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Associated Legendre functions are studied for the case where the degree is in conical
form − 1

2 + iτ (τ real), and the order iµ and argument ix are purely imaginary (µ and
x real). Conical functions in this form have applications to Fourier expansions of the
eigenfunctions on a closed geodesic. Real-valued numerically satisfactory solutions are
introduced which are continuous for all real x. Uniform asymptotic approximations
and expansions are then derived for the cases where one or both of µ and τ are large;
these results (which involve elementary, Airy, Bessel and parabolic cylinder
functions) are uniformly valid for unbounded x.

1. Introduction and definition of solutions

We consider solutions of the associated Legendre equation

(1 − z2)
d2y

dz2 − 2z
dy

dz
+

(
n(n + 1) − m2

1 − z2

)
y = 0, (1.1)

for the case where the degree n is complex, of the form n = − 1
2 + iτ with τ real.

Solutions for the degree in this form are usually referred as conical functions. Conical
functions have applications in problems involving the solution of Laplace’s equation,
for instance, when it is expressed in toroidal coordinates (see [14, ch. 7, § 4]). They
also appear in the kernels of Mehler–Fock transforms (see, for example, [1] and [14,
ch. 7]).

In this study we focus on conical functions that have both the argument z and
order m purely imaginary. The main motivation for a study of these functions is
that they appear naturally in the Fourier expansions of the eigenfunctions on a
closed geodesic (see [5, 12, 13]). In the study of analytic properties of Laplacian
eigenfunction on hyperbolic surfaces that are non-compact and of finite volume, if
one expands in rectangular coordinates, one gets modified Bessel functions of the
second kind with purely imaginary order. However, if one chooses geodesic polar
coordinates, then one gets conical functions for the expansion of the form studied
here.

Although understanding the behaviour of the eigenfunctions on a geodesic is a
classic problem regarding hyperbolic surfaces, very few results beyond those that
also hold for general Riemann surfaces are known. There are conjectures expected
to be true only for hyperbolic surfaces, as opposed to Riemann surfaces; see, for
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instance, [13, conjecture B]. In this context, the asymptotics of Legendre functions
of imaginary order could aid in quantifying the restricted L2 norm on the closed
geodesic of the L2 normalized eigenfunction.

Returning to the differential equation (1.1), standard solutions are given by
P−m

n (z) and Qm
n (z), where

Qm
n (z) =

e−mπi

Γ (n + m + 1)
Qm

n (z). (1.2)

P−m
n (z) and Qm

n (z) are real for z, m and n real, provided that z > 1. For complex
z they are analytic in the plane having a cut along (−∞, 1], and their principal
branches form a numerically satisfactory pair (in the sense of [6]) in the half-plane
Re z � 0, for Re n � − 1

2 and Re µ � 0. See [10, ch. 5] for more details.
Since we are considering a purely imaginary argument, let us write z = ix (x real).

We then observe that P−m
n (ix) and Qm

n (ix) are complex-valued functions, and,
moreover, the principal branches of both suffer from being discontinuous at x = 0.
Thus, we first define a continuous solution as follows. Firstly, let Qm

n (1+(z−1)e2πi)
denote the branch obtained from the principal branch of Qm

n (z) by encircling the
branch point 1 (but not the branch point −1) once in the positive sense. Then,
using

Qm
n (1 + (z − 1)e2πi) = e−mπiQm

n (z) − πi
Γ (n − m + 1)

P−m
n (z) (1.3)

(see [11, § 14.24]), we define Q̃m
n (z) to be the analytic continuation of the principal

branch of Qm
n (z) from the upper half-plane across the cut along −∞ < z � 1.

Specifically, we define

Q̃m
n (z) =

⎧⎨
⎩

Qm
n (z), Im z � 0,

e−mπiQm
n (z) − πi

Γ (n − m + 1)
P−m

n (z), Im z < 0,
(1.4)

with principal branches applying for P−m
n (z) and Qm

n (z) here. Thus, Q̃m
n (z) is

analytic in the plane having cuts along −∞ < z � −1 and 1 � z < ∞, and, in
particular, Q̃m

n (ix) is continuous (indeed infinitely differentiable) for −∞ < x < ∞.
We next define an even (continuous) solution of (1.1), for the case z = ix, −∞ <

x < ∞, by

em
n (x) =

Q̃m
n (ix) + Q̃m

n (−ix)
2Q̃m

n (0)
= (1 + x2)−m/2F (− 1

2n − 1
2m, 1

2n − 1
2m + 1

2 ; 1
2 ; −x2),

(1.5)
with the property em

n (0) = 1.
Similarly, an odd solution is defined by

om
n (x) =

Q̃m
n (ix) − Q̃m

n (−ix)
2iQ̃m′

n (0)

= x(1 + x2)−m/2F ( 1
2 − 1

2n − 1
2m, 1

2n − 1
2m + 1; 3

2 ; −x2), (1.6)

with the property om′

n (0) = 1.
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The denominators of (1.5) and (1.6) have the explicit representations

Q̃m
n (0) = − ie−nπi/2π

2n+1Γ ( 1
2n − 1

2m + 1)Γ ( 1
2n + 1

2m + 1)
(1.7)

and

Q̃m′

n (0) =
e−nπi/2π

2nΓ ( 1
2n − 1

2m + 1
2 )Γ ( 1

2n + 1
2m + 1

2 )
. (1.8)

Next, for purely imaginary order, we write m = iµ (µ real), and so for n = − 1
2 +iτ

(τ real) we have, from (1.5) and (1.6),

eiµ
−(1/2)+iτ (x) = (1 + x2)−iµ/2F ( 1

4 − 1
2 iτ − 1

2 iµ, 1
4 + 1

2 iτ − 1
2 iµ; 1

2 ; −x2) (1.9)

and

oiµ
−(1/2)+iτ (x) = x(1 + x2)−iµ/2F ( 3

4 − 1
2 iτ − 1

2 iµ, 3
4 + 1

2 iτ − 1
2 iµ; 3

2 ; −x2). (1.10)

These functions are solutions of (1.1) in the form

(1 + x2)
d2y

dx2 + 2x
dy

dx
+

(
τ2 +

1
4

− µ2

1 + x2

)
y = 0. (1.11)

This equation has coefficients which are all real, and has no finite singularities for
x ∈ (−∞,∞). Now, the solution eiµ

−(1/2)+iτ (x) has the properties eiµ
−(1/2)+iτ (0) = 1

and eiµ′

−(1/2)+iτ (0) = 0, and hence it is seen by induction that all the coefficients in its
Maclaurin series, when derived from (1.11), are real. We conclude that eiµ

−(1/2)+iτ (x)
is real for all real x. Similarly, the odd solution oiµ

−(1/2)+iτ (x) is also real for all
real x.

We remark that if y(x) is a solution of (1.11), then W (z) = (cosh(z))1/2y(sinh(z))
satisfies the equation

d2W

dz2 +
(

τ2 −
µ2 + 1

4

cosh2(z)

)
W = 0. (1.12)

If we neglect the second term in the parentheses, we observe, at least heuristically,
that W ∼ A cos(τz) + B sin(τz) as either τ → ∞ or z → ±∞, where A and B are
constants. Hence, the even solution of (1.11) has the asymptotic behaviour

eiµ
−(1/2)+iτ (x) ∼ A(1 + x2)−1/4 cos{τ sinh−1(x)}, (1.13)

as either τ → ∞ or x → ±∞, with µ bounded. Similarly, for oiµ
−(1/2)+iτ (x), the

cosine in (1.13) is replaced by sine.
From (1.9) and (1.10) we have, as x → 0,

eiµ
−(1/2)+iτ (x) = 1 + 1

8 (4µ2 − 4τ2 − 1)x2 + O(x2), (1.14)

oiµ
−(1/2)+iτ (x) = x + 1

24 (4µ2 − 4τ2 − 9)x3 + O(x5), (1.15)

and, moreover, their Wronskian is given by

W{eiµ
−(1/2)+iτ (x), oiµ

−(1/2)+iτ (x)} =
1

x2 + 1
. (1.16)
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From

Qm
n (z) ∼ π1/2

Γ (n + 3
2 )(2z)n+1

, z → ∞, n �= − 3
2 ,− 5

2 ,− 7
2 , . . . , (1.17)

and

cos(nπ)P−m
n (z) = − Qm

n (z)
Γ (m − n)

+
Qm

−n−1(z)
Γ (m + n + 1)

(1.18)

(see [10, ch. 5, (12.09), (12.12)]) and the definitions (1.4)–(1.6), we have

eiµ
−(1/2)+iτ (x) ∼ Re

{
2π1/2Γ (iτ)|x|−1/2+iτ

Γ ( 1
4 + 1

2 iτ + 1
2 iµ)Γ ( 1

4 + 1
2 iτ − 1

2 iµ)

}
(1.19)

and

oiµ
−(1/2)+iτ (x) ∼ ±Re

{
π1/2Γ (iτ)|x|−1/2+iτ

Γ ( 3
4 + 1

2 iτ + 1
2 iµ)Γ ( 3

4 + 1
2 iτ − 1

2 iµ)

}
(1.20)

as x → ±∞.
We next introduce solutions of (1.11) which are characterized by their behaviour

at infinity. Specifically, we define, for any real θ,

Rµ
τ (θ, x) = (2/π)1/2e−τπ/2 Re{eiπ/4+iθ2iτΓ (1 + iτ)Q̃iµ

−(1/2)+iτ (ix)}. (1.21)

From (1.4) and (1.7) we observe that this solution has the property

Rµ
τ (θ, x) ∼ x−1/2 cos{τ ln(x) + θ}, x → ∞. (1.22)

We note that the Wronskian

W{Rµ
τ (θ, x), Rµ

τ (θ − 1
2π, x)} =

τ

x2 + 1
, (1.23)

and hence Rµ
τ (θ, x) and Rµ

τ (θ − 1
2π, x) form a numerically satisfactory pair for the

interval [0,∞).
For x = 0, we note from (1.7), (1.8) and (1.21) that

Rµ
τ (θ, 0) = (2/π)1/2e−τπ/2 Re{eiπ/4+iθ2iτΓ (1 + iτ)Q̃iµ

−(1/2)+iτ (0)}

= Re
{

eiθπ1/2Γ (1 + iτ)
Γ ( 3

4 + 1
2 iτ + 1

2 iµ)Γ ( 3
4 + 1

2 iτ − 1
2 iµ)

}
, (1.24)

along with

Rµ′

τ (θ, 0) = (2/π)1/2e−τπ/2 Re{e3iπ/4+iθ2iτΓ (1 + iτ)Q̃iµ′

−(1/2)+iτ (0)}

= − Re
{

2eiθπ1/2Γ (1 + iτ)
Γ ( 1

4 + 1
2 iτ + 1

2 iµ)Γ ( 1
4 + 1

2 iτ − 1
2 iµ)

}
. (1.25)

From (1.14), (1.15) and (1.23) the following results are easily verified.
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Connection formulae.

τeiµ
−(1/2)+iτ (x) = Rµ′

τ (θ − 1
2π, 0)Rµ

τ (θ, x) − Rµ′

τ (θ, 0)Rµ
τ (θ − 1

2π, x), (1.26)

τoiµ
−(1/2)+iτ (x) = −Rµ

τ (θ − 1
2π, 0)Rµ

τ (θ, x) + Rµ
τ (θ, 0)Rµ

τ (θ − 1
2π, x), (1.27)

Rµ
τ (θ, ±x) = Rµ

τ (θ, 0)eiµ
−(1/2)+iτ (x) ± Rµ′

τ (θ, 0)oiµ
−(1/2)+iτ (x), (1.28)

and

τRµ
τ (θ, −x) = {Rµ

τ (θ, 0)Rµ′

τ (θ − 1
2π, 0) + Rµ′

τ (θ, 0)Rµ
τ (θ − 1

2π, 0)}Rµ
τ (θ, x)

− 2Rµ
τ (θ, 0)Rµ′

τ (θ, 0)Rµ
τ (θ − 1

2π, x). (1.29)

The plan of this paper is as follows. In §§ 2–6 we consider τ large, and obtain
asymptotic approximations for the above-defined functions, which when taken to-
gether are valid for 0 � µ/τ � B < ∞, uniformly for 0 � x < ∞. Specifically, in § 2
we treat the case 0 � µ/τ � 1 − δ, 0 < δ < 1, and apply Liouville–Green (WKBJ)
asymptotic expansions involving elementary functions, which are uniformly valid
for −∞ < x < ∞. In § 3 the case 1− δ � µ/τ � 1+ δ, 0 < δ < 1, is tackled, and for
this parameter range two turning points of the differential equation can coalesce
at x = 0. The appropriate theory is given by [9], which furnishes approximations
in terms of modified parabolic cylinder functions (see [11, § 12.14]), which also are
uniformly valid for −∞ < x < ∞. In § 4 we consider 1 + δ � µ/τ � B < ∞ with
0 � x < ∞. This time there is one simple turning point in the interval, and classic
Airy function expansions are derived (see [10, ch. 11]). These results are unified
in § 5, in which 0 � µ/τ � B < ∞, but with x restricted to lying in the interval
[Re

√
B2 − 1+δ, ∞), δ > 0. Due to this restriction on x, there are no turning points

in the interval, and this allows the construction of simpler Liouville–Green (WKBJ)
asymptotic expansions.

In § 6–8 we consider µ large. In § 6 we assume τ is bounded, and apply the theory
of [3] to obtain asymptotic expansions involving modified Bessel functions with
purely imaginary order. The differential equation in this case is characterized by
the dominant term having a simple pole, with solutions oscillatory in its neigh-
bourhood. Asymptotic expansions of a similar form, but with a more complicated
transformation of independent variables, are derived in § 7 from the theory in [2],
and these are valid for 0 � τ/µ � 1 − δ, 0 < δ < 1. In this case the appropriate
transformed differential equation has a simple pole and coalescing turning point,
with solutions being oscillatory in behaviour in between the two critical points. The
expansions in both cases of §§ 6 and 7 are uniformly valid for 0 � x < ∞. Finally, in
§ 8, we consider 0 � τ/µ � A, 0 < A < 1, and obtain simpler expansions (Liouville–
Green/WKBJ) by making the restriction −A−1

√
1 − A2+δ � x � A−1

√
1 − A2−δ,

δ > 0: in this interval there is no turning point.
It should be noted that µ large with 1 − δ � τ/µ � B < ∞, 0 < δ < 1, is

equivalent to the parameter regimes of § 3 and 4 combined; hence, we have covered
all possible unbounded non-negative values of x, µ and τ , with one or both of the
parameters being large. Explicit error bounds are available for all our approxima-
tions, via the various general rigorous asymptotic results that we shall use, but we
do not include them in this paper.
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For economy of notation, we shall use various symbols in different contexts. For
example, we shall use ξ and ζ as certain transformed independent variables, and
these will vary from section to section: see, for example, (2.6) and (8.3). Consistency
is maintained within any one given section.

We remark that significant numerical algorithms have recently been developed for
the computation of some of our approximants, namely the modified Bessel functions
of imaginary order and the modified parabolic cylinder functions (see [11]).

Regarding earlier results in the literature, the most powerful asymptotic approx-
imations previously derived for conical functions are given in [4]. Therein µ is real,
the degree is − 1

2 +iτ , τ � 0, the argument z is real or complex and the cases of one
or both τ and µ being large are considered. As τ → ∞, expansions are furnished
that involve Bessel functions of order µ, and are valid for 0 � µ � Aτ (A an arbi-
trary positive constant). These are uniformly valid for Re(z) � 0 in the complex
argument case, and z non-negative in the real argument case. The case µ → ∞
was also considered, and expansions were furnished that are valid for 0 � τ � Bµ
(B an arbitrary positive constant) uniformly for Re(z) � 0; in the cases where z is
complex, as well as real with z ∈ (1,∞), the given expansions involve Bessel func-
tions of purely imaginary order iτ , and in the real-variable case where z ∈ [0, 1) the
expansions involve elementary functions.

In [8] uniform asymptotic approximations are derived for the conical functions of
purely imaginary order Piµ

−1/2+iτ (x) and Qiµ
−1/2+iτ (x), where x is real and τ → ∞.

These approximations involve parabolic cylinder functions, and are uniformly valid
for −1 < x < 1 and 1 − δ � µ/τ � 1 + δ, 0 < δ < 1.

We also note that, in [2], asymptotic expansions were derived for associated
Legendre functions of large real degree n, purely imaginary order iµ and real or
complex argument. These expansions are uniformly valid for unbounded argument,
with 0 � µ/n � A < ∞.

For a summary of other asymptotic results for associated Legendre functions,
see [11].

2. Large τ , 0 � µ/τ � 1 − δ, δ > 0, and −∞ < x < ∞

As usual for the asymptotic study of linear second-order differential equations, we
first remove the first derivative in (1.11), which in this case is achieved by the
following change of dependent variable:

y(x) = (1 + x2)−1/2w(x). (2.1)

We thus obtain

d2w

dx2 =
{

− τ2

1 + x2 +
µ2

(1 + x2)2
+

3 − x2

4(1 + x2)2

}
w. (2.2)

Here we consider τ → ∞, and to do so we introduce

µ = βτ, (2.3)

yielding
d2w

dx2 =
{

−τ2(1 − β2 + x2)
(1 + x2)2

+
3 − x2

4(1 + x2)2

}
w. (2.4)
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For large τ this equation has turning points (zeros of the dominate term) at
x = ±

√
β2 − 1, and these can be real or imaginary in our parameter range. Let us

consider the situation where they are purely imaginary, so that

0 � β � 1 − δ, δ > 0. (2.5)

Consequently, there is no turning point in (or close) to the interval −∞ < x < ∞.
This allows us to apply the Liouville–Green expansions given by [10, ch. 10]. We
next make the Liouville transformation of independent variable (see [10, ch. 10,
(2.02)])

ξ =
∫ x

0

(1 − β2 + p2)1/2

1 + p2 dp

= arctanh
{

x

(1 − β2 + x2)1/2

}
− β arctanh

{
βx

(1 − β2 + x2)1/2

}
. (2.6)

The lower limit of integration in the integral was chosen to ensure that ξ is an odd
function of x.

As x → 0,
ξ = (1 − β2)1/2x + O(x3), (2.7)

and, as x → ∞,
ξ = ln(2x) − β arctanh(β) + O(x−2). (2.8)

Then, with the new dependent variable defined by

W =
(1 − β2 + x2)1/4

(1 + x2)1/2 w, (2.9)

we obtain
d2W

dξ2 = {−τ2 + ψ(ξ)}W, (2.10)

where

ψ(ξ) =
(1 + x2)(1 − β4 + x2 − 4β2x2)

4(1 − β2 + x2)3
. (2.11)

We apply [10, ch. 10, theorem 3.1], with u = iτ in the solution (3.02) of that
theorem, and, defining

W2n+1,1(τ, ξ) = 1
2 Re{Wn,1(iτ, ξ) + Wn,1(iτ, −ξ)} (2.12)

and

W2n+1,2(τ, ξ) = 1
2 Im{Wn,1(iτ, ξ) − Wn,1(iτ, −ξ)}, (2.13)

we obtain the following even asymptotic solution of (2.10):

W2n+1,1(τ, ξ) = cos(τξ)
n∑

s=0

(−1)s A2s(ξ)
τ2s

+sin(τξ)
n−1∑
s=0

(−1)s A2s+1(ξ)
τ2s+1 +ε2n+1,1(τ, ξ)

(2.14)
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and the odd asymptotic solution

W2n+1,2(τ, ξ) = sin(τξ)
n∑

s=0

(−1)s A2s(ξ)
τ2s

−cos(τξ)
n−1∑
s=0

(−1)s A2s+1(ξ)
τ2s+1 +ε2n+1,2(τ, ξ),

(2.15)
where A0(ξ) = 1, and

As+1(ξ) = 1
2{A′

s(0) − A′
s(ξ)} + 1

2

∫ ξ

0
ψ(η)As(η) dη, s = 0, 1, 2. (2.16)

Note that we have chosen the integration constants in (2.16) so that As(0) = 0
for s = 1, 2, 3, . . . , and, consequently, since ψ(ξ) is an even function of ξ, it can be
shown by induction that

As(−ξ) = (−1)sAs(ξ), s = 0, 1, 2, . . . . (2.17)

In (2.14) and (2.15) the error terms ε2n+1,j(τ, ξ) have explicit bounds, and are
O(τ−2n−1) uniformly for −∞ < ξ < ∞ (equivalently, −∞ < x < ∞). Moreover,
they, and their first derivatives, vanish at ξ = 0 (equivalently, x = 0) if we take
α1 = 0 in the j = 1 bound of [10, ch. 10, theorem 3.1]. As a result, we find by
uniqueness of even and odd solutions, along with (2.1), (2.7) and (2.9), that

eiµ
−(1/2)+iτ (x) =

(
1 − β2

1 − β2 + x2

)1/4

W2n+1,1(τ, ξ) (2.18)

and

oiµ
−(1/2)+iτ (x) =

{
τ −

n−1∑
s=0

(−1)s A′
2s+1(0)
τ2s+1

}−1

× {(1 − β2)(1 − β2 + x2)}−1/4W2n+1,2(τ, ξ), (2.19)

for 0 � µ/τ � 1 − δ, δ > 0, uniformly for −∞ < x < ∞. The corresponding
expansions for Rµ

τ (θ, ±x) are derivable from (1.28).
Returning to the original variables, and taking n = 0, we have

eiµ
−(1/2)+iτ (x) =

(
τ2 − µ2

τ2x2 + τ2 − µ2

)1/4{
cos(τξ) + O

(
1
τ

)}
(2.20)

and

oiµ
−(1/2)+iτ (x) = {(τ2 − µ2)(τ2x2 + τ2 − µ2)}−1/4

{
sin(τξ) + O

(
1
τ

)}
, (2.21)

where

ξ = ln
{

τx + (τ2x2 + τ2 − µ2)1/2

(τ2 − µ2)1/2

}
− µ

τ
arctanh

{
µx

(τ2x2 + τ2 − µ2)1/2

}
. (2.22)
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3. Large τ , 1 − δ � µ/τ � 1 + δ, δ > 0, and −∞ < x < ∞

Again we consider the equation in the form (2.4), but now assume that 1 − δ �
β � 1 + δ, δ > 0. Let us break this into two subcases, β � 1 and β � 1. We first
consider the former, namely

1 − δ � β � 1. (3.1)

Thus, the turning points of (3.1) are purely imaginary, located at x = ±i
√

1 − β2,
and coalesce at x = 0 when β → 1. The appropriate theory is given by [9]. To apply
it, we make the Liouville transformation (see [7, § 2])∫ x

0

(p2 + 1 − β2)1/2

p2 + 1
dp =

∫ ζ

0
(η2 + β̂2)1/2 dη, (3.2)

where β̂ is defined by
∫ i

√
1−β2

−i
√

1−β2

(x2 + 1 − β2)1/2

x2 + 1
dx =

∫ iβ̂

−iβ̂
(ζ2 + β̂2)1/2 dζ. (3.3)

Upon explicit integration we find from (3.3) that

β̂ = |2(1 − β)|1/2, (3.4)

and, from (3.2),

ln{x + (x2 + 1 − β2)1/2} + β ln{(x2 + 1 − β2)1/2 − βx}
− 1

2β ln(x2 + 1) − 1
2 (β + 1) ln(1 − β2)

= 1
2ζ(ζ2 + β̂2)1/2 + 1

2 β̂2 arcsinh
(

ζ

β̂

)
. (3.5)

We use the absolute sign in (3.4) to take into account that later we will consider
the case β � 1.

The x interval (−∞,∞) is mapped one-to-one to the ζ interval (−∞,∞), with
the points x = 0,±i

√
1 − β2,±∞ mapped to ζ = 0,±iβ̂,±∞, respectively. We

observe that ζ is an odd function of x, and ζ → ±∞ as x → ±∞, such that

x = ±( 1
2 (β + 1))(β+1)/2|ζ|1−β exp{ 1

2 (ζ2 + 1 − β)}{1 + O(ζ−2)}. (3.6)

Next we introduce the dependent variable

W =
(x2 + 1 − β2)1/4

(x2 + 1)1/2(ζ2 + β̂2)1/4
w, (3.7)

which, in conjunction with (3.2), recasts (2.4) in the form

d2W

dζ2 = {−τ2(ζ2 + β̂2) + ψ(β̂, ζ)}W, (3.8)

where

ψ(β̂, ζ) =
3ζ2 − 2β̂2

4(ζ2 + β̂2)2
+

(ζ2 + β̂2)(x2 + 1)(x2 + 1 − 4β2x2 − β4)
4(x2 + 1 − β2)3

. (3.9)
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Note from (3.6) that
ψ(β̂, ζ) = O(ζ−2) as ζ → ±∞. (3.10)

Equation (3.8) has turning points at ζ = ±iβ̂, which coalesce at ζ = 0 as β → 1
(β̂ → 0). The dominant term therefore is of a similar form to (2.4), but is simpler.

We apply the theorem of [9] to (3.8) to obtain the asymptotic solutions

w(τ, β̂,±ζ) = W (µ − τ, ±ζ
√

2τ) + ε(τ, β̂,±ζ), (3.11)

where W (b, x) is a (real-valued) modified parabolic cylinder function defined by

W (b, x) = { 1
2k(b)}1/2eπb/4{eiφ1U(ib, xe−πi/4) + e−iφ1U(−ib, xeπi/4)}, (3.12)

with

k(b) =
√

1 + e2πb − eπb, (3.13)

φ1(b) = 1
8π + 1

2φ2(b), (3.14)

φ2(b) = arg Γ ( 1
2 + ib), (3.15)

the latter being defined such that φ2(0) = 0, and to be continuous for all real-valued
b. Here b = µ − τ � 0.

We remark that W (µ − τ, ±ζ
√

2τ) are solutions of the comparison equation
to (3.8), namely

d2W

dζ2 = −τ2(ζ2 + β̂2)W. (3.16)

From [7] we note that, as x → ∞,

W (b, x) =
{

2k(b)
x

}1/2

cos{ 1
4x2 − b ln(x) + 1

2φ2(b) + 1
4π} + O

(
1
x2

)
(3.17)

and

W (b, −x) =
{

2
k(b)x

}1/2

sin{ 1
4x2 − b ln(x) + 1

2φ2(b) + 1
4π} + O

(
1
x2

)
. (3.18)

The error term in (3.11) satisfies

ε(τ, β̂, ζ) = env W (µ − τ, ζ
√

2τ)O(τ−1 ln(τ)), (3.19)

as τ → ∞, uniformly for −∞ < ζ < ∞, where

env W (b, x) =

⎧⎪⎨
⎪⎩

{W 2(b, x) + k−2(b)W 2(b, −x)}1/2, −∞ < x � −σ(b),√
2W (b, x), −σ(b) � x � σ(b),

{W 2(b, x) + k2(b)W 2(b, −x)}1/2, σ(b) � x < ∞,

(3.20)

in which σ(b) denotes the smallest positive root of the equation

W (b, x) = k(b)W (b, −x).

Furthermore,
ε(τ, β̂, ζ) = O(ζ−5/2), ζ → ∞. (3.21)
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We now can match standard solutions with the asymptotic ones, starting with
solutions whose behaviour is characterized at infinity. From (1.22), (2.1), (3.6),
(3.13), (3.17) and (3.21) we deduce that, with the choice θ = γ1, where

γ1 = τ ln(2τ) + 1
2 (µ − τ) − 1

2 (τ + µ) ln(τ + µ) − 1
2 arg Γ ( 1

2 + i(τ − µ)) + 1
4π, (3.22)

that

Rµ
τ (γ1,±x) = K

(ζ2 + 2 − 2β)1/4

(x2 + 1 − β2)1/4 w(τ, β̂,±ζ), (3.23)

where
K = ( 1

2τ)1/4{
√

1 + e2π(µ−τ) + eπ(µ−τ)}1/2. (3.24)

The identification of the even and odd functions is also straightforward. By
uniqueness of these functions, we have

eiµ
−(1/2)+iτ (x) = Ce

(
ζ2 + 2 − 2β

x2 + 1 − β2

)1/4

{w(τ, β̂, ζ) + w(τ, β̂,−ζ)} (3.25)

and

oiµ
−(1/2)+iτ (x) = Co

(
ζ2 + 2 − 2β

x2 + 1 − β2

)1/4

{w(τ, β̂, ζ) − w(τ, β̂,−ζ)}, (3.26)

where the proportionality constant Ce can be found by setting x = ζ = 0 in (3.25),
and likewise Co can be determined in the ζ differentiated form of (3.26). Thus,

Ce =
1

2w(τ, β̂, 0)

(
β + 1

2

)1/4

, (3.27)

and, on referring to (3.2),

Co =
1

2{2(β + 1)}1/4τ1/2w′(τ, β̂, 0)
. (3.28)

Remark 3.1. W (b, 0) and W ′(b, 0) are non-vanishing for all real b (see [7, (8.3)]),
and hence the same is true of w(τ, β̂, 0) and w′(τ, β̂, 0) for sufficiently large τ .

We now turn our attention to the second subcase,

1 � β � 1 + δ. (3.29)

This time the turning points of (2.4) are real, located at x = ±
√

β2 − 1, and again
have the property that they coalesce at x = 0 when β → 1.

In place of (3.2) we prescribe

∫ x

0

(β2 − 1 − p2)1/2

p2 + 1
dp =

∫ ζ̂

0
(β̂2 − η2)1/2 dη, 0 � x �

√
β2 − 1, (3.30)

and∫ x

√
β2−1

(1 + p2 − β2)1/2

p2 + 1
dp =

∫ ζ̂

β̂

(η2 − β̂2)1/2 dη,
√

β2 − 1 � x < ∞, (3.31)
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with β̂ again given by (3.4). Explicit integration yields

β arctan
{

βx

(β2 − 1 − x2)1/2

}
− arctan

{
x

(β2 − 1 − x2)1/2

}

= 1
2 ζ̂(β̂2 − ζ̂2)1/2 − 1

2 β̂2 arccos
(

ζ̂

β̂

)
+ 1

4πβ̂2, (3.32)

for 0 � x �
√

β2 − 1, and

ln{x + (x2 + 1 − β2)1/2} + β ln{βx − (x2 + 1 − β2)1/2}

− 1
2β ln(x2 + 1) − 1

2 (β + 1) ln(β2 − 1)

= 1
2 ζ̂(ζ̂2 − β̂2)1/2 − 1

2 β̂2arccosh
(

ζ̂

β̂

)
, (3.33)

for
√

β2 − 1 � x < ∞. Note that in (3.30)–(3.33), and below, β̂2 = 2β − 2.
Now, with

Ŵ =
(x2 + 1 − β2)1/4

(x2 + 1)1/2(ζ̂2 − β̂2)1/4
w, (3.34)

we obtain
d2Ŵ

dζ̂2
= {τ2(β̂2 − ζ̂2) + ψ̂(β̂, ζ̂)}Ŵ , (3.35)

where

ψ̂(β̂, ζ̂) =
3ζ̂2 + 2β̂2

4(ζ̂2 − β̂2)2
+

(ζ̂2 − β̂2)(x2 + 1)(x2 + 1 − 4β2x2 − β4)
4(x2 + 1 − β2)3

. (3.36)

We again apply the theorem of [9] to obtain the solutions

ŵ(τ, β̂,±ζ̂) = W (µ − τ, ±ζ̂
√

2τ) + ε̂(τ, β̂,±ζ̂). (3.37)

These are of the same form as (3.11), but since µ − τ � 0 the error term now
satisfies

ε̂(τ, β̂, ζ̂) = env W (µ − τ, ζ̂
√

2τ)O(τ−2/3 ln(τ)), (3.38)

uniformly for −∞ < ζ < ∞.
From (3.33) we find that (3.6) still applies when x → ∞ with ζ replaced by ζ̂. The

identification of asymptotic solutions is therefore the same, and again (3.22)–(3.28)
hold, with ζ replaced by ζ̂, and w(τ, β̂,±ζ) replaced by ŵ(τ, β̂,±ζ̂).

4. Large τ , 1 + δ � µ/τ � B < ∞ and 0 � x < ∞

Here we consider τ → ∞, with β, again defined by (2.3), satisfying

1 + δ � β � B < ∞. (4.1)

The turning points of (2.4) are located at x = ±
√

β2 − 1 and are bounded, and
also bounded away from one another. The appropriate asymptotic theory is that of
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a fixed simple turning point [10, ch. 11], which furnishes asymptotic expansions in
terms of Airy functions.

The appropriate Liouville transformation is as follows. Firstly, we use the Liou-
ville transformation defined by [10, ch. 11, (3.02), (3.03)], except we replace Olver’s
ζ by −ζ. Thus, we have, on referring to (2.4), the new independent variable given
by

2
3 (−ζ)3/2 =

∫ x

√
β2−1

(p2 − β2 + 1)1/2

p2 + 1
dp, x �

√
β2 − 1, (4.2)

and

2
3ζ3/2 =

∫ √
β2−1

x

(β2 − 1 − p2)1/2

p2 + 1
dp, x �

√
β2 − 1. (4.3)

On explicit integration, for x �
√

β2 − 1 we have the relationship

2
3 (−ζ)3/2 = ln{x + (x2 + 1 − β2)1/2} + β ln{βx − (x2 + 1 − β2)1/2}

− 1
2β ln(x2 + 1) − 1

2 (β + 1) ln(β2 − 1), (4.4)

and, for x �
√

β2 − 1,

2
3ζ3/2 = β arctan

{
(β2 − 1 − x2)1/2

βx

}
− arctan

{
(β2 − 1 − x2)1/2

x

}
. (4.5)

From (4.4) we find that ζ → −∞ as x → ∞, such that

2
3 |ζ|3/2 = ln(2x) + 1

2 (β − 1) ln(β − 1) − 1
2 (β + 1) ln(β + 1) + O(x−2). (4.6)

Note that the turning point x =
√

β2 − 1 is mapped to ζ = 0, and x = 0
corresponds to ζ = ζ0, where

ζ0 = { 3
4π(β − 1)}2/3. (4.7)

Next, with

W = (x2 + 1)1/2
(

ζ

β2 − 1 − x2

)1/4

w, (4.8)

we obtain the desired equation

d2W

dζ2 = {τ2ζ + ψ(ζ)}W, (4.9)

where

ψ(ζ) =
5

16ζ2 +
(x2 + 1)(4β2x2 − x2 + β4 − 1)ζ

4(x2 + 1 − β2)3
. (4.10)

From (4.6) it is evident that

ψ(ζ) = O(ζ−2), ζ → −∞. (4.11)
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Applying [10, ch. 11, theorem 7.1] to the transformed equation (4.9), we obtain
the asymptotic solutions

W2n+1,1(τ, ζ) = Bi(τ2/3ζ)
n∑

s=0

As(ζ)
τ2s

+
Bi′(τ2/3ζ)

τ4/3

n−1∑
s=0

Bs(ζ)
τ2s

+ ε2n+1,1(τ, ζ)

(4.12)

and

W2n+1,2(τ, ζ) = Ai(τ2/3ζ)
n∑

s=0

As(ζ)
τ2s

+
Ai′(τ2/3ζ)

τ4/3

n−1∑
s=0

Bs(ζ)
τ2s

+ ε2n+1,2(τ, ζ),

(4.13)

where A0(ζ) = 1 and, for s = 0, 1, 2, 3, . . . ,

Bs(ζ) = 1
2ζ−1/2

∫ ζ

0
η−1/2{ψ(η)As(η) − A′′

s (η)} dη, ζ > 0, (4.14)

Bs(ζ) = 1
2 |ζ|−1/2

∫ 0

ζ

|η|−1/2{ψ(η)As(η) − A′′
s (η)} dη, ζ < 0 (4.15)

and

As+1(ζ) = − 1
2B′

s(ζ) + 1
2

∫
ψ(ζ)Bs(ζ) dζ. (4.16)

The error terms satisfy explicit error bounds [10, ch. 11, theorem 7.1], and from
these we obtain

ε2n+1,1(τ, ζ) = env Bi(τ2/3ζ)O(τ−2n−1) (4.17)

and

ε2n+1,2(τ, ζ) = env Ai(τ2/3ζ)O(τ−2n−1) (4.18)

as τ → ∞, uniformly for 0 � x < ∞, −∞ < ζ � ζ0. Here

env f(x) =

{
{Ai2(x) + Bi2(x)}1/2, −∞ < x � c,√

2f(x), c � x < ∞,
(4.19)

where x = c = −0.36605 . . . is the largest negative root of the equation Ai(x) =
Bi(x).

Moreover, with α = −∞ in [10, ch. 11, (7.12)], we have, by virtue of (4.11),

ε2n+1,1(τ, ζ) = O(|ζ|−3/2) (4.20)

as ζ → −∞. Also, by choosing β = ζ0 in [10, ch. 11, (7.13)] we have

ε2n+1,2(τ, ζ0) = 0, (4.21)

and similarly for the derivatives of these error terms.

https://doi.org/10.1017/S0308210511001582 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511001582


Conical functions of purely imaginary order and argument 943

We now identify the asymptotic solution given by (4.12) with the solutions defined
in § 1 whose characteristic behaviour is given at infinity. Specifically, taking into
account (2.9) and (4.8), we seek constants γ2, An(τ) and Bn(τ) such that

W2n+1,1(τ, ζ) =
(

β2 − 1 − x2

ζ

)1/4

[An(τ)Rµ
τ (γ2 + 1

4π, x) + Bn(τ)Rµ
τ (γ2 − 1

4π, x)].

(4.22)
To this end, it can be shown from (4.11), (4.14)–(4.16), and by induction, that, as
ζ → −∞,

As(ζ) = ks + O(|ζ|−3/2) (4.23)

and

Bs(ζ) = ls|ζ|−1/2 + O(|ζ|−2), (4.24)

for some constants ks and ls, s = 0, 1, 2, . . . . Thus, from the well-known behaviour
of Airy functions of large negative argument [10, ch. 11, § 1] we find from (4.12)
that

W2n+1,1(τ, ζ) ∼ 1
π1/2τ1/6|ζ|1/4

×
[
− sin( 2

3τ |ζ|3/2 − 1
4π)

n∑
s=0

ks

τ2s
+ cos( 2

3τ |ζ|3/2 − 1
4π)

n−1∑
s=0

ls
τ2s+1

]
(4.25)

as ζ → −∞.
Now, in comparison, from (1.22), we observe that

Rµ
τ (γ2 − 1

4π, x) ∼ x−1/2 cos(τ ln(x) + γ2 − 1
4π) (4.26)

and

Rµ
τ (γ2 + 1

4π, x) ∼ −x−1/2 sin(τ ln(x) + γ2 − 1
4π) (4.27)

as x → ∞. Thus, if we choose

γ2 = 1
2 (µ − τ) ln(µ − τ) − 1

2 (µ + τ) ln(µ + τ) + τ ln(2τ), (4.28)

we have, from (4.6),

τ ln(x) + γ2 − 1
4π = 2

3τ |ζ|3/2 − 1
4π + O(exp{− 4

3 (−ζ)3/2}). (4.29)

It follows from (4.22)–(4.29) that

An(τ) =
1

π1/2τ1/6

n∑
s=0

ks

τ2s
(4.30)

and

Bn(τ) =
1

π1/2τ1/6

n−1∑
s=0

ls
τ2s+1 , (4.31)

thereby completing the identification (4.22).
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Next, we identify the asymptotic solutions with the standard even and odd func-
tions, by seeking the coefficients Ce

2n+1,j(τ) and Co
2n+1,j(τ) in the relations

W2n+1,j(τ, ζ)

=
(

β2 − 1 − x2

ζ

)1/4

[Ce
2n+1,j(τ)eiµ

−(1/2)+iτ (x) + Co
2n+1,j(τ)oiµ

−(1/2)+iτ (x)] (4.32)

for j = 1 and j = 2.
Firstly, setting x = 0, ζ = ζ0, in these and referring to (1.14) yields

Ce
2n+1,j(τ) =

(
ζ0

β2 − 1

)1/4

W2n+1,j(τ, ζ0), j = 1, 2. (4.33)

Similarly, differentiating (4.32) with respect to ζ and referring to (1.15) and (4.3)
yields

Co
2n+1,j(τ) = −

(
β2 − 1

ζ0

)1/4{
W ′

2n+1,j(τ, ζ0) +
W2n+1,j(τ, ζ0)

4ζ0

}
, j = 1, 2. (4.34)

We observe from (4.3), (4.13) and (4.21) that

W2n+1,2(τ, ζ0) = Ai(τ2/3ζ0)
n∑

s=0

As(ζ0)
τ2s

+
Ai′(τ2/3ζ0)

τ4/3

n−1∑
s=0

Bs(ζ0)
τ2s

(4.35)

and

W ′
2n+1,2(τ, ζ0) = Ai(τ2/3ζ0)

n∑
s=0

A′
s(ζ0) + ζ0Bs(ζ0)

τ2s

+ τ2/3 Ai′(τ2/3ζ0)
n∑

s=0

As(ζ0) + B′
s−1(ζ0)

τ2s
. (4.36)

Similar expressions hold for W2n+1,1(τ, ζ0) and W ′
2n+1,1(τ, ζ0), but we note that the

error terms for this function and its derivative do not vanish at ζ = ζ0.
Conversely, from (4.32)–(4.34), we arrive at

eiµ
−(1/2)+iτ (x) =

(
ζ

β2 − 1 − x2

)1/4 Co
2n+1,1W2n+1,2(τ, ζ) − Co

2n+1,2W2n+1,1(τ, ζ)
W{W2n+1,1, W2n+1,2}(ζ0)

(4.37)

and

oiµ
−(1/2)+iτ (x) =

(
ζ

β2 − 1 − x2

)1/4 Ce
2n+1,2W2n+1,1(τ, ζ) − Ce

2n+1,1W2n+1,2(τ, ζ)
W{W2n+1,1, W2n+1,2}(ζ0)

.

(4.38)

Note that, from using the well-known Wronskian

W{Ai(x), Bi(x)} =
1
π

, (4.39)
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we find from (4.12), (4.13), (4.17) and (4.21) that

W{W2n+1,1, W2n+1,2}(ζ0)

= −τ2/3

π

[ n∑
s=0

As(ζ0)
τ2s

n∑
s=0

As(ζ0) + B′
s−1(ζ0)

τ2s

− 1
τ2

n−1∑
s=0

Bs(ζ0)
τ2s

n∑
s=0

A′
s(ζ0) + ζ0Bs(ζ0)

τ2s
+ O

(
1

τ2n+1

)]
, (4.40)

in which B′
−1(ζ0) is understood to be zero.

5. Large τ , 0 � µ/τ � B, B < ∞, and Re
√

B2 − 1 + δ � x < ∞

We can extend the results of § 2 to the case

0 � β � B, B < ∞, (5.1)

provided we restrict x to lie in the interval Re
√

B2 − 1+δ � x < ∞; in this case the
turning points x = ±

√
β2 − 1 are bounded, can be real or imaginary and indeed

can coalesce at the origin. However, the stated x interval is such that these critical
points are avoided, which allows us to apply the simpler Liouville–Green theory
of [10, ch. 10].

Proceeding as in § 2, (2.6)–(2.15) still apply, but in place of (2.16) we choose

As+1(ξ) = 1
2{A′

s(∞) − A′
s(ξ)} − 1

2

∫ ∞

ξ

ψ(η)As(η) dη, s = 0, 1, 2, . . . , (5.2)

so that
As+1(∞) = 0, s = 1, 2, 3, . . . . (5.3)

The error terms in (2.14) and (2.15) can also be chosen to vanish at ξ = ∞, x = ∞.
Thus, from (2.14),

W2n+1,1(τ, ξ) ∼ cos(τξ), ξ → ∞ (5.4)

and, from (2.15),

W2n+1,2(τ, ξ) ∼ sin(τξ), ξ → ∞. (5.5)

Remark 5.1. Although of a similar form, the asymptotic solutions W2n+1,j(τ, ξ)
here differ from the corresponding ones in § 2, and in particular there is no longer
a reason to suppose that they are either even (j = 1) or odd (j = 2).

Now, from (2.8), we have

τξ = τ ln(x) + γ3 + O(x−2), x → ∞, (5.6)

where

γ3 = τ ln(2) − µ arctanh
(

µ

τ

)
. (5.7)

Thus, from (1.22), (2.1), (2.9) and (5.4) we arrive at

Rµ
τ (γ3, x) = (1 − β2 + x2)−1/4W2n+1,1(τ, ξ). (5.8)
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Likewise, from (5.5), we have

Rµ
τ (γ3 − 1

2π, x) = (1 − β2 + x2)−1/4W2n+1,2(τ, ξ). (5.9)

The corresponding asymptotic results for eiµ
−(1/2)+iτ (x) and oiµ

−(1/2)+iτ (x) are now
readily derivable from (1.24)–(1.27) (with θ = γ3 in the latter two equations).

6. Large µ, bounded τ and 0 � x < ∞

We now consider the case for µ large. The form (2.2) of the differential equation
is not appropriate to obtain asymptotic solutions which are uniformly valid for
unbounded x. Therefore, it is necessary to redefine the independent variable. There
are several ways of doing this, and we choose the following. Let

s = 1 − x

(x2 + 1)1/2 , (6.1)

so that 0 � x < ∞ is mapped one-to-one to 0 < s � 1. If we further define

V (s) = (x2 + 1)−3/4w(x), (6.2)

then (2.2) is transformed to

d2V

ds2 =
{

µ2

s(2 − s)
+

2s − s2 − 4τ2 − 4
4s2(2 − s)2

}
V. (6.3)

In the interval (0, 1] this equation is characterized by having a regular singularity
at s = 0, and for large µ the dominant term on the right-hand side has a simple
pole. There are no turning points in this case, and the other end point s = 1
(corresponding to x = 0) is an ordinary point of the differential equation.

The exponent of the pole at s = 0 is complex, and as such solutions are oscillatory
in its neighbourhood, and so the theory in [3, § 7] is applicable. From this reference
we make the following transformation of independent variables

ζ1/2 =
∫ s

0

1
p1/2(2 − p)1/2 dp =

π

2
− arcsin(1 − s). (6.4)

Thus, s = 0 (x = ∞) corresponds to ζ = 0, with

ζ = 2s + 1
3s2 + O(s3), s → 0, (6.5)

i.e.

ζ = x−2 − 2
3x−4 + O(x−6), x → ∞. (6.6)

We also note that x = 0 (s = 1) corresponds to ζ = ζ0, where

ζ0 = 1
4π2. (6.7)

With the change of dependent variable

W =
(

ζ

s(2 − s)

)1/4

V, (6.8)
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we obtain the following equation:

d2W

dζ2 =
{

µ2

4ζ
− τ2 + 1

4ζ2 +
ψ(ζ)

ζ

}
W, (6.9)

where

ψ(ζ) =
(4τ2 + 1)(2s − s2 − ζ)

16ζs(2 − s)
. (6.10)

From (6.5) and (6.10) we see that if we define ψ(0) = limζ→0 ψ(ζ), then ψ(ζ) is
analytic at ζ = 0, and, in particular,

ψ(ζ) = −4τ2 + 1
48

+ O(ζ), ζ → 0. (6.11)

We now apply [3, theorem 1] to obtain the asymptotic solutions

W2n+1,1(µ, ζ)

= ζ1/2Kiτ (µζ1/2)
n∑

s=0

Cs(ζ)
µ2s

+
ζ

µ
K ′

iτ (µζ1/2)
n−1∑
s=0

Ds(ζ)
µ2s

+ ε2n+1,1(µ, ζ) (6.12)

and

W2n+1,2(µ, ζ)

= ζ1/2Liτ (µζ1/2)
n∑

s=0

Cs(ζ)
µ2s

+
ζ

µ
L′

iτ (µζ1/2)
n−1∑
s=0

Ds(ζ)
µ2s

+ ε2n+1,2(µ, ζ), (6.13)

where
Liτ (x) =

π

2 sinh(τπ)
{Iiτ (x) + I−iτ (x)}. (6.14)

In (6.12) and (6.13) C0(ζ) = 1, with the other coefficients satisfying the recursion
formulae

Ds(ζ) = −C ′
s(ζ) + ζ−1/2

∫ ζ

0
η−1/2{ψ(η)Cs(η) − 1

2C ′
s(η) + τ2D′

s−1(η)} dη (6.15)

and
Cs+1(ζ) = −ζD′

s(ζ) +
∫

ψ(ζ)Ds(ζ) dζ (6.16)

for s = 0, 1, 2, . . . .
The error terms are explicitly bounded, and satisfy

ε2n+1,1(µ, ζ) = ζ1/2 env Kiτ (µζ1/2)O(µ−2n−1) (6.17)

and

ε2n+1,2(µ, ζ) = ζ1/2 env Liτ (µζ1/2)O(µ−2n−1) (6.18)

as µ → ∞, uniformly for 0 � x < ∞, 0 < ζ � ζ0. Here

env f(x) =

{
{K2

iτ (x) + L2
iτ (x)}1/2, 0 � x � χτ ,

√
2f(x), χτ � x < ∞,

(6.19)

where x = χτ is the largest positive root of the equation Kiτ (x) = Liτ (x).
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Moreover,

ε2n+1,1(µ, ζ) = ζ1/2Kiτ (µζ1/2)O(ζ − ζ0), ζ → ζ0, (6.20)

and

ε2n+1,2(µ, ζ) = Liτ (µζ1/2)O(ζ), ζ → 0+. (6.21)

Similarly to (4.22), we seek constants γ4, Cn(µ) and Dn(µ) such that

W2n+1,2(µ, ζ) = ζ1/4[Cn(µ)Rµ
τ (γ4 − 1

4π, x) + Dn(µ)Rµ
τ (γ4 + 1

4π, x)]. (6.22)

To do so we note from [3] that

Liτ (x) =
{

π

τ sinh(τπ)

}1/2[
cos

{
τ ln

(
2
x

)
+ φτ,0

}
+ O(x2)

]
(6.23)

and

L′
iτ (x) =

{
τπ

sinh(τπ)

}1/2[ 1
x

sin
{

τ ln
(

2
x

)
+ φτ,0

}
+ O(x)

]
(6.24)

as x → 0+, where
φτ,0 = arg Γ (1 + iτ). (6.25)

Thus, from (6.13) and (6.21),

W2n+1,2(µ, ζ) ∼ ζ1/2
{

π

τ sinh(τπ)

}1/2

×
[

cos
{

τ ln
(

2
µζ1/2

)
+ φτ,0

} n∑
s=0

Cs(0)
µ2s

+ τ sin
{

τ ln
(

2
µζ1/2

)
+ φτ,0

} n−1∑
s=0

Ds(0)
µ2s+2

]
(6.26)

as ζ → 0+.
Now from (1.22) and (6.6)

Rµ
τ (γ4 − 1

4π, x) ∼ ζ1/4 cos
{

τ ln
(

2
µζ1/2

)
+ φτ,0

}
(6.27)

and

Rµ
τ (γ4 + 1

4π, x) ∼ −ζ1/4 sin
{

τ ln
(

2
µζ1/2

)
+ φτ,0

}
(6.28)

as x → ∞ and ζ → 0+, provided that we choose

γ4 = 1
4π − τ ln(1

2µ) + φτ,0. (6.29)

Consequently, with this choice of γ4, on comparing (6.22) and (6.6) with (6.27)
and (6.28), we arrive at

Cn(µ) =
{

π

τ sinh(τπ)

}1/2 n∑
s=0

Cs(0)
µ2s

(6.30)
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and

Dn(µ) = −
{

τπ

sinh(τπ)

}1/2 n−1∑
s=0

Ds(0)
µ2s+2 , (6.31)

as desired.
Results complementary to (4.32)–(4.36) are derived similarly to these (we there-

fore omit details), and read as follows:

W2n+1,j(τ, ζ) = ζ1/4[Ce
2n+1,j(µ)eiµ

−(1/2)+iτ (x) + Co
2n+1,j(µ)oiµ

−(1/2)+iτ (x)], (6.32)

where
Ce

2n+1,j(µ) = (2/π)1/2W2n+1,j(τ, 1
4π2) (6.33)

and

Co
2n+1,j(µ) = (2/π3)1/2W2n+1,j(τ, 1

4π2) − (2π)1/2W ′
2n+1,j(τ,

1
4π2). (6.34)

In (6.34), for the case j = 1, we find from (6.12) that

W ′
2n+1,1(µ, 1

4π2)

=
Kiτ ( 1

2µπ)
4π

n∑
s=0

4Cs( 1
4π2) + 2π2C ′

s(
1
4π2) + π2Ds( 1

4π2) − 4τ2Ds−1( 1
4π2)

µ2s

+
µK ′

iτ ( 1
2µπ)

4

n−1∑
s=0

2Cs( 1
4π2) + 2Ds−1( 1

4π2) + π2D′
s−1(

1
4π2)

µ2s
. (6.35)

7. Large µ, 0 � τ/µ � 1 − δ, δ > 0, and 0 � x < ∞

We extend the results of the previous section to the case where τ is no longer
restricted to be bounded. We thus define

τ = αµ, (7.1)

to recast (6.3) in the form

d2V

ds2 =
{

µ2(2s − s2 − α2)
s2(2 − s)2

+
2s − s2 − 4
4s2(2 − s)2

}
V. (7.2)

This equation has two simple turning points located at s = 1±
√

1 − α2. We assume
that

0 � α � 1 − δ, δ > 0, (7.3)

so that they cannot coalesce (which happens when α = 1), but one of them (s =
1 ±

√
1 − α2) can coalesce with the double pole at s = 0 (when α → 0). Again we

consider s lying in the interval (0, 1] (which corresponds to 0 � x < ∞).
Equation (7.2) is characterized by having a coalescing turning point and double

pole with complex exponent, and the appropriate theory is given by [2]. Thus, from
(7.2) and [2, (2.2a,b)], we introduce a new independent variable by∫ s

1−
√

1−α2

(2p − p2 − α2)1/2

p(2 − p)
dp =

∫ ζ

α2

(η − α2)1/2

2η
dη (7.4)
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for 1 −
√

1 − α2 � s � 1, and∫ 1−
√

1−α2

s

(α2 − 2p + p2)1/2

p(2 − p)
dp =

∫ α2

ζ

(α2 − η)1/2

2η
dη (7.5)

for 0 < s � 1 −
√

1 − α2.
Integration of these yields

arccos
{

1 − s

(1 − α2)1/2

}
− 1

2α arccos
{

2α2

(1 − α2)s(2 − s)
− 1 + α2

1 − α2

}

= (ζ − α2)1/2 − α arctan
{

(ζ − α2)1/2

α

}
, 1 −

√
1 − α2 � s � 1, (7.6)

and

ln{1 − s − (α2 − 2s + s2)1/2} − 1
2 ln(1 − α2)

− 1
2α ln

{
2α{α − (1 − s)(α2 − 2s + s2)1/2}

(1 − α2)s(2 − s)
− 1 + α2

1 − α2

}

= 1
2α ln

{
α + (α2 − ζ)1/2

α − (α2 − ζ)1/2

}
− (α2 − ζ)1/2, 0 < s � 1 −

√
1 − α2. (7.7)

Note that x = 0 (s = 1) corresponds to ζ = ζ0, where

(ζ0 − α2)1/2 − α arctan
{

1
α

(ζ0 − α2)1/2
}

= 1
2π(1 − α). (7.8)

We find from (7.7) and (7.8) that

s =
e2

2(1 − α2)

(
1 − α

1 + α

)1/α

ζ + O(ζ2), ζ → 0, (7.9)

s = 1 − (1 − α2)1/2 +
ζ − α2

2(1 − α2)1/6 + O{(ζ − α2)2}, ζ → α2, (7.10)

and

ζ0 = 1
4π2 − α2 − 4α4

3π2 + O(α6), α → 0. (7.11)

Furthermore, from (6.1) and (7.9) we see that x → ∞ as ζ → 0+, such that

x =
(1 − α2)1/2

e

(
1 + α

1 − α

)1/(2α)

ζ−1/2 + O(ζ1/2). (7.12)

Analogous to (6.8) we next define (see [2, (2.1a,b)])

W =
(

ζ

s(2 − s)

)1/2(2s − s2 − α2

ζ − α2

)1/4

V, (7.13)

to obtain
d2W

dζ2 =
{

µ2 ζ − α2

4ζ2 − 1
4ζ2 +

ψ(α, ζ)
ζ

}
W, (7.14)
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where

ψ(α, ζ) =
ζ + 4α2

16(ζ − α2)2
− (ζ − α2)s(2 − s)(2s − s2 + 4α2(1 − s)2 − α4)

16ζ(2s − s2 − α2)3
. (7.15)

Applying [2, theorem 1], we obtain the solutions

W2n+1,1(µ, α, ζ) = ζ1/2Ĩiτ (µζ1/2)
n∑

s=0

As(α, ζ)
µ2s

+
ζ

µ
Ĩ ′
iτ (µζ1/2)

n−1∑
s=0

Bs(α, ζ)
µ2s

+ ε2n+1,1(µ, α, ζ) (7.16)

and

W2n+1,2(µ, α, ζ) = ζ1/2Kiτ (µζ1/2)
n∑

s=0

As(α, ζ)
µ2s

+
ζ

µ
Kiτ (µζ1/2)

n−1∑
s=0

Bs(α, ζ)
µ2s

+ ε2n+1,2(µ, α, ζ), (7.17)

where
Ĩiτ (x) = πe−τπ{Iiτ (x) + I−iτ (x)} (7.18)

(cf. (6.14)).
In (7.16) and (7.17) A0(α, ζ) = 1 and, for s = 0, 1, 2, . . . ,

Bs(α, ζ) = (ζ −α2)−1/2
∫ ζ

α2
(η −α2)−1/2{ψ(α, η)As(α, η)−ηA′′

s (α, η)−A′
s(α, η)} dη

(7.19)
when ζ > α2,

Bs(α, ζ) = (α2−ζ)−1/2
∫ α2

ζ

(α2−ζ)−1/2{ψ(α, η)As(α, η)−ηA′′
s (α, η)−A′

s(α, η)} dη

(7.20)
when ζ < α2 and

As+1(α, ζ) = −ζB′
s(α, ζ) +

∫ ζ

α2
ψ(α, η)Bs(α, η) dη + λs+1, (7.21)

where λs+1 are arbitrary constants.
The error terms satisfy

ε2n+1,1(µ, ζ) = ζ1/2Ĩiτ (µζ1/2)O(µ−2n−1) (7.22)

ε2n+1,2(µ, ζ) = ζ1/2Kiτ (µζ1/2)O(µ−2n−1) (7.23)

as µ → ∞, uniformly for 0 � α � 1 − δ, δ > 0, and 0 � x < ∞, 0 < ζ � ζ0, except
near the zeros of each Bessel function. Moreover,

ε2n+1,2(µ, ζ) = Ĩiτ (µζ1/2)O(ζ), ζ → 0+, (7.24)

ε2n+1,2(µ, ζ) = ζ1/2Kiτ (µζ1/2)O(ζ − ζ0), ζ → ζ0, (7.25)

uniformly for 0 � α � 1 − δ, δ > 0.
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An identification similar to (6.22) now follows. Using (1.22), (2.1), (6.2), (6.14),
(6.23), (6.24), (7.12), (7.13), (7.16), (7.18) and (7.24), we arrive at

W2n+1,1(µ, α, ζ) = ζ1/4[An(µ, α)Rµ
τ (γ5 − 1

4π, x) + Bn(µ, α)Rµ
τ (γ5 + 1

4π, x)], (7.26)

where

γ5 = τ − 1
2µ ln

(
µ + τ

µ − τ

)
− 1

2τ ln{ 1
4 (µ2 − τ2)} + φτ,0 + 1

4π, (7.27)

An(µ, α) = 2e−τπ

{
π sinh(τπ)

eµτ

}1/2

(µ2 − τ2)1/4
(

µ + τ

µ − τ

)µ/(4τ) n∑
s=0

As(α, 0)
µ2s

(7.28)

and

Bn(µ, α) = −2e−τπ

{
τπ sinh(τπ)

eµ

}1/2

(µ2 − τ2)1/4
(

µ + τ

µ − τ

)µ/(4τ) n−1∑
s=0

Bs(α, 0)
µ2s+1 .

(7.29)

Similarly to (6.32), we likewise obtain

W2n+1,j(µ, ζ) =
{

ζ2(1 − α2 − α2x2)
ζ − α2

}1/4

× [Ce
2n+1,j(µ)eiµ

−(1/2)+iτ (x) + Co
2n+1,j(µ)oiµ

−(1/2)+iτ (x)], (7.30)

where

Ce
2n+1,j(µ) =

{
ζ0 − α2

ζ2
0 (1 − α2)

}1/4

W2n+1,j(µ, ζ0) (7.31)

and

Co
2n+1,j(µ) =

1
2 (ζ0 − 2α2)W2n+1,j(µ, ζ0) − 2ζ0(ζ0 − α2)W ′

2n+1,j(µ, ζ0)

ζ
1/2
0 (ζ0 − α2)5/4(1 − α2)3/4

. (7.32)

8. Large µ, 0 � τ/µ � A, 0 < A < 1, and −A−1
√

1 − A2 + δ � x �
A−1

√
1 − A2 − δ, δ > 0

We can simplify the results of the previous two sections if we restrict x to be
bounded. In this case we can forgo the preliminary transformation (6.1) and consider
(2.4) in the form

d2w

dx2 =
{

µ2(1 − α2x2 − α2)
(1 + x2)2

+
3 − x2

4(1 + x2)2

}
w, (8.1)

where α is again given by (7.1).
The turning points of (8.1) are located at x = ±α−1

√
1 − α2. In this section we

assume that
0 � α � A, 0 < A < 1, (8.2)

so that the turning points are real, with the one lying in (0,∞) being bounded away
from the origin. Moreover, we assume that −A−1

√
1 − A2+δ � x � A−1

√
1 − A2−
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δ, so that this variable lies in an interval that excludes any turning points, and as
such must be bounded.

Similarly to § 2 and 5 the Liouville–Green expansions of [10, ch. 10] are applicable.
This time the transformation of the independent variable is given by

ξ =
∫ x

0

(1 − α2 − α2p2)1/2

p2 + 1
dp

= arctan
{

x

(1 − α2 − α2x2)1/2

}
− α arctan

{
αx

(1 − α2 − α2x2)1/2

}
. (8.3)

It is important to note that ξ is an odd function of x. We also observe from (8.3)
that

ξ = (1 − α2)1/2x + O(x3) (8.4)

as x → 0.
Next, setting

w =
(1 + x2)1/2

(1 − α2 − α2x2)1/4 W, (8.5)

we obtain
d2W

dξ2 = {µ2 + ψ(ξ)}W, (8.6)

where

ψ(ξ) = − (1 + x2)(1 − α4 + 4α2x2 − α4x2)
4(1 − α2 − α2x2)3

. (8.7)

Applying Olver’s Liouville–Green theory [10, ch. 10, theorem 3.1], and defining

W2n+1,1(µ, ξ) = 1
2{Wn,1(u, ξ) + Wn,1(u, −ξ)} (8.8)

and

W2n+1,2(τ, ξ) = 1
2{Wn,1(u, ξ) − Wn,1(u, −ξ)}, (8.9)

we obtain two asymptotic solutions of (8.6) of the form

W2n+1,1(µ, ξ) = cosh(µξ)
n∑

s=0

A2s(ξ)
µ2s

+ sinh(µξ)
n−1∑
s=0

A2s+1(ξ)
µ2s+1 + ε2n+1,1(µ, ξ)

(8.10)

and

W2n+1,2(µ, ξ) = sinh(µξ)
n∑

s=0

A2s(ξ)
µ2s

+ cosh(µξ)
n−1∑
s=0

A2s+1(ξ)
µ2s+1 + ε2n+1,2(µ, ξ),

(8.11)

where A0(ξ) = 1, and

As+1(ξ) = 1
2{A′

s(0) − A′
s(ξ)} + 1

2

∫ ξ

0
ψ(η)As(η) dη, s = 0, 1, 2, . . . . (8.12)
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Note that, for s = 1, 2, 3, . . . ,

As(0) = 0, As(−ξ) = (−1)sAs(ξ). (8.13)

In (8.10) and (8.11) the error terms ε2n+1,j(τ, ξ) have explicit bounds, with the
properties

ε2n+1,1(µ, ξ) = cosh(µξ)O(µ−2n−1) (8.14)

and

ε2n+1,2(µ, ξ) = sinh(µξ)O(µ−2n−1) (8.15)

as µ → ∞, uniformly for −A−1
√

1 − A2 + δ � x � A−1
√

1 − A2 − δ, δ > 0.
Now, from (8.8) and (8.9) it is evident that, when regarded as functions of x,

W2n+1,1(µ, ξ) is even and W2n+1,2(µ, ξ) is odd. It follows by uniqueness of solutions
having these properties, along with (2.1), (8.4), (8.5), (8.10), (8.11) and (8.13), that

eiµ
−(1/2)+iτ (x) =

1
1 + ε2n+1,1(µ, 0)

(
1 − α2

1 − α2 − α2x2

)1/4

W2n+1,1(µ, ξ) (8.16)

and

oiµ
−(1/2)+iτ (x) =

{
µ +

n−1∑
s=0

A′
2s+1(0)
µ2s+1 + ε′

2n+1,2(µ, 0)
}−1

× {(1 − α2)(1 − α2 − α2x2)}−1/4W2n+1,2(µ, ξ), (8.17)

for 0 � τ/µ � A < 1, uniformly for −A−1
√

1 − A2 + δ � x � A−1
√

1 − A2 − δ,
δ > 0.

Returning to the original variables, and taking n = 0, we have

eiµ
−(1/2)+iτ (x) =

(
µ2 − τ2

µ2 − τ2 − τ2x2

)1/4

cosh(µξ)
{

1 + O

(
1
µ

)}
(8.18)

and

oiµ
−(1/2)+iτ (x) = {(µ2 − τ2)(µ2 − τ2 − τ2x2)}−1/4 sinh(µξ){1 + O(µ−1)}, (8.19)

where

ξ = arctan
{

µx

(µ2 − τ2 − τ2x2)1/2

}
− τ

µ
arctan

{
τx

(µ2 − τ2 − τ2x2)1/2

}
. (8.20)
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