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Abstract

Let X(t), t ∈ Rd , be a centered Gaussian random field with continuous trajectories
and set ξu(t) = X(f (u)t), t ∈ Rd , with f some positive function. Using classical
results we can establish the tail asymptotics of P{�(ξu) > u} as u → ∞ with
�(ξu) = supt∈[0,T ]d ξu(t), T > 0, by requiring that f (u) tends to 0 as u → ∞ with speed
controlled by the local behavior of the correlation function of X. Recent research shows
that for applications, more general functionals than the supremum should be considered
and the Gaussian field can depend also on some additional parameter τu ∈ K say
ξu,τu (t), t ∈ Rd . In this paper we derive uniform approximations of P{�(ξu,τu ) > u}
with respect to τu, in some index set Ku as u → ∞. Our main result has important
theoretical implications; two applications are already included in Dȩbicki et al. (2016),
(2017). In this paper we present three additional applications. First we derive uniform
upper bounds for the probability of double maxima. Second, we extend the Piterbarg–
Prisyazhnyuk theorem to some large classes of homogeneous functionals of centered
Gaussian fields ξu. Finally, we show the finiteness of generalized Piterbarg constants.
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process; double maxima; uniform double-sum method; generalized Piterbarg constant
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1. Introduction

Let (X(t), t ≥ 0) be a centered stationary Gaussian process with continuous trajectories,
unit variance, and correlation function r satisfying, for some α ∈ (0, 2],

1 − r(t) ∼ |t |α as t → 0 and r(t) < 1 for all t > 0.

We write ‘∼’ for asymptotic equivalence when the argument tends to 0 or ∞.
In the seminal paper of Pickands [24], the author established that, for any T positive and

q(u) = u−2/α ,

P
{

sup
t∈[0,T ]

X(t) > u
}

∼ T Hα

P{X(0) > u}
q(u)

as u → ∞, (1.1)
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where Hα is the Pickands constant defined by

Hα = lim
T →∞

1

T
Hα[0, T ] ∈ (0, ∞),

with Hα[0, T ] = E{supt∈[0,T ] exp(
√

2Bα(t) − tα)} and Bα a standard fractional Brownian
motion with Hurst index α/2; see the recent contributions [6], [10], [12], [19], and [20] for the
main properties of Pickands and related constants.

While the original proof of Pickands utilizes a discretization approach, in [25] and [26] the
asymptotics (1.1) were derived by establishing first the exact asymptotics on the short interval
[0, q(u)T ], namely (see, e.g. Lemma 6.1 of [26])

P
{

sup
t∈[0,q(u)T ]

X(t) > u
}

∼ Hα[0, T ]P{X(0) > u} as u → ∞, (1.2)

and then using the double-sum method. A completely independent proof for the stationary case,
based on the notion of a sojourn time, was derived by Berman (see [3] and [4]).

In this paper we develop the uniform double-sum method. Originally introduced by Piterbarg
for the nonstationary case, see, e.g. [26], the double-sum method is a powerful tool in the
derivation of the exact asymptotics of the tail distribution of the supremum for nonstationary
Gaussian processes (and fields). With no loss of generality, for a given centered Gaussian
process (Y (t), t ∈ [0, S]) with continuous trajectories, the crucial steps of this method are:

• an application of the Slepian inequality allowing for the uniform approximation as u →
∞ (uniformity is with respect to k ≤ N(u)) of the summands of

P
{

sup
t∈[kT q(u), (k+1)T q(u)]

Y (t) > u
}

by P{supt∈[0,T q(u)] Xε(t) > uk} =: p(uk) for an appropriately chosen stationary process
(Xε, ε > 0);

• the uniform approximation for k ≤ N(u) of p(uk) as u → ∞;

• obtaining uniformly tight upper bounds for the probability of the double supremum

P
{

sup
t∈[kT q(u), (k+1)T q(u)]

Y (t) > u, sup
t∈[lT q(u), (l+1)T q(u)]

Y (t) > u
}

for k, l ∈ Au, (1.3)

where the set Au is suitably chosen.

The deep contribution of [18] showed that while dealing with the supremum of Gaussian
processes on the half-line, it is convenient to replace the Slepian inequality by a uniform version
of the tail asymptotics of threshold-dependent Gaussian processes. Omitting technical details,
Dieker [18] derived the exact asymptotics and a uniform upper bound of

P
{

sup
t∈[0,T ]

ξu,τu(t) > gu,τu

}
as u → ∞,

with respect to τu ∈ Ku, for ξu,τu being centered Gaussian processes indexed by u and τu; see
also Lemma 5.1 of [8]. This uniform counterpart of (1.2) is crucial when the processes Xu,τu

are parameterized by u and τu.
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Recent contributions have shown the strong need for the analysis of the distributional
properties of more general continuous functionals rather than the supremum, e.g.

sup
t∈[0,T ]

inf
s∈[0,S] X(s + f (u)t), S > 0,

see [11] and [13], or infs∈Au supt∈Bu
Y (s, t), see [7] and [8].

The lack of Slepian-type results for general continuous functionals � can be overcome by
the derivation of uniform approximations with respect to τu of the tail distribution of �(ξu,τu)

as u → ∞. Therefore, our principal goal in this paper is to derive uniform approximations
for the tails of homogeneous continuous functionals � of general Gaussian random fields.
Specifically, we shall consider � defined on C(E), the space of continuous functions on E with
E ⊂ Rd , d ≥ 1, a compact set containing the origin. In Theorem 2.1 we derive the following
uniform asymptotics:

lim
u→∞ sup

τu∈Ku

∣∣∣∣P{�(ξu,τu) > gu,τu}
�(gu,τu)

− C

∣∣∣∣ = 0, (1.4)

where ξu,τu(t), t ∈ E, τu ∈ Ku, is a centered Gaussian random field, C is a positive finite
constant, and � denotes the survival function of an N(0, 1) random variable. This result
allows us to derive the counterparts of (1.1) for a class of homogeneous functionals of centered
Gaussian fields satisfying some weak asymptotic conditions. Additionally, in Section 3.1 we
derive a uniform upper bound for the double maxima for general Gaussian fields parameterized
by u and τu. This extends and unifies the known upper bounds for (1.3).

The paper is organized as follows. The main results and related discussions are presented
in Section 2. We dedicate Section 3 to applications. We present the proofs of all the results in
Section 4, postponing some technical calculations to Appendix A.

2. Main result

We begin this section with the motivation behind the investigation of distributional properties
of functionals of threshold-dependent Gaussian random fields. For this purpose we focus on
the supremum of noncentered Gaussian processes. Then we introduce the class of functionals
that are of interest and provide the main result of this paper; see Theorem 2.1.

Numerous authors e.g. [17], [18], [21], and [22], have developed techniques for the approx-
imation, as u → ∞, of the so-called ruin probability

p(u) = P
{

sup
t∈T

(X(t) − ct) > u
}
,

where X is a centered continuous Gaussian process, c > 0 is some constant, and T = [0, ∞) or
T = [0, T ], T > 0. Originally, the double-sum method was designed to handle the supremum
of centered Gaussian processes. For our case, this method is still applicable under the following
modifications. First we rewrite the original problem in the form of a centered, threshold-
dependent family of Gaussian processes Zu(t) = X(t)/(u + ct), u > 0, as follows:

p(u) = P
{

sup
t∈T

Zu(t) > 1
}
.

Then, we check that, for suitably chosen w(u) and N(u),

p(u) ∼ P
{

there exists |k| ≤ N(u) : sup
t∈[0,w(u)S]

Zu(t + kSw(u)) > 1
}
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∼
∑

|k|≤N(u)

P
{

sup
t∈[0,S]

Yu,k(t) > vk(u)
}

=:
∑

|k|≤N(u)

pk(u) as u → ∞ and S → ∞, (2.1)

where

Yu,k(t) = Zu(w(u)t + w(u)kS)vk(u), vk(u) = inf
t∈[0,S]

1√
var(Zu(w(u)t + w(u)kS))

.

Finally, since usually limu→∞ N(u) = ∞ then in order to determine the asymptotics of p(u)

it is necessary to derive the asymptotics of pk(u), as u → ∞, uniformly for |k| ≤ N(u).
In this section we consider a more general situation focusing on the validity of (1.4) for

centered Gaussian random fields.
Next let E ⊂ Rd be a compact set including the origin and write C(E) for the set of real-

valued continuous functions defined on E. Let � : C(E) → R be a real-valued continuous
functional satisfying:

(F1) there exists c > 0 such that �(f ) ≤ c supt∈E f (t) for any f ∈ C(E);

(F2) �(af + b) = a�(f ) + b for any f ∈ C(E) and a > 0, b ∈ R.

Note that (F1) and (F2) cover the following important examples:

� = sup, inf, a sup +(1 − a) inf, a ∈ R.

We shall consider a family of centered Gaussian random fields ξu,τu given by

ξu,τu(t) = Zu,τu(t)

1 + hu,τu(t)
, t ∈ E, τu ∈ Ku,

with Zu,τu a centered Gaussian random field with unit variance and continuous trajectories, and
hu,τu ∈ C0(E), where C0(E) is the Banach space of all continuous functions f on E such that
f (0) = 0 is equipped with the sup-norm. In order to avoid trivialities, the thresholds gu,τu will
be chosen such that

lim
u→∞ P{�(ξu,τu) > gu,τu} = 0.

In order to derive the asymptotics of P{�(ξu,τu) > gu,τu} as u → ∞, we shall first condition
on ξu,τu(0) = gu,τu − w/gu,τu , yielding

P{�(ξu,τu) > gu,τu} = exp(−g2
u,τu

/2)√
2πgu,τu

∫
R

exp

(
w − w2

2g2
u,τu

)
P{�(χu,τu) > w} dw,

where

χu,τu(t) = gu,τu(ξu,τu(t) − gu,τu) + w

∣∣∣∣ (
ξu,τu(0) = gu,τu − w

gu,τu

)
.

Note that

χu,τu(t)
d= gu,τu

1 + hu,τu(t)
(Zu,τu(t) − ru,τu(t, 0)Zu,τu(0)) + E{χu,τu(t)}, t ∈ E,

where ‘
d=’ denotes equality of distribution.

Next, we shall impose the following assumptions (see [8, Lemma 5.1] and [18, Lemma 2])
to ensure the weak convergence of {χu,τu(t), t ∈ E} as u → ∞.
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(C0) The positive constants gu,τu are such that limu→∞ infτu∈Ku gu,τu = ∞.

(C1) There exists h ∈ C0(E) such that

lim
u→∞ sup

τu∈Ku, t∈E

|g2
u,τu

hu,τu(t) − h(t)| = 0.

(C2) There exists θu,τu(s, t) such that

lim
u→∞ sup

τu∈Ku

sup
s �=t∈E

∣∣∣∣g2
u,τu

var(Zu,τu(t) − Zu,τu(s))

2θu,τu(s, t)
− 1

∣∣∣∣ = 0

and, for some centered Gaussian random field η(t), t ∈ Rd with continuous trajectories
and η(0) = 0,

lim
u→∞ sup

τu∈Ku

|θu,τu(s, t) − var(η(t) − η(s))| = 0 for all s, t ∈ E. (2.2)

(C3) There exists a > 0 such that

lim sup
u→∞

sup
τu∈Ku

sup
s �=t,s, t∈E

θu,τu(s, t)∑d
i=1 |si − ti |a

< ∞, (2.3)

lim
ε↓0

lim sup
u→∞

sup
τu∈Ku

sup
‖t−s‖<ε,s, t∈E

g2
u,τu

E{[Zu,τu(t) − Zu,τu(s)]Zu,τu(0)} = 0. (2.4)

If X is a centered Gaussian process with stationary increments satisfying Assumptions AI–AII
of [8], then Yu,k(t), t ∈ [0, S], |k| ≤ N(u), in (2.1) satisfies (C0)–(C3); see also [18].

The intuitive explanation behind these assumptions is as follows: (C1) and (2.4) in (C3) are
used to guarantee the uniform convergence of the function E{χu,τu(t)} for t ∈ E as u → ∞.
Utilizing further (C2), the convergence of finite-dimensional distributions of χu,τu(t), t ∈ E,
to those of η(t), t ∈ E, can be shown. Moreover, the tightness follows by (2.3) in (C3).

Given h ∈ C0(E) and the functional � satisfying (F1) and (F2), for η introduced in (C2) we
define a new constant

H�
η,h(E) := E{e�(ηh)}, ηh(t) := √

2η(t) − var(η(t)) − h(t),

which is finite by (F1). For notational simplicity, we set

Hη(E) = H
sup
η,0 (E).

We present next the main result of this section. Recall that � stands for the survival function
of an N(0, 1) random variable.

Theorem 2.1. Under assumptions (C0)–(C3) and (F1) and (F2), if, further, P{�(ξu,τu) >

gu,τu} > 0 for all τu ∈ Ku and all large u, then

lim
u→∞ sup

τu∈Ku

∣∣∣∣P{�(ξu,τu) > gu,τu}
�(gu,τu)

− H�
η,h(E)

∣∣∣∣ = 0. (2.5)

Remark 2.1. (i) Under the assumptions of Theorem 2.1, we have

lim sup
u→∞

sup
τu∈Ku

P{�(ξu,τu) > gu,τu}
�(gu,τu)

< ∞,

which coincides with the results of Lemma 5.1 of [8] and extends Lemma 2 of [18].
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(ii) Condition (C2) and (2.4) in (C3) are equivalent to (C2) and

lim
u→∞ sup

t∈E, τu∈Ku

|g2
u,τu

var(Zu,τu(t) − Zu,τu(0)) − 2 var(η(t))| = 0. (2.6)

(iii) Condition (C2) can be formulated also for the degenerated case η(t) = 0, t ∈ Rd , almost
surely. The claim of Theorem 2.1 holds also for such η.

Next we give a simplified version of Theorem 2.1. Instead of (C2) and (C3), we assume that

lim
u→∞ sup

τu∈Ku

sup
s �=t,s, t∈E

∣∣∣∣g2
u,τu

var(Zu,τu(t) − Zu,τu(s))

2
∑d

i=1 ciσ
2
i (qi(u)|si − ti |)/σ 2

i (qi(u))
− 1

∣∣∣∣ = 0, (2.7)

where qi(u), i = 1, . . . , d, are some functions of u with qi(u) > 0 for large enough u and
limu→∞ qi(u) = ϕi ∈ [0, ∞] with

ϕi =

⎧⎪⎨⎪⎩
0, 1 ≤ i ≤ d1,

(0, ∞), d1 + 1 ≤ i ≤ d2,

∞, d2 + 1 ≤ i ≤ d,

and ci ≥ 0, 1 ≤ i ≤ d . Moreover, σi, 1 ≤ i ≤ d, are regularly varying at 0 with indices
αi,0/2 ∈ (0, 1], respectively, and σi(0) = 0, σi(t) > 0, t > 0, 1 ≤ i ≤ d; σi, d2 + 1 ≤ i ≤ d,
are bounded on any compact interval and regularly varying at ∞ with indices αi,∞/2 ∈ (0, 1],
respectively; σ 2

i (t), d1 + 1 ≤ i ≤ d2, are continuous and nonnegative definite, implying that
there exist centered Gaussian processes ηi, d1 + 1 ≤ i ≤ d2, with a continuous sample path
and stationary increments such that var(ηi(t)) := σ 2

i (t), d1 + 1 ≤ i ≤ d2. We refer the reader
to, e.g. [17], [18], [21], and [22], where particular examples of Gaussian processes that satisfy
the above regularity assumptions were investigated; see also [23] for a characterization of such
processes in terms of max-stable stationary processes.

Proposition 2.1. Suppose that (C0) and (C1) and (F1) and (F2) hold. If (2.7) holds with∑d
i=1 ci > 0 and P{�(ξu,τu) > gu,τu} > 0 for all τu ∈ Ku and all large u, then (2.5) holds

with

η(t) =
d1∑

i=1

√
ciBαi,0(ti) +

d2∑
i=d1+1

√
ci

ηi(ϕi ti)

σi(ϕi)
+

d∑
i=d2+1

√
ciBαi,∞(ti), (2.8)

where Bαi,0 , 1 ≤ i ≤ d1, ηi , d1 + 1 ≤ i ≤ d2, and Bαi,∞ , d2 + 1 ≤ i ≤ d, are mutually
independent.

Remark 2.2. (i) Condition (2.7) is satisfied by a large class of important processes previously
investigated in the literature; see, e.g. [8], [14], [17], [18], and [21].

(ii) Under the assumptions of Theorem 2.1,

lim
u→∞ sup

τu∈Ku

∣∣∣∣P{�i(ξu,τu) > u, i = 1, . . . , d}
�(gu,τu)

− H�1,...,�d

η,h

∣∣∣∣ = 0, (2.9)

with �i, i ≤ d , continuous functionals satisfying (F1), (F2), and

H�1,...,�d

η,h =
∫

R

ewP{�i(η
h) > w, i = 1 . . . d} dw ∈ (0, ∞).

Moreover, (2.9) holds also in the case that η is degenerated, i.e. η(t) = 0, t ∈ Rd , almost
surely.
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Finally, we present below a version of Theorem 2.1 under slightly different and more
explicit assumptions. We keep the same notation as in Theorem 2.1 and, moreover, let
σ 2

u,τu
(t) := var(ξu,τu(t)).

(D1) Condition (C0) holds for gu,τu and σu,τu(0) = 1 for all τu ∈ Ku and all u > 0, and there
exists some h ∈ C0(E) such that

lim
u→∞ sup

t∈E, τu∈Ku

|g2
u,τu

(1 − σu,τu(t)) − h(t)| = 0.

(D2) There exists a centered Gaussian random field η(t), t ∈ Rd , with continuous sample
paths η(0) = 0 such that, for any s, t ∈ E, and τu ∈ Ku,

lim
u→∞ sup

τu∈Ku

|g2
u,τu

var(ξu,τu(t) − ξu,τu(s)) − 2 var(η(t) − η(s))| = 0,

lim
u→∞ sup

t∈E, τu∈Ku

|g2
u,τu

var(ξu,τu(t) − ξu,τu(0)) − 2 var(η(t))| = 0.

(D3) There exist positive constants G, ν, and u0 such that, for any u > u0,

sup
τu∈Ku

g2
u,τu

var(ξu,τu(t) − ξu,τu(s)) ≤ G‖t − s‖ν

holds for all s, t ∈ E.

Theorem 2.2. If (D1)–(D3) and (F1) and (F2) are satisfied then (2.5) holds.

3. Applications

3.1. Upper bounds for the double supremum

Uniform bounds for the tail distribution of bivariate maxima of Gaussian processes play a
key role in the double-sum technique of Piterbarg; see, e.g. [26] and [27]. More precisely, of
interest is to find an optimal upper bound for

D(λ1, λ2, E1, E2, u) := P
{

sup
t∈λ1+E1

Xu(t) > mλ1(u), sup
t∈λ2+E2

Xu(t) > mλ2(u)
}
,

which is valid for all large u with the λi and Ei controlled by Eu by requiring that λi +Ei ⊂ Eu,
with Eu a compact subset of Rd . Further, the thresholds mλ1(u), mλ2(u) are assumed to satisfy

lim
u→∞ m(u) = ∞, lim

u→∞ sup
λi+Ei⊂Eu

∣∣∣∣mλi
(u)

m(u)
− 1

∣∣∣∣ = 0, i = 1, 2, (3.1)

for some positive function m.
Set below F(A, B) = infs∈A, t∈B‖s − t‖ with A, B two nonempty subsets of Rd and ‖·‖

the Euclidean norm. Let K = {(λ1, λ2) : λi + Ei ⊂ Eu, i = 1, 2}.
Theorem 3.1. Let Xu(t), t ∈ Eu ⊂ Rd , be a family of centered Gaussian random fields
with continuous trajectories, variance 1, and correlation function ru. Suppose that there exist
positive constants S1, C1, C2, β, and α ∈ (0, 2] such that, for sufficiently large u,

m2(u)(1 − ru(s, t)) ≥ C1‖s − t‖β, ‖s − t‖ ≥ S1, s, t ∈ Eu, (3.2)

m2(u)(1 − ru(s, t)) ≤ C2‖s − t‖α, s, t ∈ Eu, s − t ∈ [−1, 1]d . (3.3)
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Moreover, there exists δ > 0 such that, for large enough u,

ru(s, t) > δ − 1, s, t ∈ Eu. (3.4)

Further, if (3.1) holds then there exists C > 0 such that, for all large enough u,

sup
(λ1,λ2)∈K

Ei⊂[0,S2]d , Ei �=∅, i=1,2

exp(C1F
β(λ1 + E1, λ2 + E2)/8)D(λ1, λ2, E1, E2, u)

S2d
2 �(mλ1,λ2(u))

≤ C, (3.5)

with S2 > 1, mλ1,λ2(u) = min(mλ1(u), mλ2(u)), and C a positive constant independent of
S2, u.

Next assume that κi(t) > 0, t > 0, 1 ≤ i ≤ 2d, are some nonnegative locally bounded
functions and define

gu(s, t) =
d∑

i=1

κi(qi(u)|si − ti |)
κi(qi(u))

and g̃u(s, t) =
d∑

i=1

κi+d(qi+d(u)|si − ti |)
κi+d(qi+d(u))

.

Further, let qi(u) > 0, u > 0, be such that

lim
u→∞ qi(u) = ϕi ∈ [0, ∞], 1 ≤ i ≤ 2d.

Corollary 3.1. Let Xu(t), t ∈ Eu, be centered Gaussian random fields with continuous tra-
jectories, variance 1, and correlation function ru satisfying (3.4). Assume further that (3.1)
holds. Further, if for sufficiently large u,

C3gu(s, t) ≤ m2(u)(1 − ru(s, t)) ≤ C4g̃u(s, t), s, t ∈ Eu, (3.6)

with C3, C4 > 0, and κi, 1 ≤ i ≤ 2d , being regularly varying both at 0 and at ∞ with indices
αi,0 > 0 and αi,∞ > 0, respectively, then there exists C > 0 such that, for large enough u,
(3.5) holds with β = 1

2 mini=1,...,2d min(αi,0, αi,∞, 2) and C1 a fixed positive constant.

Corollary 3.2. Let Xu(t), t ∈ Eu⊂ Rd , be centered Gaussian random fields with continuous
trajectories, variance 1, and correlation function ru satisfying (3.4) and (3.6) with ϕi = 0, 1 ≤
i ≤ 2d, and κi, 1 ≤ i ≤ 2d , being regularly varying at 0 with indices αi,0 > 0. Further, if
(3.1) and

lim sup
u→∞

sup
s,t∈Eu

max
i=1,...,2d

qi(u)|si − ti | < ∞

hold, then there exist positive constants C, C1 such that, for large enough u, (3.5) holds with
β = 1

2 min(2, mini=1,...,2d αi,0).

Remark 3.1. (i) Under the assumptions of Theorem 3.1, using the idea of [16] and [28], since
for γ ∈ (0, 1),

D(λ1, λ2, E1, E2, u) ≤ P
{

sup
s∈λ1+E1, t∈λ2+E2

(γXu(s) + (1 − γ )Xu(t)) > mλ1,λ2,γ (u)
}
,

with mλ1,λ2,γ (u) = γmλ1(u) + (1 − γ )mλ2(u), then in some cases (3.5) can be improved by
setting 4γ (1 − γ )C1 instead of C1, and mλ1,λ2,γ (u) instead of mλ1,λ2(u), respectively.

(ii) A particular example is κi(x) = xαi , αi ∈ (0, 2]. For such a case, the result of Corollary 3.2
yields the claim of Lemma 9.14 of [27]; see also Lemma 6.3 of [26].
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3.2. Tail approximation of �Eu(Xu)

In many applications the tail asymptotics of general functionals of Gaussian random fields Xu

indexed by thresholds u > 0 are of interest. In this section we present an application of
Theorem 2.1 concerned with the tail asymptotics of �Eu(Xu), where

Eu :=
( d∏

i=1

[ai(u), bi(u)]
)

× E

is also parameterized by u, with E a compact subset of Rn, n ∈ N. Without loss of generality,
we assume that 0 ∈ E. The functional �Eu is defined as follows.

Let �∗ : C(E) → R be a real-valued continuous functional satisfying (F1) and (F2) with
c = 1 in (F1). For any compact set A ⊂ Rd , define

�A×E(f ) = sup
s∈A

�∗(f (s, t)), f ∈ C(A × E).

It follows that �A×E is a continuous functional and satisfies (F1) and (F2) with c = 1 in (F1).
Examples of �∗ are

�∗ = sup, inf, a sup +(1 − a) inf, a ≤ 1.

We shall consider Xu(s, t), (s, t) ∈ Eu, a family of centered continuous Gaussian random fields
with variance function σu(s, t) and correlation function ru(s, t, s

′, t ′) satisfying, as u → ∞,

σu(0, 0) = 1, 1 − σu(s, 0) ∼
d∑

i=1

|si |βi

gi(u)
, s ∈

d∏
i=1

[ai(u), bi(u)], (3.7)

and

lim
u→∞ sup

s∈∏d
i=1[ai (u), bi (u)], t �=0, t∈E

∣∣∣∣1 − σu(s, t)/σu(s, 0)∑d+n
i=d+1 |ti |βi /gi(u)

− 1

∣∣∣∣ = 0, (3.8)

where βi > 0 and gi(u) is a function of u satisfying limu→∞ gi(u) = ∞ for 1 ≤ i ≤ d + n.

Moreover, there exists m(u) such that limu→∞ m(u) = ∞ and

lim
u→∞ sup

(s,t), (s′,t ′)∈Eu, (s,t)�=(s′,t ′)

∣∣∣∣{m2(u)(1 − ru(s, t, s
′, t ′))

×
[ d∑

i=1

ciσ
2
i (qi(u)|si − s′

i |)
σ 2

i (qi(u))

+
d+n∑

i=d+1

ciσ
2
i (qi(u)|ti − t ′i |)
σ 2

i (qi(u))

]−1}
− 1

∣∣∣∣
= 0, (3.9)

where ci > 0, qi(u) > 0, limu→∞ qi(u) = ϕi ∈ [0, ∞], 1 ≤ i ≤ d + n, and σi are the
variance functions of ηi’s, centered continuous Gaussian processes with stationary increments
and ηi(0) = 0, satisfying further the following assumptions:

(A1) σ 2
i (t) is regularly varying at ∞ with index 2αi,∞ ∈ (0, 2) and is continuously differen-

tiable over (0, ∞) with the first derivative σ̇ 2
i (t) being ultimately monotone at ∞;

(A2) σ 2
i (t) is regularly varying at 0 with index 2αi,0 ∈ (0, 2].
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Moreover, we shall assume that

lim
u→∞

|ai(u)|βi

gi(u)
= lim

u→∞
|bi(u)|βi

gi(u)
= 0, 1 ≤ i ≤ d+n.

Let

Vϕi
(ti) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

ciBαi,0(ti), ϕi = 0,√
ci

σi(ϕi)
ηi(ϕi ti), ϕi ∈ (0, ∞),

√
ciBαi,∞(ti), ϕi = ∞,

1 ≤ i ≤ d + n. (3.10)

In the sequel, we shall denote

P h
η (E) = H

sup
η,h (E), Hη(E) = H

sup
η,0 (E),

and set

P h
η = lim

S→∞ P h
η ([0, S]), P̂ h

η = lim
S→∞ P h

η ([−S, S]), Hη = lim
S→∞ S−1Hη([0, S]),

if the limits exist. We refer the reader to [9], [14], and [26] for the properties of Piterbarg
constants P h

η and Pickands constants Hη. Next, suppose that

lim
u→∞

m2(u)

gi(u)
= γi ∈ [0, ∞]

and, for all large u, P{�Eu(Xu) > m(u)} > 0.

Theorem 3.2. Let Xu(s, t), (s, t) ∈ Eu⊂ Rd+n, be a family of centered Gaussian random
fields with continuous trajectories satisfying (3.7)–(3.9) and

γi =
{

0 if 1 ≤ i ≤ d1,

∞ if d2 + 1 ≤ i ≤ d,

γi ∈ (0, ∞), d1 + 1 ≤ i ≤ d2, γi ∈ [0, ∞), d + 1 ≤ i ≤ d + n.

If, further, for 1 ≤ i ≤ d1,

lim
u→∞

(m(u))2/βi ai(u)

(gi(u))1/βi
= yi,1, lim

u→∞
(m(u))2/βi bi(u)

(gi(u))1/βi
= yi,2,

lim
u→∞

(m(u))2/βi (a2
i (u) + b2

i (u))

(gi(u))2/βi
= 0,

with −∞ ≤ yi,1 < yi,2 ≤ ∞, for d1 + 1 ≤ i ≤ d2, ai(u) ≤ 0 ≤ bi(u), limu→∞ ai(u) = ai ∈
[−∞, 0], limu→∞ bi(u) = bi ∈ [0, ∞], and ai(u) ≤ 0 ≤ bi(u) for d2 + 1 ≤ i ≤ d, then

P{�Eu(Xu) > m(u)} ∼
d1∏

i=1

HVϕi

d2∏
i=d1+1

P hi

Vϕi
[ai, bi]HṼϕ ,̃h�∗

(E)

×
d1∏

i=1

∫ yi,2

yi,1

e−|s|βi ds

d1∏
i=1

(
gi(u)

m2(u)

)1/βi

�(m(u)), (3.11)
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where

Ṽϕ(t) =
n∑

i=1

Vϕd+i
(ti ), h̃(t) =

n∑
i=1

γd+i |ti |βd+i ,

hi(si) = γi |si |βi , d1 + 1 ≤ i ≤ d2.

(3.12)

Remark 3.2. Theorem 3.2 extends and unifies both the previous findings of [17], [18], [21],
[22], and, in particular, Theorem 8.2 of [26].

3.3. Generalized Piterbarg constants

Let (X(t), t ∈ R) be a centered Gaussian process with stationary increments and continuous
trajectories. Suppose that the variance function σ 2(t) = var(X(t)) is strictly positive for all
t �= 0 and σ(0) = 0. Define

P b
X([0, S], [0, T ]) = E

{
sup

t∈[0,T ]
inf

s∈[0,S] exp(
√

2X(t − s) − (1 + b)σ 2(|t − s|))
}
,

where b, S, and T are positive constants. In the special case that X = Bα is a fractional
Brownian motion with Hurst index α/2 ∈ (0, 1], the generalized Piterbarg constant

P b
Bα

(S) = lim
T →∞ P b

Bα
([0, S], [0, T ]) ∈ (0, ∞)

determines the asymptotics of the Parisian ruin of the corresponding risk model; see [13]. Note
that the classical Piterbarg constant corresponds to the S = 0 case. Our next result shows that
P b

X(S) ∈ (0, ∞) for a general Gaussian process with stationary increments.

Proposition 3.1. If (X(t), t ∈ R) is a centered Gaussian process with stationary increments
and variance function satisfying (A1) with regularly varying index 2α∞ ∈ (0, 2], and (A2) with
regularly varying index 2α0 ∈ (0, 2), then for any b, S positive, we have

lim
T →∞ P b

X([0, S], [0, T ]) ∈ (0, ∞).

4. Proofs

Hereafter, by Q, Qi , i = 1, 2, . . . , we denote positive constants which may differ from line
to line.

Proof of Theorem 2.1. Since we assume that P{�(ξu,τu) > gu,τu} > 0 for all large u and
any τu ∈ Ku, then by conditioning

P{�(ξu,τu) > gu,τu} =
∫

R

P{�(ξu,τu) > gu,τu | ξu,τu(0) = x}exp(−x2/2)√
2π

dx

= exp(−g2
u,τu

/2)√
2πgu,τu

∫
R

exp

(
w − w2

2g2
u,τu

)
P{�(χu,τu) > w} dw

=: exp(−g2
u,τu

/2)√
2πgu,τu

�u,τu ,

with �u,τu > 0 for all large u and

χu,τu(t) = (ζu,τu(t) | ζu,τu(0) = 0), ζu,τu(t) = gu,τu(ξu,τu(t) − gu,τu) + w.
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Hence, the proof follows by showing that H�
η,h(E) is finite and

lim
u→∞ sup

τu∈Ku

|�u,τu − H�
η,h(E)| = 0. (4.1)

Weak convergence of �(χu,τu). We have χu,τu(0) = 0 almost surely. Setting ru,τu(s, t) =
corr(Zu,τu(s), Zu,τu(t)), we may write

χu,τu(t)
d= gu,τu

1 + hu,τu(t)
(Zu,τu(t) − ru,τu(t, 0)Zu,τu(0)) + E{χu,τu(t)}, t ∈ E,

where ‘
d=’ denotes equality of the finite-dimensional distributions. Since

(1+hu,τu(t))E{χu,τu(t)} = −g2
u,τu

(1−ru,τu(t, 0))−g2
u,τu

hu,τu(t)+w(1−ru,τu(t, 0)+hu,τu(t))

by (C1), (C3) for some arbitrary M positive, uniformly with respect to t ∈ E, τu ∈ Ku, w ∈
[−M, M],

(1 + hu,τu(t))E{χu,τu(t)} → −(σ 2
η (t) + h(t)), u → ∞, (4.2)

and also, for any s, t ∈ E uniformly with respect to τu ∈ Ku, w ∈ [−M, M],
var((1 + hu,τu(t))χu,τu(t) − (1 + hu,τu(s))χu,τu(s))

= g2
u,τu

[E{(Zu,τu(t) − Zu,τu(s))
2} − (E{Zu,τu(0)[Zu,τu(t) − Zu,τu(s)]})2]

→ 2 var(η(t) − η(s)), u → ∞. (4.3)

Consequently, by Lemma 4.1 of [29], the finite-dimensional distributions of

(1 + hu,τu(t))χu,τu(t), t ∈ E,

converge to those of ηh(t), t ∈ E, as u → ∞ uniformly for τu ∈ Ku, w ∈ [−M, M], where
M > 0 is fixed (recall that ηh(t) = √

2η(t) − var(η(t)) − h(t)).
Condition (C3) together with the uniform convergence in (4.2) guarantee that Proposition 9.7

of [27] can be applied to yield the uniform tightness of (1+hu,τu(t))χu,τu(t), t ∈ E, and, thus,
{(1 +hu,τu(t))χu,τu(t), t ∈ E} weakly converges to {ηh(t), t ∈ E} as u → ∞, uniformly with
respect to τu ∈ Ku. Further, since

lim
u→∞ sup

t∈E, τu∈Ku

hu,τu(t) = 0,

then {χu,τu(t), t ∈ E} converges weakly to {ηh(t), t ∈ E} as u → ∞, uniformly with respect
to τu ∈ Ku.

Consequently, since we assume that � is a continuous functional, by the continuous mapping
theorem, �(χu,τu) converges in distribution to �(ηh) as u → ∞, uniformly with respect to
τu ∈ Ku.

Convergence of (4.1). Denote A = {w : P{�(ηh) > w} is discontinuous at w} then A is a
countable set with measure 0. Hence, for any w ∈ R \ A,

lim
u→∞ sup

τu∈Ku

|P{�(χu,τu) > w} − P{�(ηh) > w}| = 0

and, by (C0),

lim
u→∞ sup

τu∈Ku, w∈[−M,M]
ew

[
1 − exp

(
− w2

2g2
u,τu

)]
≤ eMM2

2 lim infu→∞ infτu∈Ku g2
u,τu

→ 0,
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u → ∞, implying that

lim
u→∞ sup

τu∈Ku

∣∣∣∣∫ M

−M

[
exp

(
w − w2

2g2
u,τu

)
P{�(χu,τu) > w} − ewP{�(ηh) > w}

]
dw

∣∣∣∣
≤ lim

u→∞ sup
τu∈Ku

∫ M

−M

ew

(
1 − exp

(
− w2

2g2
u,τu

))
P{�(ηh) > w} dw

+ lim
u→∞ sup

τu∈Ku

∣∣∣∣∫ M

−M

[
exp

(
w − w2

2g2
u,τu

)
(P{�(χu,τu) > w} − P{�(ηh) > w})

]
dw

∣∣∣∣
≤ eM lim

u→∞

∫ M

−M

sup
τu∈Ku

|P{�(χu,τu) > w} − P{�(ηh) > w}| dw

= 0.

Using (4.2) for δ ∈ (0, 1/c), |w| > M with sufficiently large M , and all large u, we have

sup
τu∈Ku, t∈E

(1 + hu,τu(t))E{χu,τu(t)} ≤ δ|w|.

Moreover, in view of (4.3) and (2.3) in (C3), we have, for sufficiently large u,

var((1 + hu,τu(t))χu,τu(t) − (1 + hu,τu(s))χu,τu(s)) ≤ g2
u,τu

E{(Zu,τu(t) − Zu,τu(s))
2}

≤ Q
d∑

i=1

|si − ti |a.

Consequently, by the Piterbarg inequality (see, e.g. Theorem 8.1 of [26]), we obtain, for some
ε ∈ (0, 1), δ ∈ (0, 1/c) with c given in (F1), and all large u,∫

|w|>M

exp

(
w − w2

2g2
u,τu

)
P{�(χu,τu) > w} dw

≤
∫

|w|>M

ewP
{
c sup

t∈E

(1 + hu,τu(t))(χu,τu(t) − E{χu,τu(t)})

> w − c sup
t∈E, τu∈Ku

(1 + hu,τu(t))E{χu,τu(t)}
}

dw

≤ e−M +
∫ ∞

M

ew�

(
(1 − ε)

(
1

c
− δ

)
w

)
dw

=: A(M)

→ 0, M → ∞.

Moreover, by the Borell–TIS inequality (see, e.g. [1])∫
|w|>M

ewP{�(ηh) > w} dw

≤
∫

|w|>M

ewP
{
c sup

t∈E

ηh(t) > w
}

dw

≤ e−M +
∫ ∞

M

ewP
{√

2c sup
t∈E

η(t) > w − c sup
t∈E

(var(η(t)) + h(t))
}

dw
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≤ e−M +
∫ ∞

M

exp

(
w − (w − a)2

2 supt∈E var(
√

2cη(t))

)
dw

=: B(M)

→ 0, M → ∞,

with a = √
2cE{supt∈E η(t)} − c supt∈E(var(η(t)) + h(t)) < ∞. Hence, (4.1) follows from

sup
τu∈Ku

|�u,τu − H�
η,h(E)|

≤ sup
τu∈Ku

∣∣∣∣∫ M

−M

[
exp

(
w − w2

2g2
u,τu

)
P{�(χu,τu) > w} − ewP{�(ηh) > w}

]
dw

∣∣∣∣
+ A(M) + B(M)

→ 0, u → ∞, M → ∞,

establishing the proof. �
Proof of Proposition 2.1. It follows from Remark 2.1(ii) that it suffices to prove (2.2), (2.3),

and (2.6). Without loss of generality, in the following derivation we assume that ci > 0, 1 ≤
i ≤ d. By (2.7), we have

θu,τu(s, t) =
d∑

i=1

ciσ
2
i (qi(u)|si − ti |)
σ 2

i (qi(u))
, (s, t) ∈ E.

By the uniform convergence theorem (UCT) for regularly varying functions (see [5]), (2.2)
holds with η defined in (2.8). Next we verify (2.3). In the case of 0 < β < min(min1≤i≤d αi,0,

mind2+1≤i≤d αi,∞), we have

d∑
i=1

ciσ
2
i (qi(u)|si − ti |)
σ 2

i (qi(u))
=

d∑
i=1

ci

fi(qi(u)|si − ti |)
fi(qi(u))

|si − ti |β/2,

with fi(t) = σ 2
i (t)/tβ/2, t > 0. Note that fi is regularly varying at 0 with index αi,0 −β/2 > 0

for 1 ≤ i ≤ d and, for d2 +1 ≤ i ≤ d , fi is regularly varying at ∞ with index αi,∞ −β/2 > 0.
By the UCT, for any M > 0, we have

lim
u→∞ max

i=1,...,d1
sup

0<|si−ti |≤M

∣∣∣∣fi(qi(u)|si − ti |)
fi(qi(u))

− |si − ti |αi,0−β/2
∣∣∣∣ = 0.

Using the fact that fi is bounded on compact intervals for d2 + 1 ≤ i ≤ d, again by the UCT,
for any M > 0,

lim
u→∞ max

i=d2+1,...,d
sup

0<|si−ti |≤M

∣∣∣∣fi(qi(u)|si − ti |)
fi(qi(u))

− |si − ti |αi,∞−β/2
∣∣∣∣ = 0.

Moreover, since fi is regularly varying at 0 with index αi,0 −β > 0 and ϕi ∈ (0, ∞), d1 + 1 ≤
i ≤ d2, then, for any M > 0 and large enough u,

max
d1+1≤i≤d2

sup
0<|si−ti |≤M

fi(qi(u)|si − ti |)
fi(qi(u))

< ∞.
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Thus, we conclude that, for large enough u,

d∑
i=1

ciσ
2
i (qi(u)|si − ti |)
σ 2

i (qi(u))
≤ Q

d∑
i=1

|si − ti |β/2, s, t ∈ E,

which confirms (2.3). We are now left to prove (2.6). In light of (2.7) and the UCT, we have

lim
u→∞ sup

t∈E\{0}, τu∈Ku

|g2
u,τu

var(Zu,τu(t) − Zu,τu(0)) − 2 var(η(t))|

≤ lim
u→∞ sup

t∈E\{0},τu∈Ku

∣∣∣∣g2
u,τu

var(Zu,τu(t) − Zu,τu(0))

2θu,τu(0, t)
− 1

∣∣∣∣|2θu,τu(0, t)|

+ lim
u→∞ sup

t∈E, τu∈Ku

|2θu,τu(0, t) − 2 var(η(t))|

= 0,

which implies that (2.6) holds. This completes the proof. �
Proof of Theorem 2.2. We check that (C0)–(C3) hold. Clearly, (C0) is satisfied by the

assumptions. We observe that

ξu,τu(t) = ξu,τu
(t)

1 + hu,τu(t)
, t ∈ E, τu ∈ Ku,

with

ξu,τu
(t) = ξu,τu(t)

σu,τu(t)
, hu,τu(t) = 1 − σu,τu(t)

σu,τu(t)
,

which, together with (D1), immediately implies that (C1) is valid. Next, for u > 0,

θu,τu(s, t) = g2
u,τu

2
var(ξu,τu

(t) − ξu,τu
(s)).

Direct calculations yield

θu,τu(s, t) = I1,u,τu(s, t) + I2,u,τu(s, t) + I3,u,τu(s, t), s, t ∈ E,

where

I1,u,τu(s, t) = g2
u,τu

2

var(ξu,τu(t) − ξu,τu(s))

σ 2
u,τu

(t)
, I2,u,τu(s, t) = g2

u,τu

2

(σu,τu(t) − σu,τu(s))
2

σ 2
u,τu

(t)
,

I3,u,τu(s, t) = g2
u,τu

σu,τu(t) − σu,τu(s)

σ 2
u,τu

(t)σu,τu(s)
E{(ξu,τu(s) − ξu,τu(t))ξu,τu(s)}.

It follows from (D1) that

lim
u→∞ sup

s, t∈E, τu∈Ku

I2,u, τu(s, t)≤ lim
u→∞ sup

s, t∈E, τu∈Ku

g2
u, τu

(σu,τu(t) − 1)2 + (1 − σu, τu(s))
2

σ 2
u,τu

(t)
= 0.

Further, by (D1) and (D2),

lim
u→∞ sup

τu∈Ku

|I1,u,τu(s, t) − var(η(t) − η(s))| = 0, s, t ∈ E,
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and

lim
u→∞ sup

τu∈Ku

|I3,u,τu(s, t)| ≤ lim
u→∞ sup

τu∈Ku

g2
u,τu

|σu,τu(t) − σu,τu(s)|
σ 2

u,τu
(t)

√
var(ξu,τu(s) − ξu,τu(t))

= 0, s, t ∈ E.

Thus, we confirm that (C2) holds. Moreover, by (D3) and the fact that

(σu,τu(t) − σu,τu(s))
2 ≤ var(ξu,τu(t) − ξu,τu(s)),

we obtain

lim
u→∞ sup

τu∈Ku

sup
s �=t, s, t∈E

θu,τu(s, t)

‖t − s‖ν
≤ Q lim

u→∞ sup
τu∈Ku

sup
s �=t, s, t∈E

g2
u,τu

var(ξu,τu(t) − ξu,τu(s))

‖t − s‖ν
< ∞.

Using again (D1) and (D2), we obtain

lim
u→∞ sup

t∈E, τu∈Ku

|I1,u,τu(0, t) − var(η(t))| = 0,

lim
u→∞ sup

t∈E, τu∈Ku

I2,u, τu(0, t) = 0, lim
u→∞ sup

t∈E, τu∈Ku

|I3,u,τu(0, t)| = 0,

which imply
lim

u→∞ sup
t∈E, τu∈Ku

|θu,τu(0, t) − var(η(t))| = 0.

Hence, (C3) is satisfied using (2.6) instead of (2.4). In view of Remark 2.1, the proof is
completed. �

Proof of Theorem 3.1. Recall that F(A, B) = infs∈A, t∈B‖s − t‖ with A, B two nonempty
subsets of Rd and ‖·‖ the Euclidean norm. Clearly, for any positive u,

P
{

sup
t∈λ1+E1

Xu(t) > mλ1(u), sup
t∈λ2+E2

Xu(t) > mλ2(u)
}

≤ P
{

sup
s∈λ1+E1, t∈λ2+E2

(Xu(s) + Xu(t)) > 2mλ1,λ2(u)
}
,

where mλ1,λ2(u) = min(mλ1(u), mλ2(u)). By (3.2) and (3.4), we have, for sufficiently large u

and F(λ1 + E1, λ2 + E2) > S1, with large enough S1,

2δ ≤ var(Xu(s) + Xu(t)) = 4 − 2(1 − ru(s, t)) ≤ 4 − 2C1F
β(λ1 + E1, λ2 + E2)

m2(u)
.

Moreover, by (3.3) and the above inequality,

1 − corr(Xu(s) + Xu(t), Xu(s
′) + Xu(t

′))

≤ var(Xu(s) + Xu(t) − Xu(s
′) − Xu(t

′))
2
√

var(Xu(s) + Xu(t))
√

var(Xu(s′) + Xu(t ′))
≤ δ−1(1 − ru(s, s

′) + 1 − ru(t, t
′))

≤ C2
δ−1dα/2

m2(u)

d∑
i=1

(|si − s′
i |α + |ti − t ′i |α)
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holds for s, t, s′, t ′ ∈ [0, 1]d . Let X∗
u(s, t), s, t ∈ Rd , u > 0, be a family of centered Gaussian

random fields with unit variance and correlation satisfying

ru(s, t) = exp

(
−2δ−1dα/2C2

m2(u)

d∑
i=1

(|si |α + |ti |α)

)
, s, t ∈ Rd ,

and further let

mu, λ1, λ2, E1, E2 := 2mλ1, λ2(u)√
4 − 2C1Fβ(λ1 + E1, λ2 + E2)/m2(u)

, Ii1,...,id =
d∏

j=1

[ij , ij + 1].

For all large u, we have

P
{

sup
s∈λ1+E1, t∈λ2+E2

(Xu(s) + Xu(t)) > 2mλ1,λ2(u)
}

≤ P
{

sup
s∈λ1+E1, t∈λ2+E2

Xu(s) + Xu(t) > mu,λ1,λ2,E1, E2

}
≤ P

{
sup

s∈λ1+[0,S2]d , t∈λ2+[0,S2]d
Xu(s) + Xu(t) > mu,λ1,λ2,E1,E2

}

≤
[S2]∑

i1,i2,...,id ,i′1,i′2,...,i′d=0

P
{

sup
s∈λ1+Ii1,...,id

, t∈λ2+Ii′1,...,i′
d

Xu(s) + Xu(t) > mu,λ1,λ2,E1,E2

}

≤
[S2]∑

i1,i2,...,id ,i′1,i′2,...,i′d=0

P
{

sup
s∈λ1+Ii1,...,id

, t∈λ2+Ii′1,...,i′
d

X∗
u(s, t) > mu,λ1,λ2,E1,E2

}
= (S2 + 1)2dP

{
sup

s,t∈[0,1]d
X∗

u(s, t) > mu,λ1,λ2,E1,E2

}
, (4.4)

where we used the Slepian inequality (see, e.g. [1] and [2]) to derive (4.4). Hence, in order to
complete the proof, we need to apply Proposition 2.1 to the family of Gaussian random fields
{X∗

u(s, t), (s, t) ∈ [0, 1]2d}. Let

Ku = {(λ1, λ2), λi + Ei ⊂ Eu, i = 1, 2}.
Note that

lim
u→∞ sup

(λ1,λ2)∈Ku

sup
(s,t) �=(s′,t ′),

(s,t),(s′,t ′)∈[0,1]2d

∣∣∣∣ (mu,λ1,λ2,E1,E2)
2 var(X∗

u(s, t) − X∗
u(s

′, t ′))
2

∑d
i=1 2δ−1dα/2C2(

∑d
i=1 |si −s′

i |α + ∑d
i=1 |ti − t ′i |α)

− 1

∣∣∣∣
= 0.

Since conditions (C0) and (C1) are clearly satisfied, then Proposition 2.1 implies that

lim
u→∞ sup

(λ1,λ2)∈Ku

∣∣∣∣ 1

�(mu,λ1,λ2,E1,E2)
P
{

sup
s,t∈[0,1]2d

X∗
u(s, t) > mu,λ1,λ2,E1,E2

}
−Hη([0, 1]2d)

∣∣∣∣ = 0,

where

η(s, t) =
d∑

i=1

√
2δ−1dα/2C2B

(i)
α (si) +

2d∑
i=d+1

√
2δ−1dα/2C2B

(i)
α (ti−d),
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with B
(i)
α , 1 ≤ i ≤ 2d , an independent fractional Brownian motions with index α. Thus, we

establish the claim for F(λ1 + E1, λ2 + E2) > S1. For F(λ1 + E1, λ2 + E2) ≤ S1, we have

P
{

sup
s∈λ1+E1

Xu(s) > mλ1(u), sup
t∈λ2+E2

Xu(t) > mλ2(u)
}

≤ P
{

sup
t∈λ1+[−S1,S2+S1]d

Xu(t) > mλ1,λ2(u)
}
.

By (3.3) and the Slepian inequality

P
{

sup
s∈λ1+[−S1,S2+S1]d

Xu(s) > mλ1,λ2(u)
}

≤ (S2 + 2S1 + 1)dP
{

sup
s∈[0,1]d

X∗
u(δ

1/αs, 0, . . . , 0) > mλ1,λ2(u)
}

∼ (S2 + 2S1 + 1)dHλ([0, 1]d)�(mλ1,λ2(u)), u → ∞,

with λ(s) = √
δη(s, 0, . . . , 0). This completes the proof. �

Proof of Corollary 3.1. Let β = 1
2 mini=1,...,2d min(αi,0, αi,∞, 2) and fi(t) = κi(t)/tβ .

Clearly, the fi are regularly varying at 0 with index αi,0 − β > 0 and regularly varying at ∞
with index αi,∞ − β > 0. With this notation, we have

κi(qi(u)|si − ti |)
κi(qi(u))

= fi(qi(u)|si − ti |)
fi(qi(u))

|si − ti |β, si �= ti , i = 1, . . . , 2d. (4.5)

Next we focus on fi(qi(u)|si − ti |)/fi(qi(u)). We consider the upper bound and lower
bound.

Lower bound. For ϕi = 0 we define gi(t) = 1/fi(1/t). Then gi is both regularly varying
at 0 with index αi,∞ − β > 0 and regularly varying at ∞ with index αi,0 − β > 0. By the
assumption on the κi , further, the gi are bounded over any compact interval and, by the UCT,

lim
u→∞ sup

|si−ti |≥1

∣∣∣∣gi(1/qi(u)|si − ti |)
gi(1/qi(u))

−
(

1

|si − ti |
)αi,0−β ∣∣∣∣ = 0

implying that, for large enough u,

gi(1/qi(u)|si − ti |)
gi(1/qi(u))

≤ 2,
1

|si − ti | ≤ 1.

Consequently, for sufficiently large u,

fi(qi(u)|si − ti |)
fi(qi(u))

= gi(1/qi(u))

gi(1/qi(u)|si − ti |) ≥ 1

2
, |si − ti | ≥ 1.

Next, if ϕi ∈ (0, ∞) then by the fact that limt→∞ fi(t) = ∞, there exists S1 > 0 and M ′
i such

that, for sufficiently large u,

fi(qi(u)|si − ti |)
fi(qi(u))

> M ′
i , |si − ti | > S1.
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For ϕ = ∞, Potter’s theorem (see, e.g. [5, Theorem 1.5.6]) implies that, for any 0 < ε <

αi,∞ − β, there exist M ′′
i > 0 and S′

1 > 1 such that, for sufficiently large u,

fi(qi(u)|si − ti |)
fi(qi(u))

> M ′′
i |si − ti |αi,∞−β−ε ≥ M ′′

1 , |si − ti | > S′
1.

Consequently, there exist S > 1 and M > 0 such that, for sufficiently large u,

κi(qi(u)|si − ti |)
κi(qi(u))

≥ M|si − ti |β, |si − ti | > S, i = 1, . . . , d.

Further, for large enough u,

gu(s, t) ≥ d−β/2M‖s − t‖β, ‖s − t‖ >
√

dS. (4.6)

Upper bound. If ϕi ∈ {0, ∞} then using again the UCT, we have

sup
|si−ti |≤1

fi(qi(u)|si − ti |)
fi(qi(u))

≤ C

is valid for all large enough u and some constant C. Further, since fi is locally bounded then
the above also holds if ϕi ∈ (0, ∞). This implies that, for some M ′ > 0,

g̃u(s, t) ≤ M ′
d∑

i=1

|si − ti |β ≤ dM ′‖s − t‖β, s − t ∈ [−1, 1]d ,

which combined with (4.6) and Theorem 3.1 establishes the claim. �

Proof of Corollary 3.2. The claim follows straightforwardly using the arguments of Corol-
lary 3.1 for the ϕi = 0 case. �

Proof of Theorem 3.1. Without loss of generality, we assume that ai = −∞, bi = ∞ for
d1 + 1 ≤ i ≤ d2. In what follows, set

Ik =
d1∏

i=1

[kiS, (ki + 1)S], k = (k1, . . . , kd1),

Jl =
d2∏

i=d1+1

[liS, (li + 1)S] ×
d∏

i=d2+1

[liT , (li + 1)T ], l = (ld1+1, . . . , ld ),

J ∗ =
d2∏

i=d1+1

[−S, S] ×
d∏

i=d2+1

[−T , T ], J̃ =
d2∏

i=d1+1

[−S, S] × {0}, 0 ∈ Rd−d2 .

Further, define

I ∗
k = Ik × J ∗ × E, Ĩk = Ik × J̃ × E, Ik,l = Ik × Jl × E,

K±
u =

{
k,

ai(u)

S
∓ 1 ≤ ki ≤ bi(u)

S
± 1, 1 ≤ i ≤ d1

}
,
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1056 K. DȨBICKI ET AL.

and

Lu =
{
l,

ai(u)

S
− 1 ≤ li ≤ bi(u)

S
+ 1, d1 + 1 ≤ i ≤ d2,

ai(u)

T
− 1 ≤ li ≤ bi(u)

T
+ 1, d2 + 1 ≤ i≤ d, Jl � J ∗

}
.

For some ε ∈ (−1, 1) and u > 0, set

�ε(u) :=
d1∏

i=1

∫ yi,2

yi,1

exp(−(1 − ε)|s|βi ) ds

d1∏
i=1

(
gi(u)

m2(u)

)1/βi

�(m(u)).

Observe that

Xu(s, t) = σu(s, t)Xu(s, t)

σu(0, 0)
,

σu(0, 0)

σu(s, t)
= σu(0, 0)

σu(s, 0)

σu(s, 0)

σu(s, t)
.

Using (3.7) and (3.8), there exist eu,1(s) and eu,2(s, t) such that, as u → ∞,

sup
s∈∏d

i=1[ai (u),bi (u)]
|eu,1(s)| = o(1), sup

(s,t)∈Eu

|eu,2(s, t)| = o(1),

and

σu(0, 0)

σu(s, 0)
= 1 + (1 + eu,1(s))

d∑
i=1

|si |βi

gi(u)
, s ∈

d∏
i=1

[ai(u), bi(u)],

σu(s, 0)

σu(s, t)
= 1 + (1 + eu,2(s, t))

d+n∑
i=d+1

|ti |βi

gi(u)
, (s, t) ∈ Eu.

Note that, by (F2) for �∗,

�Eu(Xu(s, t)) = sup
s∈∏d

i=1[ai (u), bi (u)]
�∗(Xu(s, t))

= sup
s∈∏d

i=1[ai (u), bi (u)]
σu(s, 0)�∗

(
Xu(s, t)

σu(s, t)

σu(s, 0)

)
.

Thus, by (F2) for �∗, and the property of the sup functional, we have, for 0 < ε < 1
2 and

sufficiently large u,

P{�Eu(X
+ε
u ) > m(u)} ≤ P{�Eu(Xu) > m(u)} ≤ P{�Eu(X

−ε,y
u ) > m(u)}, (4.7)

where, for (s, t) ∈ Eu,

X
−ε,y
u (s, t)

= Xu(s, t)

(1 + ∑d1
i=1(1 − ε)[|si |βi /gi (u))](1 + ∑d2

i=d1+1(1 − ε)[|si |βi /gi (u)] + ∑d
i=d2+1 y[|si |βi /m2(u)])

× 1

(1 + (1 + eu,2(s, t))
∑d+n

i=d+1[|ti |βi /gi(u)]) ,

https://doi.org/10.1017/apr.2017.33 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.33


Tails of homogenous functionals of Gaussian fields 1057

and

X+ε
u (s, t) = Xu(s, t)

[(
1 +

d1∑
i=1

(1 + ε)
|si |βi

gi(u)

)(
1 +

d∑
i=d1+1

(1 + ε)
|si |βi

gi(u)

)

×
(

1 + (1 + eu,2(s, t))

d+n∑
i=d+1

|ti |βi

gi(u)

)]−1

.

Upper bound. By the property of the sup functional, we have

P{�Eu(X
−ε,y
u ) > m(u)}

≤
∑

k∈K+
u

P{�I∗
k
(X

−ε,y
u ) > m(u)} +

∑
(k,l)∈K+

u ×Lu

P{�Ik,l
(X

−ε,y
u ) > m(u)}

≤
∑

k∈K+
u

P{�I∗
0
(ξu,k) > mu,k} +

∑
(k,l)∈K+

u ×Lu

P{�I0,0(ξu,k,l) > mu,k,l}, (4.8)

where

ξu,k(s, t) = Xu(s + kS, t)

[(
1 +

d2∑
i=d1+1

(1 − ε)
|si |βi

gi(u)
+

d∑
i=d2+1

y
|si |βi

m2(u)

)

×
(

1 + (1 + eu,2(s, t))

d+n∑
i=d+1

|ti |βi

gi(u)

)]−1

, (s, t) ∈ I ∗
0 ,

ξu,k,l(s, t) = Xu(s + (k, l)(S, T ), t)

1 + (1 + eu,2(s, t))
∑d+n

i=d+1 |ti |βi /gi(u)
, (s, t) ∈ I0,0,

mu,k = m(u)

(
1 +

d1∑
i=1

(1 − ε)
|k∗

i S|βi

gi(u)

)
,

mu,k,l = m(u)

(
1 +

d1∑
i=1

(1 − ε)
|k∗

i S|βi

gi(u)
+

d2∑
i=d1+1

(1 − 2ε)
|l∗i S|βi

gi(u)

+
d∑

i=d2+1

y

2(|l∗i S|βi /m2(u))

)
,

with kS = (k1S, . . . , kd1S, 0, . . . , 0) ∈ Rd and

(k, l)(S, T ) = (k1S, . . . , kd1S, ld1+1S, . . . , ld2S, ld2+1T , ldT ) ∈ Rd ,

k∗
i = min(|ki |, |ki + 1|), 1 ≤ i ≤ d1, l∗i = min(|li |, |li + 1|), d1 + 1 ≤ i ≤ d.

In order to apply Proposition 2.1, by (3.9), set

θu,k(s, t, s
′, t ′) =

d∑
i=1

ciσ
2
i (qi(u)|si − s′

i |)
σ 2

i (qi(u))

+
d+n∑

i=d+1

ciσ
2
i (qi(u)|ti − t ′i |)
σ 2

i (qi(u))
, (s, t), (s′, t ′) ∈ I ∗

0 ,
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and

hu,k(s, t) =
( d2∑

i=d1+1

(1 − ε)
|si |βi

gi(u)
+

d∑
i=d2+1

y
|si |βi

m2(u)

+
d+n∑

i=d+1

|ti |βi

gi(u)

)
(1 + o(1)), (s, t) ∈ I ∗

0 ,

gu,k = mu,k, Ku = K+
u , E = I ∗

0 .

First we note that condition (C0) holds straightforwardly. One can easily check that (C1) holds
with

hε(s, t) =
d2∑

i=d1+1

(1 − ε)γi |si |βi +
d∑

i=d2+1

y|si |βi +
d+n∑

i=d+1

γi |ti |βi , (s, t) ∈ I ∗
0 . (4.9)

Thus, in view of (A1) and (A2) and by Proposition 2.1, we have

lim
u→∞ sup

k∈K+
u

∣∣∣∣P{�I∗
0
(ξu,k) > mu,k}
�(mu,k)

− H�
Vϕ,hε

(I ∗
0 )

∣∣∣∣ = 0, (4.10)

with hε defined in (4.9) and Vϕ(s, t) = ∑d
i=1 Vϕi

(si) + ∑n
i=1 Vϕd+i

(ti ) with Vϕi
defined in

(3.10). Similarly, we have

lim
u→∞ sup

(k,l)∈K+
u ×Lu

∣∣∣∣P{�I0,0(ξu,k,l) > mu,k,l}
�(mu,k,l)

− H�

Vϕ ,̃h
(I0,0)

∣∣∣∣ = 0, (4.11)

with h̃(s, t) = ∑n
i=1 γi+d |ti |βi+d . Further, as u → ∞,∑

k∈K+
u

P{�I∗
0
(ξu,k) > mk(u)} ∼ H�

Vϕ,hε
(I ∗

0 )
∑

k∈K+
u

�(mu,k)

∼ H�
Vϕ,hε

(I ∗
0 )�(m(u))

∑
k∈K+

u

exp

(
−

d1∑
i=1

(1 − ε)m2(u)
|k∗

i S|βi

gi(u)

)
∼ S−d1H�

Vϕ,hε
(I ∗

0 )�ε(u) (4.12)

and ∑
(k,l)∈K+

u ×Lu

P{�I0,0(ξu,k,l) > mu,k,l}

∼ H�

Vϕ ,̃h
(I0,0)

∑
(k,l)∈K+

u ×Lu

�(mu,k,l)

≤ H�

Vϕ ,̃h
(I0,0)

∑
k∈K+

u

�(mu,k)
∑
l∈Lu

exp

(
−m2(u)

( d2∑
i=d1+1

(1 − 2ε)
|l∗i S|βi

gi(u)

+
d∑

i=d2+1

y

2(|l∗i T |βi /m2(u))

))
(1 + o(1))
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≤ H�

Vϕ ,̃h
(I0,0)

∑
k∈K+

u

�(mu,k)
∑
l∈Lu

exp

(
−

d2∑
i=d1+1

(1 − 2ε)γi |l∗i S|βi

−
d∑

i=d2+1

y

2|l∗i T |βi

)
(1 + o(1))

≤ S−d1H�

Vϕ ,̃h
(I0,0)

( d2∑
i=d1+1

e−QSβi +
d∑

i=d2+1

e−yQT βi

)
�ε(u)(1 + o(1)). (4.13)

Lower bound. By the property of the sup functional and Bonferroni inequality, we obtain

P{�Eu(X
+ε
u ) > m(u)} ≥

∑
k∈K−

u

P{�Ĩk
(X+ε

u ) > m(u)}

−
∑

k,q∈K−
u , k �=q

P{�Ĩk
(X+ε

u ) > m(u), �Ĩq
(X+ε

u ) > m(u)}. (4.14)

Similarly, as in (4.12), we have∑
k∈K−

u

P{�Ĩk
(X+ε

u ) > m(u)} ∼ S−d1H�
Vϕ,h∗

ε
(Ĩ0)�−ε(u), (4.15)

with h∗
ε (s, t) = ∑d2

i=d1+1(1 + ε)γi |si |βi + ∑n
i=1 γi+d |ti |βi+d , (s, t) ∈ Ĩ0. Finally, we focus on

the double-sum term. From (F1), it follows that∑
k,q∈K−

u , k �=q

P{�Ĩk
(X+ε

u ) > m(u), �Ĩk
(X+ε

u ) > m(u)}

≤
∑

k,q∈K−
u , k �=q

P
{

sup
(s,t)∈Ĩk

X+ε
u (s, t) > m(u), sup

(s,t)∈Ĩq

X+ε
u (s, t) > m(u)

}
≤

∑
k,q∈K−

u , k �=q

P
{

sup
(s,t)∈Ĩk

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
.

Let, for u > 0,

T1 = {(k, q), k, q ∈ K−
u , k �= q, Ĩk ∩ Ĩq �= ∅}, T2 = {(k, q), k, q ∈ K−

u , Ĩk ∩ Ĩq = ∅}.
Without loss of generality, we assume that q1 = k1 + 1, S > 1. Then Ĩk = Ĩ ′

k ∪ Ĩ ′′
k with

Ĩ ′
k = [k1S, (k1 + 1)S − √

S] ×
d1∏

i=2

[kiS, (ki + 1)S] × J̃ × E,

Ĩ ′′
k = [(k1 + 1)S − √

S, (k1 + 1)S] ×
d1∏

i=2

[kiS, (ki + 1)S] × J̃ × E.

Consequently,

P
{

sup
(s,t)∈Ĩk

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
≤ P

{
sup

(s,t)∈Ĩ ′
k

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
+ P

{
sup

(s,t)∈Ĩ ′′
k

Xu(s, t) > mu,k

}
.
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Similarly, as in (4.10), we have

lim
u→∞ sup

k∈K−
u

∣∣∣∣P{sup(s,t)∈Ĩ ′′
k

Xu(s, t) > mu,k}
�(mu,k)

− H
sup
Vϕ,h∗

ε
(Î0)

∣∣∣∣ = 0,

with Î0 = [0,
√

S] × [0, S]d1−1 × J̃ × E.
Let β = min(mini=1,...,d+n(αi,0), mini=1,...,d+n(αi,∞). By (3.9) and Corollary 3.1, there

exist C > 0 and C1 > 0 such that

P
{

sup
(s,t)∈Ĩ ′

k

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
≤ C(S + |E| + 1)2(d2+n) e−C1S

β/2
�(m∗

u,k,q)

and, for (k, q) ∈ T2,

P
{

sup
(s,t)∈Ĩk

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
≤ C(S + |E| + 1)2(d2+n) e−C1F

β(Ĩk,Ĩq )�(m∗
u,k,q),

with m∗
u,k,q = min(mu,k, mu,q). Since each Ĩk has at most 3d1 neighbors then, for S and

sufficiently large u,∑
(k,q)∈T1

P
{

sup
(s,t)∈Ĩk

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
≤ 3d

∑
k∈K−

u

H
sup
Vϕ,h∗

ε
(Î0)�(mu,k) +

∑
(k,q)∈T1

C(S + |E| + 1)2(d2+n) e−C1S
β/2

�(m∗
u,k,q)

≤ Q
∑

k∈K−
u

(
H

sup
Vϕ,h∗

ε
(Î0) + exp

(
−C1S

β/2

2

))
�(mu,k)

≤ QS−d1

(
H

sup
Vϕ,h∗

ε
(Î0) + exp

(
−C1S

β/2

2

))
�ε(u). (4.16)

Moreover, for all large u,∑
(k,q)∈T2

P
{

sup
(s,t)∈Ĩk

Xu(s, t) > mu,k, sup
(s,t)∈Ĩq

Xu(s, t) > mu,q

}
≤

∑
(k,q)∈T2

C(S + |E| + 1)2(d2+n) e−C1F
β(Ĩk,Ĩq )�(mu,k,q)

≤
∑

k∈K−
u

�(mu,k)QSQ1
∑
q �=0

exp

(
−C1

(
S2

d1∑
i=1

q2
i

)β/2)
≤ QSQ1 e−Q2S

β

�ε(u). (4.17)
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Substituting (4.8)–(4.17) into (4.7) and dividing each term by �0(u), we have, with ε → 0,

S−d1H�
Vϕ, h∗

0
(Ĩ0) − QS−d1(H

sup
Vϕ, h∗

0
(Î0) + e−C1S

β/2/2) − QSQ1 e−Q2S
β

≤ lim inf
u→∞

P{�Eu(Xu) > m(u)}
�0(u)

≤ lim
T →0

lim
y→∞ lim sup

u→∞
P{�Eu(Xu) > m(u)}

�0(u)

≤ lim
T →0

S−d1H�
Vϕ,h0

(I ∗
0 ) + lim

T →0
lim

y→∞ S−d1H�

Vϕ ,̃h
(I ∗

0 )

( d2∑
i=d1+1

e−QSβi +
d∑

i=d2+1

e−yQT βi

)

= S−d1H�
Vϕ,h∗

0
(Ĩ0)

(
1 +

d2∑
i=d1+1

e−QSβi

)
. (4.18)

Note further that

H
sup
Vϕ,h∗

0
(Î0) = HVϕ1

([0,
√

S])
d1∏

i=2

HVϕi
[0, S]

d2∏
i=d1+1

P hi

Vϕi
[0, S]H

Ṽ �∗
ϕ,̃h

(E)
,

H�
Vϕ,h∗

0
(Ĩ0) =

d1∏
i=1

HVϕi
[0, S]

d2∏
i=d1+1

P hi

Vϕi
[0, S]H

Ṽ �∗
ϕ,̃h

(E)
,

with Vϕi
, Ṽϕ , and h̃ defined in (3.10) and (3.12). Further, using the fact that (see, e.g.

Theorem 3.1 of [17])

lim
S→∞

HVϕi
[0, S]
S

= HVϕi
∈ (0, ∞), 1 ≤ i ≤ d1,

and letting S → ∞ on the left-hand side of (4.18), we have

d1∏
i=1

HVϕi

d2∏
i=d1+1

lim
S→∞ P hi

Vϕi
[−S, S]H�∗

Ṽϕ,̃h

(E) ≤ S−d1H�
Vϕ,h∗

0
(Ĩ0)

(
1 +

d2∑
i=d1+1

e−QSβi

)
< ∞.

Thus, we conclude that

lim
S→∞ P hi

Vϕi
[−S, S] ∈ (0, ∞), d1 + 1 ≤ i ≤ d2,

which establishes the claim by letting S → ∞ on both sides of (4.18). For the other cases of
ai, bi, d1 + 1 ≤ i ≤ d2, the proof is similar as above. �

Proof of Proposition 3.1. We have, for any S, T positive,

0 < P b
X([0, S], [0, T ]) ≤ P bσ 2(t)

X [0, T ].
In order to complete the proof, it suffices to prove that limT →∞ P bσ 2(t)

X [0, T ] < ∞. For this
purpose, define, for any S > 0, u > 1,

Yu(t) = X(u(t + 1))

1 + bσ 2(ut)/2σ 2(u)
, t ∈ [0, u−1 ln u].
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Note that

1 − corr(X(ut), X(us)) = σ 2(u|t − s|) − (σ (ut) − σ(us))2

2σ(ut)σ (us)

= σ 2(u|t − s|) − (uσ̇ (uθ)(t − s))2

2σ(ut)σ (us)
,

with θ ∈ [s, t]. By (A1) and Theorem 1.7.2 of [5], it follows that

lim
u→∞

uσ̇ (u)

σ (u)
= α∞.

If we set f (t) = t2/σ 2(t) then by Lemma 5.2 of [8], it follows that f is bounded over any
compact set and regularly varying at ∞ with index 2 − 2α∞ > 0. Consequently, the UCT
implies that, for any S > 0,

lim
u→∞ sup

t∈(0,S]

∣∣∣∣f (ut)

f (u)
− |t |2−2α∞

∣∣∣∣ = 0

and, therefore, as u → ∞,

1 − corr(X(ut), X(us)) ∼ σ 2(u|t − s|)
2σ(ut)σ (us)

(
1 − α2∞

θ2

σ 2(uθ)(t − s)2

σ 2(u|t − s|)
)

= σ 2(u|t − s|)
2σ(ut)σ (us)

(
1 − α2∞

f (u|t − s|)
f (uθ)

)
∼ σ 2(u|t − s|)

2σ 2(u)
(4.19)

for s, t ∈ [1, 1 + u−1 ln u]. Further, let

Ik(u) = [ku−1S, u−1(k + 1)S], 0 ≤ k ≤ N(u),

with N(u) := [S−1 ln u] + 1. It follows that, for sufficiently large S,

p0(u) ≤ P
{

sup
t∈[0,u−1 ln u]

Yu(t) >
√

2σ(u)
}

≤ p0(u) +
N(u)∑
k=1

pk(u), (4.20)

where

p0(u) = P
{

sup
t∈I0(u)

Yu(t) >
√

2σ(u)
}
,

pk(u) = P
{

sup
t∈Ik(u)

X(u(t + 1)) >
√

2σ(u)

(
1 + bσ 2(kS)

4σ 2(u)

)}
, k ≥ 1.

In order to apply Theorem 2.1, in view of (4.19) we set (using the notation of Theorem 2.1)

Ku = {k : 0 ≤ k ≤ N(u)}, E = [0, S],

gu,k = √
2σ(u)

(
1 + bσ 2(kS)

4σ 2(u)

)
, k ∈ Ku,

Zu,k(t) = X(u(u−1kS + u−1t + 1)), k ∈ Ku,

θu,k(s, t) = g2
u,k

σ 2(|t − s|)
2σ 2(u)

, s, t ∈ E, k ∈ Ku,
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and

hu,0(t) = bσ 2(t)

2σ 2(u)
, t ∈ E, hu,k = 0, k ∈ Ku \ {0}, η = X.

Conditions (C0) and (C2) are obviously fulfilled. Condition (C1) is also satisfied with

g2
u,0hu,0(t) → bσ 2(t), u → ∞,

uniformly with respect to t ∈ E and

g2
u,khu,k(t) = 0, t ∈ E, k ∈ Ku\{0}, u > 0.

Next we shall verify (C3). Clearly, by (A2), for sufficiently large u,

θu,k(s, t) = g2
u,k

σ 2(|t − s|)
2σ 2(u)

≤ 2σ 2(|t − s|) ≤ Q|t − s|α0 , s, t ∈ E, k ∈ Ku.

Moreover, by (4.19),

sup
k∈Ku

sup
‖t−s‖<ε,s, t∈E

g2
u,kE{[Zu,k(t) − Zu,τ (s)]Zu,k(0)}

≤ sup
k∈Ku

sup
‖t−s‖<ε,s, t∈E

g2
u,k

(
σ 2(t)

2σ 2(u)
(1 + o(1)) − σ 2(s)

2σ 2(u)
(1 + o(1))

)

≤ sup
k∈Ku

sup
‖t−s‖<ε,s, t∈E

g2
u,k

2σ 2(u)
(|σ 2(t) − σ 2(s)| + o(1))

→ 0, u → ∞, ε ↓ 0.

Thus, (C3) is satisfied. Therefore, in light of Theorem 2.1, we have

lim
u→∞

p0(u)

�(
√

2σ(u))
= P bσ 2(t)

X [0, S]

and

lim
u→∞ sup

k∈Ku/{0}

∣∣∣∣ pk(u)

�(
√

2σ(u)(1 + bσ 2(kS)/4σ 2(u)))
− HX[0, S]

∣∣∣∣ = 0.

Dividing (4.20) by �(
√

2σ(u)), letting u → ∞, and by (A1), we have, for sufficiently large S1,

P bσ 2(t)
X [0, S] ≤ P bσ 2(t)

X [0, S1] + HX[0, S1]
∞∑

k=1

e−bσ 2(kS1)/2

≤ P bσ 2(t)
X [0, S1] + HX[0, S1]

∞∑
k=1

e−Q1(kS1)
α∞

≤ P bσ 2(t)
X [0, S1] + HX[0, S1] e−Q2S

α∞
1 .

Next, letting S → ∞, we arrive at

lim
S→∞ P bσ 2(t)

X [0, S] ≤ P bσ 2(t)
X [0, S1] + HX[0, S1] e−Q2S

α∞
1 < ∞,

establishing the claim. �
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Appendix A

Proof of Remark 2.1(ii). First we suppose that (C2) and (2.4) hold. Our aim is to prove (2.6).
By (2.4), the continuity of σ 2

η (t), t ∈ E, and the compactness of E, for any c > 0, there exists
a constant ε := εc > 0 such that

lim sup
u→∞

sup
τu∈Ku

sup
‖t−s‖<ε, s,t∈E

|g2
u,τu

var(bu(s)) − g2
u,τu

var(bu(t))| <
c

3
,

with bu(t) = Zu,τu(t) − Zu,τu(0) and, further,

sup
‖t−s‖<ε, s,t∈E

|σ 2
η (t) − σ 2

η (s)| <
c

3
.

By the compactness of E, we can find Ec ⊂ E which has a finite number of elements such that,
for any t ∈ E,

Oε(t) ∩ Ec �= ∅, Oε(t) := {s ∈ Rd : ‖t − s‖ < ε}.
For any t ∈ E with t ′ ∈ Oε(t) ∩ Ec,

|g2
u,τu

var(bu(t)) − 2σ 2
η (t)| ≤ |g2

u,τu
var(bu(t)) − g2

u,τu
var(bu(t

′))|
+ 2|σ 2

η (t) − σ 2
η (t ′)| + |g2

u,τu
var(bu(t

′)) − 2σ 2
η (t ′)|.

From (C2), it follows that

lim
u→∞ sup

τu∈Ku

|g2
u,τu

var(bu(t)) − 2σ 2
η (t)| = 0, t ∈ E.

Consequently, we have

lim sup
u→∞

sup
τu∈Ku

sup
t∈E

|g2
u,τu

var(bu(t) − 2σ 2
η (t)|

≤ lim sup
u→∞

sup
τu∈Ku

sup
‖t−s‖<ε, s,t∈E

|g2
u,τu

var(bu(s)) − g2
u,τu

var(bu(t))|

+ 2 sup
‖t−s‖<ε, s,t∈E

|σ 2
η (t) − σ 2

η (s)| + lim sup
u→∞

sup
τu∈Ku

sup
t∈Ec

|g2
u,τu

var(bu(t)) − 2σ 2
η (t)|

≤ c.

Hence, letting c go to 0 yields (2.6).
Next, supposing that (C2) and (2.6) hold, we prove (2.4). By the continuity of σ 2

η (t), t ∈ E,
and the compactness of E, for any c > 0, there exists a constant ε > 0 such that

sup
‖t−s‖<ε, s,t∈E

|σ 2
η (t) − σ 2

η (s)| <
c

3
.

For any s, t ∈ E,

|g2
u,τu

var(bu(s)) − g2
u,τu

var(bu(t))|
≤ |g2

u,τu
var(bu(s)) − 2σ 2

η (s)| + 2|σ 2
η (s) − σ 2

η (t)| + |2σ 2
η (t) − g2

u,τu
var(bu(t))|.
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Consequently, by (2.6),

lim sup
u→∞

sup
τu∈Ku

sup
‖t−s‖<ε, s,t∈E

|g2
u,τu

var(bu(s)) − g2
u,τu

var(bu(t))|

≤ 2 lim sup
u→∞

sup
τu∈Ku

sup
t∈E

|g2
u,τu

var(bu(t)) − 2σ 2
η (t)| + 2 sup

‖t−s‖<ε, s,t∈E

|σ 2
η (t) − σ 2

η (s)|

≤ c.

Letting c → 0, the above establishes (2.4), which completes the proof. �
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[15] Dȩbicki, K., Hashorva, E. and Liu, P. (2017). Extremes of Gaussian random fields with regularly varying

dependence structure. Extremes 20, 333–392.
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