼� zk+1 and, by the transitivity of ∼�, we have
x ∼� zk+1, that is, zk+1 ∈ [x], and similarly if 〈zk+1, zk〉 ∈ �.
For each k < n we have 〈zk , zk+1〉 ∈ ΔX ∪ � ∪ �−1 so, by (8), 〈zk, zk+1〉 ∈
Δ[x] ∪ �[x] ∪ �−1[x] = (�[x])rs . Thus x ∼�[x] y and, since the relation∼�[x] is symmetric,
y ∼�[x] x, for each y ∈ [x]. Since the relation ∼�[x] is transitive, for each y, z ∈ [x]
we have y ∼�[x] z and, hence, 〈[x], �[x]〉 is a connected structure.
For a proof of the uniqueness of the representation, suppose that 〈X, �〉 =

〈⋃i∈I Xi ,
⋃
i∈I �i〉 is a disjoint union, where the structures 〈Xi , �i 〉, i ∈ I , are

connected. By Lemma 7.1(b), for i ∈ I and x ∈ Xi we have Xi = [x] and, hence,
�i = �∩ (Xi ×Xi) = �∩ ([x]× [x]) = �[x]. Thus 〈Xi , �i〉 = 〈[x], �[x]〉. On the other
hand, if x ∈ X , then x ∈ Xi , for some i ∈ I , and, similarly, 〈[x], �[x]〉 = 〈Xi , �i 〉.
Consequently we have {〈Xi , �i〉 : i ∈ I } = {〈[x], �[x]〉 : x ∈ X}. �
Proposition 7.3. Let 〈X, �〉 be a binary relational structure and �c = (X ×X )\�
the complement of �. Then
(a) At least one of the structures 〈X, �〉 and 〈X, �c〉 is connected ;
(b) Emb〈X, �〉 = Emb〈X, �c〉 and P〈X, �〉 = P〈X, �c〉.
Proof. (a) Suppose that the structure X = 〈X, �〉 is disconnected. Then, by
Proposition 7.2,X is the disjoint union of connected structuresXi = 〈Xi , �i 〉, i ∈ I ,
and we show that 〈X, �c〉 is connected. Let x, y ∈ X . If x ∈ Xi and y ∈ Xj , where
i �= j, then x �∼� y, which implies 〈x, y〉 �∈ �, thus 〈x, y〉 ∈ �c and, hence, x ∼�c y.
Otherwise, if x, y ∈ Xi , for some i ∈ I , then we pick j ∈ I \ {i} and z ∈ Xj and, as
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in the previous case, x ∼�c z and y ∼�c z and, since ∼�c is an equivalence relation,
x ∼�c y again.
(b) If f ∈ Emb〈X, �〉, then f is an injection and for each x, y ∈ X we have

〈x, y〉 ∈ �⇔〈f(x), f(y)〉 ∈ �, that is 〈x, y〉 ∈ �c⇔〈f(x), f(y)〉 ∈ �c and, hence,
f ∈ Emb〈X, �c〉. The another implication has a similar proof. Now P〈X, �〉 =
{f[X ] : f ∈ Emb〈X, �〉} = {f[X ] : f ∈ Emb〈X, �c〉} = P〈X, �c〉. �
Lemma 7.4. Let 〈X, �〉 and 〈Y, �〉 be binary structures and f : X → Y an
embedding. Then for each x1, x2, x ∈ X
(a) x1�rsx2 ⇔ f(x1)�rsf(x2);
(b) x1 ∼� x2 ⇒ f(x1) ∼� f(x2);
(c) f[[x]] ⊂ [f(x)];
(d) f | [x] : [x]→ f[[x]] is an isomorphism.
If, in addition, f is an isomorphism, then
(e) x1 ∼� x2 ⇔ f(x1) ∼� f(x2);
(f) f[[x]] = [f(x)];
(g) 〈X, �〉 is connected iff 〈Y, �〉 is connected.
Proof.

(a) Since f is an injection and a strong homomorphism we have x1 �rsx2 iff
x1 =x2∨x1 � x2∨x2 � x1 ifff(x1)=f(x2)∨f(x1) � f(x2)∨f(x2) � f(x1)
iff f(x1) �rsf(x2).

(b) If x1 ∼� x2, then there are z0, z1, . . . , zn ∈ X such that x1 = z0 �rs z1 �rs
. . . �rs zn = x2 and, by (a), f(x1) = f(z0) �rs f(z1) �rs . . . �rs f(zn) =
f(x2) and, hence, f(x1) ∼� f(x2).

(c) If x′ ∈ [x], then x′ ∼� x and, by (b), f(x′) ∼� f(x) so f(x′) ∈ [f(x)].
(d) Clearly, f|[x] is a bijection. Since f is a strong homomorphism, for
x1, x2 ∈ [x] we have x1 �x2 iff f(x1) �f(x2) iff (f|[x])(x1) �(f|[x])(x2).

(e) The implication “⇒” is proved in (b). If f(x1) ∼� f(x2), then, applying (b)
to f−1 we obtain x1 ∼� x2.

(f) The inclusion “⊂” is proved in (b). Let y ∈ [f(x)], that is y ∼� f(x). Since
f is a bijection there is x′ ∈ X such that y = f(x′) and, by (e), x′ ∼� x,
that is x′ ∈ [x]. Hence y ∈ f[[x]].

(g) follows from (e). �
Theorem 7.5. Let Xi = 〈Xi , �i〉, i ∈ I , and Yj = 〈Yj, �j〉, j ∈ J , be two families
of disjoint connected binary structures and X and Y their unions. Then
(a) F : X ↪→ Y iff there are f : I → J and gi : Xi ↪→ Yf(i), i ∈ I , such that
F =

⋃
i∈I gi and

∀{i1, i2} ∈ [I ]2 ∀xi1 ∈ Xi1 ∀xi2 ∈ Xi2 ¬ gi1 (xi1 ) �rs gi2 (xi2 ). (9)

(b) C ∈ P(X) iff there are f : I → I and gi : Xi ↪→ Xf(i), i ∈ I , such that
C =

⋃
i∈I gi [Xi ] and

∀{i, j} ∈ [I ]2 ∀x ∈ Xi ∀y ∈ Xj ¬ gi(x) �rs gj(y). (10)

Proof. (a) (⇒) Let F : X ↪→ Y. By Proposition 7.2, the sets Xi , i ∈ I , are
components of X and Yj , j ∈ I , are components of Y. By Lemma 7.4(c), for i ∈ I
and x ∈ Xi we have F [[x]] ⊂ [F (x)] so there is (unique) f(i) ∈ J , such that
F [Xi ] ⊂ Yf(i). By Lemma 7.4(d), F |Xi : Xi → F [Xi ] ⊂ Yf(i) is an isomorphism
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290 MILOŠ S. KURILIĆ

and, hence, gi : Xi ↪→ Yf(i), where the mapping gi : Xi → Yf(i) is given by gi(x) =
F (x). Clearly f : I → J and F = ⋃

i∈I gi . Suppose that gi1 (xi1 ) �rs gi2 (xi2 ), that
is F (xi1 ) �rs F (xi2 ), for some different i1, i2 ∈ I and some xi1 ∈ Xi1 and xi2 ∈ Xi2 .
Then, by Lemma 7.4(a), xi1 �rs xi2 and, hence, xi1 ∼� xi2 , which is not true, because
xi1 and xi2 are elements of different components of X.
(⇐) Let F = ⋃

i∈I gi , where the functions f : I → J and gi : Xi ↪→ Yf(i), i ∈ I ,
satisfy the given conditions.
Let u, v ∈ X , where u �= v. If u, v ∈ Xi for some i ∈ I then, since gi is an injection,
wehaveF (u) = gi (u) �= gi(v) = F (v).Otherwiseu ∈ Xi1 and v ∈ Xi2 , where i1 �= i2
and, by the assumption, ¬ gi1 (u) �rs gi2 (v), which implies gi1 (u) �= gi2 (v) that is
F (u) �= F (v). Thus F is an injection.
In order to prove that F is a strong homomorphism we take u, v ∈ X and prove

u � v ⇔ F (u) �F (v). (11)

If u, v ∈ Xi , for some i ∈ I , then we have: u � v iff u �i v (since �Xi = �i) iff
gi(u) �f(i) gi(v) (because gi : Xi ↪→ Yf(i)) iff gi(u) � gi(v) (since �Yf(i) = �f(i)) iff
F (u) � F (v) (because F � Xi = gi). So (11) is true.
If u ∈ Xi1 and v ∈ Xi2 , where i1 �= i2, then¬u � v, because u and v are in different
components of X . By the assumption we have ¬ gi1 (u) �rs gi2 (v), which implies
¬ gi1 (u) � gi2 (v), that is ¬ F (u) � F (v). So (11) is true again.
(b) follows from (a) and the fact that C ∈ P(X) iff there is F : X ↪→ X such that
C = F [X ]. �

§8. Embedding-incomparable components. Two structures X and Y will be called
embedding-incomparable iff X �↪→ Y and Y �↪→ X. We will use the following fact.
Fact 8.1. Let P,Q and Pi , i ∈ I , be partial orderings. Then,
(a) If P ∼= Q, then smP ∼= smQ and sqP ∼= sqQ;
(b) sm(

∏
i∈I Pi) =

∏
i∈I smPi ;

(c) sq(
∏
i∈I Pi) ∼=

∏
i∈I sqPi .

Theorem 8.2. Let � be a binary relation on a set X . If the components
Xi = 〈Xi , �Xi 〉, i ∈ I , of a disconnected structure X = 〈X, �〉 are embedding-
incomparable, then
(a) 〈P(X),⊂〉 ∼=∏

i∈I 〈P(Xi),⊂〉;
(b) sq〈P(X),⊂〉 ∼=∏

i∈I sq〈P(Xi ),⊂〉.
(c) X is a divisible structure.
Proof. (a) By Theorem 7.5(b) and since the structures Xi are embedding-
incomparable, C ∈ P(X) iff there are embeddings gi : Xi ↪→ Xi , i ∈ I , such
thatC =

⋃
i∈I gi [Xi ] and ¬ gi(x) �rs gj(y), for each different i, j ∈ I , each x ∈ Xi

and each y ∈ Xj . But, since i �= j, x ∈ Xi and y ∈ Xj implies gi(x) ∈ Xi and
gj(y) ∈ Xj , it is impossible that gi (x) �rs gj(y) and, hence, the last condition
is implied by the condition that gi : Xi ↪→ Xi , for each i ∈ I . Consequently,
P(X) = {⋃i∈I Ci : 〈Ci : i ∈ I 〉 ∈ ∏

i∈I P(Xi)} and it is easy to check that the
mapping f :

∏
i∈I 〈P(Xi) ⊂〉 → 〈P(X),⊂〉 given by f(〈Ci : i ∈ I 〉) =

⋃
i∈I Ci is an

isomorphism of posets.
(b) follows from (a) and Fact 8.1(a) and (c).
(c) The partition X = Xi ∪ (X \ Xi) witnesses that X is divisible. �
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§9. From A1 to D5. In this section we show that the diagram on Figure 1 is
correct. The relations between the properties of X and P(X) are established in the
previous sections. Since | sq〈P(X),⊂〉| ≤ |P(X)|, the classes B1, C1, D1, C2, and D2
are empty and, since sq〈[�]�,⊂〉 = (P(�)/Fin)+ is a �-closed atomless poset, the
classes A5, B5, and C5 are empty as well. By Theorem 5.3 we have A4 = B4 = ∅
and in the sequel we show that the remaining classes contain some structures. First,
the graph GZ mentioned in the Introduction belongs to A1 and its restriction to
N to A2. The class B2 contains the digraph constructed in Example 4.4 and in the
following examples we construct some structures from A3, B3, and C3.
Example 9.1. 〈P(X),⊂〉 collapses c to � and X is a divisible structure belonging

to C3. Let X = 〈X, �〉 = 〈⋃n≥3G ′
n,
⋃
n≥3 �

′
n〉, where the sets G ′

n, n ≥ 3, are pairwise
disjoint and 〈G ′

n, �
′
n〉 ∼= 〈Gn, �n〉, where the structure 〈Gn, �n〉 is the directed graph

defined by Gn = <�2× {0, 1, . . . , n − 1} and
�n = {〈〈ϕ, 0〉, 〈ϕ�k, 0〉〉 : ϕ ∈ <�2 ∧ k ∈ 2} ∪

{〈〈ϕ, i〉, 〈ϕ, j〉〉 : ϕ ∈ <�2 ∧ 〈i, j〉 ∈ {〈0, 1〉, 〈1, 2〉, . . . , 〈n − 1, 0〉}}.
Using the obvious fact that two cycle graphs of different size are embedding incompa-
rable we easily prove that for different m, n ≥ 3 the structures 〈Gm, �m〉 and 〈Gn, �n〉
are embedding incomparable as well so, by (a) of Theorem 8.2,

〈P(X),⊂〉 ∼=∏
n≥3〈P(〈Gn, �n〉),⊂〉. (12)

Let n ≥ 3. Like in Example 4.4, for ϕ ∈ <�2 let Aϕ = {
 ∈ <�2 : ϕ ⊂ 
} and
Bϕ = Aϕ × {0, 1, . . . , n − 1}. Let us prove that

P(〈Gn, �n〉) = {Bϕ : ϕ ∈ <�2}. (13)

The inclusion “⊃” is evident. Conversely, let B ∈ P(〈Gn, �n〉) and f : 〈Gn, �n〉 ↪→
〈Gn, �n〉, where B = f[Gn]. Clearly, deg(v) ∈ {4, 5}, for each vertex v ∈ <�2× {0},
and deg(v) = 2, otherwise Thus, since f preserves degrees of vertices we have
f[<�2 × {0}] ⊂ <�2 × {0} and f � <�2 × {0} : <�2 × {0} ↪→ <�2 × {0}. Since
the digraph <�2 × {0} is isomorphic to the digraph G<�2, by Example 4.4, there is
ϕ ∈ <�2 such that

f[<�2× {0}] = Aϕ × {0}. (14)
Now, since each v ∈ Gn belongs to a unique cycle graph with n vertices andf preserves
this property by (14) we have B = f[Gn] = Bϕ and (13) is proved.
By (13), like in Example 4.4 we prove that 〈P(〈Gn, �n〉),⊂〉 ∼= 〈<�2,⊃〉. Thus, by
(13), the poset 〈P(X),⊂〉 is isomorphic to the direct product 〈<�2,⊃〉� of countably
many Cohen posets which collapses c to � (see [2], (E4), p. 294). The partition
X = G3 ∪ (X \G3) witnesses that X is a divisible structure.
Example 9.2. 〈P(X),⊂〉 is an atomic poset of size c andX ∈ A3. LetX = 〈X, �〉 =

〈⋃n≥3G ′
n,
⋃
n≥3 �

′
n〉, where the sets G ′

n , n ≥ 3, are pairwise disjoint and 〈G ′
n, �

′
n〉 is

isomorphic to the digraph 〈Gn, �n〉 given by Gn = � × {0, 1, . . . , n − 1} and
�n = {〈〈n, 0〉, 〈n + 1, 0〉〉 : n ∈ �} ∪

{〈〈n, i〉, 〈n, j〉〉 : n ∈ � ∧ 〈i, j〉 ∈ {〈0, 1〉, 〈1, 2〉, . . . , 〈n − 1, 0〉}}.
As in Example 9.1 we prove that for different m, n ≥ 3 the structures 〈Gm, �m〉 and
〈Gn, �n〉 are embedding incomparable so, by (a) of Theorem 8.2,

〈P(X),⊂〉 ∼=∏
n≥3〈P(〈Gn, �n〉),⊂〉. (15)
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Let n ≥ 3. Using the arguments from Example 9.1 we easily prove that
P(〈Gn, �n〉) = {Bk : k ∈ �}, (16)

where Bk = (� \ k)× {0, 1, . . . , n − 1}, for k ∈ �.
By (16) we have 〈P(〈Gn, �n〉),⊂〉∼= 〈�,≥〉=�∗. Thus, by (15), the poset 〈P(X),⊂〉
is isomorphic to the direct product (�∗)� of countably many copies of �∗ which is an
atomic lattice of size c.

Example 9.3. sq〈P(X),⊂〉 ∼= 〈<�2,⊃〉 although |P(X)| = c, thus X ∈ B3. Let
Y = 〈Y, �〉 be the digraph considered in Example 4.4 and Z = 〈Z, �c 〉, where 〈Z, �〉
is isomorphic to the digraph from Example 9.2 and Y ∩ Z = ∅. Since 〈Z, �〉 is
a disconnected structure, by Proposition 7.3(a) the structure Z is connected and,
clearly, �c = (Z × Z) \ � is a reflexive relation, which implies that the structures
Y and Z are embedding incomparable. Thus, by Theorem 8.2(a), for the structure
X = Y ∪ Z we have 〈P(X),⊂〉 ∼= 〈P(Y),⊂〉 × 〈P(Z),⊂〉 and, since by Proposition
7.3(b) P(Z) = P(〈Z, �〉), we have |P(X)| = c.
By Theorem 8.2(b) we have sq〈P(X),⊂〉 ∼= sq〈P(Y),⊂〉 × sq〈P(Z),⊂〉. Since

〈P(Z),⊂〉 is an atomic poset, by Theorem 4.3(a) we have | sq〈P(Z),⊂〉| = 1 and,
hence, sq〈P(X),⊂〉 ∼= 〈<�2,⊃〉 × 1 ∼= 〈<�2,⊃〉.
In the sequel, we show that the remaining classes are non-empty and give more
information about some basic classes of structures.

Linear orders. A linear orderL is scattered iff it does not contain a dense suborder
or, equivalently, a copy of the rationals,Q.OtherwiseL is a nonscattered linear order.
So, if L is a countable linear order, we have the following cases.
Case 1: L is nonscattered. By [3], for each nonscattered linear order L the poset

〈P(L),⊂〉 is forcing equivalent to the two-step iteration S ∗ �, where S is the Sacks
forcing and 1S � “� is a �-closed forcing”. If the equality sh(S) = ℵ1 or PFA
holds in the ground model, then the second iterand is forcing equivalent to the
poset (P(�)/Fin)+ of the Sacks extension. So, if L is a countable nonscattered
linear order, then forcing by 〈P(L),⊂〉 produces reals. In addition, L is indivisible.
Namely, if Q is a copy of Q in L and L = A0∪̇A1, then, since Q is indivisible, there
is k ∈ {0, 1} such that Q ∩ Ak contains a copy of Q and, by the universality of Q,
Q ∩ Ak contains a copy of L as well. Hence, L ∈ C4.
Case 2: L is scattered. By [5], for each countable scattered linear orderL, the par-
tial ordering sq〈P(L),⊂〉 is atomless and �-closed. In particular, if α is a countable
ordinal andα = �	n+rn sn+· · ·+�	0+r0s0+k its representation in theCantor normal
form, where k ∈ �, ri ∈ �, si ∈ N, 	i ∈ Lim∪{1} and 	n + rn > · · · > 	0 + r0, then
by [6]

sq〈P(α),⊂〉 ∼=∏n
i=0

((
rpri

(
P(�	i )/I�	i

))+)si
, (17)

where, for an ordinal � , I� = {C ⊂ � : � �↪→ C} and, for a poset P, rp(P)
denotes the reduced power P�/ ≡Fin and rpk+1(P) = rp(rpk(P)). In particular, for
� ≤ α < �� we have

sq
(
P
(∑0

i=n �
1+ri si

)
,⊂

) ∼=∏n
i=0

((
rpri

(
P(�)/Fin

))+)si
. (18)
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Thus if L is a scattered linear order, then L ∈ D3 ∪ D4 ∪ D5 and, for example,
� + � ∈ D3, � · � ∈ D4, and � ∈ D5, since an ordinal α < �1 is an indivisible
structure iff α = �� , for some ordinal � > 0.
So, under the CH, for a countable linear order L the poset 〈P(L),⊂〉 is forcing
equivalent to S ∗ �, where 1S � “� = (P(�̌)/Fin)+”, if L is nonscattered; and
to (P(�)/Fin)+, if L is scattered. But it is consistent that the poset 〈P(� + �),
⊂〉 is not forcing equivalent to (P(�)/Fin)+: by (18) we have sq〈P(� + �),
⊂〉 ∼= (P(�)/Fin)+ × (P(�)/Fin)+ and, by a result of Shelah and Spinas [9],
it is consistent that (P(�)/Fin)+ and its square are not forcing equivalent.

Equivalence relations and similar structures. By a more general theorem from [4]
we have: IfXi = 〈Xi, �Xi 〉, i ∈ I , are the components of a countable binary structure
X = 〈X, �〉, which is
- either an equivalence relation,
- or a disjoint union of complete graphs,
- or a disjoint union of ordinals ≤ �,

then sq〈P(X),⊂〉 is a �-closed atomless poset. More precisely, if N = {|Xi | : i ∈
I }, Nfin = N \ {�}, Iκ = {i ∈ I : |Xi | = κ}, κ ∈ N , and |I�| = �, then
the following table describes a forcing equivalent and some cardinal invariants
of 〈P(X),⊂〉

X sq〈P(X),⊂〉 is sq〈P(X),⊂〉 is ZFC � sq〈P(X),⊂〉
forcing equivalent to is h-distributive

N ∈ [N]<� or |I | = 1 (P(�)/ Fin)+ t-closed YES

0 < |Nfin|, |I� | < � ((P(�)/ Fin)+)n t-closed NO

|I� | < � = |Nfin| (P(Δ)/EDfin)+ × ((P(�)/ Fin)+)� �-closed NO

|I� | = � (P(� × �)/(Fin× Fin))+ �-closed, not �2-closed NO

where Δ = {〈m, n〉 ∈ N × N : n ≤ m} and the ideal EDfin in P(Δ) is defined by
EDfin = {S ⊂ Δ : ∃r ∈ N ∀m ∈ N |S ∩ ({m} × {1, 2, . . . , m})| ≤ r}.
The structure X is indivisible iff N ∈ [N]� or N = {1} or |I | = 1 or |I�| = �.
Thus if X is a countable equivalence relation, then X ∈ D3 ∪D4 ∪D5 and some
examples of such structures are given in the diagram in Figure 2. We remark that,
if Fκ denotes the full relation on a set of size κ, the following countable equivalence
relations are ultrahomogeneous:

⋃
� Fn (indivisible iff n = 1);

⋃
n F� (indivisible iff

n = 1) and
⋃
� F� (the �-homogeneous-universal equivalence relation, indivisible

of course).
The same picture is obtained for
- Disconnected countable ultrahomogeneous graphs, which are (by the well-
known classification of Lachlan and Woodrow) of the form

⋃
m Kn, wheremn = �

(the disjoint union of m-many complete graphs of size n);
- Countable posets of the form

⋃
m Ln , where mn = � (the disjoint union of

m-many copies of the ordinal n ∈ [1, �]).
We note that the relational structures observed in this section are disconnected
but taking their complements we obtain connected structures with the same posets
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X ultrahomogeneous

X equivalence relation

⋃
1 F�

⋃
� F1

⋃
� F�

⋃
n∈� Fn

⋃
� F2

⋃
2 F�

F3 ∪
⋃
� F2D3

D4

D5

Figure 2. Equivalence relations on countable sets.

〈P(X),⊂〉 and sq〈P(X),⊂〉. For example, the complement of ⋃m Fn is the graph-
theoretic complement of the graph

⋃
m Kn.
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