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We investigate the steady-state harmonic resonance of periodic interfacial gravity waves
in a two-layer fluid with free surface. Two independent ‘external’ and ‘internal’ modes
with separate linear dispersion relationships exist for this two-layer fluid. Exact harmonic
resonance occurs when an external mode and an internal mode share the same phase speed
and have an integer ratio of wavelengths. The singularity or small divisor caused by the
exactly or nearly resonant component is successfully removed by the homotopy analysis
method (HAM). Convergent series solutions are obtained of steady-state interfacial wave
groups with harmonic resonance. It is found that steady-state resonant waves form a
continuum in parameter space. For finite amplitude interfacial waves, the energy carried
by surface waves mirrors that carried by interface waves as the water depth varies. As the
upper layer depth increases, energy carried by both surface and interface waves transfers
from the shorter resonant component to the longer primary one. The paper utilizes a
HAM-based analytical approach to obtain a steady-state, periodic, interfacial wave system
with exact- and near-resonant interactions between internal and external modes.
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1. Introduction

Studies of surface wave resonance originate from Phillips (1960) who derived an exact
resonance criterion for a quartet of periodic waves and found that the amplitude of the
resonant component increased linearly with time. Unsteady-state wave systems match
the foregoing description but with time-dependent amplitude spectra. In the case of
unsteady-state resonance, periodic energy exchange may occur and the wave system
displays a Fermi–Pasta–Ulam recurrence phenomenon (Lake et al. 1977). Bustamante
et al. (2019) identified the important role played by exact discrete resonance in discrete
low-dimensional chains in the Fermi–Pasta–Ulam–Tsingou system. In addition, the
method of multiple scales has been widely used to analyse unsteady-state resonance
and also applied in other research fields. For example, Nayfeh (1971) considered
third-harmonic resonance in capillary and gravity waves; Lin (1974) focused on the
finite amplitude stability of a viscous film; and Gururaj & Guha (2020) studied energy
transformation in triad resonance of internal waves.

In recent years, Liao (2011b) successfully overcame the singularity problem caused by
the presence of an exactly resonant component and used the homotopy analysis method
(HAM) (Liao 2003, 2011a; Vajravelu & Van Gorder 2012) to obtain the steady-state quartet
in deep water. The HAM is a semi-analytical approach introduced by Liao (2003, 2011a) in
his PhD dissertation in 1992. The capability of the HAM naturally to achieve convergence
of series solutions is unusual in analytical approaches to nonlinear partial differential
equations. This method allows us to obtain steady-state solutions for any system of
interacting waves, such as surface gravity waves (Liao 2011b) and acoustic-gravity waves
(Yang, Dias & Liao 2018). Most importantly, the method is essentially non-perturbative,
and valid for not only small, but also moderate nonlinearity.

In a steady-state system, the amplitude of each wave component is invariant over
time. Steady-state resonance represents a balanced state of wave energy and is a
special case of more general unsteady-state resonance where energy transfer occurs
dynamically among different wave components. In steady-state resonance problems, the
time-independent solution provides a way to study evolution of a complex wave system,
given that the components in unsteady-state resonance are hard to distinguish after
long-term evolution involving complicated wave generation and transformation processes.
Moreover, steady-state resonance offers a benchmark by which to test the accuracy of any
numerical algorithm for predicting the long-term evolution of wave systems. Knowledge of
steady-state resonant systems provides insight into the behaviour of nonlinear interfacial
wave evolution. Following Liao’s work, steady-state resonant wave systems have been
further studied by Xu et al. (2012), Liu & Liao (2014), Liu et al. (2015), Liao, Xu &
Stiassnie (2016), Liu, Xu & Liao (2018) and Liu & Xie (2019).

Resonance studies have also extended to interfacial periodic waves. A two-layer
fluid with free surface contains two independent modes with different linear dispersion
relationships, called the ‘external’ mode and the ‘internal’ mode. Resonance between
these two modes has been investigated extensively. Ball (1964) found that substantial
energy transfer occurred from two inverted external modes to an internal mode during
resonance. Wen (1995) analysed the evolving amplitudes of two opposing internal modes
and an external mode under triad resonance. Alam (2012) found a new resonance triad
among two homodromous external modes and an internal mode, and, based on this work,
Tanaka & Wakayama (2015) and Zaleski, Zaleski & Lvov (2019) further investigated the
associated energy transfer and excitation phenomena. All the foregoing studies focused on
dynamic interfacial wave evolution during unsteady-state resonance. In the same physical
model, exact harmonic resonance happens when an external mode and an internal mode

916 A58-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.253


Steady-state resonant interfacial waves

share the same phase speed and have wavelengths in an integer ratio (1 : N). Parau &
Dias (2001) analysed the exact resonance criteria for a steady-state interfacial periodic
wave system with different density ratios, and found that 1 : 2 and 1 : 3 resonances do not
exist at large density ratio. Parau & Dias (2001) also obtained steady-state nearly resonant
solutions using a numerical method, and reported that ‘when the case is closer to exact
resonance, the solutions are more difficult to obtain’. A more robust, computationally
efficient procedure for determining exact steady-state resonant solutions of interfacial
waves is required in order to construct the full parameter space, including both exact and
near resonance cases.

This paper utilizes a robust HAM-based approach to investigate steady-state periodic
interfacial waves undergoing harmonic resonance in a two-layer fluid with free surface.
Effects of upper-layer depth and nonlinearity (wave steepness) on the interfacial waves are
examined. The HAM-based approach used herein is modified from that given by Liu et al.
(2018) and Liu & Xie (2019) to overcome difficulty in obtaining the steady-state solution
owing to the singularity or small divisor associated with exact or near resonance. The
modification to HAM involves eliminating the singularity and small denominator together
by inserting a piecewise parameter in auxiliary linear operators to obtain convergent series
solutions of steady-state resonant interfacial waves. This success is based on the freedom
of choice of auxiliary linear operator in the HAM.

The contributions of this paper are summarized as follows. First, converged steady-state
interfacial waves with exact resonance are obtained using the modified HAM, unlike
previous approaches. Second, continuum of steady-state resonant interfacial waves in the
parameter space is established and the effects of upper-layer depth and nonlinearity on the
interfacial waves are analysed.

The structure of the paper is as follows. Section 2 describes the mathematical derivation
and 1 : N resonance condition. Section 3 describes the results obtained for 1 : 2 and 1 : 3
exact and near resonance. Section 4 summarizes the main conclusions.

2. Mathematical formulae

2.1. Governing equations
We consider a system of two inviscid, incompressible fluid layers each of constant density
under gravity. The upper layer, with thickness h, has a free surface. The lower layer
is of infinite depth. The flow is assumed irrotational inside each fluid layer. Figure 1
illustrates the layered system for densities ρ1 < ρ2. Here (x, y, z) represents the Cartesian
coordinate system, in which z = 0 and z = −h are horizontal planes located at the
undisturbed free surface and interface between the fluid layers, respectively. Coordinate
z is measured vertically upwards. The governing equations and kinematic and dynamic
boundary conditions for each layer read

∇2φ1 = 0, −h + ζ2 < z < ζ1, (2.1)

∇2φ2 = 0, −∞ < z < −h + ζ2, (2.2)

∂2φ1

∂t2
+ g

∂φ1

∂z
+ ∂(|∇φ1|2)

∂t
+ ∇φ1 · ∇

(
1
2
|∇φ1|2

)
= 0, at z = ζ1, (2.3)

ζ1 + 1
g

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
= 0, at z = ζ1, (2.4)

916 A58-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.253


J. Li, Z. Liu, S. Liao and A.G.L. Borthwick

h

z = ζ1(x, y, t)

z = –h + ζ2 (x, y, t)  ρ1, φ1 (x, y, z, t)

ρ2, φ2 (x, y, z, t)

z

o

y

x

–∞

Figure 1. Physical sketch of the two-fluid system with related notations.

∂2φ2

∂t2
+ g(1 −Δ)

∂φ2

∂z
−Δ

∂2φ1

∂t2
+ ∂(|∇φ2|2)

∂t
−Δ

∂(1
2 |∇φ1|2)
∂t

+ ∇φ2

·∇
(

1
2
|∇φ2|2

)
−Δ∇φ2 · ∇

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
= 0, at z = −h + ζ2, (2.5)

g(1 −Δ)
∂(φ2 − φ1)

∂z
+
∂

(
1
2 |∇φ2|2

)
∂t

+ ∇φ2 · ∇
(

1
2
|∇φ2|2

)
− ∇φ1

·∇
(
∂φ2

∂t
+ 1

2
|∇φ2|2

)
+Δ

⎡
⎣∂

(
1
2 |∇φ1|2

)
∂t

+ ∇φ1 · ∇
(

1
2
|∇φ1|2

)

−∇φ2 · ∇
(
∂φ1

∂t
+ 1

2
|∇φ1|2

)]
= 0, at z = −h + ζ2, (2.6)

ζ2 − 1
g(1 −Δ)

[
Δ

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
−

(
∂φ2

∂t
+ 1

2
|∇φ2|2

)]
= 0, at z = −h + ζ2,

(2.7)

∂φ2

∂z
→ 0, z → −∞, (2.8)

where φ1(x, y, z, t) and φ2(x, y, z, t) denote velocity potentials of the upper and lower fluid
layers, z = ζ1(x, y, t) is the free-surface elevation, z = −h + ζ2(x, y, t) is the interface
level between the two layers, g is acceleration due to gravity, t is time, Δ = ρ1/ρ2 is
the density ratio between the upper and lower layers and

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(2.9)

is the gradient operator. Appendix A presents a detailed derivation of the interface
deformation conditions.

Consider a steady-state interfacial wave system with one primary periodic progressive
wave. Let k denote the wave vector, σ the actual angular frequency and β the initial phase
of the primary component. Noting that the amplitude of each component in a steady-state
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interfacial wave system is time-independent, we introduce the following transformation to
eliminate the time variable t:

ξ = k · r − σ t + β, (2.10)

where r = exx + eyy, and define

ϕi(ξ, z) = φi(x, y, z, t), ηi(ξ) = ζi(x, y, t), i = 1, 2, (2.11a,b)

in the new coordinate system (ξ, z). The original initial/boundary-value problem
(2.1)–(2.8) in coordinate system (x, y, z, t) is then transformed into a boundary-value
problem in coordinate system (ξ, z). Steady-state solutions are easier to obtain from the
boundary-value problem in the coordinate system (ξ, z), and therefore the coordinate ξ
plays a significant role in the remaining analysis. The governing equations in coordinate
system (ξ, z) are

∇̂2ϕ1 = 0, −h + η2 < z < η1, (2.12)

∇̂2ϕ2 = 0, −∞ < z < −h + η2, (2.13)

subject to two (one kinematic and one dynamic) boundary conditions at the unknown free
surface z = η1:

N1[ϕ1] = σ 2 ∂
2ϕ1

∂ξ2 + g
∂ϕ1

∂z
− 2σ

∂f1
∂ξ

+ ∇̂ϕ1 · ∇̂f1 = 0, (2.14)

N2[ϕ1, η1] = η1 − 1
g

(
σ
∂ϕ1

∂ξ
− f1

)
= 0, (2.15)

three (two kinematic and one dynamic) boundary conditions at the unknown interface
z = −h + η2:

N3[ϕ1, ϕ2] = σ 2 ∂
2ϕ2

∂ξ2 + g(1 −Δ)
∂ϕ2

∂z
−Δσ 2 ∂

2ϕ1

∂ξ2 + ∇̂ϕ2 · ∇̂f2

− 2σ
∂f2
∂ξ

+Δ(σ
∂f1
∂ξ

− h21 − ∇̂ϕ2 · ∇̂f1) = 0, (2.16)

N4[ϕ1, ϕ2] = g(1 −Δ)
∂(ϕ2 − ϕ1)

∂z
+ ∇̂(ϕ2 − ϕ1) · ∇̂f2 − h12 − σ

∂f2
∂ξ

−Δ

[
σ
∂f1
∂ξ

+ h21 + ∇̂(ϕ2 − ϕ1) · ∇̂f1

]
= 0, (2.17)

N5[ϕ1, ϕ2, η2] = η2 − 1
g(1 −Δ)

[
σ
∂ϕ2

∂ξ
− f2 −Δ

(
σ
∂ϕ1

∂ξ
− f1

)]
= 0, (2.18)

and a ‘bottom’ boundary condition:

∂ϕ2

∂z
→ 0, z → −∞, (2.19)

where Ni with i = 1, 2, . . . , 5 are nonlinear differential operators and

∇̂ = k
∂

∂ξ
+ ez

∂

∂z
, fi = 1

2

∣∣∣∇̂ϕi

∣∣∣2
, i = 1, 2, (2.20)

hij = −σ ∇̂ϕi · ∇̂
(
∂ϕj

∂ξ

)
, i, j = 1, 2. (2.21)
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The free-surface elevation η1, the disturbed interface elevation η2 and the velocity
potentials in the upper and lower fluid layer ϕi of the steady-state interfacial wave system
can be expressed in the form

η1(ξ) =
+∞∑
i=0

Cη1
i cos(iξ), (2.22)

η2(ξ) =
+∞∑
i=0

Cη2
i cos(iξ), (2.23)

ϕ1(ξ, z) =
+∞∑
i=1

(Cϕ1a
i ψ1a

i + Cϕ1b
i ψ1b

i ), (2.24)

ϕ2(ξ, z) =
+∞∑
i=1

Cϕ2
i ψ

2
i , (2.25)

in which

ψ1a
i (ξ, z) = cosh[|ik| (z + h)] sin(iξ), (2.26)

ψ1b
i (ξ, z) = sinh[|ik| (z + h)] sin(iξ), (2.27)

ψ2
i (ξ, z) = exp (|ik| (z + h)) sin(iξ). (2.28)

In all cases, prescribed values of k, σ and h are used to determine the otherwise unknown
constants Cη1

i , Cη2
i , Cϕ1a

i , Cϕ1b
i and Cϕ2

i as follows. Equations (2.12)–(2.13) and (2.19) are
automatically satisfied by the form of ηi and ϕi given by (2.22)–(2.25), and the unknown
constants are hence obtained by solving the two boundary conditions (2.14)–(2.15) at the
free surface z = η1 and the three boundary conditions (2.16)–(2.18) at the internal interface
z = −h + η2.

2.2. The 1 : N resonance condition
The model given by (2.12)–(2.19) has two modes corresponding to different linear
dispersion relationships. The linear angular frequency for the ‘external’ mode is

ωE(kE) =
√

gkE, (2.29)

whereas the linear angular frequency for the ‘internal’ mode is

ωI(kI) =
√

gkI(1 −Δ) tanh(kIh)
1 +Δ tanh(kIh)

, (2.30)

in which kE = |kE| and kI = |kI | are wavenumbers for the ‘external’ and ‘internal’ modes,
respectively. We consider interaction between an ‘external’ mode (kE, σE) and an ‘internal’
mode (kI , σI) in the wave system. The actual angular frequency is σ = εω, with ε the
dimensionless angular frequency. For wave groups with components all travelling in the
same direction, the larger the value of ε, the greater the nonlinearity of the wave group.
So-called 1 : N exact resonance occurs (Parau & Dias 2001) when the ‘external’ and
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‘internal’ modes have the same phase speed and an integer ratio of wavelengths (such
that kE = NkI , where N is an integer). The 1 : N near resonance condition is

kE = NkI, σE = NσI + dσ ⇔ ωE = NωI + dω, (2.31)

where dσ and dω = dσ/ε are small real numbers. When dσ = 0, the near resonance
condition (2.31) degenerates into exact resonance.

In this paper, we consider the primary component (i = 1 in (2.22)–(2.25)) as an
‘internal’ mode (kI, σI) = (k, σ ). For 1 : N exactly or nearly resonant set, the ‘external’
mode (kE, σE) corresponds to a resonant component.

2.3. Approach based on the HAM
The general idea behind the HAM is the continuous deformation of basis (initial
guess) functions in achieving solutions of nonlinear differential equations. Comprehensive
introductions to the HAM are given by Liao (2003, 2011a) and Vajravelu & Van
Gorder (2012). The fundamental concept and important details of the HAM are briefly
summarized below.

Given that the expressions for ϕ1 (2.24) and ϕ2 (2.25) automatically satisfy the
governing equations (2.12)–(2.13) and boundary condition (2.19), it is sufficient solely
to consider the free-surface and interface conditions (2.14)–(2.18). We set q ∈ [0, 1] as
an embedding homotopy parameter, c0 /= 0 as a convergence-control parameter and Li
with i = 1, 3, 4 as the auxiliary linear operators. Besides, η0,1 = η0,2 = 0 are taken to be
initial approximations of vertical disturbances to the free surface η1 and the interface η2,
and ϕ0,1(ξ, z) and ϕ0,2(ξ, z) as initial approximations of the potential functions ϕ1 and
ϕ2. Then, based on the free-surface and interface conditions (2.14)–(2.18), we construct
the following parameterized family of equations (called the zeroth-order deformation
equations):

(1 − q)L1[ϕ̌1 − ϕ0,1] = qc0N1[ϕ̌1], at z = η̌1, (2.32)

(1 − q)η̌1 = qc0N2[ϕ̌1, η̌1], at z = η̌1, (2.33)

(1 − q)L3[ϕ̌1 − ϕ0,1, ϕ̌2 − ϕ0,2] = qc0N3[ϕ̌1, ϕ̌2], at z = −h + η̌2, (2.34)

(1 − q)L4[ϕ̌1 − ϕ0,1, ϕ̌2 − ϕ0,2] = qc0N4[ϕ̌1, ϕ̌2], at z = −h + η̌2, (2.35)

(1 − q)η̌2 = qc0N5[ϕ̌1, ϕ̌2, η̌2], at z = −h + η̌2, (2.36)

where

ϕ̌i(ξ, z; q) =
+∞∑
n=0

ϕn,iqn, ϕn,i(ξ, z) = 1
n!
∂nϕ̌i

∂qn

∣∣∣∣
q=0

, i = 1, 2, (2.37a,b)

η̌i(ξ ; q) =
+∞∑
n=1

ηn,iqn, ηn,i(ξ) = 1
n!
∂nη̌i

∂qn

∣∣∣∣
q=0

, i = 1, 2. (2.38a,b)

Considering the auxiliary linear operators Li which have the property L1[0] =
L3[0, 0] = L4[0, 0] = 0, we obtain the following relationships when q = 0:

ϕ̌i(ξ, z; 0) = ϕ0,i, η̌i(ξ ; 0) = 0, i = 1, 2. (2.39a,b)

When q = 1, (2.32)–(2.36) are equivalent to the original (2.14)–(2.18), respectively.
Thus

ϕ̌i(ξ, z; 1) = ϕi, η̌i(ξ ; 1) = ηi, i = 1, 2. (2.40a,b)
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Hence, (2.32)–(2.36) define four homotopies:

ϕ̌i := ϕ0,i ∼ ϕi, η̌i := 0 ∼ ηi, when q := 0 ∼ 1, i = 1, 2. (2.41a,b)

Letting q = 1, the solutions for disturbed free surface and interface ηi and velocity
potentials in the upper and lower fluid layers ϕi are approximated by

ηi(ξ) = η̌i(ξ ; 1) =
+∞∑
m=1

ηm,i(ξ), i = 1, 2, (2.42)

ϕi(ξ, z) = ϕ̌i(ξ, z; 1) =
+∞∑
m=0

ϕm,i(ξ, z), i = 1, 2. (2.43)

The sum indexes of η1 and η2 commence from m = 1 because the initial guesses η0,1 =
η0,2 = 0.

2.3.1. Solution procedure
The unknown ϕm,i and ηm,i are governed by the high-order deformation equations

L1[ϕm,1]|z=0 = c0Δ
ϕ
m−1,1 + χm(Sm−1,1 − S̄m,1), m ≥ 1, (2.44)

Li+1[ϕm,1, ϕm,2]|z=−h = c0Δ
ϕ
m−1,i + χm(Sm−1,i − S̄m,i), i = 2, 3, m ≥ 1, (2.45)

ηm,i = c0Δ
η
m−1,i + χmηm−1,i, i = 1, 2, m ≥ 1, (2.46)

in which χ1 = 0 and χm = 1 for m ≥ 2, and Li are auxiliary linear operators.
Up to the mth order of approximation, all terms Δϕm−1,i, S̄m,i, Sm−1,i and Δ

η
m−1,i

on the right-hand side of the high-order deformation equations (2.44)–(2.46) are
already predetermined by ϕn,i and ηn,i, with n = 0, 1, 2, . . . ,m − 1 and m ≥ 1. Detailed
expressions for the high-order deformation equations (2.44)–(2.46) are given in
appendix B and the next section. Although ηm,i can be obtained directly from (2.46), the
solution process for ϕm,i is more complicated.

When the resonance condition (2.31) is satisfied, proper auxiliary linear operators Li
must be chosen to remove the singularity or small denominator associated with the
resonant component in ϕm,i. Otherwise, no convergent series solutions can be obtained
for steady-state interfacial waves. Unlike the traditional perturbation method, the HAM
is not sensitive to small/large physical parameters and instead provides great freedom in
the choice of auxiliary linear operator and initial guess. Convergent series solutions can
therefore be obtained by the HAM for a steady-state resonant system.

2.3.2. Choice of auxiliary linear operators
Consider an interfacial wave system with 1 : N exact or near resonance. The following
auxiliary linear operators are chosen to eliminate either the singularity arising from the
presence of an exactly resonant component or the small denominator caused by a nearly
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resonant component:

L1[ϕ1] = ω2 ∂
2ϕ1

∂ξ2 + μg
∂ϕ1

∂z
, (2.47)

L3[ϕ1, ϕ2] = ω2 ∂
2ϕ2

∂ξ2 + μg(1 −Δ)
∂ϕ2

∂z
−Δω2 ∂

2ϕ1

∂ξ2 , (2.48)

L4[ϕ1, ϕ2] = μg(1 −Δ)

(
∂ϕ2

∂z
− ∂ϕ1

∂z

)
, (2.49)

where

μ(i) =
⎧⎨
⎩

iω2

gk
, i = N

1, else
(2.50)

is a piecewise parameter depending on i in ϕi (2.24)–(2.25) and k = |k|, ω = σ/ε. This
piecewise parameter is key to removing the small divisor caused by the nearly resonant
component, and thus enables the HAM to work successfully. The auxiliary linear operators
(2.47)–(2.49) are selected according to linear operators in the boundary conditions (2.14)
and (2.16)–(2.17). Expressions for Sm,i and S̄m,i can then be obtained as

Sm,1 = ω2β
m,0
2,1,1 + μgγm,0

0,1,1 + S̄m,1, (2.51)

S̄m,1 =
m−1∑
n=1

(ω2β
m−n,n
2,1,1 + μgγm−n,n

0,1,1 ), (2.52)

Sm,2 = ω2β
m,0
2,2,2 + μg(1 −Δ)γ

m,0
0,2,2 −Δω2β

m,0
2,1,2 + S̄m,2, (2.53)

S̄m,2 =
m−1∑
n=1

[ω2β
m−n,n
2,2,2 + μg(1 −Δ)γ

m−n,n
0,2,2 −Δω2β

m−n,n
2,1,2 ], (2.54)

Sm,3 = μg(1 −Δ)(γ
m,0
0,2,2 − γ

m,0
0,1,2)+ S̄m,3, (2.55)

S̄m,3 =
m−1∑
n=1

[μg(1 −Δ)(γ
m−n,n
0,2,2 − γ

m−n,n
0,1,2 )]. (2.56)

Detailed formulae for βn,m
i,k̄,p

and γ n,m
i,k̄,p

are listed in appendix B. We define ϕm,1 and ϕm,2 in

the general form

ϕm,1 =
∑

i

(Cϕ1a,m
i ψ1a

i + Cϕ1b,m
i ψ1b

i ), ϕm,2 =
∑

i

Cϕ2,m
i ψ2

i . (2.57a,b)

The mth-order deformation equations (2.44)–(2.45) are then simplified as

L1

[∑
i

(Cϕ1a,m
i ψ1a

i + Cϕ1b,m
i ψ1b

i )

]∣∣∣∣∣
z=0

=
∑

i

R1,m
i sin(iξ), (2.58)
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L3

[∑
i

(Cϕ1a,m
i ψ1a

i + Cϕ1b,m
i ψ1b

i ),
∑

i

Cϕ2,m
i ψ2

i

]∣∣∣∣∣
z=−h

=
∑

i

R3,m
i sin(iξ), (2.59)

L4

[∑
i

(Cϕ1a,m
i ψ1a

i + Cϕ1b,m
i ψ1b

i ),
∑

i

Cϕ2,m
i ψ2

i

]∣∣∣∣∣
z=−h

=
∑

i

R4,m
i sin(iξ), (2.60)

where Cϕ1a,m
i , Cϕ1b,m

i and Cϕ2,m
i are constants to be determined for given R1,m

i , R3,m
i

and R4,m
i . Equating the terms on both sides of (2.58)–(2.60), the following three linear

algebraic equations are obtained:

μgki
[
Cϕ1b,m

i cosh(kih)+ Cϕ1a,m
i sinh(kih)

]
−Mi

[
Cϕ1a,m

i cosh(kih)+ Cϕ1b,m
i sinh(kih)

] = R1,m
i , (2.61)

Cϕ2,m
i [μgki(1 −Δ)− Mi] + Cϕ1a,m

i ΔMi = R3,m
i , (2.62)

μgki(1 −Δ)(Cϕ2,m
i − Cϕ1b,m

i ) = R4,m
i , (2.63)

where ki = |ik| and

Mi = (iω)2. (2.64)

The solutions for Cϕ1a,m
i , Cϕ1b,m

i and Cϕ2,m
i are

Cϕ1a,m
i = R3,m

i + [Mi − μgki(1 −Δ)]Cϕ2,m
i

ΔMi
, (2.65)

Cϕ1b,m
i = Cϕ2,m

i − R4,m
i

μgki(1 −Δ)
, (2.66)

Cϕ2,m
i = AiR

1,m
i + BiR

3,m
i + DiR

4,m
i

μgki(1 −Δ)[1 +Δ tanh(kih)]λ1
i λ

2
i
, (2.67)

where

Ai = −Δμgki(1 −Δ)Mi

cosh(kih)
, (2.68)

Bi = μgki(1 −Δ)[μgki tanh(kih)− Mi], (2.69)

Di = ΔMi[Mi tanh(kih)− μgki], (2.70)

λ1
i = Mi − μω2

E(ki), (2.71)

λ2
i = Mi − μω2

I (ki). (2.72)

For a non resonant component cos(iξ), μ = 1, λ1
i = (iω)2 − ω2

E(ki) and λ2
i = (iω)2 −

ω2
I (ki) are non-trivial real numbers. Constant Cϕ2,m

i is obtained directly from (2.67) and
Cϕ1a,m

i and Cϕ1b,m
i are then computed from (2.65)–(2.66). For an exactly or nearly resonant

component cos(Nξ), the value of μ is determined so that it satisfies λ1
N = (Nω)2 −

μω2
E(kN) = 0. The small divisor arising from the nearly resonant component becomes

a singularity associated with exact resonance. Therefore Cϕ2,m
N cannot be obtained directly
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Steady-state resonant interfacial waves

from (2.67). Instead, to eliminate the singularity, we force the numerator of the right-hand
side of (2.67) to be equal to 0, such that

ANR1,m
N + BNR3,m

N + DNR4,m
N = 0, (2.73)

from which the value of Cϕ2,m−1
N is determined. Similarly, Cϕ2,m

N is determined from the
right-hand side of (2.67) via

ANR1,m+1
N + BNR3,m+1

N + DNR4,m+1
N = 0. (2.74)

Once the value of Cϕ2,m
N is obtained, we obtain Cϕ1a,m

N and Cϕ1b,m
N directly from

(2.65)–(2.66). By introducing the piecewise parameter μ in the above solution process,
the singularity or small divisor associated with an exactly or nearly resonant component
cos(Nξ) in (2.67) is successfully removed. Then, a convergent series solution can be
obtained by the HAM for the steady-state resonant interfacial wave system. It should be
noted that λ2

1 = 0 for the primary component cos(ξ). Then, Cϕ2,m
1 , Cϕ1a,m

1 and Cϕ1b,m
1 are

similarly determined as if the primary component is resonant. The above procedure works
for the case when N = 2. For the case when N = 3, the component cos(2ξ) is specified as
an additional component in the initial guess, and considered to be a resonant component
throughout the solution procedure. We choose the piecewise parameter μ to force λ1

2 = 0
and the foregoing solution procedure of equations (2.61)–(2.63) for cos(2ξ) is similar to
that for the resonant component cos(3ξ).

2.3.3. Choice of initial velocity potentials
Based on the linearized solutions of (2.12)–(2.19), we choose the following initial guesses
of velocity potentials for the case N = 2:

ϕ0,1 = 1
Δ

[
1 − gk(1 −Δ)

ω2

]
Cϕ2,0

1 ψ1a
1 + Cϕ2,0

1 ψ1b
1

+ 1
Δ

[
1 − gk2(1 −Δ)

4ω2

]
Cϕ2,0

2 ψ1a
2 + Cϕ2,0

2 ψ1b
2 , (2.75)

ϕ0,2 = Cϕ2,0
1 ψ2

1 + Cϕ2,0
2 ψ2

2 , (2.76)

and for the case N = 3:

ϕ0,1 = 1
Δ

[
1 − gk(1 −Δ)

ω2

]
Cϕ2,0

1 ψ1a
1 + Cϕ2,0

1 ψ1b
1

+ 1
Δ

[
1 − gk2(1 −Δ)

4ω2

]
Cϕ2,0

2 ψ1a
2 + Cϕ2,0

2 ψ1b
2

+ 1
Δ

[
1 − gk3(1 −Δ)

9ω2

]
Cϕ2,0

3 ψ1a
3 + Cϕ2,0

3 ψ1b
3 , (2.77)

ϕ0,2 = Cϕ2,0
1 ψ2

1 + Cϕ2,0
2 ψ2

2 + Cϕ2,0
3 ψ2

3 . (2.78)

Initial guesses for the disturbed free-surface and interface elevations are set as η0,1 =
η0,2 = 0 for both N = 2 and N = 3. When m = 1, (2.73) reduce to nonlinear algebraic
equations, from which Cϕ2,0

1 , . . . ,Cϕ2,0
N are determined. When m > 1, (2.73) reduce to

linear algebraic equations for Cϕ2,m−1
1 , . . . ,Cϕ2,m−1

N .
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To summarize, in the HAM framework, selected auxiliary linear operators and initial
guesses eliminate the singularity or small divisor caused by exact or near resonance.
Convergent series solutions for the steady-state wave system can then be obtained by
symbolic computation software (such as Mathematica).

3. Results and discussion

We first consider pure resonance. Figure 2 presents 1 : N exact resonance curves relating
the density ratio Δ to the non-dimensional upper-layer depth parameter kh. Here, the
resonance condition (2.31) is satisfied for integer N when dω = 0. It can be seen that Δ
increases with kh for any 1 : N exact resonance case and the horizontal asymptotic value
of Δ increases with N. Resonance for small N is non-existent at large Δ, and so Δ = 0.1
is selected for all cases considered herein, in order to permit 1 : 2 and 1 : 3 resonances to
occur.

3.1. The 1 : 2 resonance

3.1.1. Weakly nonlinear waves
Next, we consider weakly nonlinear interfacial waves for the case ε = 1.0002 when 1 : 2
exact or near resonance occurs. One convergent solution is obtained for the 1 : 2 exact
resonance case when the upper-layer depth parameter kh = 0.675. For other values of
upper-layer depth parameter kh, 1 : 2 near resonance is obtained. Figure 3 shows that
the dimensionless amplitudes of the three largest components |kCη1

1 |, |kCη1
2 | and |kCη2

1 |
change continuously with increasing upper-layer depth parameter kh. The amplitudes of
primary components (internal mode) cos(ξ) of both surface and interface waves increase
with kh. Meanwhile, the amplitude of the resonant component (external mode) cos(2ξ) of
the surface wave is relatively small and remains almost unchanged.

3.1.2. Waves with increased nonlinearity
Thirdly, we consider 1 : 2 exactly resonant interfacial waves with increased nonlinearity.
Wave steepness of the free surface Hs1 and the interface Hs2 are defined as

Hsi = k
max[ηi(ξ)] − min[ηi(ξ)]

2
, ξ ∈ [0, 2π], i = 1, 2. (3.1)

Table 1 lists values of wave steepness, Hs1 and Hs2, of steady-state waves with 1 : 2
exact resonance for different ε increasing up to 1.07. Steepnesses Hs1 and Hs2 both
increase with dimensionless angular frequency ε. In short, increased ε corresponds to
higher nonlinearity.

Based on linear theory and following Tanaka & Wakayama (2015), the energy density
Ei of the component cos(iξ) is defined as

Ei = ES
i + EI

i , i = 1, 2, (3.2)

ES
i = 1

2ρ1g(Cη1
i )

2, (3.3)

EI
i = 1

2(ρ2 − ρ1)g(C
η2
i )

2, (3.4)

where ES
i and EI

i are surface and interface wave energy contributions, respectively. Then
the total energy densities of surface waves ES, interface waves EI and whole wave field E

916 A58-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.253


Steady-state resonant interfacial waves

0 1 2 3
kh

0.25

0.50

0.75

1.00

N = 2

N = 3

N = 24

Δ

Δ = 0.1

Figure 2. The solid curves represent the relationship between density ratio Δ and upper-layer depth
parameter kh satisfying the 1 : N exact resonance condition (2.31) for dω = 0.

0.67 0.74 0.81 0.88 0.95

kh

0

0.0025

0.0050

0.0075

0.0100

|k
C
η ij
|

|kCη
1
1|

|kCη
2
1|

|kCη
1
2|

Figure 3. Variation in wave amplitude |kC
ηj
i | with upper-layer depth parameter kh for Δ = 0.1 and

ε = 1.0002. Exact resonance occurs at kh = 0.675.

are as follows:

ES =
+∞∑
i=1

ES
i , EI =

+∞∑
i=1

EI
i , E = ES + EI . (3.5a–c)

Figure 4 presents the variations with increasing ε of proportional energy contributions
by surface and interface waves, and all primary and resonant components over the whole
wave field for 1 : 2 exact resonance. The surface waves carry almost 70 % of total energy,
and the energy distribution between surface and interface waves remains almost unchanged
with ε. For surface waves, energy carried by the primary component ES

1 decreases while
energy carried by the resonant component ES

2 increases with ε. For interface waves, EI
1

increases slowly while EI
2 decreases with ε. As nonlinearity increases, energy transfers

from the primary component to the resonant component carried by surface waves, whereas
the opposite transfer occurs for interface waves.

Figure 5(a) shows dimensionless amplitudes of the four largest components |kCη1
1 |,

|kCη1
2 |, |kCη2

1 | and |kCη2
2 | for 1 : 2 exact resonance with increased ε. The amplitudes of
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ε Hs1 Hs2

1.0002 4.86 × 10−4 1.15 × 10−4

1.01 2.24 × 10−2 5.02 × 10−3

1.03 5.96 × 10−2 1.22 × 10−2

1.05 9.12 × 10−2 1.74 × 10−2

1.07 1.20 × 10−1 2.15 × 10−2

Table 1. Wave steepness of free surface Hs1 and interface Hs2 versus dimensionless angular frequency ε
when Δ = 0.1 and kh = 0.675 for 1 : 2 exact resonance.

0.20

0.35

0.50

0.65

0.80

E
S /

E
,E

I /E ES/E

EI/E

1 1.0175 1.035 1.0525 1.07
0

0.15

0.30

0.45

0.60

E
S i/

E
,E

I i/E

ES
1/E

ES
2/E

EI
1/E

EI
2/E

ε
1 1.0175 1.035 1.0525 1.07

ε

(b)(a)

Figure 4. Variation in proportional energy contributions carried by (a) surface and interface waves, and
(b) primary and resonant components with dimensionless angular frequency ε, for Δ = 0.1 and kh = 0.675
corresponding to 1 : 2 exact resonance.

all four components increase with ε. For both surface and interface waves, the amplitude
of the primary component is invariably larger than that of the resonant component at
any given ε. Besides, the surface wave amplitudes are much larger than the interface
wave amplitudes. At ε = 1.07, the surface components |kCη1

1 | and |kCη1
2 | reach 0.073

and 0.066, whereas the interface components |kCη2
1 | and |kCη2

2 | reach smaller values of
0.020 and 0.009, respectively. For both primary and resonant components, the surface
wave amplitude is more than three times larger than the interface wave amplitude.

Figure 5(b,c) presents spatial profiles of the free surface z = ζ1 and interface z = −h +
ζ2. As ε increases, crests and troughs steepen in both the free-surface and interface profiles.
Combining the results of figure 5(b,c), we find that the primary components of the surface
and interface waves are out of phase, and the resonant components of the surface and
interface waves have the same phase. This phase relation is identical to that found by
Parau & Dias (2001).

3.1.3. Finite amplitude waves
We now consider the effect of upper-layer depth on finite amplitude interfacial waves.
Figure 6 presents the variation in energy proportions of surface and interface waves,
and all primary and resonant components in the whole wave field, with the upper-layer
depth parameter kh. Square symbols represent the 1 : 2 exactly resonant case. For small
upper-layer depth (kh = 0.597), both the surface and interface waves carry a similar
amount of energy. As the upper-layer depth increases, energy is transferred from the
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(b)
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(c)

ε

Figure 5. Variations in (a) wave amplitude |kC
ηj
i | and spatial profiles of (b) free surface z = ζ1 and (c) interface

z = −h + ζ2 at t = 0 s with dimensionless angular frequency ε, for Δ = 0.1 and kh = 0.675 corresponding to
1 : 2 exact resonance.

interface waves to the surface waves. Energy transported by the surface waves reaches
a maximum (71 % of total energy) near the exactly resonant value of upper-layer depth
parameter (kh = 0.675). As the upper-layer depth further increases, energy is transferred
back from the surface waves to the interface waves. At kh = 0.942, the energy carried
by the surface waves is nearly equal to that carried by the interface waves. For surface
waves, as kh increases, energy carried by the primary component ES

1 first increases and
then decreases slowly, while energy transported by the resonant component ES

2 keeps
decreasing. For interface waves, EI

1 increases while EI
2 decreases, both progressively, with

kh. Note that the wavelength of the primary component is twice that of the resonant
component. Therefore, as the upper-layer depth increases, wave energy transfers from
the shorter resonant component to the longer primary component for both surface and
interface waves.

Figure 7(a) shows the dimensionless amplitudes of the four largest components |kCη1
1 |,

|kCη1
2 |, |kCη2

1 | and |kCη2
2 | for different values of the upper-layer depth parameter kh. The

amplitude of each component changes continuously with kh. Here the superimposed
square symbols indicate the 1 : 2 exactly resonant case. The energy carried by surface
waves and interface waves exhibits mirror symmetry, even though the density of the upper
layer, ρ1, is smaller than that of the lower layer, ρ2. For almost all kh, the amplitudes of
the primary and resonant components of surface waves are larger than the corresponding
amplitudes of interface waves. At kh = 0.597, the resonant surface component |kCη1

2 |
is largest. As kh increases, the amplitudes of the primary components of both surface
and interface increase more rapidly than those of the resonant components. Hence at
kh = 0.942, the largest component is the primary surface component |kCη1

1 |.
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Figure 6. Variations of energy proportion in (a) surface and interface waves, and (b) primary and resonant
components with upper-layer depth parameter kh when Δ = 0.1 and ε = 1.05. The square symbols indicate
1 : 2 exact resonance.

0.59 0.68 0.77 0.86 0.95
kh

0

0.0325

0.0650

0.0975

0.1300
kh = 0.597

x (m)

ζ 1
 (m

)

–
h 

+
 ζ

2 
(m

)

–15

–1

13

27

41
kh = 0.597

kh = 0.735
kh = 0.942

0 250 500 750 1000
x (m)

0 250 500 750 1000
–158

–141

–124

–107

–90

kh = 0.942kh = 0.735

|k
C
η ij
|

|kCη
1
1|

|kCη
2
1|

|kCη
1
2|

|kCη
2
2|

(b)

(a)

(c)

kh = 0.597

kh = 0.735
kh = 0.942

Figure 7. Variations in (a) wave amplitude |kC
ηj
i |, and spatial profiles of (b) free surface z = ζ1 and (c)

interface z = −h + ζ2 at t = 0 s with upper-layer depth parameter kh when Δ = 0.1 and ε = 1.05. The square
symbols indicate 1 : 2 exact resonance.

Figure 7(b,c) presents spatial profiles of the free surface z = ζ1 and interface z = −h +
ζ2 for three different values of the upper-layer depth parameter kh. The wave heights of
the free-surface and interface profiles both increase with kh. In this case, the wavelength
of the primary component cos(ξ) is twice that of the resonant component cos(2ξ). Due to
the energy transfer shown in figure 6(b), the shapes of the free surface and interface both
tend to a single sinusoidal wave as the upper-layer depth parameter kh increases.
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Figure 8. Vertical profile of the horizontal fluid particle velocity component: (a) u = uch + ush in both layers,
and (b) hyperbolic cosine contribution uch and (c) hyperbolic sine contribution ush in the upper layer at the
crest of the surface wave at t = 0 s, with the upper-layer depth parameter kh when Δ = 0.1 and ε = 1.05.

Figure 8(a) displays vertical profiles of the horizontal fluid particle velocity component
u at the crest of the surface wave for three different values of upper-layer depth parameter
kh. In all cases, the horizontal velocity gradient exhibits a jump at the interface, with the
horizontal velocity component increasing with z in the upper layer. As the upper-layer
depth parameter kh increases, the difference in horizontal velocity component across the
interface increases along with the wave heights of both surface and interface, leading to
a rapid increase in fluid particle velocity near the free surface. Though the non-viscous
model in this paper inevitably involves a discontinuity in the velocity profile at the
interface, the foregoing qualitative findings should nevertheless be reasonable.

For the upper fluid layer, the horizontal fluid particle velocity component u in figure 8(a)
comprises a hyperbolic cosine part uch and a hyperbolic sine part ush (u = uch + ush) as
evident in the solution expression (2.24). Figure 8(b,c) shows vertical profiles of these
velocity contributions, uch and ush, for three values of the upper-layer depth parameter kh.
It can be seen that uch tends to increase with the upper-layer depth parameter kh, whereas
ush decreases with kh. At kh = 0.942, the hyperbolic sine contribution ush is sufficiently
small to be ignored. As kh decreases, ush becomes increasingly important compared with
uch.

In general, the amplitudes of finite amplitude interfacial waves change continuously
with upper-layer depth parameter kh. The energy carried by surface waves with varying
water depth mirrors that carried by interface waves. As the upper-layer depth increases,
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Figure 9. Variation in wave amplitude |kC
ηj
i | with upper-layer depth parameter kh, when Δ = 0.1 and

ε = 1.0002. The superimposed square symbols indicate 1 : 3 exact resonance.

energy flux transfers within surface and interface waves occur from the shorter resonant
component to the longer primary one.

3.2. The 1 : 3 resonance
Taking 1 : 3 resonance as an example, we consider the third-harmonic resonance of
steady-state interfacial waves with free-surface boundary conditions. Weakly nonlinear
cases with ε = 1.0002 are considered, and convergent series solutions obtained in the
vicinity of the exactly resonant point. Figure 9 shows the dimensionless amplitudes of
the four largest components |kCη1

1 |, |kCη1
3 |, |kCη2

1 | and |kCη2
3 | for different values of

upper-layer depth parameter kh. Here the square symbols represent 1 : 3 exact resonance.
The amplitudes of all four components increase with kh. For small kh, the surface wave
resonant component cos(3ξ) dominates. As kh increases, the situation alters so that the
primary component cos(ξ) and resonant component cos(3ξ) of the surface wave instead
become dominant.

4. Concluding remarks

We have investigated steady-state periodic interfacial gravity waves with 1 : 2 and 1 : 3
exact- and near-harmonic resonances. The interfacial waves exist in a two-layer fluid with
a free surface. A robust solution procedure based on a modification to the HAM framework
has been used to remove the singularity and small divisor respectively caused by exact and
near resonance. Convergent series solutions have been obtained and the continuum of
steady-state interfacial waves in parameter space is established.

For interfacial waves with 1 : 2 exact resonance, as nonlinearity increases, energy
carried by the primary component transfers to the resonant component within the surface
waves, whereas energy carried by the resonant component transfers to the primary one
within interface waves. The amplitude of the primary component is invariably larger than
that of the resonant component for both surface and interface waves. And the amplitudes
of surface wave components are much larger than those of the interface wave.

For finite amplitude interfacial waves with 1 : 2 near resonance, energy carried by
surface and interface waves exhibits mirror symmetry as the upper-layer depth varies. For
both surface and interface waves, energy transfers from the shorter resonant component to
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the longer primary component as the upper-layer depth increases. This explains why the
spatial profiles of both free surface and interface tend to a single sinusoidal waveform as
the upper layer becomes deeper. By considering vertical profiles of the horizontal fluid
particle velocity component, an increasingly rapid rise in horizontal velocity is found to
occur near the free surface as the upper-layer depth and wave heights of both the free
surface and interface jointly increase. The analytical solutions show that the horizontal
fluid particle velocity is composed of hyperbolic components, with the hyperbolic sine
contribution growing in importance over the hyperbolic cosine contribution as the
upper-layer depth decreases.

For weakly nonlinear interfacial waves around the 1 : 3 exact resonance point,
convergent series solutions are obtained. A steady-state triad resonant system in a
two-layer fluid with free surface subject to more realistic conditions will be studied in
the future.

Harmonic resonance with small N does not exist for two-layer fluids with large density
ratioΔ, as demonstrated by the resonant curves in figure 2. Without loss of generality,Δ =
0.1 has been chosen for all cases considered in this paper to facilitate the occurrence of
1 : 2 and 1 : 3 resonances. In this work, the small divisors associated with near resonance
for interfacial waves are removed by the HAM. It should be noted that several advanced
perturbation methods (such as the multiple scales method) that work for finite amplitude
waves and over long duration could also treat singularities and small divisors in an elegant,
rigorous, simple way. For steeper wave groups than considered in this work, the present
formulation based on potential flow theory becomes invalid as soon as viscosity and wave
breaking come into play.
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Appendix A. Interface deformation conditions

The two kinematic interface conditions are

∂ζ2

∂t
+ ∇φ1 · ∇ζ2 − ∂φ1

∂z
= 0, at z = −h + ζ2 (A1)

and
∂ζ2

∂t
+ ∇φ2 · ∇ζ2 − ∂φ2

∂z
= 0, at z = −h + ζ2. (A2)

The dynamic interface condition is

ρ1

(
∂φ1

∂t
+ gζ2 + 1

2
|∇φ1|2

)
− ρ2

(
∂φ2

∂t
+ gζ2 + 1

2
|∇φ2|2

)
= 0, at z = −h + ζ2.

(A3)
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Given that Δ = ρ1/ρ2, the interface disturbance ζ2 is obtained by solving equation (A3)
to give

ζ2 = 1
g(1 −Δ)

[
Δ

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
−

(
∂φ2

∂t
+ 1

2
|∇φ2|2

)]
, at z = −h + ζ2.

(A4)
Carrying out partial differentiation of (A4) with respect to x, y and t, and substituting

into (A1)–(A2), ζ2 is then eliminated to give

∂2φ2

∂t2
+ g(1 −Δ)

∂φ2

∂z
−Δ

∂2φ1

∂t2
+ ∂(|∇φ2|2)

∂t
−Δ

∂
(

1
2 |∇φ1|2

)
∂t

+ ∇φ2 · ∇
(

1
2
|∇φ2|2

)

−Δ∇φ2 · ∇
(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
= 0, at z = −h + ζ2 (A5)

and

∂2φ2

∂t2 + g(1 −Δ)
∂φ1

∂z
−Δ

∂2φ1

∂t2 + ∂
( 1

2 |∇φ2|2
)

∂t
−Δ

∂(|∇φ1|2)
∂t

−Δ∇φ1 · ∇
(

1
2
|∇φ1|2

)

+∇φ1 · ∇
(
∂φ2

∂t
+ 1

2
|∇φ2|2

)
= 0, at z = −h + ζ2. (A6)

Subtracting (A6) from (A5), we obtain

g(1 −Δ)
∂(φ2 − φ1)

∂z
+ ∂

( 1
2 |∇φ2|2

)
∂t

+ ∇φ2 · ∇
(

1
2
|∇φ2|2

)
− ∇φ1 · ∇

(
∂φ2

∂t
+ 1

2
|∇φ2|2

)

+Δ
[
∂

( 1
2 |∇φ1|2

)
∂t

+ ∇φ1 · ∇
(

1
2
|∇φ1|2

)

−∇φ2 · ∇
(
∂φ1

∂t
+ 1

2
|∇φ1|2

)]
= 0, at z = −h + ζ2. (A7)

Subsequent derivation is then based on the kinematic interface conditions (A5), (A7)
and dynamic interface condition (A4). Note that (A5) is (2.5), (A7) is (2.6) and (A4) is
(2.7).

Appendix B. High-order deformation equations in the HAM

Substituting the series (2.37a,b)–(2.38a,b) into the zeroth-order deformation equations
(2.32)–(2.36), and then equating like-powers of q, the following five linear equations
(called high-order deformation equations) are obtained:

L1[ϕm,1]|z=0 = c0Δ
ϕ
m−1,1 + χm(Sm−1,1 − S̄m,1), m ≥ 1, (B1)

Li+1[ϕm,1, ϕm,2]|z=−h = c0Δ
ϕ
m−1,i + χm(Sm−1,i − S̄m,i), i = 2, 3, m ≥ 1, (B2)

ηm,i = c0Δ
η
m−1,i + χmηm−1,i, i = 1, 2, m ≥ 1, (B3)
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where

Δ
ϕ
m,1 = σ 2φ̄2,1,1

m + gφ̄0,1,1
z,m +Λ

1,1,1
m,1 − 2σΓ 1,1

m,1, (B4)

Δ
ϕ
m,2 = σ 2φ̄2,2,2

m + g(1 −Δ)φ̄0,2,2
z,m −Δσ 2φ̄2,1,2

m +Λ
2,2,2
m,1

−2σΓ 2,2
m,1 +Δ(σΓ

1,2
m,1 −Λ

2,1,2
m,2 −Λ

2,1,2
m,1 ), (B5)

Δ
ϕ
m,3 = g(1 −Δ)(φ̄0,2,2

z,m − φ̄0,1,2
z,m )− σΓ

2,2
m,1 +Λ

2,2,2
m,1 −Λ

1,2,2
m,2 −Λ

1,2,2
m,1

+Δ(Λ1,1,2
m,1 −Λ

2,1,2
m,2 −Λ

2,1,2
m,1 − σΓ

1,2
m,1), (B6)

Δ
η
m,1 = ηm,1 − 1

g
(σ φ̄1,1,1

m − Γ
1,1

m,0), (B7)

Δ
η
m,2 = ηm,2 + 1

g(1 −Δ)
[Γ 2,2

m,0 − σ φ̄1,2,2
m +Δ(σ φ̄1,1,2

m − Γ
1,2

m,0)], (B8)

in which

Γ
k̄,p

m,0 =
m∑

n=0

(
k2

2
φ̄1,k̄,p

n φ̄
1,k̄,p
m−n + 1

2
φ̄0,k̄,p

z,n φ̄
0,k̄,p
z,m−n

)
, k̄, p = 1, 2, (B9)

Γ
k̄,p

m,1 =
m∑

n=0

[k2φ̄1,k̄,p
n φ̄

2,k̄,p
m−n + φ̄0,k̄,p

z,n φ̄
1,k̄,p
z,m−n], k̄, p = 1, 2, (B10)

Γ
k̄,p

m,3 =
m∑

n=0

[k2φ̄1,k̄,p
n φ̄

1,k̄,p
z,m−n + φ̄0,k̄,p

z,n φ̄
0,k̄,p
zz,m−n], k̄, p = 1, 2, (B11)

Λ
i,j,p
m,1 =

m∑
n=0

[k2φ̄1,i,p
n Γ

j,p
m−n,1 + φ̄0,i,p

z,n Γ
j,p

m−n,3], i, j, p = 1, 2, (B12)

Λ
i,j,p
m,2 = −σ

m∑
n=0

[k2φ̄1,i,p
n φ̄

2,0,j,p
m−n + φ̄0,i,p

z,n φ̄
1,j,p
z,m−n], i, j, p = 1, 2, (B13)

μm,n,p =

⎧⎪⎪⎨
⎪⎪⎩

ηn,p, m = 1, n ≥ 1,
n−1∑

i=m−1

μm−1,i,pηn−i,p, m ≥ 2, n ≥ m,
(B14)

ψ
n,m
i,k̄,1

= ∂ i

∂ξ i

(
1

m!

∂mϕn,k̄

∂zm

∣∣∣∣
z=0

)
, k̄ = 1, 2, (B15)

ψ
n,m
i,k̄,2

= ∂ i

∂ξ i

(
1

m!

∂mϕn,k̄

∂zm

∣∣∣∣
z=−h

)
, k̄ = 1, 2, (B16)
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β
n,m
i,k̄,p

=

⎧⎪⎪⎨
⎪⎪⎩

ψ
n,0
i,k̄,p

, m = 0,
m∑

s=1

ψ
n,s
i,k̄,p

μs,m,p, m ≥ 1,
(B17)

γ
n,m
i,k̄,p

=
⎧⎨
⎩

ψ
n,1
i,k̄,p

, m = 0,∑m
s=1(s + 1)ψn,s+1

i,k̄,p
μs,m,p, m ≥ 1,

(B18)

δ
n,m
i,k̄,p

=

⎧⎪⎪⎨
⎪⎪⎩

2ψn,2
i,k̄,p

, m = 0,
m∑

s=1

(s + 1)(s + 2)ψn,s+2
i,k̄,p

μs,m,p, m ≥ 1,
(B19)

φ̄i,k̄,p
n =

n∑
m=0

β
n−m,m
i,k̄,p

, φ̄i,k̄,p
z,n =

n∑
m=0

γ
n−m,m
i,k̄,p

, φ̄i,k̄,p
zz,n =

n∑
m=0

δ
n−m,m
i,k̄,p

. (B20)

Expressions for Li, Sm−1,i and S̄m,i are given in § 2.3.2.
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